立体几何中的向量方法:平行与垂直
立体几何中的向量方法平行与垂直的证明
求平面法向量的方法:
p, q为 平 面内 不 共 线 的 两 个 向 量 ,设a ( x, y, z),
p a
0 ,
恰
当的给
定x,
y,
z中 一 个
的值,
即可得
一个
法 向 量a.
q a 0
求平面的法向量
1.已 知 平 面经 过 三 点A(1,2,3), B(2,0,1),C(3,2,0), 求 平 面的 一 个 法 向 量.
2.已 知 点A(a,0,0), B(0, b,0),C(0,0, c), 求 平 面ABC的 一 个 法 向 量.
3.设u, v分 别 是 平 面 , 的 法 向 量 , 判 断 下 列 平面 ,
的位置关系: (1)u (1,1,2),v (3,2, 1 );(2)u (2,0,4),v (1,0,2);
9、已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形, 且∠C1CB = ∠C1CD = ∠BCD,
(1)求证: CC1⊥BD
(2)CD/ CC1=?时A1C ⊥平面C1BD
B1
A1
A1C ⊥平面C1BD 与
C1
∠C1CB = ∠C1CD =
D1
∠BCD的值无关,可用恒
成立得比值为1的结果
n m n // m //
证明平行问题
4.正方体ABCD A1B1C1D1中 (1)M,N分别是C1C,B1C1的中点,求证:MN // 平面A1BD. (2)证明:平面A1BD // 平面CB1D1. 5.在平行六面体ABCD A1B1C1D1中,E, F,G分别为A1D1, D1D, D1C1的中点,求证:平面EFG// 平面AB1C.
立体几何中的向量方法:平行与垂直讲解
3.2 立体几何中的向量方法 3.2.1 平行与垂直关系【基础知识在线】知识点一 空间的方向向量与平面的法向量★★★ 考点:求空间直线的方向向量与平面的法向量 利用方向向量与法向量表示空间角利用方向向量与法向量表示平行与垂直关系知识点二 线线、线面、面面平行的向量表示★★★★★ 考点:利用线线、线面、面面平行的向量表示证明平行关系知识点三 线线、线面、面面垂直的向量表示★★★★★考点:利用线线、线面、面面垂直的向量表示证明垂直关系【解密重点·难点·疑点】问题一:空间的方向向量与平面的法向量1. 空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向,这个向量a 叫做直线的方向向量.2. 直线α⊥l ,取直线l 的方向向量a ,则向量a 称为平面α的法向量.(1)平面α的一个法向量垂直于与平面α共面的所有向量. (2)一个平面的法向量有无数个,且它们互相平行. 3.平面的法向量的求法(1)已知平面的垂线时,在垂线上取一非零向量即可.(2)已知平面内两不共线向量()()321321,,,,,b b b b a a a a ==时,常用待定系数法:设法向量(),,,z y x u =由⎪⎩⎪⎨⎧=⋅=⋅,00n b n a 得⎩⎨⎧=++=++,00321321z b y b x b z a y a x a 在此方程组中,对z y x ,,中的任一个赋值,求出另两个,所得u 即为平面的法向量.利用此方法时,方程组有无数组解,赋得值不同,所得法向量就不同,但它们是共线向量.4.用向量语言表述线面之间的平行与垂直关系 :设直线m l ,的方向向量分别为b a ,,平面βα,的法向量分别为v u ,,则 线线平行:;,////R k b k a b a m l ∈=⇔⇔ 即:两直线平行或重合⇔两直线的方向向量共线. 线线垂直:;0=⋅⇔⊥⇔⊥b a b a m l即:两直线垂直⇔两直线的方向向量垂直. 线面平行:;0//=⋅⇔⊥⇔u a u a l α 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外.线面垂直:;,//R k u k a u a l ∈=⇔⇔⊥α即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.面面平行:;,////R k v k u v u ∈=⇔⇔βα 即:两平面平行⇔两平面的法向量共线. 面面垂直:.0=⋅⇔⊥⇔⊥v u v u βα即:两平面垂直两平面的法向量垂直.问题二:空间中线线、线面、面面平行的向量坐标表示1. 设直线m l ,的方向向量分别为()()321321,,,,,b b b b a a a a ==,则 线线平行:().,,////212121R k kc c kb b ka a b k a b a m l ∈===⇔=⇔⇔2. 设直线l 的方向向量分别为(),,,321a a a a =平面α的法向量分别为()321,,b b b u =, 线面平行:.00//212121=++⇔=⋅⇔⊥⇔c c b b a a u a u a l α3.平面βα,的法向量分别为()()321321,,,,,b b b v a a a u ==,面面平行:().,,,////212121R k kc c kb b ka a v k u v u ∈===⇔=⇔⇔βα问题三:空间中线线、线面、面面垂直的向量表示1.设直线m l ,的方向向量分别为()()321321,,,,,b b b b a a a a ==,则 线线垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a b a b a m l2.设直线l 的方向向量分别为(),,,321a a a a =平面α的法向量分别为()321,,b b b u =, 线面垂直:().,,,//212121R k kc c kb b ka a u k a u a l ∈===⇔=⇔⇔⊥α3.平面βα,的法向量分别为()()321321,,,,,b b b v a a a u ==, 面面垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a v u v u βα【点拨思维·方法技巧】 一.求平面的法向量例1已知平面α经过三点()()()0,2,3,1,0,2,3,2,1--C B A ,试求平面α的一个法向量. 【思维分析】先求出,,AC AB ,设出平面α的法向量为()z y x u ,,=,结合向量垂直时数量积为零的性质,联立方程组解题. [解析]()()()0,2,3,1,0,2,3,2,1--C B A ,()(),3,4,2,4,2,1-=--=∴AC AB ,设平面α的法向量为()z y x u ,,=, 依题意,⎪⎩⎪⎨⎧=⋅=⋅00AC u ABu即⎩⎨⎧=--=--0342042z y x z y x ,解得⎩⎨⎧==02z y x .令2,1==x y 则.∴平面α的一个法向量为()0,1,2=u .【评析】用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,设出平面的法向量,列出方程组,求出的三个坐标不是具体的值,而是比例关系,取其中一组解(非零向量)即可.变式训练1.在正方体1111D C B A ABCD -中,F E ,分别是DCBB ,1AEF D A 11的法向量.证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛21,1,0,21,1,1,0,0,1AE E A ,图3-2-1()(),01,1,0,21,0,01,011=⎪⎭⎫⎝⎛=A F D()0,0,1,1,21,0111-=⎪⎭⎫⎝⎛-=D A F D .0,02121111=⋅=-=⋅D A AE F D AE ,111,D A AE F D AE ⊥⊥ , 又1111D D A F D = ,⊥∴AE 平面FD A 11AE ∴是平面F D A 11的法向量.. 二.证明平行问题例2在正方体1111D C B A ABCD -中,O 是11D B 的中点,求证:C B 1∥平面1ODC . 【思维分析】在平面内找与向量C B 1平行的向量D A 1,由向量的相等,得线线平行,从尔的线面平行.也可建立空间直角坐标系,求C B 1的方向向量和平面1ODC 的法向量,利用向量的垂直,可得线面平行.证明 方法一1B C =1A D ,又D A B 11∉,D A C B 11//∴,又⊂D A 1平面1ODC , C B 1∴∥平面1ODC .方法二建系如图,设正方体的棱长为1,则可得()()()1,1,0,1,21,21,0,1,0,1,1,111C O C B ⎪⎭⎫⎝⎛,图3-2-2()⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛---=--=0,21,21,1,21,21,1,0,111OC OD C B .设平面1ODC 的法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=⋅=⋅001OC n OD n , 得⎪⎩⎪⎨⎧=+-=---0212102121y x z y x ,令1=x ,得1,1-==z y ,()1,1,1-=n .()()01110111=-⨯-+⨯+⨯-=⋅∴n C B , n C B ⊥∴1,C B 1∴∥平面1ODC .【评析】 向量法证明几何中的平行问题,可以有两个途径,一是在平面内找一向量与已知直线的方向向量共线;二是通过建立空间直角坐标系,依托直线的方向向量和平面的法向量的垂直,来证明平行.变式训练2.已知正方体1111D C B A ABCD -中,F E ,分别在C D DB 1,上,且a F D DE 321==,其中a 为正方体棱长. 求证:EF ∥平面C C BB 11. 证明如图所示,建立空间直角坐标系xyz D -,则,32,3,0,0,3,3⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a F a a E 故⎪⎭⎫⎝⎛--=3,0,32a a EF ,又()0,,0a AB =显然为平面C C BB 11的一个法向量, 而()03,0,320,,0=⎪⎭⎫ ⎝⎛--⋅=⋅a aa EF AB ,图3-2-3∴AE ⊥EF .又∉E 平面C C BB 11,因此EF ∥平面C C BB 11. 三.证明垂直问题例3.已知正方体1111D C B A ABCD -中,E 为棱1CC 上的动点.(1)求证:BD E A ⊥1;(2)若平面⊥BD A 1平面EBD ,试确定点E 的位置.【思维分析】正方体为建立空间直角坐标系提供了有利条件,对于(1),110A E BD A E BD =⇒⊥;对于(2),利用已知条件平面⊥BD A 1平面EBD ,通过垂直条件下的向量数量积等于0,求得点E 的位置;取BD 的中点O ,易证OE A 1∠是二面角E BD A --1的平面角,利用向量数量积证明10AO EO =即可.[解析]以1,,DD DC DA 所在直线为z y x ,,轴,建立空间直角坐标系,设棱长为a . (1)()()()()()a a C a a A a C a a B a A ,,0,,0,,0,,0,0,,,0,0,11, 设()m a E ,,0,则()()0,,,,,1a a BD a m a a E A --=--=,22100A E BD a a =-+=,所以BD E A ⊥1,即BD E A ⊥1.(2)法一:设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,,2,2a a BD m a a OE --=⎪⎭⎫⎝⎛-=, 因为BCE ∆≌DCE ∆,所以EB ED =,所以BD OE ⊥,图3-2-4又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为平面⊥BD A 1平面EBD ,所以21π=∠OE A , 所以10OA OE =,即2,04422a m am a a =∴=+--. 故当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD . 法二:E 为1CC 的中点,证明如下:由E 为1CC 的中点得⎪⎭⎫ ⎝⎛2,,0a a E , 设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,2,2,2a a BD a a a OE --=⎪⎭⎫⎝⎛-=,则0O EB D =,BD OE ⊥,即BD OE ⊥.又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为22210442a a a OA OE =--+=,所以OE OA ⊥1, 故OE OA ⊥1,即21π=∠OE A ,所以平面⊥BD A 1平面EBD . 所以当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD .【评析】利用向量解决立体几何中的线线,线面,面面的位置关系问题一般经过以下几个步骤:恰当建系,求相关点的坐标,求相关向量坐标,向量运算,将向量运算结果还原成立体几何问题或结论.变式训练3. 在正棱锥ABC P -中,三条侧棱两两互相垂直,G 是PAB ∆的重心,F E ,分别为PB BC ,上的点,且2:1::==FB PF EC BE . 求证:平面GEF ⊥平面PBC . 证明 (1)方法一如图3-2-5所示,以三棱锥的顶点P 为原点,建立空间直角坐标系. 令3===PC PB PA ,则()()()()1,2,0,3,0,0,0,3,0,0,0,3E C B A , ()()()0,0,0,0,1,1,0,1,0P G F .()()0,0,1,0,0,3==∴FG PA , FG PA FG PA //,3∴=∴ .而PA ⊥平面PBC ,∴FG ⊥平面PBC ,又⊂FG 平面GEF ,∴平面GEF ⊥平面PBC . 方法二 :同方法一,建立空间直角坐标系,则()()()0,1,1,0,1,0,1,2,0G F E ,()(),1,1,1,1,1,0--=--=EG EF设平面GEF 的法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=⋅=⋅00EG n EF n , 得0,0,y z x y z +=⎧⎨--=⎩,令1=y ,得0,1=-=x z ,()1,1,0-=n . 而显然()0,0,3=PA 是平面PBC 的一个法向量. 又PA n PA n ⊥∴=⋅,0,即平面PBC 的法向量与平面GEF 的法向量互相垂直,∴平面GEF ⊥平面PBC . 【课后习题答案】 练习(第104页)1.(1)答案:平行.提示:()()a b 32,1,236,3,6=--=--=.(2)答案:垂直.提示:()()()()02232212,3,22,2,1=⨯-+⨯+-⨯=-⋅-=⋅b a ,b a ⊥. (3)答案:平行.提示:()()a b 31,0,033,0,0-=-=-=.图3-2-52.提示:(1).,,0βα⊥∴⊥∴=⋅v u v u (2).//,//βα∴v u (3)u 与v 不垂直,也不平行,α∴与β相交.【自主探究提升】夯实基础1.已知()(),5,6,2,,3,8b n a m ==若m ∥n ,则b a +的值为( ) A.0 B.25 C.221 D.8答案:C . 提示:m ∥n ,()(),5,6,2,3,8b k a =∴即ka k bk 5,63,28===21=∴k 故8,25==b a ,221825=+=+b a .2. 已知()(),2,2,,2,5,1+=-=a a n m 若⊥m n ,则a 的值为( ) A.0B.6C.-6D.±6答案:B. 提示: ⊥m n ,()022251=+⨯-⨯+⨯∴m m ,6=∴m .3.平面α的一个法向量为()0,2,1,平面β的一个法向量为()0,1,2-,则平面α与平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .不能确定 答案: C.提示: ()()00,1,20,2,1=-⋅ , ∴两法向量垂直,从而两平面也垂直.4.已知()()y x b a ,,3,5,4,2==分别是直线21,l l 的方向向量,若1l ∥2l ,则( ) A .15,6==y x B .215,3==y xC .15,3==y xD .215,6==y x答案:D提示:1l ∥2l ,b a //∴, 则有yx 5432==,解方程得215,6==y x .5. 在正三棱柱111C B A ABC -中,B A C B 11⊥. 求证:B A AC 11⊥.证明: 建立空间直角坐标系xyz C -1, 设b CC a AB ==1,, 则()(),0,,0,,,0,0,2,23,,2,2311a B b a B a a A b a a A ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛()()0,0,0,,0,01C b C , ()⎪⎪⎭⎫ ⎝⎛---=-=⎪⎪⎭⎫ ⎝⎛-=∴b aa ACb a C B b a a B A ,2,23,,,0,,2,23111. B A C B 11⊥ ,022211=+-=⋅∴b a B A C B ,而022211=-=⋅b a B A AC , B A AC 11⊥∴,即B A AC 11⊥.拓展延伸6.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g答案:D. 提示:2//;3//;b a a b d c d c =-⇒=-⇒而零向量与任何向量都平行.7.若直线l 的方向向量为()2,0,1=a ,平面α的法向量为()4,0,2--=u ,则( ) A .l ∥α B .l ⊥αC .α⊂lD .l 与α斜交图3-2-6答案: B. 提示:()()a u 22,0,124,0,2-=-=--= ,a u //∴,l ∴⊥α.8.已知()()1,3,2,1,1,1B A -,则直线AB 的模为1的方向向量是________________. 答案:⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛32,32,31,32,32,31 . 提示:()3,2,2,1==AB AB , 直线AB 的模为1的方向向量是()2,2,131±=±AB AB. 9.已知平面α经过点()0,0,0O ,且()1,1,1=u 是α的法向量,()z y x N ,,是平面α内任意一点,则z y x ,,满足的关系式是________________.答案: 0=++z y x . 提示:由题意()()0,,1,1,1=⋅=⋅z y x ON u ,即0=++z y x .10.若直线b a ,是两条异面直线,它们的方向向量分别是()1,1,1和()2,3,2--,则直线b a ,的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.答案:()5,4,1- (答案不唯一).提示: 设直线b a ,的公垂线的一个方向向量为()z y x u ,,=,b a ,的方向向量分别为b a ,,由题意得⎪⎩⎪⎨⎧=⋅=⋅00b u a u ,即⎩⎨⎧=--=++02320z y x z y x , 令1=x ,得5,4-==z y ,()5,4,1-=∴u .11.若19(0,2,)8A ,5(1,1,)8B -,5(2,1,)8C -是平面α内的三点,设平面α的法向量),,(z y x a = ,则=z y x ::________________.答案:2:3:(4)-. 提示: 77(1,3,),(2,1,),0,0,44AB AC AB AC αα=--=---== 2243,::::()2:3:(4)4333x y x y z y y y z y ⎧=⎪⎪=-=-⎨⎪=-⎪⎩12.若非零向量()(),,,,,,222111z y x b z y x a ==则212121z z y y x x ==是a 与b 同向或反向的( )A.充分不必要条件B.C.充要条件D.不充分不必要条件答案:A.212121z z y y x x ==,则a 与b 同向或反向,反之不成立.13.如图3-2-7(a)所示,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,090=∠=∠CEF BCF ,2,3==EF AD .求证:AE ∥平面DCF.证明: 如图3-2-7(b )所示,以点C 为坐标原点,建立空间直角坐标系xyz C -.设c CF b BE a AB ===,,,则()()()0,0,3,,0,3,0,0,0B a A C , ()()0,,0,0,,3c F b E , ()()(),0,,0,0,0,3,,,0b BE CB a b AE ==-=∴0,0=⋅=⋅∴BE CB AE CB ,BE CB AE CB ⊥⊥∴,.⊥∴CB 平面ABE ,又⊥CB 平面DCF ,∴平面ABE ∥平面DCF ,故AE ∥平面DCF .14. 在正方体1111D C B A ABCD -中,F E ,分别是棱BC AB ,的中点,试在棱1BB 上找一图3-2-7(a ) (b)点M ,使得M D 1⊥平面1EFB .解析:建立空间直角坐标系x y z D -,设正方体的棱长为2,则()()()()2,2,2,2,0,0,0,2,1,0,1,211B D F E .设()m M ,2,2,则()()()2,2,2,2,1,0,0,1,111-=---=-=m M D E B EF , ∵M D 1⊥平面1EFB∴ 1D M ⊥EF ,1D M ⊥E B1,0,0111=⋅=⋅∴E B M D EF MD于是-2+2=0,-2-2(m-2)=0,⎧⎨⎩()1,2,2,1M m ∴=∴,即M 为棱1BB 的中点.图3-2-8。
立体几何中的向量方法平行与垂直
.
uv
以上思考在今后的解题中会经常用到,注意体会.
练习 1.已知两点 A(1, 2,3),B(2,1, 3),求直线 AB 与坐 标平面 yOz 的交点. 2.已知两点 A(1,2,3),B(2,1,2),P(1,1,2),点 Q 在 OP 上运动,求当 QA QB 取得最小值时,点 Q 的坐标.
所 以 DB1 平 面 ACD , 从 而 DB1 是平面 ACD1 的一个法向量.
问题:已知不共线的三点坐标,如何求经过这三点的
平面的一个法向量?
在空间直角坐标系中,已知 A(3,0,0), B(0,4,0) ,
C(0,0, 2) ,试求平面 ABC 的一个法向量. n (4, 3, 6)
解:设平面 ABC 的一个法向量为 n ( x, y, z)
333
练习 3:在正方体 ABCD A1B1C1D1 中, 求证: DB1 是平面 ACD1 的法向量 证:设正方体棱长为 1,
以 DA, DC, DD1 为单位正交基底, 建立如图所示空间坐标系 D xyz
DB1 (1,1,1) , AC (1,1, 0) ,
AD1 (1,0,1) DB1 AC 0,所以 DB1 AC , 同理 DB1 AD1 又因为 AD1 AC A
则 n AB ,n AC .∵ AB (3, 4, 0) , AC (3, 0, 2)
∴
( (
x, x,
y, y,
z) z)
(3, (3,
4, 0,
0) 2)
0 0
即
3 x 3 x
4y 2z
0 0
取 x 4,则 n (4, 3, 6)
∴
y z
3 4 3 2
x x
∴ n (4, 3, 6) 是平面 ABC 的一个法向量.
3.2.1立体几何中的向量方法——平行与垂直
x
F
C
G
E
D
y
x
B
A
y
求平面的法向量
例5:正方体ABCD-A1B1C1D1的棱长为1,E、F、G分 别是AB、BC、AA1的中点
(1)建立空间直角坐标系,并求出E、F、G的坐标
(2)写出 EF, EG, GF z
D1 A1 G D B1
(3)试求平面EFG的法向量
试判断DB1与平面FEG 是否垂直,说明理由.
O1 A1 Q E1 O R
全优P58---8
B1 S B A1
z
D1
N
B1
C1
M
P
y
D
x A
E
C
B
y
x A
题型一:利用空间向量解决平行问题
证明:如图建立空间直角坐标系, 全优 p58—8题 设正方体棱长为1,则 1 1 M (0,1, ), N ( ,1,1), A1 (1,0,1), D(0,0,0) 2 2 1 1 z MN ( ,0, ), A1D (1,0,1) 2 2 D1 C1 N 2MN A D MN // A1D A1 B1
平面的法向量:如果
二、平面的法向量
,过点A与向量 n
垂直
的平面是被唯一确定的
n ⊥ ,那 么 向 量 n
叫做平面 的法向量.
注意: 1.法向量一定是非零向量; 2.一个平面的所有法向量 都互相平行;
n
A
u
平面的法向 量不唯一
b
l
n b n b 0
线线平行 l ∥ m a // b a b 线线垂直 l m a b a b 0 m
立体几何中的向量方法——证明平行及垂直
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。
立体几何中的向量方法一平行和垂直用
AE//FG
EG
D
C
F
Y
B
X
例3 四棱锥P-ABCD中,底面ABCD是正
方形,PD⊥底面ABCD,PD=DC, E是PC旳 中点, (1)求证:PA//平面EDB.
Z
解1 立体几何法
P
E
D
C Y
A
G
B
X
解2:如图所示建立空间直角坐标系,点D为坐标原点,设DC=1 (1)证明:连结AC,AC交BD于点G,连结EG
中点,DF:FB=CG:GP=1:2 . 求证:AE//FG.
证 :如图所示, 建立 Z
空间直角坐标系. A(6,0,0), P
E(3,3,3),
F(2,2,0), G(0,4,2),
几何法呢?
AE =(-3,3,3),FG =(-2,2,2)
AE = 3 FG AE // FG 2
AE与FG不共线
已知 直线l与m相交,
l , m , l∥ , m∥ 求证∥ .
a
αb
um
l
证明 取l,m的方向向量a,b
v
取,的法向量u, v.
β
l∥ , m∥ a v,b v
又a, b不共线, 所以v是的一个法向量
于是 v 同时是、的一个法向量
∥.
例2 四棱锥P-ABCD中,底面ABCD是正方
形, PD⊥底面ABCD,PD=DC=6, E是PB旳
∴
( (
x, x,
y, y,
z) z)
(3, (3,
4, 0,
0) 2)
0 0
即
3 x 3 x
4y 2z
0 0
取 x 4,则 n (4, 3, 6)
立体几何中的向量方法——证明平行及垂直
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
立体几何中的向量方法:平行与垂直讲解
3.2 立体几何中的向量方法 3.2.1 平行与垂直关系【基础知识在线】知识点一 空间的方向向量与平面的法向量★★★ 考点:求空间直线的方向向量与平面的法向量 利用方向向量与法向量表示空间角利用方向向量与法向量表示平行与垂直关系知识点二 线线、线面、面面平行的向量表示★★★★★ 考点:利用线线、线面、面面平行的向量表示证明平行关系知识点三 线线、线面、面面垂直的向量表示★★★★★考点:利用线线、线面、面面垂直的向量表示证明垂直关系【解密重点·难点·疑点】问题一:空间的方向向量与平面的法向量1. 空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向,这个向量a 叫做直线的方向向量.2. 直线α⊥l ,取直线l 的方向向量a ,则向量a 称为平面α的法向量.(1)平面α的一个法向量垂直于与平面α共面的所有向量. (2)一个平面的法向量有无数个,且它们互相平行. 3.平面的法向量的求法(1)已知平面的垂线时,在垂线上取一非零向量即可.(2)已知平面内两不共线向量()()321321,,,,,b b b b a a a a ==时,常用待定系数法:设法向量(),,,z y x u =由⎪⎩⎪⎨⎧=⋅=⋅,00n b n a 得⎩⎨⎧=++=++,00321321z b y b x b z a y a x a 在此方程组中,对z y x ,,中的任一个赋值,求出另两个,所得u 即为平面的法向量.利用此方法时,方程组有无数组解,赋得值不同,所得法向量就不同,但它们是共线向量.4.用向量语言表述线面之间的平行与垂直关系 :设直线m l ,的方向向量分别为b a ,,平面βα,的法向量分别为v u ,,则 线线平行:;,////R k b k a b a m l ∈=⇔⇔ 即:两直线平行或重合⇔两直线的方向向量共线. 线线垂直:;0=⋅⇔⊥⇔⊥b a b a m l即:两直线垂直⇔两直线的方向向量垂直. 线面平行:;0//=⋅⇔⊥⇔u a u a l α 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外.线面垂直:;,//R k u k a u a l ∈=⇔⇔⊥α即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.面面平行:;,////R k v k u v u ∈=⇔⇔βα 即:两平面平行⇔两平面的法向量共线. 面面垂直:.0=⋅⇔⊥⇔⊥v u v u βα即:两平面垂直两平面的法向量垂直.问题二:空间中线线、线面、面面平行的向量坐标表示1. 设直线m l ,的方向向量分别为()()321321,,,,,b b b b a a a a ==,则 线线平行:().,,////212121R k kc c kb b ka a b k a b a m l ∈===⇔=⇔⇔2. 设直线l 的方向向量分别为(),,,321a a a a =平面α的法向量分别为()321,,b b b u =, 线面平行:.00//212121=++⇔=⋅⇔⊥⇔c c b b a a u a u a l α3.平面βα,的法向量分别为()()321321,,,,,b b b v a a a u ==,面面平行:().,,,////212121R k kc c kb b ka a v k u v u ∈===⇔=⇔⇔βα问题三:空间中线线、线面、面面垂直的向量表示1.设直线m l ,的方向向量分别为()()321321,,,,,b b b b a a a a ==,则 线线垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a b a b a m l2.设直线l 的方向向量分别为(),,,321a a a a =平面α的法向量分别为()321,,b b b u =, 线面垂直:().,,,//212121R k kc c kb b ka a u k a u a l ∈===⇔=⇔⇔⊥α3.平面βα,的法向量分别为()()321321,,,,,b b b v a a a u ==, 面面垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a v u v u βα【点拨思维·方法技巧】 一.求平面的法向量例1已知平面α经过三点()()()0,2,3,1,0,2,3,2,1--C B A ,试求平面α的一个法向量. 【思维分析】先求出,,AC AB ,设出平面α的法向量为()z y x u ,,=,结合向量垂直时数量积为零的性质,联立方程组解题. [解析]()()()0,2,3,1,0,2,3,2,1--C B A ,()(),3,4,2,4,2,1-=--=∴AC AB ,设平面α的法向量为()z y x u ,,=, 依题意,⎪⎩⎪⎨⎧=⋅=⋅00AC u ABu即⎩⎨⎧=--=--0342042z y x z y x ,解得⎩⎨⎧==02z y x .令2,1==x y 则.∴平面α的一个法向量为()0,1,2=u .【评析】用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,设出平面的法向量,列出方程组,求出的三个坐标不是具体的值,而是比例关系,取其中一组解(非零向量)即可.变式训练1.在正方体1111D C B A ABCD -中,F E ,分别是DCBB ,1AEF D A 11的法向量.证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛21,1,0,21,1,1,0,0,1AE E A ,图3-2-1()(),01,1,0,21,0,01,011=⎪⎭⎫⎝⎛=A F D()0,0,1,1,21,0111-=⎪⎭⎫⎝⎛-=D A F D .0,02121111=⋅=-=⋅D A AE F D AE ,111,D A AE F D AE ⊥⊥ , 又1111D D A F D = ,⊥∴AE 平面FD A 11AE ∴是平面F D A 11的法向量.. 二.证明平行问题例2在正方体1111D C B A ABCD -中,O 是11D B 的中点,求证:C B 1∥平面1ODC . 【思维分析】在平面内找与向量C B 1平行的向量D A 1,由向量的相等,得线线平行,从尔的线面平行.也可建立空间直角坐标系,求C B 1的方向向量和平面1ODC 的法向量,利用向量的垂直,可得线面平行.证明 方法一1B C =1A D ,又D A B 11∉,D A C B 11//∴,又⊂D A 1平面1ODC , C B 1∴∥平面1ODC .方法二建系如图,设正方体的棱长为1,则可得()()()1,1,0,1,21,21,0,1,0,1,1,111C O C B ⎪⎭⎫⎝⎛,图3-2-2()⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛---=--=0,21,21,1,21,21,1,0,111OC OD C B .设平面1ODC 的法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=⋅=⋅001OC n OD n , 得⎪⎩⎪⎨⎧=+-=---0212102121y x z y x ,令1=x ,得1,1-==z y ,()1,1,1-=n .()()01110111=-⨯-+⨯+⨯-=⋅∴n C B , n C B ⊥∴1,C B 1∴∥平面1ODC .【评析】 向量法证明几何中的平行问题,可以有两个途径,一是在平面内找一向量与已知直线的方向向量共线;二是通过建立空间直角坐标系,依托直线的方向向量和平面的法向量的垂直,来证明平行.变式训练2.已知正方体1111D C B A ABCD -中,F E ,分别在C D DB 1,上,且a F D DE 321==,其中a 为正方体棱长. 求证:EF ∥平面C C BB 11. 证明如图所示,建立空间直角坐标系xyz D -,则,32,3,0,0,3,3⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a F a a E 故⎪⎭⎫⎝⎛--=3,0,32a a EF ,又()0,,0a AB =显然为平面C C BB 11的一个法向量, 而()03,0,320,,0=⎪⎭⎫ ⎝⎛--⋅=⋅a aa EF AB ,图3-2-3∴AE ⊥EF .又∉E 平面C C BB 11,因此EF ∥平面C C BB 11. 三.证明垂直问题例3.已知正方体1111D C B A ABCD -中,E 为棱1CC 上的动点.(1)求证:BD E A ⊥1;(2)若平面⊥BD A 1平面EBD ,试确定点E 的位置.【思维分析】正方体为建立空间直角坐标系提供了有利条件,对于(1),110A E BD A E BD =⇒⊥;对于(2),利用已知条件平面⊥BD A 1平面EBD ,通过垂直条件下的向量数量积等于0,求得点E 的位置;取BD 的中点O ,易证OE A 1∠是二面角E BD A --1的平面角,利用向量数量积证明10AO EO =即可.[解析]以1,,DD DC DA 所在直线为z y x ,,轴,建立空间直角坐标系,设棱长为a . (1)()()()()()a a C a a A a C a a B a A ,,0,,0,,0,,0,0,,,0,0,11, 设()m a E ,,0,则()()0,,,,,1a a BD a m a a E A --=--=,22100A E BD a a =-+=,所以BD E A ⊥1,即BD E A ⊥1.(2)法一:设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,,2,2a a BD m a a OE --=⎪⎭⎫⎝⎛-=, 因为BCE ∆≌DCE ∆,所以EB ED =,所以BD OE ⊥,图3-2-4又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为平面⊥BD A 1平面EBD ,所以21π=∠OE A , 所以10OA OE =,即2,04422a m am a a =∴=+--. 故当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD . 法二:E 为1CC 的中点,证明如下:由E 为1CC 的中点得⎪⎭⎫ ⎝⎛2,,0a a E , 设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,2,2,2a a BD a a a OE --=⎪⎭⎫⎝⎛-=,则0O EB D =,BD OE ⊥,即BD OE ⊥.又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为22210442a a a OA OE =--+=,所以OE OA ⊥1, 故OE OA ⊥1,即21π=∠OE A ,所以平面⊥BD A 1平面EBD . 所以当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD .【评析】利用向量解决立体几何中的线线,线面,面面的位置关系问题一般经过以下几个步骤:恰当建系,求相关点的坐标,求相关向量坐标,向量运算,将向量运算结果还原成立体几何问题或结论.变式训练3. 在正棱锥ABC P -中,三条侧棱两两互相垂直,G 是PAB ∆的重心,F E ,分别为PB BC ,上的点,且2:1::==FB PF EC BE . 求证:平面GEF ⊥平面PBC . 证明 (1)方法一如图3-2-5所示,以三棱锥的顶点P 为原点,建立空间直角坐标系. 令3===PC PB PA ,则()()()()1,2,0,3,0,0,0,3,0,0,0,3E C B A , ()()()0,0,0,0,1,1,0,1,0P G F .()()0,0,1,0,0,3==∴FG PA , FG PA FG PA //,3∴=∴ .而PA ⊥平面PBC ,∴FG ⊥平面PBC ,又⊂FG 平面GEF ,∴平面GEF ⊥平面PBC . 方法二 :同方法一,建立空间直角坐标系,则()()()0,1,1,0,1,0,1,2,0G F E ,()(),1,1,1,1,1,0--=--=EG EF设平面GEF 的法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=⋅=⋅00EG n EF n , 得0,0,y z x y z +=⎧⎨--=⎩,令1=y ,得0,1=-=x z ,()1,1,0-=n . 而显然()0,0,3=PA 是平面PBC 的一个法向量. 又PA n PA n ⊥∴=⋅,0,即平面PBC 的法向量与平面GEF 的法向量互相垂直,∴平面GEF ⊥平面PBC . 【课后习题答案】 练习(第104页)1.(1)答案:平行.提示:()()a b 32,1,236,3,6=--=--=.(2)答案:垂直.提示:()()()()02232212,3,22,2,1=⨯-+⨯+-⨯=-⋅-=⋅b a ,b a ⊥. (3)答案:平行.提示:()()a b 31,0,033,0,0-=-=-=.图3-2-52.提示:(1).,,0βα⊥∴⊥∴=⋅v u v u (2).//,//βα∴v u (3)u 与v 不垂直,也不平行,α∴与β相交.【自主探究提升】夯实基础1.已知()(),5,6,2,,3,8b n a m ==若m ∥n ,则b a +的值为( ) A.0 B.25 C.221 D.8答案:C . 提示:m ∥n ,()(),5,6,2,3,8b k a =∴即ka k bk 5,63,28===21=∴k 故8,25==b a ,221825=+=+b a .2. 已知()(),2,2,,2,5,1+=-=a a n m 若⊥m n ,则a 的值为( ) A.0B.6C.-6D.±6答案:B. 提示: ⊥m n ,()022251=+⨯-⨯+⨯∴m m ,6=∴m .3.平面α的一个法向量为()0,2,1,平面β的一个法向量为()0,1,2-,则平面α与平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .不能确定 答案: C.提示: ()()00,1,20,2,1=-⋅ , ∴两法向量垂直,从而两平面也垂直.4.已知()()y x b a ,,3,5,4,2==分别是直线21,l l 的方向向量,若1l ∥2l ,则( ) A .15,6==y x B .215,3==y xC .15,3==y xD .215,6==y x答案:D提示:1l ∥2l ,b a //∴, 则有yx 5432==,解方程得215,6==y x .5. 在正三棱柱111C B A ABC -中,B A C B 11⊥. 求证:B A AC 11⊥.证明: 建立空间直角坐标系xyz C -1, 设b CC a AB ==1,, 则()(),0,,0,,,0,0,2,23,,2,2311a B b a B a a A b a a A ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛()()0,0,0,,0,01C b C , ()⎪⎪⎭⎫ ⎝⎛---=-=⎪⎪⎭⎫ ⎝⎛-=∴b aa ACb a C B b a a B A ,2,23,,,0,,2,23111. B A C B 11⊥ ,022211=+-=⋅∴b a B A C B ,而022211=-=⋅b a B A AC , B A AC 11⊥∴,即B A AC 11⊥.拓展延伸6.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g答案:D. 提示:2//;3//;b a a b d c d c =-⇒=-⇒而零向量与任何向量都平行.7.若直线l 的方向向量为()2,0,1=a ,平面α的法向量为()4,0,2--=u ,则( ) A .l ∥α B .l ⊥αC .α⊂lD .l 与α斜交图3-2-6答案: B. 提示:()()a u 22,0,124,0,2-=-=--= ,a u //∴,l ∴⊥α.8.已知()()1,3,2,1,1,1B A -,则直线AB 的模为1的方向向量是________________. 答案:⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛32,32,31,32,32,31 . 提示:()3,2,2,1==AB AB , 直线AB 的模为1的方向向量是()2,2,131±=±AB AB. 9.已知平面α经过点()0,0,0O ,且()1,1,1=u 是α的法向量,()z y x N ,,是平面α内任意一点,则z y x ,,满足的关系式是________________.答案: 0=++z y x . 提示:由题意()()0,,1,1,1=⋅=⋅z y x ON u ,即0=++z y x .10.若直线b a ,是两条异面直线,它们的方向向量分别是()1,1,1和()2,3,2--,则直线b a ,的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.答案:()5,4,1- (答案不唯一).提示: 设直线b a ,的公垂线的一个方向向量为()z y x u ,,=,b a ,的方向向量分别为b a ,,由题意得⎪⎩⎪⎨⎧=⋅=⋅00b u a u ,即⎩⎨⎧=--=++02320z y x z y x , 令1=x ,得5,4-==z y ,()5,4,1-=∴u .11.若19(0,2,)8A ,5(1,1,)8B -,5(2,1,)8C -是平面α内的三点,设平面α的法向量),,(z y x a = ,则=z y x ::________________.答案:2:3:(4)-. 提示: 77(1,3,),(2,1,),0,0,44AB AC AB AC αα=--=---== 2243,::::()2:3:(4)4333x y x y z y y y z y ⎧=⎪⎪=-=-⎨⎪=-⎪⎩12.若非零向量()(),,,,,,222111z y x b z y x a ==则212121z z y y x x ==是a 与b 同向或反向的( )A.充分不必要条件B.C.充要条件D.不充分不必要条件答案:A.212121z z y y x x ==,则a 与b 同向或反向,反之不成立.13.如图3-2-7(a)所示,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,090=∠=∠CEF BCF ,2,3==EF AD .求证:AE ∥平面DCF.证明: 如图3-2-7(b )所示,以点C 为坐标原点,建立空间直角坐标系xyz C -.设c CF b BE a AB ===,,,则()()()0,0,3,,0,3,0,0,0B a A C , ()()0,,0,0,,3c F b E , ()()(),0,,0,0,0,3,,,0b BE CB a b AE ==-=∴0,0=⋅=⋅∴BE CB AE CB ,BE CB AE CB ⊥⊥∴,.⊥∴CB 平面ABE ,又⊥CB 平面DCF ,∴平面ABE ∥平面DCF ,故AE ∥平面DCF .14. 在正方体1111D C B A ABCD -中,F E ,分别是棱BC AB ,的中点,试在棱1BB 上找一图3-2-7(a ) (b)点M ,使得M D 1⊥平面1EFB .解析:建立空间直角坐标系x y z D -,设正方体的棱长为2,则()()()()2,2,2,2,0,0,0,2,1,0,1,211B D F E .设()m M ,2,2,则()()()2,2,2,2,1,0,0,1,111-=---=-=m M D E B EF , ∵M D 1⊥平面1EFB∴ 1D M ⊥EF ,1D M ⊥E B1,0,0111=⋅=⋅∴E B M D EF MD于是-2+2=0,-2-2(m-2)=0,⎧⎨⎩()1,2,2,1M m ∴=∴,即M 为棱1BB 的中点.图3-2-8。
立体几何中的向量方法—证明平行于垂直
学习目标: 1.能够运用向量的坐标判断两个向量的平行 或垂直; 2.理解直线的方向向量与平面的法向量; 3.能用向量方法解决线面、面面的垂直与平 行问题,体会向量方法在立几中的作用。
要点回顾
1.直线的方向向量 就是指和这条直线所对应向量 平行 (或共线)的向量,显然一条直 线的方向向量可以有 无数多 个.
1 3λ → → (2)假设存在∵AP=λPA1,∴P( ,0, ),设平面 AB1C1 的一 1+λ 1+λ → → 个法向量为 n1=(x1,y1,z1),AB1=(-1,1, 3),AC1=(-2,1, 3), → n1· 1=-x1+y1+ 3z1=0 AB ∴ → n · =-2x +y + 3z =0, 1 AC1 1 1 1
基础自测 1.已知直线 l 的方向向量为 v,平面 α 的法向量为 u,则 v· u=0, l 与 α 的关系是( D ) A.l⊥α B.l∥α C.l⊂α D.l∥α 或 l⊂α 2.已知平面 α 内有一个点 M(1,-1,2),平面 α 的一个法向 量是 n=(6,-3,6),则下列点 P 中在平面 α 内的是( A ) A. P(2,3,3) B. P(-2,0,1) C. P(-4,4,0) D. P(3,-3,4) 3. 已知 a=(1,1,1), b=(0,2, -1), c=ma+nb+(4, -4,1). 若 c 与 a 及 b 都垂直,则 m,n 的值分别为( A ) A.-1,2 B.1,-2 C.1,2 D.-1,-2
2.直线方向向量与平面法向量在确定直线、平面位置关系中的应用
直线 l1 的方向向量 u1=(a1,b1,c1),直线 l2 的方向向量为 u2=(a2,b2,c2) 如果 l1∥l2,那么 u1∥u2⇔ (a1,b1,c1)=λ(a2,b2,c2). a1a2+b1b2+c1c2=0. 如果 l1⊥l2,那么 u1⊥u2⇔ 直线 l 的方向向量为 u=(a1,b1,c1),平面 α 的法向量为 n=(a2,b2,c2) 若 l∥α,则 u⊥n⇔u· n=0⇔ a1a2+b1b2+c1c2=0 ; 若 l⊥α,则 u∥n⇔u=kn⇔ (a1,b1,c1)=k(a2,b2,c2) ; 平面 α1 的法向量为 u1=(a1,b1,c1)平面 α2 的法向量为 u2= (a2,b2,c2) (a ,b ,c )=k(a2,b2,c2). 若 α1∥α2,则 u1∥u2⇔u1=ku2⇔ 1 1 1 若 α1⊥α2,则 u1⊥u2⇔u1·2=0⇔ a1a2+b1b2+c1c2=0. u
届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直
届高考数学一轮复习讲义立体几何中的向量方法Ⅰ证明平行与垂直向量方法是解决平行与垂直关系问题的一种常用方法。
在届高考数学一轮复习中,立体几何中的向量方法Ⅰ主要围绕平面中向量的运算和性质展开,通过向量的加减法、数量积、向量积等运算,来验证平行关系和垂直关系。
一、平行关系的向量验证如果两条直线平行,那么它们的方向向量也是平行的。
因此,我们可以通过直线上的两个向量的比较来判断直线是否平行。
具体的步骤如下:1.设有两条直线l1和l2,分别表示为:l1:A1+t1*B1l2:A2+t2*B2其中A1、B1、A2、B2为已知向量。
2.使用向量的坐标表示,将l1和l2中的向量分解为坐标向量,得到:l1:(x1,y1,z1)+t1*(a1,b1,c1)l2:(x2,y2,z2)+t2*(a2,b2,c2)其中x1、y1、z1、x2、y2、z2、a1、b1、c1、a2、b2、c2为已知数。
3.由于l1和l2平行,所以它们的方向向量a1、b1、c1和a2、b2、c2成比例。
即有:a1/a2=b1/b2=c1/c2=k其中k为非零实数。
4.通过比较系数等,求解k的值。
如果k的值存在且不为零,那么说明l1和l2平行;否则,l1和l2不平行。
示例:设有直线l1:r1=(1,2,3)+t(2,3,-1)和直线l2:r2=(4,5,6)+t(-1,-6,4)。
求证l1、l2平行。
解:将l1和l2化为坐标表示:l1:(x1,y1,z1)+t1*(a1,b1,c1)l2:(x2,y2,z2)+t2*(a2,b2,c2)得:l1:(1,2,3)+t1*(2,3,-1)l2:(4,5,6)+t2*(-1,-6,4)。
比较方向向量的系数:2/(-1)=3/(-6)=(-1)/4=k。
令2/(-1)=3/(-6)=(-1)/4=k,解得k=-2因此,由于k存在且不为零,故l1和l2平行。
二、垂直关系的向量验证两条直线垂直可以理解为它们的方向向量的数量积为零。
8.7 立体几何中的向量方法Ⅰ——证明平行与垂直
2.用向量证明空间中的平行关系 (1)设直线 l1 和 l2 的方向向量分别为 v1 和 v2,则
v1∥v2 v l1∥l2(或 l1 与 l2 重合)⇔_________.
(2)设直线 l 的方向向量为 v,与平面 α 共面的两个
存在两个实数x,y,使v=xv1+yv2 v v v ______________________________________. v⊥u. u 则 l∥α 或 l⊂α⇔________ u1 ∥u2 u ⇔_________.
设平面 A1BD 的法向量是 n=(x,y,z). x+z=0, uuur → 则 n· DA1 =0 且 n·DB=0,得 x+y=0. 取 x=1,得 y=-1,z=-1. ∴n=(1,-1,-1). 1 uuuu r 1 MN ·n= ,0, ·(1,-1,-1)=0, 又 2 2
1 x= 1 令 z=1,得 2 ,∴ n = ( , −1,1), 2 y = −1
n 1 2 2 = ±( , − , ). ∴平面 A B C 的单位法向量为 ± |n| 3 3 3
题型分类 深度剖析
题型一 利用空间向量证明平行问题 例 1 如图所示,在正方体 ABCD—A1B1C1D1 中,M、N 分别是 C1C、B1C1 的中点.求证: MN∥平面 A1BD.
uuur uuu r 2 3 2 3 得 AC ⋅ CD =0,即 y= 3 ,则 D (0, 3 ,0),
uuu r 1 3 ∴ CD = (- 2, 6 ,0).
uuu r 1 又 AE = ( 4 ,
3 4
1 , 2),
uuu uuur r 1 1 3 3 AE ⋅ CD = − 2 × 4 + 6 × 4 = 0 , ∴ uuu uuur r 即 AE ⊥ CD ,即 AE⊥CD.
立体几何中的向量方法__平行、垂直
x1x x2 x
y1 y2
y y
z1z z2z
0 0
第三步(解):把z看作常数,用z表示x、y.
第四步(取):取z为任意一个正数(当然取得越特 殊越好),便得到平面法向量u的坐标.
跟踪练习
已知点A(3,0,0)B(0,4,0)C(0,0,5) 求平面ABC的一个法向量
r
解:设平面ABC的法向量为u=(x,y,z)
A1
r 设平面OA1D1的法向量为u=(x,y,z) B1
0(1,1,0),A(1 0,0,2),
D(1 0,2,2)
uuuur
uuuur
A
由OA1 (-1,-1,2),OD1 (-1,1,2)得
x x
y y
2z 2z
0 0
解得
x 2z y0
,
O xB
取z 1 得平面OA1D1的法向量的坐标为u=(2,0,1)
uuur
uuuur
则向量AB=(-3,4,0), AC=(-3,0,5)
r uuur
r uuuur
由已知得u• AB=0, u•AC=0
即- -3 3x x+ +4 5y z= =0 0 解之得 x y= =5 3 5z z 4
令z=1 得平面ABC的法向量为(5, 5,1)
34
二.判定直线、平面间的位置关系
立体几何中的向量方法
课标解读
教学目标
复习引入
新课讲授
小结
当堂检测
一. 两个重要的空间向量
1.直线的方向向量
把直线上任意两点的向量或与它平行的向量
都称为直线的方向向量. 2、方向向量的求法
如图1,在空间直角坐标系中,设直线L上
立体几何中的向量方法(一)——证明平行与垂直 2019高考绝密资料
立体几何中的向量方法(一)——证明平行与垂直主标题:立体几何中的向量方法(一)——证明平行与垂直副标题:为学生详细的分析立体几何中的向量方法(一)——证明平行与垂直的高考考点、命题方向以及规律总结。
关键词:向量证平行,向量证垂直,向量求角 难度:2 重要程度:4考点剖析:1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系. 3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.命题方向:1)向量法证明垂直与平行多以多面体(特别是棱柱、棱锥)为载体,求证线线、线面、面面的平行或垂直,其中逻辑推理和向量计算各有千秋,逻辑推理要书写清晰,“充分”地推出所求证(解)的结论;向量计算要步骤完整,“准确”地算出所要求的结果.2)用向量法求线线角、线面角多以空间几何体、平面图形折叠成的空间几何体为载体,考查线线角、线面角的求法,正确科学地建立空间直角坐标系是解此类题的关键 规律总结:1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想. 2.两种思路:(1)选好基底,用向量表示出几何量,利用空间向量有关定理与向量的线性运算进行判断.(2)建立空间坐标系,进行向量的坐标运算,根据运算结果的几何意义解释相关问题.3.运用向量知识判定空间位置关系,仍然离不开几何定理.如用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.知 识 梳 理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0. 2.空间位置关系的向量表示位置关系向量表示 直线l 1,l 2的方向向量分别为n 1,n 2.l 1∥l 2 n 1∥n 2⇔n 1=λn 2 l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m l ∥α n ⊥m ⇔m ·n =0 l ⊥α n ∥m ⇔n =λm 平面α,β的法向量分别为n ,m .α∥β n ∥m ⇔n =λm α⊥βn ⊥m ⇔n ·m =0导数在研究函数中的应用主标题:导数在研究函数中的应用备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
立体几何中的向量方法—证明平行和垂直
立体几何中的向量方法—证明平行和垂直(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--22017届高二数学导学案编写 审核 审批课题:立体几何中的向量方法—证明平行和垂直第 周 第 课时 班 组 组评 姓名 师评 【使用说明】 1、依据学习目标。
课前认真预习,完成自主学习内容;2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题;3、当堂完成课堂检测题目;4、★的多少代表题目的难以程度。
★越多说明试题越难。
不同层次学生选择相应题目完成【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘;2.了解空间向量的基本定理;3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。
【教学重点】理解空间向量的概念;掌握空间向量的运算方法【教学难点】 理解空间向量的概念;掌握空间向量的运算方法【学习方法】学案导学法,合作探究法。
【自主学习·梳理基础】1、 考点深度剖析利用空间向量证明平行或垂直是高考的热点,内容以解答题为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向. 2.【课本回眸】1.直线的方向向量与平面的法向量的确定①直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量.②平面的法向量可利用方程组求出:设a ,b 是平面α内两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.2.用向量证明空间中的平行关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. ②设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =xv 1+yv 2.③设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . ④设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1∥u 2. 3. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. ②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 4.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). 【课堂合作探究】探究一:如图,在棱长为2的正方体1111D C B A ABCD -中,N M F E ,,,分别是棱1111,,,D A B A AD AB 的中点,点Q P ,分别在棱1DD ,1BB 上移动,且()20<<==λλBQ DP . 当1=λ时,证明:直线//1BC 平面EFPQ .探究二:如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.证明:(1)AE ⊥CD ; (2)PD ⊥平面ABE .3探究三:在边长是2的正方体ABCD -1111A B C D 中,,E F 分别为1,AB AC 的中点. 应用空间向量方法求解下列问题. (1)求EF 的长(2)证明://EF 平面11AA D D ; (3)证明: EF ⊥平面1ACD .【当堂测试】1.【人教A 版选修2-1P101练习2改编】已知l ∥α,且l 的方向向量为(2,m ,1),平面α的法向量为⎝⎛⎭⎪⎫1,12,2,则m =________.2.【改编自大纲卷】如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===. (I )证明:11AC A B ⊥;D B 1C C 1A 1AB【课后巩固】1.如图所示,在直三棱柱ABC -A 1B 1C 1中,底面是∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .2. 如图,在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,G 为△BC 1D 的重心, (1) 试证:A 1、G 、C 三点共线; (2) 试证:A 1C⊥平面BC 1D ;3.【改编自高考题】如图所示,四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得1AP PA λ=且面AB 1C 1⊥面PB 1C 1.【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问42017届高二数学导学案编写 邓兴明 审核 邓兴明 审批课题:利用向量方法求空间角 第 周 第 课时 班 组 组评 姓名 师评【使用说明】 1、依据学习目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中的向量方法3.2.1 平行与垂直关系【基础知识在线】知识点一 空间的方向向量与平面的法向量★★★ 考点:求空间直线的方向向量与平面的法向量 利用方向向量与法向量表示空间角利用方向向量与法向量表示平行与垂直关系知识点二 线线、线面、面面平行的向量表示★★★★★ 考点:利用线线、线面、面面平行的向量表示证明平行关系知识点三 线线、线面、面面垂直的向量表示★★★★★考点:利用线线、线面、面面垂直的向量表示证明垂直关系【解密重点·难点·疑点】问题一:空间的方向向量与平面的法向量1. 空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向,这个向量a 叫做直线的方向向量.2. 直线α⊥l ,取直线l 的方向向量a r ,则向量a r称为平面α的法向量.(1)平面α的一个法向量垂直于与平面α共面的所有向量.(2)一个平面的法向量有无数个,且它们互相平行. 3.平面的法向量的求法(1)已知平面的垂线时,在垂线上取一非零向量即可.(2)已知平面内两不共线向量()()321321,,,,,b b b b a a a a ==时,常用待定系数法:设法向量(),,,z y x =由⎪⎩⎪⎨⎧=⋅=⋅,00得⎩⎨⎧=++=++,00321321z b y b x b z a y a x a 在此方程组中,对z y x ,,中的任一个赋值,求出另两个,所得即为平面的法向量.利用此方法时,方程组有无数组解,赋得值不同,所得法向量就不同,但它们是共线向量.4.用向量语言表述线面之间的平行与垂直关系 :设直线m l ,的方向向量分别为,,平面βα,的法向量分别为,,则 线线平行:;,////R k k m l ∈=⇔⇔ 即:两直线平行或重合⇔两直线的方向向量共线. 线线垂直:;0=⋅⇔⊥⇔⊥b a b a m l即:两直线垂直⇔两直线的方向向量垂直. 线面平行:;0//=⋅⇔⊥⇔u a u a l α即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外. 线面垂直:;,//R k k l ∈=⇔⇔⊥α即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.面面平行:;,////R k v k u v u ∈=⇔⇔βα 即:两平面平行⇔两平面的法向量共线. 面面垂直:.0=⋅⇔⊥⇔⊥v u v u βα即:两平面垂直两平面的法向量垂直.问题二:空间中线线、线面、面面平行的向量坐标表示1. 设直线m l ,的方向向量分别为()()321321,,,,,b b b a a a ==,则 线线平行:().,,////212121R k kc c kb b ka a b k a b a m l ∈===⇔=⇔⇔2. 设直线l 的方向向量分别为(),,,321a a a =平面α的法向量分别为()321,,b b b =, 线面平行:.00//212121=++⇔=⋅⇔⊥⇔c c b b a a l α3.平面βα,的法向量分别为()()321321,,,,,b b b a a a ==,面面平行:().,,,////212121R k kc c kb b ka a v k u v u ∈===⇔=⇔⇔βα问题三:空间中线线、线面、面面垂直的向量表示1.设直线m l ,的方向向量分别为()()321321,,,,,b b b a a a ==,则 线线垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a m l2.设直线l 的方向向量分别为(),,,321a a a =平面α的法向量分别为()321,,b b b =, 线面垂直:().,,,//212121R k kc c kb b ka a u k a u a l ∈===⇔=⇔⇔⊥α3.平面βα,的法向量分别为()()321321,,,,,b b b v a a a u ==, 面面垂直:.00212121=++⇔=⋅⇔⊥⇔⊥c c b b a a βα【点拨思维·方法技巧】 一.求平面的法向量例1已知平面α经过三点()()()0,2,3,1,0,2,3,2,1--C B A ,试求平面α的一个法向量. 【思维分析】先求出,,AC AB ,设出平面α的法向量为()z y x u ,,=,结合向量垂直时数量积为零的性质,联立方程组解题. [解析]()()()0,2,3,1,0,2,3,2,1--C B A Θ,()(),3,4,2,4,2,1-=--=∴AC AB ,设平面α的法向量为()z y x u ,,=, 依题意,⎪⎩⎪⎨⎧=⋅=⋅0AC u AB u ,即⎩⎨⎧=--=--0342042z y x z y x ,解得⎩⎨⎧==02z y x .令2,1==x y 则.∴平面α的一个法向量为()0,1,2=u .【评析】用待定系数法求平面的法向量,关键是在平面内找两个不共线向量,设出平面的法向量,列出方程组,求出的三个坐标不是具体的值,而是比例关系,取其中一组解(非零向量)即可.变式训练1.在正方体1111D C B A ABCD -中,F E ,分别是DC BB ,1的中点,求证:AEu u u r是平面F D A 11的法向量. 证明设正方体的棱长为1,建立如图所示的空间直角坐标系,则()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛21,1,0,21,1,1,0,0,1AE E A ,()(),01,1,0,21,0,01,011=⎪⎭⎫⎝⎛=A F D()0,0,1,1,21,0111-=⎪⎭⎫⎝⎛-=D A F D .0,02121111=⋅=-=⋅D A AE F D AE Θ,111,D A AE F D AE ⊥⊥Θ, 又1111D D A F D =I Θ,⊥∴AE 平面F D A 11,AE ∴是平面F D A 11的法向量.. 二.证明平行问题例2在正方体1111D C B A ABCD -中,O 是11D B 的中点,求证:C B 1∥平面1ODC . 【思维分析】在平面内找与向量C B 1平行的向量D A 1,由向量的相等,得线线平行,从尔的线面平行.也可建立空间直角坐标系,求C B 1的方向向量和平面1ODC 的法向量,利用向图3-2-1量的垂直,可得线面平行.证明 方法一 ∵1B C u u u u r =1A D u u u u r,又D A B 11∉,D A C B 11//∴,又⊂D A 1平面1ODC , C B 1∴∥平面1ODC .方法二建系如图,设正方体的棱长为1,则可得()()()1,1,0,1,21,21,0,1,0,1,1,111C O C B ⎪⎭⎫⎝⎛,()⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛---=--=0,21,21,1,21,21,1,0,111OC OD C B .设平面1ODC 的法向量为()z y x ,,=,则⎪⎩⎪⎨⎧=⋅=⋅001OC OD n , 得⎪⎩⎪⎨⎧=+-=---0212102121y x z y x ,令1=x ,得1,1-==z y ,()1,1,1-=n .()()01110111=-⨯-+⨯+⨯-=⋅∴n C B , B ⊥∴1,C B 1∴∥平面1ODC .【评析】 向量法证明几何中的平行问题,可以有两个途径,一是在平面内找一向量与已知图3-2-2直线的方向向量共线;二是通过建立空间直角坐标系,依托直线的方向向量和平面的法向量的垂直,来证明平行.变式训练2.已知正方体1111D C B A ABCD -中,F E ,分别在C D DB 1,上,且a F D DE 321==,其中a 为正方体棱长. 求证:EF ∥平面C C BB 11. 证明如图所示,建立空间直角坐标系xyz D -,则,32,3,0,0,3,3⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛a a F a a E 故⎪⎭⎫⎝⎛--=3,0,32a a ,又()0,,0a =显然为平面C C BB 11的一个法向量, 而()03,0,320,,0=⎪⎭⎫ ⎝⎛--⋅=⋅a aa ,∴AE u u u r ⊥EF u u u r.又∉E 平面C C BB 11,因此EF ∥平面C C BB 11. 三.证明垂直问题例3.已知正方体1111D C B A ABCD -中,E 为棱1CC 上的动点.图3-2-3(1)求证:BD E A ⊥1;(2)若平面⊥BD A 1平面EBD ,试确定点E 的位置.【思维分析】正方体为建立空间直角坐标系提供了有利条件,对于(1),110A E BD A E BD =⇒⊥u u u r u u u r u u u r u u u rg ;对于(2),利用已知条件平面⊥BD A 1平面EBD ,通过垂直条件下的向量数量积等于0,求得点E 的位置;取BD 的中点O ,易证OE A 1∠是二面角E BD A --1的平面角,利用向量数量积证明10AO EO =u u u r u rg即可.[解析]以1,,DD DC DA 所在直线为z y x ,,轴,建立空间直角坐标系,设棱长为a . (1)()()()()()a a C a a A a C a a B a A ,,0,,0,,0,,0,0,,,0,0,11, 设()m a E ,,0,则()()0,,,,,1a a a m a a A --=--=,22100A E BD a a =-+=u u u r u u u rg ,所以A ⊥1,即BD E A ⊥1.(2)法一:设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,,2,2a a m a a --=⎪⎭⎫⎝⎛-=, 因为BCE ∆≌DCE ∆,所以EB ED =,所以BD OE ⊥,又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =u u u r u u u r g ,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为平面⊥BD A 1平面EBD ,所以21π=∠OE A , 图3-2-4所以10OA OE =u u u r u u u r g ,即2,04422am am a a =∴=+--. 故当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD . 法二:E 为1CC 的中点,证明如下:由E 为1CC 的中点得⎪⎭⎫ ⎝⎛2,,0a a E , 设BD 的中点为O ,连接OE ,1OA ,则⎪⎭⎫⎝⎛0,2,2a a O , 所以()0,,,2,2,2a a BD a a a OE --=⎪⎭⎫⎝⎛-=,则0OE BD =u u u r u u u r g ,⊥,即BD OE ⊥.又⎪⎭⎫⎝⎛-=a a a OA ,2,21,所以10OA BD =u u u r u u u r g,所以BD OA ⊥1,所以OE A 1∠是二面角E BD A --1的平面角,因为22210442a a a OA OE =--+=u u u r u u u r g,所以OE OA ⊥1, 故OE OA ⊥1,即21π=∠OE A ,所以平面⊥BD A 1平面EBD . 所以当E 为1CC 的中点时,能使平面⊥BD A 1平面EBD .【评析】利用向量解决立体几何中的线线,线面,面面的位置关系问题一般经过以下几个步骤:恰当建系,求相关点的坐标,求相关向量坐标,向量运算,将向量运算结果还原成立体几何问题或结论.变式训练3. 在正棱锥ABC P -中,三条侧棱两两互相垂直,G 是PAB ∆的重心,F E ,分别为PB BC ,上的点,且2:1::==FB PF EC BE . 求证:平面GEF ⊥平面PBC . 证明 (1)方法一如图3-2-5所示,以三棱锥的顶点P 为原点,建立空间直角坐标系. 令3===PC PB PA ,则()()()()1,2,0,3,0,0,0,3,0,0,0,3E C B A , ()()()0,0,0,0,1,1,0,1,0P G F .()()0,0,1,0,0,3==∴, FG PA //,3∴=∴ .而PA ⊥平面PBC ,∴FG ⊥平面PBC ,又⊂FG 平面GEF ,∴平面GEF ⊥平面PBC . 方法二 :同方法一,建立空间直角坐标系,则()()()0,1,1,0,1,0,1,2,0G F E ,()(),1,1,1,1,1,0--=--=设平面GEF 的法向量为()z y x n ,,=, 则⎪⎩⎪⎨⎧=⋅=⋅0, 得0,0,y z x y z +=⎧⎨--=⎩,令1=y ,得0,1=-=x z ,()1,1,0-=n . 而显然()0,0,3=PA 是平面PBC 的一个法向量. 又⊥∴=⋅,0,即平面PBC 的法向量与平面GEF 的法向量互相垂直, ∴平面GEF ⊥平面PBC .图3-2-5【课后习题答案】 练习(第104页)1.(1)答案:平行.提示:()()a b 32,1,236,3,6=--=--=.(2)答案:垂直.提示:()()()()02232212,3,22,2,1=⨯-+⨯+-⨯=-⋅-=⋅b a ,b a ⊥. (3)答案:平行.提示:()()a b 31,0,033,0,0-=-=-=.2.提示:(1).,,0βα⊥∴⊥∴=⋅v u v u Θ(2).//,//βα∴v u Θ(3)u Θ与v 不垂直,也不平行,α∴与β相交.【自主探究提升】夯实基础1.已知()(),5,6,2,,3,8b n a m ==若m ∥n ,则b a +的值为( )B.25 C.221答案:C . 提示:m Θ∥n ,()(),5,6,2,3,8b k a =∴即k a k bk 5,63,28===,21=∴k 故8,25==b a ,221825=+=+b a .2. 已知()(),2,2,,2,5,1+=-=a a n m 若⊥m n ,则a 的值为( )D.±6答案:B. 提示: ⊥m Θn ,()022251=+⨯-⨯+⨯∴m m ,6=∴m .3.平面α的一个法向量为()0,2,1,平面β的一个法向量为()0,1,2-,则平面α与平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .不能确定 答案: C.提示: ()()00,1,20,2,1=-⋅Θ, ∴两法向量垂直,从而两平面也垂直.4.已知()()y x ,,3,5,4,2==分别是直线21,l l 的方向向量,若1l ∥2l ,则( ) A .15,6==y x B .215,3==y xC .15,3==y xD .215,6==y x答案:D提示:1l Θ∥2l ,b a //∴, 则有yx 5432==, 解方程得215,6==y x . 5. 在正三棱柱111C B A ABC -中,B A C B 11⊥.求证:B A AC 11⊥.证明: 建立空间直角坐标系xyz C -1,设b CC a AB ==1,, 则()(),0,,0,,,0,0,2,23,,2,2311a B b a B a a A b a a A ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛()()0,0,0,,0,01C b C ,()⎪⎪⎭⎫ ⎝⎛---=-=⎪⎪⎭⎫ ⎝⎛-=∴b a a AC b a C B b a a B A ,2,23,,,0,,2,23111. B A C B 11⊥Θ,022211=+-=⋅∴b a A B , 而022211=-=⋅b a A AC , 图3-2-6B A AC 11⊥∴, 即B A AC 11⊥.拓展延伸6.下列各组向量中不平行的是( ) A .)4,4,2(),2,2,1(--=-=b a ρρ B .)0,0,3(),0,0,1(-==d c ρρC .)0,0,0(),0,3,2(==f e ρρD .)40,24,16(),5,3,2(=-=h g ρρ答案:D. 提示:2//;3//;b a a b d c d c =-⇒=-⇒r r r r u r r u r r 而零向量与任何向量都平行.7.若直线l 的方向向量为()2,0,1=a ,平面α的法向量为()4,0,2--=u ,则( )A .l ∥αB .l ⊥αC .α⊂lD .l 与α斜交答案: B.提示:()()a u 22,0,124,0,2-=-=--=Θ ,a u //∴,l ∴⊥α.8.已知()()1,3,2,1,1,1B A -,则直线AB 的模为1的方向向量是________________. 答案:⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛32,32,31,32,32,31 . 提示:()3,2,2,1==AB AB , 直线AB 的模为1的方向向量是()2,2,131±=AB . 9.已知平面α经过点()0,0,0O ,且()1,1,1=是α的法向量,()z y x N ,,是平面α内任意一点,则z y x ,,满足的关系式是________________.答案: 0=++z y x .提示:由题意()()0,,1,1,1=⋅=⋅z y x ,即0=++z y x .10.若直线b a ,是两条异面直线,它们的方向向量分别是()1,1,1和()2,3,2--,则直线b a ,的公垂线(与两异面直线垂直相交的直线)的一个方向向量是________.答案:()5,4,1- (答案不唯一).提示: 设直线b a ,的公垂线的一个方向向量为()z y x u ,,=,b a ,的方向向量分别为b a ,,由题意得⎪⎩⎪⎨⎧=⋅=⋅00b u a u ,即⎩⎨⎧=--=++02320z y x z y x , 令1=x ,得5,4-==z y ,()5,4,1-=∴u .11.若19(0,2,)8A ,5(1,1,)8B -,5(2,1,)8C -是平面α内的三点,设平面α的法向量),,(z y x a =ρ,则=z y x ::________________.答案:2:3:(4)-. 提示: 77(1,3,),(2,1,),0,0,44AB AC AB AC αα=--=---==u u u r u u u r u r u u u r u r u u u r g g 2243,::::()2:3:(4)4333x y x y z y y y z y ⎧=⎪⎪=-=-⎨⎪=-⎪⎩12.若非零向量()(),,,,,,222111z y x b z y x a ==则212121z z y y x x ==是a 与b 同向或反向的( )A.充分不必要条件B.必要非充分条件C.充要条件D.不充分不必要条件答案:A.提示:若212121z z y y x x ==,则与同向或反向,反之不成立.13.如图3-2-7(a)所示,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,090=∠=∠CEF BCF ,2,3==EF AD .求证:AE ∥平面DCF .证明: 如图3-2-7(b )所示,以点C 为坐标原点,建立空间直角坐标系xyz C -.设c CF b BE a AB ===,,,则()()()0,0,3,,0,3,0,0,0B a A C , ()()0,,0,0,,3c F b E , ()()(),0,,0,0,0,3,,,0b BE CB a b AE ==-=∴0,0=⋅=⋅∴BE CB AE CB ,图3-2-7(a ) (b)BE CB AE CB ⊥⊥∴,.⊥∴CB 平面ABE ,又⊥CB 平面DCF ,∴平面ABE ∥平面DCF ,故AE ∥平面DCF .14. 在正方体1111D C B A ABCD -中,F E ,分别是棱BC AB ,的中点,试在棱1BB 上找一点M ,使得M D 1⊥平面1EFB .解析:建立空间直角坐标系xyz D -,设正方体的棱长为2,则()()()()2,2,2,2,0,0,0,2,1,0,1,211B D F E .设()m M ,2,2,则()()()2,2,2,2,1,0,0,1,111-=---=-=m M D E B EF , ∵M D 1⊥平面1EFB∴ 1D M ⊥EF ,1D M ⊥E B 1,,0,0111=⋅=⋅∴E B M D EF M D于是-2+2=0,-2-2(m-2)=0,⎧⎨⎩()1,2,2,1M m ∴=∴,即M 为棱1BB 的中点. 图3-2-8。