2012年高考真题——理科数学(上海卷)解析版(1)
2012年上海高考数学理科试题及答案
2012年上海⾼考数学理科试题及答案2012年上海⾼考数学(理科)试卷⼀、填空题(本⼤题共有14题,满分56分)1.计算:ii+-13= (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=x xx f 的值域是 .4.若)1,2(-=是直线l 的⼀个法向量,则l 的倾斜⾓的⼤⼩为 (结果⽤反三⾓函数值表⽰). 5.在6)2(xx -的⼆项展开式中,常数项等于 . 6.有⼀列正⽅体,棱长组成以1为⾸项,21为公⽐的等⽐数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若⼀个圆锥的侧⾯展开图是⾯积为2π的半圆⾯,则该圆锥的体积为 .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g .10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹⾓6πα=.若将l 的极坐标⽅程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳⾼、跳远、铅球项⽬的⽐赛.若每⼈都选择其中两个项⽬,则有且仅有两⼈选择的项⽬完全相同的概率是(结果⽤最简分数表⽰).12.在平⾏四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM =,则AN AM ?的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的⾯积为 .14.如图,AD 与BC 是四⾯体ABCD 中互相垂直的棱,BC=2. 若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四⾯体ABCD 的体积的最⼤值是 .⼆、选择题(本⼤题共有4题,满分20分)15.若i 21+是关于x 的实系数⽅程02=++c bx x 的⼀个复数根,则 ( )(A)3,2==c b .(B)3,2=-=c b .(C)1,2-=-=c b .(D)1,2-==c b .16.在ABC ?中,若C B A 222sin sin sin <+,则ABC ?的形状是 ( )(A)锐⾓三⾓形.(B)直⾓三⾓形.(C)钝⾓三⾓形.(D)不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2. 若记1ξD 、2ξD 分别为1ξ、2ξ的⽅差,则( )(A)1ξD >2ξD .(B)1ξD =2ξD .(C)1ξD <2ξD .(D)1ξD 与2ξD 的⼤⼩关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πnn n a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( )(A)25. (B)50. (C)75. (D)100.三、解答题(本⼤题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底⾯ABCD 是矩形,P A ⊥底⾯ABCD ,E 是PC 的中点.已知AB=2,AD=22,P A=2.求:(1)三⾓形PCD 的⾯积;(6分) (2)异⾯直线BC 与AE 所成的⾓的⼤⼩.(6分)ABCDA B CD P E20.已知函数)1lg()(+=x x f .(1) 若1)()21(0<--(2) 若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)21.海事救援船对⼀艘失事船进⾏定位:以失事船的当前位置为原点,以正北⽅向为y 轴正⽅向建⽴平⾯直⾓坐标系(以1海⾥为单位长度),则救援船恰在失事船的正南⽅向12海⾥A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t ⼩时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的⼤⼩和⽅向;(6分)(2)问救援船的时速⾄少是多少海⾥才能追上失事船?(8分)22.在平⾯直⾓坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的⼀条渐近线的平⾏线,求该直线与另⼀条渐近线及x 轴围成的三⾓形的⾯积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON ,求证:O到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=?a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P . (1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通项公式.(8分)2012年上海⾼考数学(理科)试卷解答⼀、填空题(本⼤题共有14题,满分56分)1.计算:ii+-13= 1-2i (i 为虚数单位).[解析] i i i i i i i i 212413)1)(1()1)(3(13-=--=-+--=+-.2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =)3,(21- . [解析] ),(21∞+-=A ,)3,1(-=B ,A ∩B =)3,(2 1-.3.函数1sin cos 2)(-=x xx f 的值域是],[2325-- . [解析]x x x x f 2sin 2cos sin 2)(21--=--=∈],[2325--. 4.若)1,2(-=是直线l 的⼀个法向量,则l 的倾斜⾓的⼤⼩为 arctan 2 (结果⽤反三⾓函数值表⽰). [解析] ⽅向向量)2,1(=,所以2=l k ,倾斜⾓α=arctan 2.5.在6)2(xx -的⼆项展开式中,常数项等于-160 . [解析] 展开式通项rr r r r r r r r r x C x x C T 2666612)1(2)1(---+-=-=,令6-2r =0,得r =3,故常数项为1602336-=?-C .6.有⼀列正⽅体,棱长组成以1为⾸项,21为公⽐的等⽐数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .[解析] 易知V 1,V 2,…,V n ,…是以1为⾸项,3为公⽐的等⽐数列,所以78121811)(lim ==+++-∞→Vn n V V V .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 (-∞, 1] . [解析]令||)(a x x g -=,则)()(x g e x f =,由于底数1>e ,故)(x f ↑ )(x g ↑,由)(x g 的图像知)(x f 在区间[1,+∞)上是增函数时,a ≤1. 8.若⼀个圆锥的侧⾯展开图是⾯积为2π的半圆⾯,则该圆锥的体积为π33 .[解析] 如图,ππ221=l ?l =2,⼜2πr2=πl =2π?r =1,所以h=3,故体积ππ33231==h r V .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g -1 .[解析] 2)(x x f y +=是奇函数,则4]1)1([)1()1(22-=+-=-+-f f ,所以3)1(-=-f , 1. 10.如图,在极坐标系中,过点)0,2(M 的直线l6πα=.若将l 的极坐标⽅程写成)(θρf =的形式,则 =)(θf )sin(1θπ- .[解析] )0,2(M 的直⾓坐标也是(2,0),斜率31=k ,所以其直⾓坐标⽅程为23=-y x ,化为极坐标⽅程为:2sin 3cos =-θρθρ,1)sin cos (2321=-θθρ,1)s i n (6=-θρπ,)sin(16θπρ-=,即=)(θf )sin(16θπ-.(或=)(θf )cos(13πθ+)11.三位同学参加跳⾼、跳远、铅球项⽬的⽐赛.若每⼈都选择其中两个项⽬,则有且仅有两⼈选择的项⽬完全相同的概率是3 2(结果⽤最简分数表⽰). [解析] 设概率p=nk ,则27232323=??=C C C n ,求k ,分三步:①选⼆⼈,让他们选择的项⽬相同,有23C 种;②确定上述⼆⼈所选择的相同的项⽬,有13C 种;③确定另⼀⼈所选的项⽬,有12C 种. 所以18121323=??=C C C k ,故p=322718=. 12.在平⾏四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD CN BC BM ,则的取值范围是 [2, 5] . [解析] 如图建系,则A (0,0),B (2,0),D (1,23),C (5,23).t CD BC ==||||∈[0,1],则t =||,t 2||=,所以M (2+2t,23t ),N (25-2t ,23),故AN AM ?=(2+2t)(25-2t )+23t ?23=)(6)1(5222t f t t t =++-=+--,因为t ∈[0,1],所以f (t )递减,(AN AM ?)max = f (0)=5,(AN AM ?)min = f (1)=2.[评注] 当然从抢分的战略上,可冒⽤两个特殊点:M 在B (N 在C )和M 在C (N 在D ),⽽本案恰是在这两点处取得最值,蒙对了,⼜省了时间!出题⼤虾太给蒙派⼀族⾯⼦了! 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的⾯积为5. [解析]如图1,≤<-≤≤=1,10100,10)(2121x x x x x f ,所以?≤<+-≤≤==1,10100,10)(212212x x x x x x xf y ,易知,y =xf (x )的分段解析式中的两部分抛物线形状完全相同,只是开⼝⽅向及顶点位置不同,如图2,封闭图形MND 与OMP 全等,⾯积相等,故所求⾯积即为矩形ODMP 的⾯积S=452521=?.[评注]对于曲边图形,上海现⾏教材中不出微积分,能⽤微积分求此⾯积的考⽣恐是极少的,⽽对于极⼤部分考⽣,等积变换是唯⼀的出路。
2012年上海高考理科数学试卷及解析
2012年上海市高考数学试卷(理科)一、填空题( 分):.( 上海)计算: ( 为虚数单位)..( 上海)若集合 > , ﹣ < ,则 ..( 上海)函数 ( ) 的值域是 ..( 上海)若 (﹣ , )是直线 的一个法向量,则 的倾斜角的大小为 (结果用反三角函数值表示)..( 上海)在的二项展开式中,常数项等于..( 上海)有一列正方体,棱长组成以 为首项、为公比的等比数列,体积分别记为 , , , , ,则( )..( 上海)已知函数 ( ) ﹣ ( 为常数).若 ( )在区间 , )上是增函数,则 的取值范围是 ..( 上海)若一个圆锥的侧面展开图是面积为 的半圆面,则该圆锥的体积为 ..( 上海)已知 ( ) 是奇函数,且 ( ) ,若 ( ) ( ) ,则 (﹣ ) ..( 上海)如图,在极坐标系中,过点 ( , )的直线 与极轴的夹角 ,若将 的极坐标方程写成 ( )的形式,则 ( )..( 上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)..( 上海)在平行四边形 中, ,边 、 的长分别为 、 ,若 、 分别是边 、 上的点,且满足 ,则的取值范围是 ..( 上海)已知函数 ( )的图象是折线段 ,其中 ( , )、 (, )、 ( , ),函数 ( )( )的图象与 轴围成的图形的面积为 ..( 上海)如图, 与 是四面体 中互相垂直的棱,,若 ,且 ,其中 、 为常数,则四面体 的体积的最大值是 .二、选择题( 分):.( 上海)若 是关于 的实系数方程 的一个复数根,则(). , . ﹣ , . ﹣ , ﹣ . , ﹣.( 上海)在 中,若 < ,则的形状是().锐角三角形 .直角三角形 .钝角三角形 .不能确定.( 上海)设 < < < , ,随机变量 取值 、 、 、 、 的概率均为 ,随机变量 取值、、、、的概率也均为 ,若记 、 分别为 、的方差,则(). >.. <. 与 的大小关系与 、 、 、 的取值有关.( 上海)设 , ,在 ,, 中,正数的个数是(). . . .三、解答题(共 小题,满分 分).( 上海)如图,在四棱锥 ﹣ 中,底面 是矩形, 底面 , 是 的中点,已知 , , ,求:( )三角形 的面积;( )异面直线 与 所成的角的大小..( 上海)已知 ( ) ( )( )若 < ( ﹣ )﹣ ( )< ,求 的取值范围;( )若 ( )是以 为周期的偶函数,且当 时, ( ) ( ),求函数 ( )( , )的反函数..( 上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为 轴正方向建立平面直角坐标系(以 海里为单位长度),则救援船恰好在失事船正南方向 海里 处,如图,现假设:失事船的移动路径可视为抛物线;定位后救援船即刻沿直线匀速前往救援;救援船出发 小时后,失事船所在位置的横坐标为( )当 时,写出失事船所在位置 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.( )问救援船的时速至少是多少海里才能追上失事船?.( 上海)在平面直角坐标系 中,已知双曲线 : ﹣.( )过 的左顶点引 的一条渐进线的平行线,求该直线与另一条渐进线及 轴围成的三角形的面积;( )设斜率为 的直线 交 于 、 两点,若 与圆 相切,求证: ;( )设椭圆 : ,若 、 分别是 、 上的动点,且 ,求证: 到直线 的距离是定值..( 上海)对于数集 ﹣ , , , , ,其中 < < < < , ,定义向量集 ( , ), , ,若对任意,存在,使得,则称 具有性质 .例如 ﹣ , , 具有性质 .( )若 > ,且 ﹣ , , , 具有性质 ,求 的值;( )若 具有性质 ,求证: ,且当 > 时, ;( )若 具有性质 ,且 、 ( 为常数),求有穷数列 , , , 的通项公式.年上海市高考数学试卷(理科)参考答案与试题解析一、填空题( 分):.( 上海)计算: ﹣ ( 为虚数单位).考点:复数代数形式的乘除运算。
2012年上海市高考数学试卷(理科)-含答案详解
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2012年普通高等学校招生全国统一考试(上海卷)数学(理科)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本大题共4小题,共20.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若是关于x 的实系数方程x 2+ bx + c =0的一个复数根,则( )A. b =2,c =3B. b =−2,c =3C. b =−2,c =−1D. b =2,c =−12. 在△ ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ ABC 的形状是( ) A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 设10≤ x 1< x 2< x 3< x 4≤104,x 5=105.随机变量ξ 1取值x 1,x 2,x 3,x 4,x 5的概率均为0.2,随机变量ξ 2取值,,,,的概率也均为0.2.若记Dξ 1,Dξ 2分别为ξ 1,ξ 2的方差,则( )A. Dξ 1> Dξ 2B. Dξ 1= Dξ 2C. Dξ 1< Dξ 2D. Dξ 1与Dξ 2的大小关系与x 1,x 2,x 3,x 4的取值有关……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………4. 设,S n = a 1+ a 2+⋯+ a n .在S 1,S 2,…,S 100中,正数的个数是( )A. 25B. 50C. 75D. 100第II 卷(非选择题)二、填空题(本大题共14小题,共56.0分)5. 计算:__________(i 为虚数单位).6. 若集合A ={x|2 x +1>0},B ={x|| x −1|<2},则A ∩ B =__________.7. 函数的值域是__________.8. 若n =(−2,1)是直线l 的一个法向量,则l 的倾斜角的大小为__________(结果用反三角函数值表示).9. 在(x −)6的二项展开式中,常数项等于__________.10. 有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则__________.11. 已知函数f(x)=e |x−a|(a 为常数).若f(x)在区间[1,+∞)上是增函数,则a 的取值范围是 .12. 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为__________.13. 已知y = f(x)+ x 2是奇函数,且f(1)=1.若g(x)= f(x)+2,则g(−1)=__________.14. 如图,在极坐标系中,过点M(2,0)的直线l 与极轴的夹角.若将l 的极坐标方程写成ρ= f(θ)的形式,则f(θ)=__________.15. 三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是__________(结果用最简分数表示).……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………16. 在平行四边形ABCD 中,,边AB ,AD 的长分别为2,1.若M ,N 分别是边BC ,CD 上的点,且满足,则的取值范围是__________.17. 已知函数y = f(x)的图像是折线段ABC ,其中A(0,0),B(,5),C(1,0).函数y = xf(x)(0≤ x ≤1)的图像与x 轴围成的图形的面积为__________.18. 如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2 c ,且AB + BD = AC + CD =2 a ,其中a ,c 为常数,则四面体ABCD 的体积的最大值是__________.三、解答题(本大题共5小题,共74.0分。
2012年普通高等学校招生全国统一考试理数上海卷pdf版含答案
f (θ ) =
1
sin(
π 6
−θ
)
.
O
M
x
11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有
两人选择的项目完全相同的概率是
2 3
(结果用最简分数表示).
12.在平行四边形
ABCD
中,∠A=
π 3
,
边 AB、AD 的长分别为 2、1.
若 M、N 分别
是边 BC、CD 上的点,且满足 | BM | = | CN | ,则 AM ⋅ AN 的取值范围是 [2, 5] . | BC | | CD |
3.函数 f (x) = sin x
−1
的值域是 [−
5 2
,
−
3 2
]
.
4.若 n = (−2, 1) 是直线 l 的一个法向量,则 l 的倾斜角的大小为 arctan2 (结果用反
三角
函数值表示).
5.在 (x − 2 )6 的二项展开式中,常数项等于 -160 . x
6.有一列正方体,棱长组成以
A
设 AE 与 BC 的夹角为,则
cosθ = AE⋅BC = 4 = | AE||BC| 2×2 2
2 2
,=
π 4
.
B x
由此可知,异面直线
BC
与
AE
所成的角的大小是
π 4
[解法二]取 PB 中点 F,连接 EF、AF,则
P
EF∥BC,从而∠AEF(或其补角)是异面直线
E Dy
C ……12 分
BC 与 AE 所成的角
ξ 概率均为 0.2,随机变量
2 取值
x1 + x2 2
2012年上海高考理科数学试卷及解析
2012年上海市高考数学试卷(理科)一、填空题(56分):1.(2012•上海)计算:= _________ (i为虚数单位).2.(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=_________ .3.(2012•上海)函数f(x)=的值域是_________ .4.(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为_________ (结果用反三角函数值表示).5.(2012•上海)在的二项展开式中,常数项等于_________ .6.(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═_________ .7.(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是_________ .8.(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为_________ .9.(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)= _________ .10.(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)= _________ .11.(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是_________ (结果用最简分数表示).12.(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是_________ .13.(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C (1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为_________ .14.(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是_________ .二、选择题(20分):15.(2012•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3B.b=﹣2,c=3C.b=﹣2,c=﹣1D.b=2,c=﹣116.(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定17.(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ>Dξ21B.Dξ=Dξ21C.Dξ<Dξ21D.Dξ与Dξ2的大小关系与x1、x2、x3、x4的取值有关118.(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25B.50C.75D.100三、解答题(共5小题,满分74分)19.(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC 的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.20.(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.21.(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?22.(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐进线的平行线,求该直线与另一条渐进线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN 的距离是定值.23.(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(2012•上海)计算:= 1﹣2i (i为虚数单位).考点:复数代数形式的乘除运算。
2012年普通高等学校招生全国统一考试理科数学(上海卷)
上海 数学(理工农医类)1.(2012上海,理1)计算:3i 1i-+= (i 为虚数单位).1-2i 3i 1i -+=(3i)(1i)(1i)(1i)--+-=233i i i 2--+=1-2i .2.(2012上海,理2)若集合A ={x |2x +1>0},B ={x ||x -1|<2},则A ∩B = .1|x 32x ⎧⎫-<<⎨⎬⎩⎭ A ={x |2x +1>0}=1|2x x ⎧⎫>-⎨⎬⎩⎭,B ={x ||x -1|<2}={x |-1<x <3},∴A ∩B =1|x 32x ⎧⎫-<<⎨⎬⎩⎭. 3.(2012上海,理3)函数f (x )=2sin 1cosx x - 的值域是 .53,-22⎡⎤-⎢⎥⎣⎦ f (x )=2×(-1)-sin x cos x =-2-sin22x ,∵sin 2x ∈[-1,1],∴f (x )∈53,-22⎡⎤-⎢⎥⎣⎦.4.(2012上海,理4)若n =(-2,1)是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).arctan 2 ∵n =(-2,1)是直线l 的一个法向量,∴v =(1,2)是直线l 的一个方向向量,∴l 的斜率为2,即倾斜角的大小为arctan 2.5.(2012上海,理5)在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项等于 .-160 62x x ⎛⎫- ⎪⎝⎭的二项展开式中的常数项为36C ·(x )3·32x ⎛⎫- ⎪⎝⎭=-160. 6.(2012上海,理6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则lim n →∞(V 1+V 2+…+V n )= .87 棱长是以1为首项、12为公比的等比数列,则体积V 1,V 2,…,V n是以1为首项、18为公比的等比数列,所以V 1+V 2+…+V n =111818n ⎡⎤⎛⎫⋅-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-=87·118n⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦, ∴lim n →∞(V 1+V 2+…+V n )=87. 7.(2012上海,理7)已知函数f (x )=e |x -a |(a 为常数),若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是 .(-∞,1] f (x )=e ,x a,e ,x a,x a a x--⎧>⎨<⎩当x >a 时f (x )单调递增,当x <a 时,f (x )单调递减,又f (x )在[1,+∞)上是增函数,所以a ≤1. 8.(2012上海,理8)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.如图,由题意知12πl 2=2π, ∴l =2.又展开图为半圆,∴πl =2πr ,∴r =1,体积V =13πr 2h9.(2012上海,理9)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)= . -1 令H (x )=f (x )+x 2,则H (1)+H (-1)=f (-1)+1+f (1)+1=0,∴f (-1)=-3,∴g (-1)=f (-1)+2=-1.10.(2012上海,理10)如图,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6.若将l 的极坐标方程写成ρ=f (θ)的形式,则f (θ)=.1πsin θ6⎛⎫- ⎪⎝⎭ 如图所示,根据正弦定理,有5πsin 6ρ=25πsin π6θ⎛⎫-- ⎪⎝⎭,∴ρ=1πsin θ6⎛⎫- ⎪⎝⎭.11.(2012上海,理11)三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).23若每人都选择两个项目,共有不同的选法222333C C C =27种,而有两人选择的项目完全相同的选法有222332C C A =18种,故填23.12.(2012上海,理12)在平行四边形ABCD 中,∠A =π3,边AB ,AD 的长分别为2,1.若M ,N 分别是边BC ,CD 上的点,且满足||||BM BC =||||CN CD ,则AM ·AN 的取值范围是 . [2,5] 如图,设||||BM BC =||||CN CD =λ, 则λ∈[0,1],AM ·AN =(AB +BM )·(AD +DN )=(AB +λBC )·(AD +(λ-1)CD )=AB·AD +(λ-1)AB ·CD +λBC ·AD +λ(λ-1)BC ·CD=1×2×12+(λ-1)×(-4)+λ×1+λ(λ-1)×(-1)=1+4-4λ+λ-λ2+λ=-(λ+1)2+6.∵λ∈[0,1],∴AM ·AN∈[2,5].13.(2012上海,理13)已知函数y =f (x )的图像是折线段ABC ,其中A (0,0),B 1,52⎛⎫ ⎪⎝⎭,C (1,0).函数y =xf (x )(0≤x ≤1)的图像与x 轴围成的图形的面积为 .54由题意f (x )=110,0,211010,x 1,2x x x ⎧≤≤⎪⎪⎨⎪-+<≤⎪⎩则xf (x )=22110,0x ,211010x,x 1.2x x ⎧≤≤⎪⎪⎨⎪-+<≤⎪⎩∴xf (x )与x 轴围成图形的面积为12⎰10x 2d x +112⎰(-10x 2+10x )d x =103x 3120|+23112105|3x x ⎛⎫- ⎪⎝⎭=103×18+1053⎛⎫- ⎪⎝⎭-5101438⎛⎫-⨯ ⎪⎝⎭=54.14.(2012上海,理14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a ,c 为常数,则四面体ABCD的体积的最大值是.23如图: 当AB =BD =AC =CD =a 时, 该棱锥的体积最大. 作AM ⊥BC ,连接DM ,则BC ⊥平面ADM ,AMDM 又AD =2c ,∴S△ADM =∴V D -ABC =V B -ADM +V C-ADM =2315.(2012上海,理15)若1是关于x 的实系数方程x 2+bx +c =0的一个复数根,则( ). A .b =2,c =3 B .b =-2,c =3 C .b =-2,c =-1D .b =2,c =-1B 由题意知b 2-4c <0,则该方程的复数根为=1.∴b =-2,c =3.16.(2012上海,理16)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ). A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 C 由正弦定理可知a 2+b 2<c 2,从而cos C =2222a b c ab+-<0,∴C 为钝角,故该三角形为钝角三角形.17.(2012上海,理17)设10≤x 1<x 2<x 3<x 4≤104,x 5=105.随机变量ξ1取值x 1,x 2,x 3,x 4,x 5的概率均为0.2,随机变量ξ2取值122x x +,232x x +,342x x +,452x x +,512x x +的概率也均为0.2.若记D ξ1,D ξ2分别为ξ1,ξ2的方差,则( ).A .D ξ1>D ξ2B .D ξ1=D ξ2C .D ξ1<D ξ2D .D ξ1与D ξ2的大小关系与x 1,x 2,x 3,x 4的取值有关A18.(2012上海,理18)设a n =1n sin π25n ,S n =a 1+a 2+…+a n .在S 1,S 2,…,S 100中,正数的个数是( ). A .25B .50C .75D .100D ∵a n =1n sin 25n π,∴当n ≤24时,a n 均大于0,a 25=0, ∴可知S 1,S 2,…,S 25均大于0.又a 26=126sin 2625π=-126sin π25=-126a 1,∴S 26=2526a 1+a 2+…+a 25>0,而a 27=127sin 2725π=-127sin 225π=-227a 2,∴a 27+a 2>0.同理可得a 28+a 3>0,…,a 49+a 24>0,而a 51到a 74均为正项,a 75=0,a 76到a 99均为负项,且|a 76|<a 51,|a 77|<a 52,…,|a 99|<a 74,a 100=0, 故{S n }中前100项均为正数.19.(2012上海,理19)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =PA =2.求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小. 解:(1)因为PA ⊥底面ABCD ,所以PA ⊥CD .又AD ⊥CD ,所以CD ⊥平面PAD .从而CD ⊥PD .因为PDCD =2, 所以三角形PCD 的面积为12×2×(2)解法一:如图所示,建立空间直角坐标系,则B (2,0,0),C (2,0),E (11). AE =(11),BC =(0,0). 设AE 与BC 的夹角为θ,则cos θ=·||||AE BC AE BCθ=π4.由此知,异面直线BC 与AE 所成的角的大小是π4.解法二:取PB 中点F ,连接EF ,AF,则EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与AE 所成的角. 在△AEF 中,由EFAFAE =2, 知△AEF 是等腰直角三角形. 所以∠AEF =π4.因此,异面直线BC 与AE 所成的角的大小是π4.20.(2012上海,理20)已知函数f (x )=lg (x +1). (1)若0<f (1-2x )-f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,有g (x )=f (x ),求函数y =g (x )(x ∈[1,2])的反函数.解:(1)由220,10x x ->⎧⎨+>⎩得-1<x <1.由0<lg (2-2x )-lg (x +1)=lg 221x x -+<1,得1<221x x -+<10.因为x +1>0,所以x +1<2-2x <10x +10,-23<x <13.由11,21x 33x -<<⎧⎪⎨-<<⎪⎩得-23<x <13.(2)当x ∈[1,2]时,2-x ∈[0,1],因此y =g (x )=g (x -2)=g (2-x )=f (2-x )=lg (3-x ). 由单调性可得y ∈[0,lg 2].因为x =3-10y ,所以所求反函数是y =3-10x ,x ∈[0,lg 2].21.(2012上海,理21)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线y =1249x 2;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(1)当t =0.5时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向; (2)问救援船的时速至少是多少海里才能追上失事船?解:(1)t =0.5时,P 的横坐标x P =7t =72,代入抛物线方程y =1249x 2,得P 的纵坐标y P =3.由|AP/时.由tan ∠OAP =730,得∠OAP =arctan 730,故救援船速度的方向为北偏东arctan 730弧度.(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为(7t ,12t 2). 由vt整理得v 2=144221t t ⎛⎫+⎪⎝⎭+337. 因为t 2+21t ≥2,当且仅当t =1时等号成立.所以v 2≥144×2+337=252,即v ≥25.因此,救援船的时速至少是25海里才能追上失事船.22.(2012上海,理22)在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积; (2)设斜率为1的直线l 交C 1于P ,Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ ;(3)设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解:(1)双曲线C 1:22x -y 2=1,左顶点A ⎛⎫⎪ ⎪⎝⎭,渐近线方程:y.过点A 与渐近线y平行的直线方程为yx ⎭,即y+1.解方程组1y y ⎧=⎪⎨=+⎪⎩得1.2x y ⎧=⎪⎪⎨⎪=⎪⎩所以所求三角形的面积为S =12|OA ||y(2)设直线PQ 的方程是y =x +b .因直线PQ 与已知圆相切,1,即b 2=2.由22,21y x b x y =+⎧⎨-=⎩得x 2-2bx -b 2-1=0. 设P (x 1,y 1),Q (x 2,y 2),则122122b,1.x x x x b +=⎧⎨=--⎩又y 1y 2=(x 1+b )(x 2+b ),所以OP ·OQ=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2=2(-1-b 2)+2b 2+b 2=b 2-2=0. 故OP ⊥OQ .(3)当直线ON 垂直于x 轴时,|ON |=1,|OM则O 到直线MN当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx (显然|k则直线OM 的方程为y =-1kx .由22,41y kx x y =⎧⎨+=⎩得222221,4,4x k ky k ⎧=⎪⎪+⎨⎪=⎪+⎩ 所以|ON |2=2214k k ++.同理|OM |2=22121k k +-.设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2,所以21d =21||OM +21||ON =22331k k ++=3,即d综上,O 到直线MN 的距离是定值.23.(2012上海,理23)对于数集X ={-1,x 1,x 2,…,x n },其中0<x 1<x 2<…<x n ,n ≥2,定义向量集Y ={a |a =(s ,t ),s ∈X ,t ∈X }.若对任意a 1∈Y ,存在a 2∈Y ,使得a 1·a 2=0,则称X 具有性质P .例如{-1,1,2}具有性质P .(1)若x >2,且{-1,1,2,x }具有性质P ,求x 的值; (2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列x 1,x 2,…,x n 的通项公式. 解:(1)选取a 1=(x ,2),Y 中与a 1垂直的元素必有形式(-1,b ).所以x =2b ,从而x =4.(2)证明:取a 1=(x 1,x 1)∈Y . 设a 2=(s ,t )∈Y 满足a 1·a 2=0. 由(s +t )x 1=0得s +t =0,所以s ,t 异号. 因为-1是X 中唯一的负数,所以s ,t 之中一为-1,另一为1,故1∈X . 假设x k =1,其中1<k <n ,则0<x 1<1<x n .选取a 1=(x 1,x n )∈Y ,并设a 2=(s ,t )∈Y 满足a 1·a 2=0,即sx 1+tx n =0, 则s ,t 异号,从而s ,t 之中恰有一个为-1. 若s =-1,则x 1=tx n >t ≥x 1,矛盾; 若t =-1,则x n =sx 1<s ≤x n ,矛盾. 所以x 1=1.(3)解法一:猜测x i =q i -1,i =1,2,…,n . 记A k ={-1,1,x 2,…,x k },k =2,3,…,n .先证明:若A k +1具有性质P ,则A k 也具有性质P .任取a 1=(s ,t ),s ,t ∈A k ,当s ,t 中出现-1时,显然有a 2满足a 1·a 2=0; 当s ≠-1且t ≠-1时,则s ,t ≥1.因为A k +1具有性质P ,所以有a 2=(s 1,t 1),s 1,t 1∈A k +1,使得a 1·a 2=0,从而s 1和t 1中有一个是-1,不妨设s 1=-1. 假设t 1∈A k +1且t 1∉A k ,则t 1=x k +1.由(s ,t )·(-1,x k +1)=0,得s =tx k +1≥x k +1,与s ∈A k 矛盾. 所以t 1∈A k ,从而A k 也具有性质P . 现用数学归纳法证明:x i =q i -1,i =1,2,…,n . 当n =2时,结论显然成立;假设n =k 时, A k ={-1,1,x 2,…,x k }有性质P , 则x i =q i -1,i =1,2,…,k ;当n =k +1时,若A k +1={-1,1,x 2,…,x k ,x k +1}有性质P ,则A k ={-1,1,x 2,…,x k }也有性质P , 所以A k +1={-1,1,q ,…,q k -1,x k +1}.取a 1=(x k +1,q ),并设a 2=(s ,t )满足a 1·a 2=0.由此可得s =-1或t =-1. 若t =-1,则x k +1=q s≤q ,不可能;所以s =-1,x k +1=qt ≤q k 且x k +1>q k -1, 所以x k +1=q k .综上所述,x i =q i -1,i =1,2,…,n . 解法二:设a 1=(s 1,t 1),a 2=(s 2,t 2), 则a 1·a 2=0等价于11s t =-22t s .记B =,,||||s s X t X s t t ⎧⎫∈∈>⎨⎬⎩⎭,则数集X 具有性质P ,当且仅当数集B 关于原点对称.注意到-1是X 中的唯一负数,B ∩(-∞,0)={-x 2,-x 3,…,-x n }共有n -1个数,所以B ∩(0,+∞)也只有n -1个数. 由于1n n x x -<2n n x x -<…<2n x x <1n x x ,已有n -1个数,对以下三角数阵1n n x x -<2n n x x -<…<2n x x <1n x x 12n n x x --<13n n x x --<…<11n x x - ……21x x注意到1n x x >11n x x ->…>21x x ,所以1n n x x -=12n n x x --=…=21x x ,从而数列的通项为x k =x 1121k x x -⎛⎫ ⎪⎝⎭=q k -1,k =1,2,…,n .。
2012年高考真题试卷理科数学(新课标卷)答案解析版(1)
2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i--===---+-+--1:2p z =,22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C∆21F P F 是底角为30 的等腰三角形221332()224cP F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B -- 得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年高考真题——理科数学(上海卷)解析版(1)
2012上海高考数学试题(理科)答案与解析一.填空题 1.计算:3-i=1+i(i 为虚数单位). 【答案】1-2i 【解析】3-i (3-i)(1-i)2-4i ===1-2i 1+i (1+i)(1-i)2. 【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A . 【答案】 ⎪⎭⎫⎝⎛-3,21 【解析】根据集合A 210x +>,解得12x >-,由12,,13x x --<<得到,所以⎪⎭⎫⎝⎛-=3,21B A .【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决. 3.函数1sin cos 2)(-= x x x f 的值域是 .【答案】⎥⎦⎤⎢⎣⎡--23,25 【解析】根据题目22sin 212cos sin )(--=--=x x x x f ,因为12sin 1≤≤-x ,所以23)(25-≤≤-x f . 【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质.4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).【答案】2arctan【解析】设直线的倾斜角为α,则2arctan ,2tan ==αα.【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小. 5.在6)2(xx -的二项展开式中,常数项等于 . 【答案】160-【解析】根据所给二项式的构成,构成的常数项只有一项,就是333462C ()160T x x=-=- .【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .【答案】78【解析】由正方体的棱长组成以1为首项,21为公比的等比数列,可知它们的体积则组成了一个以1为首项,81为公比的等比数列,因此,788111)(lim 21=-=+++∞→n n V V V . 【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合. 7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 . 【答案】(]1,∞-【解析】根据函数,(),x a x ax ae x af x ee x a---+⎧≥⎪==⎨<⎪⎩看出当a x ≥时函数增函数,而已知函数)(x f 在区间[)+∞,1上为增函数,所以a 的取值范围为:(]1,∞- .【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 . 【答案】33π 【解析】根据该圆锥的底面圆的半径为r ,母线长为l ,根据条件得到ππ2212=l ,解得母线长2=l ,1,22===r l r πππ所以该圆锥的体积为:ππ331231S 3122=-⨯==h V 圆锥.【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 【答案】1- 【解析】因为函数2)(x x f y +=为奇函数,所以,3)1(,1)1(,2)1()1(==+=g f f g 所以,又1232)1()1(,3)1(-=+-=+-=--=-f g f .(1)(1).f f -=-【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数)(x f y =为奇函数,所以有)()(x f x f -=-这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .【答案】)6sin(1θπ-【解析】根据该直线过点)0,2(M ,可以直接写出代数形式的方程为:)2(21-=x y ,将此化成极坐标系下的参数方程即可 ,化简得)6sin(1)(θπθ-=f .【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 【答案】32 【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32. 【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD =AN AM ⋅的取值范围是 .【答案】[]5,2【解析】以向量AB 所在直线为x 轴,以向量AD 所在直线为y 轴建立平面直角坐标系,如图所示,因为1,2==AD AB ,所以51(0,0),(2,0),(,1)(,1).22A B C D 设1515515151(,1)(), , - , - , (2,()sin ).22224284423N x x BM CN CN x BM x M x x π≤≤===+--则根据题意,有)83235,4821(),1,(xx AM x AN --==→→.【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C , 函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 . 【答案】45 【解析】根据题意得到,110,02()11010,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+≤⎪⎩从而得到22110,02()11010,12x x y xf x x x x ⎧≤≤⎪⎪==⎨⎪-+<≤⎪⎩所以围成的面积为45)1010(10121221=+-+=⎰⎰dx x x xdx S ,所以围成的图形的面积为45 . 【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最 大值是 . 【答案】13222--c a c 【解析】据题a CD AC BD AB 2=+=+,也就是说,线段CD AC BD AB ++与线段的长度是定值,因为棱AD 与棱BC 互相垂直,当ABD BC 平面⊥时,此时有最大值,此时最大值为:13222--c a c . 【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.二、选择题(20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b 【答案】 B【解析】根据实系数方程的根的特点1也是该方程的另一个根,所以b i i -==-++22121,即2-=b ,c i i ==+-3)21)(21(,故答案选择B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<, 由余弦定理的推理得222cos 02a b c C ab+-=<,所以C 为钝角,所以该三角形为钝角三角形.故选择A.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( ) A .21ξξD D > B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关 【答案】 A【解析】 由随机变量21,ξξ的取值情况,它们的平均数分别为:1123451(),5x x x x x x =++++,2334455112211,522222x x x x x x x x x x x x +++++⎛⎫=++++= ⎪⎝⎭且随机变量21,ξξ的概率都为2.0,所以有1ξD >2ξD . 故选择A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题. 18.设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25 B .50 C .75 D .100 【答案】C【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.三、解答题(74分):19.(6+6=12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小. 【答案及解析】所以三角形PCD 的面积为3232221=⨯⨯................6分【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题. 20.(6+8=14分)已知函数)1lg()(+=x x f . (1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数.【答案及解析】,3132<<-x【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题.21.(6+8=14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(4+6+6=16分)在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x . (1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值. 【答案及解析】过点A 与渐近线x y 2=平行的直线方程为, 1.y x y =+=+即1=ON ,22=OM ,则O 到直线MN .设O 到直线MN 的距离为d .【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 .23.(4+6+8=18分)对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P . (1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式.【答案及解析】必有形式),1(b -显然有2a 满足021=∙a a【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“X具有性质P”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.。
2012年普通高等学校招生全国统一考试数学真题(上海卷)试题及点评
【解读报告作者】姓 名:邵红能工作单位:上海市城市科技学校2012年全国普通高等学校招生统一考试上海 数学试卷(理工农医类)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.计算:=+-ii13 (i 为虚数单位).2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .3.函数1sin cos 2)(-= x x x f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 .9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g .10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD ||||CD BC =⋅的取值范围是 .13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C , 函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=, 且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c b .B .3,2=-=c b .C .1,2-=-=c b .D .1,2-==c b .16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形.B .直角三角形.C .钝角三角形.D .不能确定.17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >.B .21ξξD D =.C .21ξξD D <. D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关.18.设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25. B .50. C .75. D .100.三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7. (1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第2小题满分6分.在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第2小题满分8分.对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P .(1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式.2012年全国普通高等学校招生统一考试上海 数学试卷(理工农医类)答案要点及解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.计算:=+-ii13 (i 为虚数单位). 【解析】复数i ii i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-. 故答案为i 21-.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A .【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(-. 故答案为)3,21(-. 3.函数1sin cos 2)(-= x xx f 的值域是 .【解析】函数x x x x f 2sin 212cos sin 2)(--=--=,因为12sin 1≤≤-x ,所以212sin 2121≤-≤-x ,232sin 21225-≤--≤-x ,即函数)(x f 的值域为]23,25[--. 故答案为]23,25[--.4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).【解析】 设倾斜角为α,由题意可知,直线的一个方向向量为(1,2),则2tan =α, ∴α=2arctan . 故答案为2arctan .5.在6)2(xx -的二项展开式中,常数项等于 . 【解析】二项展开式的通项为k kk k k kk x C xx C T )2()2(26666661-=-=----+,令026=-k ,得3=k ,所以常数项为160)2(3364-=-=C T .故答案为160-.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V =811811--n =)811(78n -,∴=+++∞→)(lim 21n n V V V 78. 故答案为78.7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 .【解析】令a x t -=,则a x t -=在区间),[+∞a 上单调递增,而te y =为增函数,所以要是函数ax e x f -=)(在),1[+∞单调递增,则有1≤a ,所以a 的取值范围是]1,(-∞.故答案为]1,(-∞.8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 .【解析】因为半圆面的面积为ππ2212=l ,所以42=l ,即2=l ,即圆锥的母线为2=l ,底面圆的周长πππ22==l r ,所以圆锥的底面半径1=r ,所以圆锥的高322=-=r l h ,所以圆锥的体积为πππ33331313=⨯=h r . 故答案为π33. 9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 【解析】因为2)(x x f y +=为奇函数,所以22)()(x x f x x f --=+-,所以22)()(x x f x f --=-,32)1()1(=+=f g ,所以1)1(22)1(2)1()1(-=-=+--=+-=-f f f g . 故答案为1-.10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=, 若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .【解析】设直线上的任一点为P ),(θρ,因为6π=∠PAB ,所以θπ-=∠6OPA , 根据正弦定理得OPAOAOAP OP ∠=∠sin sin , 即)6sin(2)6sin(θπππρ-=-,即)6sin(1)6sin(6sin2θπθππρ-=-=.故答案为)6sin(1θπρ-=.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).【解析】三位同学从三个项目选其中两个项目有27232323=C C C 中,若有且仅有两人选择的项目完成相同,则有18122323=C C C ,所以有且仅有两人选择的项目完成相同的概率为322718=. 故答案为32. 12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||CD CN BC BM =,则AN AM ⋅的取值范围是 .【解析】设CDCN BCBM==λ(0≤λ≤1),则BM λ==λ,)1(λ-==)1(λ-,则AN AM ⋅=))((DN AD BM AB ++=])1()[(λλ-++ =⋅+2)1(λ-+2λ+⋅-)1(λ, 又∵⋅=2×1×3cosπ=1,2=4,2=1,∴AM ⋅=6)1(5222++-=+--λλλ,∵0≤λ≤1,∴2≤AM ⋅≤5,即⋅的取值范围是[2,5]. 故答案为[2,5].13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C , 函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 .【解析】当210≤≤x ,线段AB 的方程为x y 10=,当121≤<x 时. 线段BC 方程为121150--=--x y , 整理得1010+-=x y ,即函数⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤==121,1010210,10)(x x x x x f y , 所以⎪⎪⎩⎪⎪⎨⎧≤<+-≤≤==121,1010210,10)(22x x x x x x xf y ,函数与x 轴围成的图形面积为dx x x dx x )1010(102121212+-=+⎰⎰12123213)5310(310x x x +-+=45=. 故答案为45. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最 大值是 .【解析】过点A 做AE ⊥BC ,垂足为E ,连接DE ,由AD ⊥BC 可知,BC ⊥平面ADE , 所以BC S V V V ADE ADE C ADE B ⋅=+=--31=ADE S 32, 当AB=BD=AC=DC=a 时,四面体ABCD 的体积最大.过E 做EF ⊥DA ,垂足为点F ,已知EA=ED ,所以△ADE 为等腰三角形,所以点E 为AD 的中点,又12222-=-=a BE AB AE ,∴EF=12222--=-c a AF AE ,∴ADE S =EF AD ⋅21=122--c a c , ∴四面体ABCD 体积的最大值=max V ADE S 32=13222--c a c .故答案为13222--c a c .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c b B .3,2=-=c b C .1,2-=-=c b D .1,2-==c b 【解析】因为i 21+是实系数方程的一个复数根,所以i 21-也是方程的根,则b i i -==-++22121,c i i ==-+3)21)(21(,所以解得2-=b ,3=c .故答案选B .16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【解析】根据正弦定理可知由C B A 222sin sin sin <+,可知222c b a <+,在三角形中02cos 222<-+=abc b a C ,所以C 为钝角,三角形为钝角三角形.故答案选C .17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( )A .21ξξD D >B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关 【解析】由题意可知21ξξE E =,又由题意可知,1ξ的波动性较大,从而有21ξξD D >. 注意:本题也可利用特殊值法. 故答案选A . 18.设25sin1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25 B .50 C .75 D .100【解析】当1≤n ≤24时,n a >0,当26≤n ≤49时,n a <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,n a >0,当76≤n ≤99时,n a <0,但其绝对值要小于51≤n ≤74时相应的值,∴当1≤n ≤100时,均有n S >0. 故答案选D .三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.【解析】(1)∵PA ⊥底面ABCD ,∴PA ⊥CD , 又∵CD ⊥AD ,∴CD ⊥平面PAD , ∴CD ⊥PD , 又∵32)22(222=+=PD ,CD=2,∴△PCD 的面积为3232221=⨯⨯. (2)解法一:取PB 的中点F ,连接EF,AF, 则EF ∥BC ,∴∠AEF(或其补角)是异面直线 BC 与AE 所成的角.在△ADF 中,EF=2、AF=2,AE=2, ∴△AEF 是等腰直角三角形, ∴∠AEF=4π, ∴异面直线BC 与AE 所成的角大小为4π. 解法二:如图所示,建立空间直角坐标系, 则B(2,0,0),C(2,22,0),E(1,2,1),∴AE =(1,2,1),BC =(0,22,0), 设AE 与BC 的夹角为θ,则ACAE AC AE =θcos =222224=⨯,, 又∵0<θ≤2π,∴θ=4π.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数.【解析】(1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x .因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x . (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==.由单调性可得]2lg ,0[∈y .因为yx 103-=,所以所求反函数是xy 103-=,]2lg ,0[∈x .21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7. (1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?【解析】(1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程24912x y =中,得P 的纵坐标y P =3. 由|AP |=2949,得救援船速度的大小为949海里/时.由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度.(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v . 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第2小题满分6分.在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x .(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥;(3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值.【解析】(1)双曲线1:21212=-y C x ,左顶点)0,(22-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y . 解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x .所以所求三角形的面积1为8221||||==y OA S .(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切, 故12||=b ,即22=b .由⎩⎨⎧=-+=1222y x b x y ,得01222=---b bx x . 设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x .(lb ylfx ) 又2,所以221212121)(2b x x b x x y y x x OQ OP +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ .(3)当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时,设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM . 设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+, 所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第2小题满分8分.对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P .(1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式.【解析】(1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -,所以x =2b ,从而x =4. (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a .由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X .假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx ,则s 、t 异号,从而s 、t 之中恰有一个为-1.若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1.(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n .记},,,1,1{2k k x x A -=,k =2, 3, …, n .先证明:若1+k A 具有性质P ,则k A 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中出现-1时,显然有2a 满足021=⋅a a ;当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1. 假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P.现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n .当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ;当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -=也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s 与t中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,kk k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以k k q x =+1.综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n .[解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211st t s -=.记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于原点对称. 注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数,所以),0(∞+ B 也只有n -1个数.由于1221x x x x x x x x n n n n n n<<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x x n n n n n -----<<<……12x x注意到,12111x x x x x x n n >>>- 所以,12211x x x x x x n n n n ===--- 从而数列的通项公式为n k q xx x x k k k ,,2,1,11121 ==⎪⎪⎭⎫ ⎝⎛=--.2012年全国普通高等学校招生统一考试上海 数学试卷(文史类)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1、计算:31ii-=+ (i 为虚数单位)2、若集合{}210A x x =->,{}1B x x =<,则A B ⋂=3、函数sin 2()1cos x f x x=-的最小正周期是4、若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)5、一个高为2的圆柱,底面周长为2π,该圆柱的表面积为6、方程14230xx +--=的解是7、有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=8、在61x x ⎛⎫- ⎪⎝⎭的二项式展开式中,常数项等于9、已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -=10、满足约束条件22x y +≤的目标函数z y x =-的最小值是11、三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是 (结果用最简分数表示)12、在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是13、已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1(,1)2B 、(1,0)C ,函数()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为14、已知1()1f x x =+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=, 若20102012a a =,则2011a a +的值是二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15、若1+i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A 、2,3b c ==B 、2,1b c ==-C 、2,1b c =-=-D 、2,3b c =-=16、对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件17、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定18、若2sin sin (i)777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是( )A 、16B 、72C 、86D 、100三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. 如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,23AC =,2PA =,求:(1)三棱锥P ABC -的体积(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示)20、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知()lg(1)f x x =+(1)若0(12)()1f x f x <--<,求x 的取值范围(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([]1,2x ∈)的反函数21、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线21249y x =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t(1)当0.5t =时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向(2)问救援船的时速至少是多少海里才能追上失事船?22、(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分.在平面直角坐标系xOy 中,已知双曲线22:21C x y -=(1)设F 是C 的左焦点,M 是C 右支上一点,若MF =M 的坐标; (2)过C 的左焦点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k (k <)的直线l 交C 于P 、Q 两点,若l 与圆221x y +=相切,求证:OP ⊥OQ .23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于项数为m 的有穷数列{}n a ,记{}12max ,,...,k k b a a a =(1,2,...,k m =),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有的{}n a (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,...,k m =),求证:k k b a =(1,2,...,k m =)(3)设100m =,常数1,12a ⎛⎫∈ ⎪⎝⎭,若(1)22(1)n n n a an n +=--,{}n b 是{}n a 的控制数列,求1122()()b a b a -+-+100100...()b a +-.2012年全国普通高等学校招生统一考试上海 数学试卷(文史类)答案要点及解析一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1、计算:31ii-=+ (i 为虚数单位) 【解析】复数i ii i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-. 故答案为i 21-.2、若集合{}210A x x =->,{}1B x x =<,则A B ⋂=【解析】集合}21{}012{>=>-=x x x x A ,}11{}1{<<-=<=x x x x B ,所以}121{<<=x xB A ,即)1,21(. 故答案为)1,21(. 3、函数sin 2()1cos x f x x=-的最小正周期是【解析】函数x x x x f 2sin 212)2(cos sin )(+=--=,周期ππ==22T ,即函数)(x f 的周期为π. 故答案为π.4、若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).【解析】因为直线的方向向量为),1(2)21,1(2)1,2(k ==,即直线的斜率21=k ,即21tan =α,所以直线的倾斜角21arctan =α. 故答案为21arctan .5、一个高为2的圆柱,底面周长为2π,该圆柱的表面积为【解析】底面圆的周长ππ22=r ,所以圆柱的底面半径1=r ,所以圆柱的侧面积为π4 两个底面积为ππ222=r .,所以圆柱的表面积为π6. 故答案为π6. 6、方程14230xx +--=的解是【解析】原方程可化为0322)2(2=-⋅-xx ,解得32=x,或12-=x (舍去),∴3log 2=x . 故答案为3log 2.7、有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V =811811--n =)811(78n -,∴=+++∞→)(lim 21n n V V V 78.故答案为78.8、在61x x ⎛⎫- ⎪⎝⎭的二项式展开式中,常数项等于【解析】r rrr xx C T )1(661-=-+=r r r x C 266)1(--,令r 26-=0,得r =3.故常数项为336)1(-C =-20.故答案为-20.9、已知()y f x =是奇函数,若()()2g x f x =+且(1)1g =,则(1)g -= 【解析】由12)1()1(=+=f g ,得1)1(-=f ,所以32)1(2)1()1(=+-=+-=-f f g . 故答案为3.10、满足约束条件22x y +≤的目标函数z y x =-的最小值是【解析】作出约束条件表示的平面区域可知,当2=x ,0=y 时,目标函数取最小值,为-2.故答案为-2.11、三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则有且仅有两位同学选择的项目相同的概率是 (结果用最简分数表示).【解析】三位同学从三个项目选其中两个项目有27232323=C C C 中,若有且仅有两人选择的项目完成相同,则有18122323=C C C ,所以有且仅有两人选择的项目完成相同的概率为322718=. 故答案为32. 12、在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足BM CN BCCD=,则AM AN ⋅的取值范围是【解析】==λ(0≤λ≤1),则BM λ==λ,DC DN )1(λ-==AB )1(λ-,则AM ⋅=))((++=])1()[(AB AD AD AB λλ-++ =AD AB ⋅+2)1(AB λ-+2AD λ+AB AD ⋅-)1(λ, 又∵⋅=0, ∴AM ⋅=λ34-,∵0≤λ≤1,∴1≤AM ⋅≤4,即⋅的取值范围是[1,4]. 故答案为[1,4].13、已知函数()y f x =的图像是折线段ABC ,其中(0,0)A 、1(,1)2B 、(1,0)C ,函数()y xf x =(01x ≤≤)的图像与x 轴围成的图形的面积为【解析】⎪⎩⎪⎨⎧+-=,22,2)(x x x f ,121,210≤<≤≤x x ,∴⎪⎩⎪⎨⎧+-=,22,222x x x y ,121,210≤<≤≤x x∴围成的面积⎰⎰+-+=12122102)22(2dx x x dx x S =213310x +12123)5310(x x +-=41. 故答案为41. 14、已知1()1f x x =+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=, 若20102012a a =,则2011a a +的值是【解析】由题意得,213=a ,325=a ,…,13811=a , ∵20122010a a =,且.n a >0,∴2512010+-=a ,易得2010a =2008a =…=24a =22a =24a =.20a , ∴.20a +11a =251+-+138=265133+.故答案为265133+. 二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15、若1+i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A 、2,3b c ==B 、2,1b c ==-C 、2,1b c =-=-D 、2,3b c =-= 【解析】因为i 21+是实系数方程的一个复数根,所以i 21-也是方程的根,则b i i -==-++22121,c i i ==-+3)21)(21(,所以解得2-=b ,3=c ,选D.故答案选D.16、对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充分必要条件 D 、既不充分也不必要条件 【解析】∵mn >0,∴⎩⎨⎧>>,0,0n m 或⎩⎨⎧<<,0,0n m .方程22ny mx +=1表示的曲线是椭圆,则一定有⎩⎨⎧>>,0,0n m 故“mn >0”是“方程22ny mx +=1表示的是椭圆”的必要不充分条件. 故答案选B .17、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定【解析】根据正弦定理可知由C B A 222sin sin sin <+,可知222c b a <+,在三角形中02cos 222<-+=abc b a C ,所以C 为钝角,三角形为钝角三角形,选A.故答案选A . 18、若2sin sin (i)777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是( )A 、16B 、72C 、86D 、100【解析】由题意可知,1413S S ==2827S S ==4241S S ==…=9897S S ==0,共14个,其余均为正数,故共有100-14=86个正数. 故答案选C .三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. 如图,在三棱锥P ABC -中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,AC =2PA =,求:(1)三棱锥P ABC -的体积(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示)【解析】(1)3232221=⨯⨯=∆ABC S , 三棱锥P -ABC 的体积为3343131232=⨯⨯=⨯=∆PA S V ABC .(2)取PB 的中点E ,连接DE 、AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线 BC 与AD 所成的角.在三角形ADE 中,DE=2,AE=2,AD=2, 4322222222cos ==∠⨯⨯-+ADE ,所以∠ADE =43arccos . 因此,异面直线BC 与AD 所成的角的大小是43arccos . 12分20、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知()lg(1)f x x =+(1)若0(12)()1f x f x <--<,求x 的取值范围(2)若()g x 是以2为周期的偶函数,且当01x ≤≤时,()()g x f x =,求函数()y g x =([]1,2x ∈)的反函数 【解析】 (1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x .因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .PA BCDE由⎩⎨⎧<<-<<-313211x x 得3132<<-x . (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==.由单调性可得]2lg ,0[∈y .因为yx 103-=,所以所求反函数是xy 103-=,]2lg ,0[∈x .21、(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线21249y x =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t(1)当0.5t =时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向(2)问救援船的时速至少是多少海里才能追上失事船?【解析】(1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程24912x y =中,得P 的纵坐标y P =3. ……2分 由|AP |=2949,得救援船速度的大小为949海里/时.由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度.(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .……10分 因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分22、(本题满分16分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分6分.在平面直角坐标系xOy 中,已知双曲线22:21C x y -=(1)设F 是C 的左焦点,M 是C右支上一点,若MF =M 的坐标; (2)过C 的左焦点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k(k <)的直线l 交C 于P 、Q 两点,若l 与圆221x y +=相切,求证:OP ⊥OQ . 【解析】(1)双曲线1:2212=-y C x ,左焦点)0,(26-F .设),(y x M ,则22222262)3()(||+=++=x y x MF , 由M 是右支上一点,知22≥x ,所以223||22=+=x MF ,得26=x .所以)2,(26±M .(2)左顶点)0,(22-A ,渐近线方程:x y 2±=.过A 与渐近线x y 2=平行的直线方程为:)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x .所求平行四边形的面积为42||||==y OA S .(3)设直线PQ 的方程是b kx y +=.因直线与已知圆相切,故11||2=+k b ,即122+=k b (*).由⎩⎨⎧=-+=1222y x b kx y ,得012)2(222=----b kbx x k . 设P (x 1, y 1)、Q (x 2, y 2),则⎪⎩⎪⎨⎧==+----22221212221k b k kbx x x x . ))((2121b kx b kx y y ++=,所以2212122121)()1(b x x kb x x k y y x x OQ OP ++++=+=⋅22222222221222)1)(1(k k b k b k k b k --+-----+=+.由(*)知0=⋅,所以OP ⊥OQ .23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.对于项数为m 的有穷数列{}n a ,记{}12max ,,...,k k b a a a =(1,2,...,k m =),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5(1)若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有的{}n a (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,...,k m =),求证:k k b a =(1,2,...,k m =)(3)设100m =,常数1,12a ⎛⎫∈ ⎪⎝⎭,若(1)22(1)n n n a an n +=--,{}n b 是{}n a 的控制数列,求1122()()b a b a -+-+100100...()b a +-。
2012年高考理数真题试卷(上海卷)及解析
2012年高考理数真题试卷(上海卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题1.若1+ √2 i是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3B.b=﹣2,c=3C.b=﹣2,c=﹣1D.b=2,c=﹣12.在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定3.设10≤x1<x2<x3<x4≤104, x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值x1+x22、x2+x32、x3+x42、x4+x52、x5+x12的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ1>Dξ2B.Dξ1=Dξ2C.Dξ1<Dξ2D.Dξ1与Dξ2的大小关系与x1、x2、x3、x4的取值有关第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)4.计算:3−i1+i= (i为虚数单位).5.若n→=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为(结果用反三角函数值表示).6.在(x−2x)6的二项展开式中,常数项等于.7.有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V1,V2,…,Vn,…,则limn→∞(V1+V2+…+Vn)═.8.已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是.答案第2页,总14页…外…………○…………装………○…………订………线………※※请※※不※※※※在※※装※※订※※线※※内…内…………○…………装………○…………订………线………9.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .10.已知y=f (x )+x 2是奇函数,且f (1)=1,若g (x )=f (x )+2,则g (﹣1)= . 11.如图,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角a= π6 ,若将l 的极坐标方程写成ρ=f(θ)的形式,则f (θ)= .12.在平行四边形ABCD 中,∠A= π3 ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足|BM|→|BC|→ =|CN|→|CD|→,则 AM →⋅AN →的取值范围是 .13.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、B ( 12 ,5)、C (1,0),函数y=xf (x )(0≤x≤1)的图象与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2,若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .三、解答题(题型注释)15.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是矩形,PA⊥底面ABCD ,E 是PC 的中点,已知AB=2,AD=2 √2 ,PA=2,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小. 16.已知f (x )=lg (x+1)(1)若0<f (1﹣2x )﹣f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x≤1时,g (x )=f (x ),求函数y=g (x )(x∈[1,2])的反函数.…………订…………○…………线…………○…级:___________考号:___________…………订…………○…………线…………○…17.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图,现假设:①失事船的移动路径可视为抛物线 y =1249x 2 ;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P 的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船? 18.在平面直角坐标系xOy 中,已知双曲线C 1:2x 2﹣y 2=1.(1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交C 1于P 、Q 两点,若l 与圆x 2+y 2=1相切,求证:OP⊥OQ; (3)设椭圆C 2:4x 2+y 2=1,若M 、N 分别是C 1、C 2上的动点,且OM⊥ON,求证:O 到直线MN 的距离是定值.19.对于数集X={﹣1,x 1 , x 2 , …,x n },其中0<x 1<x 2<…<x n , n≥2,定义向量集Y={ a →|a →=(s ,t ),s∈X,t∈X},若对任意 a 1→∈Y ,存在 a 2→∈Y ,使得 a 1→⋅a 2→=0 ,则称X 具有性质P .例如{﹣1,1,2}具有性质P .(1)若x >2,且{﹣1,1,2,x}具有性质P ,求x 的值; (2)若X 具有性质P ,求证:1∈X,且当x n >1时,x 1=1;(3)若X 具有性质P ,且x 1=1、x 2=q (q 为常数),求有穷数列x 1 , x 2 , …,x n 的通项公式.答案第4页,总14页○…………外……○…………内……参数答案1.B【解析】1.解:由题意1+ √2 i 是关于x 的实系数方程x 2+bx+c=0 ∴1+2 √2 i ﹣2+b+ √2 bi+c=0 ∴ {−1+b +c =02√2+√2b =0,解得b=﹣2,c=3故选B【考点精析】通过灵活运用复数相等,掌握如果两个复数实部相等且虚部相等就说这两个复数相等即可以解答此题. 2.C【解析】2.解:∵sin 2A+sin 2B <sin 2C , 由正弦定理可得,a 2+b 2<c 2由余弦定理可得cosC= a 2+b 2−c 22ab<0∴ π2<C <π∴△ABC 是钝角三角形 故选C 3.A【解析】3.解:由随机变量ξ1、ξ2的取值情况,它们的平均数分别为:x ¯= 15 (x 1+x 2+x 3+x 4+x 5), x′¯ = 15 ( x 1+x 22 + x 2+x 32 + x 3+x 42 + x 4+x 52 + x 5+x12 )= x ¯ 且随机变量ξ1、ξ2的取值的概率都为0.2,所以有Dξ1>Dξ2 , 故选择A .【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x1,x2,.....,xi ,......,xn ,X 取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi ,则称表为离散型随机变量X 的概率分布,简称分布列. 4.1﹣2i【解析】4.解: 3−i1+i =(3−i)(1−i)(1+i)(1−i)=2−4i 2=1−2i所以答案是1﹣2i【考点精析】掌握复数的乘法与除法是解答本题的根本,需要知道设则;.5.arctan2【解析】5.解:∵ n →=(﹣2,1)是直线l 的一个法向量∴可知直线l 的一个方向向量为(1,2),直线l 的倾斜角为α得,tanα=2 ∴α=arctan2所以答案是:arctan2 6.﹣160【解析】6.解:展开式的通项为T r+1= c 6r x 6﹣r (﹣ 2x )r =(﹣2)r c 6rx6﹣2r 令6﹣2r=0可得r=3常数项为(﹣2)3c 63 =﹣160所以答案是:﹣160 7.87【解析】7.解:由题意可得,正方体的棱长满足的通项记为a n 则 a n =(12)n−1∴ V n =a n3 = (18)n−1是以1为首项,以 18 为公比的等比数列则 lim n→∞(V 1+V 2+…+v n )= lim n→∞1−(18)n1−18= 87所以答案是: 878.(﹣∞,1]【解析】8.解:因为函数f (x )=e |x ﹣a|(a 为常数).若f (x )在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x ﹣a|在区间[1,+∞)上是增函数 又t=|x ﹣a|在区间[a ,+∞)上是增函数 所以[1,+∞)⊆[a ,+∞),故有a≤1 所以答案是(﹣∞,1] 9.√33π【解析】9.解:由题意一个圆锥的侧面展开图是面积为2π的半圆面, 因为4π=πl 2 , 所以l=2, 半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为: 13×π12×√22−1 = √33π .答案第6页,总14页……装…………○………※※不※※要※※在※※装※※订※※线……装…………○………所以答案是: √33π .【考点精析】本题主要考查了旋转体(圆柱、圆锥、圆台)的相关知识点,需要掌握常见的旋转体有:圆柱、圆锥、圆台、球才能正确解答此题. 10.﹣1【解析】10.解:由题意,y=f (x )+x 2是奇函数,且f (1)=1, 所以f (1)+1+f (﹣1)+(﹣1)2=0解得f (﹣1)=﹣3 所以g (﹣1)=f (﹣1)+2=﹣3+2=﹣1 所以答案是:﹣1.【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇),还要掌握函数的值(函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法)的相关知识才是答题的关键. 11.1sin(π6−θ)【解析】11.解:取直线l 上任意一点P (ρ,θ),连接OP ,则OP=ρ,∠POM=θ 在三角形POM 中,利用正弦定理可知: ρsin 5π6=2sin(π6−θ)解得ρ=f(θ)= 1sin(π6−θ)所以答案是:1sin(π6−θ)12.[2,5]【解析】12.解:建立如图所示的直角坐标系,则B (2,0),A (0,0), D ( 12,√32 ),设 |BM|→|BC|→ = |CN|→|CD|→ =λ,λ∈[0,1], M (2+ λ2,√3λ2 ),N ( 52−2λ,√32), 所以 AM →⋅AN →=(2+ λ2,√3λ2 )•( 52−2λ,√32 )=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].…线…………○……线…………○…所以答案是:[2,5].13.54【解析】13.解:由题意可得,f (x )= {10x,(0≤x ≤12)10−10x,(12≤x ≤1),∴y=xf(x )= {10x 2,(0≤x ≤12)10x 2−10x,(12≤x ≤1),设函数y=xf (x )(0≤x≤1)的图象与x 轴围成的图形的面积为S , 则S= ∫1210x 2dx+ ∫121(﹣10x 2+10x )dx =10× x 33|012 +(﹣10)× x 33|121 +10× x 22|121= 512 ﹣ 3512 +5﹣ 54 = 1512 = 54 .所以答案是: 54 . 14.23c √a 2−c 2−1【解析】14.解:作BE⊥AD 于E ,连接CE ,则AD⊥平面BEC ,所以CE⊥AD, 由题设,B 与C 都是在以AD 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB+BD=AC+CD=2a ,显然△ABD≌△ACD,所以BE=CE .取BC 中点F ,∴EF⊥BC,EF⊥AD,要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大,因为BC 是定值,所以只需EF 最大即可, 当△ABD 是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a, ∴AB=a,所以EB= √a 2−c 2 ,EF= √a 2−c 2−1 ,所以几何体的体积为: 13×2×√a 2−c 2−1×2c × 12 = 23c √a 2−c 2−1 .答案第8页,总14页……外…………○………线…………○※……内…………○………线…………○所以答案是: 23c √a 2−c 2−1 .15.(1)解:∵PA⊥底面ABCD ,CD ⊂底面ABCD , ∴CD⊥PA.∵矩形ABCD 中,CD⊥AD,而PA 、AD 是平面PAD 的交线. ∴CD⊥平面PDA ,∵PD ⊂平面PDA ,∴CD⊥PD,三角形PCD 是以D 为直角顶点的直角三角形. ∵Rt△PAD 中,AD=2 √2 ,PA=2, ∴PD= √PA 2+AD 2 =2 √3 .∴三角形PCD 的面积S= 12 ×PD×DC=2 √3 .(2)解:[解法一]如图所示,建立空间直角坐标系,可得B (2,0,0),C (2,2 √2 ,0),E (1, √2 ,1).∴ AE → =(1, √2 ,1), BC →=(0,2 √2 ,0), 设 AE →与 BC →夹角为θ,则cosθ=AE →⋅BC→|AE →||BC →|= 2×2√2 = √22 ,∴θ= π4 ,由此可得异面直线BC 与AE 所成的角的大小为 π4 .[解法二]取PB 的中点F ,连接AF 、EF 、AC ,∵△PBC 中,E 、F 分别是PC 、PB 的中点,∴EF∥BC,∠AEF 或其补角就是异面直线BC 与AE 所成的角.…………○………:___________…………○………∵Rt△PAC 中,PC= √PA 2+AC 2=4. ∴AE= 12 PC=2,∵在△AEF 中,EF= 12 BC= √2 ,AF= 12 PB= √2∴AF 2+EF 2=AE 2,△AEF 是以F 为直角顶点的等腰直角三角形, ∴∠AEF= π4 ,可得异面直线BC 与AE 所成的角的大小为 π4 .【解析】15.(1)可以利用线面垂直的判定与性质,证明出三角形PCD 是以D 为直角顶点的直角三角形,然后在Rt△PAD 中,利用勾股定理得到PD=2 √3 ,最后得到三角形PCD 的面积S ;(2)[解法一]建立如图空间直角坐标系,可得B 、C 、E 各点的坐标,从而 AE →=(1, √2 ,1), BC → =(0,2 √2 ,0),利用空间向量数量积的公式,得到 AE → 与 BC →夹角θ满足:cosθ= √22 ,由此可得异面直线BC 与AE 所成的角的大小为 π4 ;[解法二]取PB 的中点F ,连接AF 、EF ,△PBC 中,利用中位线定理,得到EF∥BC,从而∠AEF 或其补角就是异面直线BC 与AE 所成的角,然后可以通过计算证明出:△AEF 是以F 为直角顶点的等腰直角三角形,所以∠AEF= π4 ,可得异面直线BC 与AE 所成的角的大小为 π4 . 【考点精析】本题主要考查了异面直线及其所成的角和直线与平面垂直的性质的相关知识点,需要掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系;垂直于同一个平面的两条直线平行才能正确解答此题. 16.(1)解:f (1﹣2x )﹣f (x )=lg (1﹣2x+1)﹣lg (x+1)=lg (2﹣2x )﹣lg (x+1), 要使函数有意义,则 由 {2−2x >0x +1>0解得:﹣1<x <1.由0<lg (2﹣2x )﹣lg (x+1)=lg 2−2xx+1 <1得:1< 2−2xx+1 <10, ∵x+1>0,∴x+1<2﹣2x <10x+10,答案第10页,总14页∴ −23<x <13.由 {−1<x <1−23<x <13,得: −23<x <13.(2)解:当x∈[1,2]时,2﹣x∈[0,1],∴y=g (x )=g (x ﹣2)=g (2﹣x )=f (2﹣x )=lg (3﹣x ), 由单调性可知y∈[0,lg2], 又∵x=3﹣10y ,∴所求反函数是y=3﹣10x ,x∈[0,lg2].【解析】16.(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解. 17.(1)解:t=0.5时,P 的横坐标x P =7t= 72 ,代入抛物线方程 y =1249x 2 中,得P 的纵坐标y P =3. 由|AP|=√9492,得救援船速度的大小为 √949 海里/时.由tan∠OAP= 730 ,得∠OAP=arctan 730 ,故救援船速度的方向为北偏东arctan 730 弧度.(2)解:设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为(7t ,12t 2).由vt= √(7t)2+(12t 2+12)2,整理得 v 2=144(t 2+1t2)+337 . 因为 t 2+1t 2≥2 ,当且仅当t=1时等号成立,所以v 2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.【解析】17.(1)t=0.5时,确定P 的横坐标,代入抛物线方程 y =1249x 2 中,可得P 的纵坐标,利用|AP|=√9492,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t 小时追上失事船,此时位置为(7t ,12t 2),从而可得vt=√(7t)2+(12t 2+12)2 ,整理得 v 2=144(t 2+1t2)+337 ,利用基本不等式,即可得到结论. 18.(1)解:双曲线C 1:x 212−y 21=1 左顶点A (﹣ √22,0 ),渐近线方程为:y=± √2 x .过A 与渐近线y= √2 x 平行的直线方程为y= √2 (x+ √22),即y= √2x +1 ,所以 {y =−√2x y =√2x +1 ,解得 {x =−√24y =12. 所以所求三角形的面积为S= 12|OA||y|=√28.(2)解:设直线PQ 的方程为y=kx+b , 因直线PQ 与已知圆相切,故√2=1 ,即b 2=2,由 {y =kx +b2x 2−y 2=1,得x 2﹣2bx ﹣b 2﹣1=0,设P (x 1,y 1),Q (x 2,y 2),则 {x 1+x 2=2bx 1x 2=−1−b 2,又y 1y 2=(x 1+b )(x 2+b ).所以 OP →⋅OQ →=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2 =2(﹣1﹣b 2)+2b 2+b 2 =b 2﹣2=0. 故PO⊥OQ.(3)解:当直线ON 垂直x 轴时,|ON|=1,|OM|= √22 ,则O 到直线MN 的距离为 √33 . 当直线ON 不垂直x 轴时,设直线ON 的方程为:y=kx ,(显然|k|> √22 ), 则直线OM 的方程为y= −1k x ,由{y =kx 4x 2+y 2=1 得 {x 2=14+k 2y 2=k 24+k2, 所以 |ON|2=1+k 24+k 2. 同理 |OM|2=1+k 22k 2−1,设O 到直线MN 的距离为d ,因为(|OM|2+|ON|2)d 2=|OM|2|ON|2, 所以1d 2=1|OM|2+1|ON|2=3+3k 2k 2+1=3,即d= √33 .综上,O 到直线MN 的距离是定值.答案第12页,总14页【解析】18.(1)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积.(2)设直线PQ 的方程为y=kx+b ,通过直线PQ 与已知圆相切,得到b 2=2,通过求解 OP →⋅OQ →=0.证明PO⊥OQ.(3)当直线ON 垂直x 轴时,直接求出O 到直线MN 的距离为 √33 .当直线ON 不垂直x 轴时,设直线ON 的方程为:y=kx ,(显然|k|> √22 ),推出直线OM 的方程为y= −1k x ,利用 {y =kx 4x 2+y 2=1,求出 |ON|2=1+k 24+k 2 , |OM|2=1+k 22k 2−1,设O 到直线MN 的距离为d ,通过(|OM|2+|ON|2)d 2=|OM|2|ON|2 , 求出d= √33 .推出O 到直线MN 的距离是定值. 19.(1)解:选取 a 1→=(x ,2),则Y中与 a 1→垂直的元素必有形式(﹣1,b ),所以x=2b ,又∵x>2,∴只有b=2,从而x=4.(2)解:取 a 1→=(x 1,x 1)∈Y,设 a 2→=(s ,t )∈Y,满足 a 1→⋅a 2→=0 ,可得(s+t )x 1=0,s+t=0,所以s 、t 异号.因为﹣1是数集X 中唯一的负数,所以s 、t 中的负数必为﹣1,另一个数是1,所以1∈X, 假设x k =1,其中1<k <n ,则0<x 1<1<x n .再取 a 1→=(x 1,x n )∈Y,设 a 2→=(s ,t )∈Y,满足 a 1→⋅a 2→=0 ,可得sx 1+tx n =0, 所以s 、t 异号,其中一个为﹣1①若s=﹣1,则x 1=tx n >t≥x 1,矛盾; ②若t=﹣1,则x n =sx 1<s≤x n ,矛盾;说明假设不成立,由此可得当x n >1时,x 1=1.(3)解:[解法一]猜想:x i =q i ﹣1,i=1,2,3,…,n 记A k ═{﹣1,x 1,x 2,…,x k },k=2,3,…,n 先证明若A k+1具有性质P ,则A k 也具有性质P .任取 a 1→=(s ,t ),s 、t∈A k ,当s 、t 中出现﹣1时,显然有 a 2→ 满足 a 1→⋅a 2→=0当s 、t 中都不是﹣1时,满足s≥1且t≥1.因为A k+1具有性质P ,所以有 a 2→=(s 1,t 1),s 1、t 1∈A k+1,使得 a 1→⋅a 2→=0 ,从而s 1、t 1其中有一个为﹣1 不妨设s 1=﹣1,假设t 1∈A k+1,且t 1∉A k ,则t 1=x k+1.由(s ,t )(﹣1,x k+1)=0,得s=tx k+1≥x k+1,与s∈A k 矛盾.所以t 1∈A k ,从而A k 也具有性质P .再用数学归纳法,证明x i =q i ﹣1,i=1,2,3,…,n 当n=2时,结论显然成立;假设当n=k 时,A k ═{﹣1,x 1,x 2,…,x k }具有性质P ,则x i =q i ﹣1,i=1,2,…,k当n=k+1时,若A k+1═{﹣1,x 1,x 2,…,x k+1}具有性质P ,则A k ═{﹣1,x 1,x 2,…,x k }具有性质P ,所以A k+1═{﹣1,q ,q 2,…,q k ﹣1,x k+1}.取 a 1→=(x k+1,q ),并设 a 2→=(s ,t )∈Y,满足 a 1→⋅a 2→=0 ,由此可得s=﹣1或t=﹣1若t=﹣1,则x k+1= qs <q ,不可能所以s=﹣1,x k+1=qt=q j ≤q k 且x k+1>q k ﹣1,因此x k+1=q k 综上所述,x i =q i ﹣1,i=1,2,3,…,n[解法二]设 a 1→ =(s 1,t 1), a 2→ =(s 2,t 2),则 a 1→⋅a 2→=0 等价于 s 1t 1=−t2s 2记B={ st |s∈X,t∈X 且|s|>|t|},则数集X 具有性质P ,当且仅当数集B 关于原点对称 注意到﹣1是集合X 中唯一的负数,B∩(﹣∞,0)={﹣x 2,﹣x 3,﹣x 4,…,﹣x n },共有n ﹣1个数.所以B∩(0,+∞)也有n ﹣1个数. 由于 x nxn−1< x nxn−2< x nxn−3<…< x n x 2<xn x 1,已经有n ﹣1个数对以下三角形数阵: x nxn−1< x nxn−2< x nxn−3<…< x n x 2<xn x 1,x n x n−2< xn−1x n−3< xn−1x n−4<…<x n−1x 1x 2x 1注意到 xn x 1>x n−1x 1 > x n−2x 1 >…> x 2x 1 ,所以 x n x n−1 = x n−1x n−2 =…= x 2x 1从而数列的通项公式是x k =x 1•( x2x 1)k ﹣1=q k ﹣1,k=1,2,3,…,n .【解析】19.(1)在Y 中取 a 1→=(x ,2),根据数量积的坐标公式,可得Y 中与 a 1→垂直的元素必有形式(﹣1,b ),所以x=2b ,结合x >2,可得x 的值.(2)取 a 1→=(x 1 , x 1),a 2→ =(s ,t )根据 a 1→⋅a 2→=0 ,化简可得s+t=0,所以s 、t 异号.而﹣1是数集X 中唯一的负数,所以s 、t 中的负数必为﹣1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当x n >1时,x 1=1.(3)[解法一]先猜想结论:x i =q i ﹣1 , i=1,2,3,…,n .记A k ═{﹣1,x 1 , x 2 , …,x k },k=2,3,…,n ,通过反证法证明出引理:若A k+1具有性质P ,则A k 也具有性质P .最后用数学归纳法,可证明出x i =q i ﹣1 , i=1,2,3,…,n ; [解法二]设 a 1→ =(s 1 , t 1), a 2→ =(s 2 , t 2),则 a 1→⋅a 2→=0 等价于 s 1t 1=−t2s 2,得到一正一负的特征,再记B={ st |s∈X,t∈X 且|s|>|t|},则可得结论:数集X 具有性质答案第14页,总14页……线…………○……线…………○={﹣x 2 , ﹣x 3 , ﹣x 4 , …,﹣x n },共有n ﹣1个数,所以B∩(0.+∞)也有n ﹣1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得 x nxn−1= x n−1x n−2=…= x2x 1,最终得到数列的通项公式是x k =x 1•( x2x 1)k ﹣1=q k ﹣1 , k=1,2,3,…,n .【考点精析】利用元素与集合关系的判断对题目进行判断即可得到答案,需要熟知对象与集合的关系是,或者,两者必居其一.。
2012年高考理科数学上海卷试卷及答案
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2012年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内 贴上条形码.2.本试卷共有23道试题,满分150分.考试时间120分钟.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.计算:3i1i-+= (i 为虚数单位). 2.若集合{|210}A x x =+>,{|12}B x x =-<,则A B = .3.函数2cos ()sin 1xf x x =-的值域是 .4.若(2,1)n =-是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函 数值表示).5.在62()x x-的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,12为公比的等比数列,体积分别记为12,,,n V V V 则12lim()n n V V V →∞+++= .7.已知函数||()e x a f x -=(a 为常数).若()f x 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2()y f x x =+是奇函数,且(1)1f =.若()()2g x f x =+,则(1)g -= . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的 夹角π=6α.若将l 的极坐标方程写成)(θρf =的形 式,则()f θ= .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).12.在平行四边形ABCD 中,π=3A ∠,边AB 、AD 的长分别为2、1.若M 、N 分别是边BC 、CD 上的点,且满足||||||||BM CN BC CD =,则AM AN 的取值范围是 . 13.已知函数()y f x =的图像是折线段ABC ,其中(0),0A 、1()2,5B 、(1),0C .函数()(01)y xf x x =≤≤的图像与x 轴围成的图形的 面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若 AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体 ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.若1是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A .2,3b c ==B .2,3b c =-=C .2,1b c =-=-D .2,1b c ==-16.在ABC △中,若222sin sin sin A B C +<,则ABC △的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定17.设412341010x x x x <<<≤≤,5510x =.随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的 概率均为0.2,随机变量2ξ取值122x x +、232x x +、342x x +、452x x +、512x x +的概率 也为0.2.若记1D ξ、2D ξ分别为1ξ、2ξ的方差,则( )A .1D ξ>2D ξB .1D ξ=2D ξC .1D ξ<2D ξD .1D ξ与2D ξ的大小关系与1x 、2x 、3x 、4x 的取值有关18.设1πsin 25n n a n =,12n n S a a a =+++.在12100,,,S S S 中,正数的个数是( )A .25B .50C .75D .100三、解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第3页(共16页) 数学试卷 第4页(共16页)域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,E 是PC 的中点. 已知AB=2,AD=,P A=2.求: (Ⅰ)三角形PCD 的面积;(Ⅱ)异面直线BC 与AE 所成的角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知函数()lg(1)f x x =+.(Ⅰ)若0(12)()1f x f x <--<,求x 的取值范围;(Ⅱ)若()g x 是以2为周期的偶函数,且当01x ≤≤时,有()()g x f x =,求函数 ()y g x =([1,2])x ∈的反函数.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1 海里为单位长度),则救援船恰好在失事船正南方向12 海里A 处,如图.现假设:①失事船的移动路径可视为抛物线21249y x =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为7t .(Ⅰ)当0.5t = 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援 船速度的大小和方向;(Ⅱ)问救援船的时速至少是多少海里才能追上失事船?22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小 题满分6分.在平面直角坐标系xOy 中,已知双曲线221:21C x y -=.(Ⅰ)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围 成的三角形的面积;(Ⅱ)设斜率为1的直线l 交1C 于P 、Q 两点.若l 与圆221x y +=相切,求证:OP ⊥OQ ; (Ⅲ)设椭圆222:41C x y +=.若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON ,求证: O 到直线MN 的距离是定值.23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小 题满分8分.对于数集12{1,,,,}n X x x x =-,其中120n x x x <<<<,2n ≥,定义向量集{|(,),,}Y a a s t s X t X ==∈∈.若对于任意1a Y ∈,存在2a Y ∈,使得120a a =,则 X 具有性质P .例如{1,1,2}X =-具有性质P . (Ⅰ)若x >2,且{1,1,2,}x -,求x 的值;(Ⅱ)若X 具有性质P ,求证:1X ∈,且当1n x >时,11=x ;(Ⅲ)若X 具有性质P ,且121,x x q ==(q 为常数),求有穷数列12,,,n x x x 的通项公式.数学试卷 第5页(共16页) 数学试卷 第6页(共16页)2012年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)12AB ⎛-= ⎝【提示】由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可arctan2【解析】方向向量(1,2)d =,所以2l k =,倾斜角arctan2α=【提示】根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据tan k α=可求出倾斜角【考点】平面向量坐标 5.【答案】160-【解析】展开式通项662166(1)2(1)2r r r r r r r r rr T C x x C x ---+=-=-,令620r -=,得3r =,故常数项为3362160C -⨯=-【提示】研究常数项只需研究二项式的展开式的通项,使得x 的指数为0,得到相应的r ,从而可求出常数项 【考点】二项式定理 6.【答案】8)1n V ++=【提示】由题意可得,正方体的体积318n nV a ⎛⎫== ⎪⎝⎭是以1为首项,以18为公比的等比数,由不等数列的求和公式可求【考点】数列的极限,棱柱,棱锥,棱台的体积. 7.【答案】1a ≤【解析】令()||g x x a =-,则()()e g x f x =,由于底数1e >,故()()f x g x ↑⇔↑,由()g x 的图像知()f x 在区间[1,)+∞上是增函数时,1a ≤【提示】由题意,复合函数()f x 在区间[1,)+∞上是增函数可得出内层函数||t x a =-在区间[1,)+∞上是增函数,又绝对值函数||t x a =-在区间[)a +∞,上是增函数,可得出[1,,)[)a ⊆+∞+∞,比较区间端点即可得出a 的取值范围 【考点】指数函数单调性 8. 【解析】如图,21π2π2l l =⇒=,又22ππ2π1r l r ==⇒=,所以h =,故体积21π3V r h ==【提示】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可 【考点】旋转体 9.【答案】1-【解析】2()y f x x =+是奇函数,则22(1)(1)[(1)1]4f f -+-=-+=-,所以(1)3f -=-,(1)(1)21g f -=-+=-【提示】由题意,可先由函数是奇函数求出(1)3f -=-,再将其代入(1)g -求值即可得。
高考真题试卷理科数学(上海卷)答案解析版
2012年全国普通高等学校招生统一考试上海数学试卷(理)一、填空题(56分):1.计算:=+-ii 13 (i 为虚数单位)。
【解析】复数i i i i i i i i 21242)1)(1()1)(3(13-=-=-+--=+-。
【答案】i 21-2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。
【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(-。
【答案】)3,21(- 3.函数1sin cos 2)(-= x x x f 的值域是 。
【解析】函数x x x x f 2sin 212cos sin 2)(--=--=,因为12sin 1≤≤-x ,所以212sin 2121≤-≤-x ,232sin 21225-≤--≤-x ,即函数)(x f 的值域为]23,25[--。
【答案】]23,25[-- 4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。
【解析】【 设倾斜角为α,由题意可知,直线的一个方向向量为(1,2),则2tan =α, ∴α=2arctan 。
【答案】2arctan5.在6)2(xx -的二项展开式中,常数项等于 。
【解析】二项展开式的通项为k k k k k k k x C x x C T )2()2(26666661-=-=----+,令026=-k ,得3=k ,所以常数项为160)2(3364-=-=C T 。
【答案】160-6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V 。
【解析】由题意可知,该列正方体的体积构成以1为首项,81为公比的等比数列, ∴1V +2V +…+n V =811811--n =)811(78n -,∴=+++∞→)(lim 21n n V V V 78。
2012年高考真题——理科数学(新课标卷)解析版及试题与答案
绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224cPF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,43AB =;则C 的实轴长为( )()A 2 ()B 22 ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,23)A -(4,23)B --得:222(4)(23)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年高考理科数学上海卷-答案
2012年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)12AB ⎛-= ⎝【提示】由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案arctan2【解析】方向向量(1,2)d =,所以2l k =,倾斜角arctan2α=【提示】根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据tan k α=可求出倾斜角 【考点】平面向量坐标 5.【答案】160-【解析】展开式通项662166(1)2(1)2r r r r r r r r rr T C x x C x ---+=-=-,令620r -=,得3r =,故常数项为3362160C -⨯=-【提示】研究常数项只需研究二项式的展开式的通项,使得x 的指数为0,得到相应的r ,从而可求出常数项【考点】二项式定理6.【答案】8 )1n V ++=【提示】由题意可得,正方体的体积1318n n n V a -⎛⎫== ⎪⎝⎭是以1为首项,以18为公比的等比数,由不等数列的求和公式可求【考点】数列的极限,棱柱,棱锥,棱台的体积. 7.【答案】1a ≤【解析】令()||g x x a =-,则()()e g x f x =,由于底数1e >,故()()f x g x ↑⇔↑,由()g x 的图像知()f x 在区间[1,)+∞上是增函数时,1a ≤【提示】由题意,复合函数()f x 在区间[1,)+∞上是增函数可得出内层函数||t x a =-在区间[1,)+∞上是增函数,又绝对值函数||t x a =-在区间[)a +∞,上是增函数,可得出[1,,)[)a ⊆+∞+∞,比较区间端点即可得出a 的取值范围【考点】指数函数单调性8. 【解析】如图,21π2π22l l=⇒=,又22ππ2π1r l r ==⇒=,所以h 21π3V r h ==【提示】通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可 【考点】旋转体 9.【答案】1-【解析】2()y f x x =+是奇函数,则22(1)(1)[(1)1]4f f -+-=-+=-,所以(1)3f -=-,(1)(1)21g f -=-+=-【提示】由题意,可先由函数是奇函数求出(1)3f -=-,再将其代入(1)g -求值即可得到答案 【考点】函数奇偶性,函数的值 10.【答案】()π61sin θ-【解析】(2,0)M 的直角坐标也是(2)0,,斜率k =2x =,化为极坐标方程为:cos 2ρθθ-=,1cos 12ρθθ⎛⎫= ⎪ ⎪⎝⎭,πsin 16ρθ⎛⎫-= ⎪⎝⎭,()π61sin ρθ=-,即()π61()sin f θθ=-.【提示】取直线l 上任意一点(,)P ρθ,连接OP ,则OP ρ=,POM θ∠=,在三角形POM 中,利用正弦定理建立等式关系,从而求出所求 22233327C C =,求21133218C C =,故2【提示】先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可 【考点】古典概型,概率计算 [2,5]||||[||||BM CN t BC CD ==∈||BM t =,||2CN t =,所以故22532222t AM AN t t t ⎛⎫⎛=+= ⎪--+⎝⎭max ()AM AN f =min ()(1)AM AN f =【提示】画出图形,建立直角坐标系,利用比例关系,求出M ,N 的坐标,然后通过二次函数求出数量积的范围【考点】平面向量 13.【答案】54133211201122535515510|(10)|10|533212124124x x x =⨯+-⨯+⨯=-+-==故答案为:54【提示】根据题意求得110,02()11010,12x x f x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,从而22110,02()11010,12x x y xf x x x x ⎧⎛⎫≤≤ ⎪⎪⎪⎝⎭==⎨⎛⎫⎪-≤≤ ⎪⎪⎝⎭⎩,利用定积分可求得函数(),(01)y xf x x =≤≤的图像与x 轴围成的图形的面积319.【答案】(Ⅰ)(Ⅱ)π∴(1,AE =,(0,2BC =,设AE 与BC 夹角为222AE BC AE BC=⨯,由此可得异面直线各点的坐标,从而(1,AE =,(0,2BC =得到AE 与BC 夹角为【考点】直线与平面垂直,异面直线及其所成的角.20.【答案】(Ⅰ)2133x -<<(Ⅱ)310xy =-,0,[]lg2x ∈(Ⅱ)结合函数的奇偶性和反函数知识进行求解. 【考点】函数的周期性,反函数,对数函数图像与性质. 21.【答案】/时 救援船速度的方向为北偏东7arctan30弧度22.【答案】(Ⅰ)双曲线212:111x y C -=左顶点A ⎛⎫ ⎪ ⎪⎝⎭,渐近线方程为:y =.所以12OP OQ x x =20-= (Ⅰ)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积. ,通过求解0OP OQ = 轴时,设直线ON 【考点】直线,圆锥曲线.23.【答案】(Ⅰ)选取1(,2)a x =,Y 中与1a 垂直的元素必有形式(1,)b -.,从而4x =(Ⅱ)证明:取11(,a x x =.设2(,)a s t =满足120a a =. 中唯一的负数,所以t 、中之一为,另一为1,故11n x x <<选取11(,a x x =并设2(,)a s t =满足120a a =,即1=-,则1x ,矛盾;,,}k x ,k 先证明:若A 任取1(,)a s t =K s t A ∈、时,显然有2a 满足120a a =; 11k A +具有性质,所以有21(,a s t =,使得120a a =,从而1k x +=.由1)(1,)k x +-=,得1k s tx x +=≥,,}k x 有性质1,,,}k k x x +,,}k x1,1,,,,k k q q x -取11(k a x +=,并设2(,)a s t =满足120a a =,即.由此可得s 与t 中有且只有一个为所以1s =-1k k q q q -≤=,又x q >11 / 11综上所述1i i x q -=,1,2,,i n =⋯【提示】(Ⅰ)在Y 中取1(,2)a x =,根据数量积的坐标公式,可得Y 中与1a 垂直的元素必有形式(1,)b -,所以2x b =,结合2x >,可得x 的值.(Ⅱ)取111(,)a x x =,2(,)a s t =根据120a a =,化简可得0s t +=,所以s t 、异号.而1-是数集X 中唯一的负数,所以s t 、中的负数必为1-,另一个数是1,从而证出1X ∈,最后通过反证法,可以证明出当1n x >时,11x =(Ⅲ)先猜想结论:1i i x q -=,1,2,3,...i n =记2{1,1,,,}k k A x x =-,2,3,,k n =⋯通过反证法证明出引理:若1k A +具有性质P ,则k A 也具有性质P .最后用数学归纳法,可证明出1i i x q -=,1,2,3,...i n =【考点】数列,向量,元素,集合关系.。
2012年上海高考数学理科精彩试题及问题详解
2012年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = .3.函数1sin cos 2)(-=xx x f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x ex f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD BC =,则AN AM ⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2. 若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分) 15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A)3,2==c b .(B)3,2=-=c b . (C)1,2-=-=c b .(D)1,2-==c b .16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是 ( )(A)锐角三角形.(B)直角三角形.(C)钝角三角形.(D)不能确定.17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值221x x +、232x x +、243x x +、254x x +、215x x +的概率也为0.2. 若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( )(A)1ξD >2ξD .(B)1ξD =2ξD .(C)1ξD <2ξD .(D)1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设251sin πn n n a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( )(A)25. (B)50. (C)75. (D)100. 三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB=2,AD=22,PA=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)ABCDA BCDPE20.已知函数)1lg()(+=x x f . (1) 若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8分)22.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X具有性质P . 例如}2,1,1{-=X 具有性质P . (1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分)(3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通项公式.(8分)2012年上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分)1.计算:ii+-13= 1-2i (i 为虚数单位).[解析] i i i i i i i i 212413)1)(1()1)(3(13-=--=-+--=+-.2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A =)3,(21- . [解析] ),(21∞+-=A ,)3,1(-=B ,A ∩B =)3,(21-. 3.函数1sin cos 2)(-=x xx f 的值域是],[2325-- .[解析]x x x x f 2sin 2cos sin 2)(21--=--=∈],[2325--.4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 arctan 2 (结果用反三角函数值表示). [解析] 方向向量)2,1(=d ,所以2=l k ,倾斜角α=arctan 2. 5.在6)2(xx -的二项展开式中,常数项等于 -160 .[解析] 展开式通项rr r r r r r r r r x C x x C T 2666612)1(2)1(---+-=-=,令6-2r =0,得r =3,故常数项为1602336-=⨯-C .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .[解析] 易知V 1,V 2,…,V n ,…是以1为首项,3为公比的等比数列,所以 78121811)(lim ==+++-∞→Vn n V V V . 7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 (-∞, 1] . [解析]令||)(a x x g -=,则)()(x g ex f =,由于底数1>e ,故)(x f ↑ )(x g ↑,由)(x g 的图像知)(x f 在区间[1,+∞)上是增函数时,a ≤1. 8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为π3 .[解析] 如图,ππ2221=l ⇒l =2,又2πr2=πl =2π⇒r =1, 所以h=3,故体积ππ33231==h r V .9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g -1 . [解析] 2)(x x f y +=是奇函数,则4]1)1([)1()1(22-=+-=-+-f f ,所以3)1(-=-f ,1.10.如图,在极坐标系中,过点)0,2(M 的直线l 6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf )sin(16θπ- .[解析] )0,2(M 的直角坐标也是(2,0),斜率31=k ,所以其直角坐标方程为23=-y x ,化为极坐标方程为:2sin 3cos =-θρθρ,1)sin cos (2321=-θθρ,1)sin(6=-θρπ,)sin(16θπρ-=,即=)(θf )sin(16θπ-.(或=)(θf )cos(13πθ+)11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是32(结果用最简分数表示).[解析] 设概率p=n k ,则27232323=⋅⋅=C C C n ,求k ,分三步:①选二人,让他们选择的 项目相同,有23C 种;②确定上述二人所选择的相同的项目,有13C 种;③确定另一人所选的项目,有12C 种. 所以18121323=⋅⋅=C C C k ,故p=322718=.12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD ||||CD BC =,则AN AM ⋅的取值范围是 [2, 5] . [解析] 如图建系,则A (0,0),B (2,0),D (21,23),C (25,23).t CD CN BC BM ==||||∈[0,1],则t BM =||,t CN 2||=, 所以M (2+2t,23t ),N (25-2t ,23), 故AM ⋅=(2+2t)(25-2t )+23t⋅23=)(6)1(5222t f t t t =++-=+--,因为t ∈[0,1],所以f (t )递减,(⋅)max = f (0)=5,(⋅)min = f (1)=2.[评注] 当然从抢分的战略上,可冒用两个特殊点:M 在B (N 在C )和M 在C (N 在D ),而本案恰是在这两点处取得最值,蒙对了,又省了时间!出题大虾太给蒙派一族面子了! 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为45.[解析]如图1,⎩⎨⎧≤<-≤≤=1,10100,10)(2121x x x x x f , 所以⎩⎨⎧≤<+-≤≤==1,10100,10)(212212x x x x x x xf y , 易知,y =xf (x )的分段解析式中的两部分抛物线形状完全相同,只是开口方向及顶点位置不同,如图2,封闭图形MND 与OMP 全等,面积相等,故所求面积即为矩形ODMP的面积S=452521=⨯.[评注]对于曲边图形,上海现行教材中不出微积分,能用微积分求此面积的考生恐是极少的,而对于极大部分考生,等积变换是唯一的出路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012上海高考数学试题(理科)答案与解析一.填空题 1.计算:3-i =1+i(i 为虚数单位).【答案】1-2i 【解析】3-i (3-i)(1-i)2-4i ===1-2i 1+i(1+i)(1-i)2.【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A . 【答案】 ⎪⎭⎫ ⎝⎛-3,21 【解析】根据集合A 210x +>,解得12x >-,由12,,13x x --<< 得到,所以⎪⎭⎫⎝⎛-=3,21B A .【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决. 3.函数1sin cos 2)(-= x x x f 的值域是 .【答案】⎥⎦⎤⎢⎣⎡--23,25 【解析】根据题目22sin 212cos sin )(--=--=x x x x f ,因为12sin 1≤≤-x ,所以23)(25-≤≤-x f .【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质.4.若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 【答案】2arctan【解析】设直线的倾斜角为α,则2arctan ,2tan ==αα.【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小. 5.在6)2(xx -的二项展开式中,常数项等于 .【答案】160-【解析】根据所给二项式的构成,构成的常数项只有一项,就是333462C ()160T x x=-=- .【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .【答案】78【解析】由正方体的棱长组成以1为首项,21为公比的等比数列,可知它们的体积则组成了一个以1为首项,81为公比的等比数列,因此,788111)(lim 21=-=+++∞→n n V V V .【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 . 【答案】(]1,∞-【解析】根据函数,(),x ax ax ae x af x eex a ---+⎧≥⎪==⎨<⎪⎩看出当a x ≥时函数增函数,而已知函数)(x f 在区间[)+∞,1上为增函数,所以a 的取值范围为:(]1,∞- .【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.8.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 .【答案】33π【解析】根据该圆锥的底面圆的半径为r ,母线长为l ,根据条件得到ππ2212=l ,解得母线长2=l ,1,22===r l r πππ所以该圆锥的体积为:ππ331231S 3122=-⨯==h V 圆锥.【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.9.已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g . 【答案】1- 【解析】因为函数2)(xx f y +=为奇函数,所以,3)1(,1)1(,2)1()1(==+=g f f g 所以,又1232)1()1(,3)1(-=+-=+-=--=-f g f .(1)(1).f f -=-【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数)(x f y =为奇函数,所以有)()(x f x f -=-这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=,若将l 的极坐标方程写成)(θρf =的形式,则=)(θf .【答案】)6sin(1θπ- 【解析】根据该直线过点)0,2(M ,可以直接写出代数形式的方程为:)2(21-=x y ,将此化成极坐标系下的参数方程即可 ,化简得)6sin(1)(θπθ-=f . 【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示). 【答案】32【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32.【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.12.在平行四边形ABCD 中,3π=∠A ,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是 .【答案】[]5,2【解析】以向量AB 所在直线为x 轴,以向量AD 所在直线为y 轴建立平面直角坐标系,如图所示,因为1,2==AD AB ,所以51(0,0),(2,0),(,1)(,1).22A B C D 设1515515151(,1)(), , - , - , (2,()sin).22224284423N x x B M C N C N x B M x M x x π≤≤===+--则根据题意,有)83235,4821(),1,(x x AM x AN --==→→. 所以83235)4821(x xx AN AM -+-=∙→→⎪⎭⎫⎝⎛≤≤2521x ,所以2 5.AM AN →→≤∙≤ 642246105510ADCBMN【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13.已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C ,函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 . 【答案】45【解析】根据题意得到,110,02()11010,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+≤⎪⎩ 从而得到22110,02()11010,12x x y xf x x x x ⎧≤≤⎪⎪==⎨⎪-+<≤⎪⎩所以围成的面积为45)1010(10121221=+-+=⎰⎰dx x x xdx S ,所以围成的图形的面积为45 .【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大. 14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=, 且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最 大值是 . 【答案】13222--c a c【解析】据题a CD AC BD AB 2=+=+,也就是说,线段CD AC BD AB ++与线段的长度是定值,因为棱AD 与棱BC 互相垂直,当ABD BC 平面⊥时,此时有最大值,此时最大值为:13222--c a c .【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.二、选择题(20分)15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )A .3,2==c bB .3,2=-=c bC .1,2-=-=c bD .1,2-==c b 【答案】 B【解析】根据实系数方程的根的特点12i -也是该方程的另一个根,所以b i i -==-++22121,即2-=b ,c i i ==+-3)21)(21(,故答案选择B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意. 16.在ABC ∆中,若C B A 222sinsinsin<+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B Rb A Ra ===代222a b c +<,由余弦定理的推理得222cos 02a b cC ab+-=<,所以C 为钝角,所以该三角形为钝角三角形.故选择A.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.17.设443211010≤<<<≤x x x x ,5510=x ,随机变量1ξ取值54321x x x x x 、、、、的概率均为2.0,随机变量2ξ取值222221554433221x x x x x x x x x x +++++、、、、的概率也均为2.0,若记21ξξD D 、分别为21ξξ、的方差,则( ) A .21ξξD D > B .21ξξD D =C .21ξξD D < D .1ξD 与2ξD 的大小关系与4321x x x x 、、、的取值有关 【答案】 A【解析】 由随机变量21,ξξ的取值情况,它们的平均数分别为:1123451(),5x x x x x x =++++,2334455112211,522222x x x x x x x x x x x x +++++⎛⎫=++++= ⎪⎝⎭且随机变量21,ξξ的概率都为2.0,所以有1ξD >2ξD . 故选择A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题. 18.设25s in 1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( )A .25B .50C .75D .100 【答案】C【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.三、解答题(74分):19.(6+6=12分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小. 【答案及解析】所以三角形PCD 的面积为3232221=⨯⨯................6分【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题. 20.(6+8=14分)已知函数)1lg()(+=x x f . (1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =(]2,1[∈x )的反函数. 【答案及解析】,3132<<-x【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题.21.(6+8=14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求 救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(4+6+6=16分)在平面直角坐标系xOy 中,已知双曲线1C :1222=-y x . (1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OQ OP ⊥; (3)设椭圆2C :1422=+y x ,若M 、N 分别是1C 、2C 上的动点,且ON OM ⊥,求证:O 到直线MN 的距离是定值. 【答案及解析】过点A 与渐近线x y 2=平行的直线方程为22,2 1.2y x y x ⎛⎫=+=+ ⎪ ⎪⎝⎭即1=ON ,22=OM ,则O 到直线M N 的距离为33.设O 到直线MN 的距离为d .【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为x y ±=,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 .23.(4+6+8=18分)对于数集}1{21n x x x X ,,,, -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==,若对任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P .例如}2,1,1{-具有性质P .(1)若2>x ,且},2,1,1{x -具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X ∈1,且当1>n x 时,11=x ;(3)若X 具有性质P ,且11=x 、q x =2(q 为常数),求有穷数列n x x x ,,, 21的通项公式. 【答案及解析】必有形式),1(b -显然有2a 满足021=∙a a【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“X具有性质P”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.。