勾股定理在折叠问题中的应用讲PPT课件
专题:勾股定理折叠问题(1)
中考在线: (2011•内江)如图,在直角坐标系中,矩形ABC0的 边OA在x轴上,边0C在y轴上,点B的坐标为 (1,3),将矩形沿对角线AC翻折,B点落在D点的 位置,且AD交y轴于点E,那么点D的坐标为( ).
三、正方形的折叠
1.将边长为8cm的正方形ABCD折叠,使点D落在BC边的中
点E处,点A落在F处,折痕为MN,
A
C´
CD
B
2.如图,Rt⊿ABC中,∠C=90°, D为AB上一点,将 ⊿ABC沿DE折叠,使点B与点A重合,
①若AC=4,BC=8,求CE的长。 ②若AC=24,BC=32,求折痕DE的长.
A
D
CE
B
二、矩形的折叠
1.如图,折叠矩形纸片ABCD,先折出折痕(对角线)BD, 再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2,BC = 1, 求AG。
(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关
系,并给予证明.
A′
D B′
EA
CF
B
6.如图,矩形ABCD的边长AB=6,BC=8,将矩形折叠, 使点C与点A重合,则折痕EF长为______.
7.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所
示,折叠纸片,使点A落在BC边上的E处,折痕为PQ,当
①求线段CN的长
②求AM ③求折痕MN的长
总结:①折叠的规律是,折叠部 分的图形,折叠前后,关于折痕
A M
A´
D 成轴对称,两图形全等。
②注意利用线段关系和勾股定理 列方程计算
N
BE C
变式:(2015•自贡)如图,在矩形ABCD中,AB=4, AD=6,E是AB边的中点,F是线段BC上的动点,将
探索勾股定理(19张PPT)数学八年级上册
1637年,路易十四命令巴黎学院组织了一场盛大的比赛,将法国的贵族们集结起来解决了这道难题,当时获胜的人可以得到很丰厚的奖品。
有关于勾股定理的趣味历史
勾股定理的介绍
目录
什么是勾股定理
有关于勾股定理的趣味历史
用勾股定理解决实际问题
勾股定理的跨学科
勾股定理的验证推导
什么是勾股定理
什么是勾股定理
有关于勾股定理的趣味历史
有关于勾股定理的趣味历史
据说在古埃及文明中,他们建造金字塔时使用了“几何法则”来确定石块之间的距离和角度。这个神秘的几何法则据说与古代建筑物的外形有关系,可能就是指勾股定理。
折叠毕达哥拉斯定律
勾股定理的验证推导
任何一个学过代数或几何的人,都会听到毕达哥拉斯定理.这一著名的定理,在许多数学分支、建筑以及测量等方面,有着广泛的应用.古埃及人用他们对这个定理的知识来构造直角.他们把绳子按3,4和5单位间隔打结,然后把三段绳子拉直形成一个三角形.他们知道所得三角形最大边所对的角总是一个直角。毕达哥拉斯定理;给定一个直角三角形,则该直角三角形斜边的平方,等于同一直角三角形两直角边平方的和。反过来也是对的;如果一个三角形两边的平方和等于第三边的平方,则该三角形为直角三角形。
在语文课堂上的应用
在科学实验中的应用
用勾股定理解决实际问题
物理学中的应用
勾股定理在物理学中被广泛运用,可以用于建筑结构分析、机械设计以及其他类似问题的解决,同时也是桥梁设计的重要理论基础之一。
有不少现代的编程语言内置了计算器功能,提供了简便易用的库支持。而且在算法领域也能看到它的踪影,如分治算法、动态规划算法等
《勾股定理的应用》PPT课件 (公开课)2022年北师大版 (2)
8.D ①当△ABC 为锐角三角形,∵AD 为高,
∴BD= AB2-AD2= 152-122=9, CD= AC2-AD2= 132-122=5, ∴BC=BD+DC=9+5=14.
②当△ABC 为钝角三角形时,
A.150 cm B.180 cm C.170 cm D.200 cm
3.如图,一圆柱高 4 cm,底面半径为 1 cm,一只蚂蚁想 从点 A 处沿圆柱表面爬行到点 B 处吃食,这只蚂蚁要爬行的最 短路程约是________(π 取 3).
4.如图,长方体的底面边长分别为 2 cm 和 4 cm,高为 5 cm, 若一只蚂蚁从 P 点开始经过 4 个侧面爬行一圈到达 Q 点,则蚂 蚁爬行的最短路径长为________cm.
8
1 xm 8
xm
1 xm
xm
8
(1) 第一幅画的画面面积是多少平方米? 第二幅呢?你是怎样做的?
(2) 若把图中的x改为mx,其他不变,则 两幅画的面积又该怎样表示呢?
探索规律:
1、 3a2b ·2ab3 和 (xyz) ·y2z又等于什么? 你是怎样计算的?
2、如何进行单项式乘单项式的运算?
10.如图所示,有一根高为 2 m 的圆木柱,它的底面周长 为 0.3 m.国庆前夕,为了营造喜庆的气氛,老师要求小明将一 根彩带从柱底向柱顶均匀地缠绕 7 圈,一直缠到起点的正上方 为止,问:小明至少需要准备一根多长的彩带?
课前热身 1.展开 平面图形 连接两点之间的线段 勾股 2.长方形 扇形
第一章 勾股定理
3 勾股定理的应用
课
随
前
勾股定理简单应用ppt课件
落在斜边AB上(折痕为AD,点C落在点E处),
已知AC=6c解m,:BC由=8已cm知,求得CD的长
AE=AC,DE=CD,∠AED=∠C=∠DEB=90º
A
∵AC=6cm,BC=8cm,∠C=90º
∴AB=10cm
E
设CD=xcm,则
DE=xcm,BE=4cm,DB=(8-x)cm
C
D
B 在RtΔDEB中,由勾股定理得
Having a child fall asleep in your arms is one of the most peaceful feeling in the world. 让一个孩子在你的臂弯入睡,你会体会到世间最安宁的感觉.
Being kind is more important than being right. 善良比真理更重要.
的长。
3.如图,折叠长方形纸片ABCD,使点 D落在边BC上的点F处(折痕为AE). 已知AB=DC=6cm,AD=BC=10cm,求EC
的长。
3.3 勾股定理的简单应用
• 例2 如图,在△ABC中,AB=26,BC=20, BC边上的中线AD=24,求AC.
A
BD
C
解:∵AD是BC边上的中线, ∴B∵DA=D2C+DB=D122=B5C7=6+121×002=06=761,0. AB 2=262=676,
意思是:有一根竹子原高1丈(1丈=10尺), 中部有一处折断,竹梢触地面处离竹根3尺,试 问折断处离地面多高?
3.3 勾股定理的简单应用
解:如图,我们用线段OA和线段 A
AB来表示竹子,其中线段AB表示
竹子折断部分,用线段OB来表示 X 竹梢触地处离竹根的距离.设OA
用勾股定理求折叠问题
用勾股定理求折叠问题在我们的生活中,折叠这个话题其实还挺有趣的。
咱们常常看到衣服、纸张、甚至是一些奇奇怪怪的东西需要折叠,这时候大家可能会想,这折叠的过程究竟有什么奥秘呢?说到这,不得不提到勾股定理,嘿嘿,这可是个神奇的工具,能帮我们解决不少麻烦。
想象一下,一张纸对折成两半,然后又折叠成小小的四分之一,最后一摞起来,哇,简直就是艺术品!不过,折叠过程中其实也藏着不少数学的智慧,咱们来聊聊。
折叠的时候,纸张的边边角角往往会形成一些三角形。
大家想象一下,咱们把一张长方形的纸对折,形成一个小长方形。
这个时候,长方形的对角线就出现了。
哎呀,看到这个对角线,是不是瞬间有种“哈,这不就是勾股定理的舞台吗?”的感觉?对角线的长度其实就可以用勾股定理来计算,听起来有点复杂,但其实很简单。
长方形的长和宽就像是直角三角形的两条直角边,而对角线就是斜边。
只要用长方形的长和宽平方相加,再开根号,就能得到对角线的长度。
简单吧?就像把一根香肠切成两段,轻松搞定。
说到这里,想想在学校的时候,老师讲这道题时,我们是不是都在心里默念“能不能快点啊,我还想出去玩呢?”勾股定理不只是数学课堂上的干货,在生活中也能派上大用场。
你有没有试过把一张纸折成一个小飞机?这个小飞机的翅膀得对称,要不然飞不起来。
你在折的时候,恰好就用上了勾股定理,找准了折叠的角度和位置,嘿,飞机飞得可远了。
再说说折叠衣服,那可是个技术活。
有时候一堆衣服像小山一样堆在角落,简直是“山重水复疑无路”的状态。
于是,咱们用折叠的技巧,把它们理顺。
每次折叠时,心里默念“衣服的宽和长能不能形成一个完美的直角三角形呢?”折得越整齐,找衣服的时候就越方便。
这时候,勾股定理又在你耳边悄悄响起,想想每一件衣服的边缘,就像是一个个小三角形,堆在一起形成了一个大矩形,真是让人感叹,折叠这门艺术,简直太精彩了!然后,咱们还可以想象一下折叠纸飞机的场景。
拿出一张纸,开始在手中翻飞,折啊折,最后变成一只酷炫的纸飞机,准备起飞。
专题训练二--利用勾股定理解决折叠问题(共13张PPT)
人教版数学八年级下册17.1.2勾股定理应用-折叠问题 课件(共16张PPT)
6
4
6 (E)
F
8
10
E
6
10
(F)
课堂小结
❖ 1、标已知; ❖ 2、找相等; ❖ 3、设未知,利用勾股定理,列方程; ❖ 4、解方程,得解。
我的感悟我的收获
(1)折叠过程实质上是一个轴对称变换,折痕就是 对称轴,变换前后两个图形全等。
(2)在矩形的折叠问题中,若有求边长问题,常设未 知数,找到相应的直角三角形,用勾股定理建立方程, 利用方程思想解决问题。
B
即x²+4²=(8-x)²,x=3cm,
∴EC的长为3cm。
D
E
F
C
解题步骤
1、标已知,标问题,明确目标在哪个直角三 角形中,设适当的未知数x;
2、利用折叠,找全等。
3、将已知边和未知边(用含x的代数式表示) 转化到同一直角三角形中表示出来。
4、利用勾股定理,列出方程,解方程,得解。
探究活动
探究三:如图,矩形纸片ABCD中,AB=8cm,AD=12cm,
使C点落在对角线BD上的点E处,此时折痕DF的
长是多少?
A
D
6
4x
6
B 8-x
xC
探究活动
如图,矩形纸片ABCD中,AB=6cm,AD=8cm,
探究二:把矩形沿对角线BD折叠,点C落在
C′处。猜想重叠部分△BED是什么三角形?
说明你的理由.
C′
求能角重得平叠到分等部线腰分与三△平角B行形E线D的组面合积时,。 A E
课后作业
3、 如图,矩形纸片ABCD中,AB=3厘米,BC=4厘
米,现将A、C重合,再将纸片折叠压平,
(1)找出图中的一对全等三角形,并证明;
华东师大版八年级数学上册第14章勾股定理折叠问题中的勾股定理课件
A
D
B
G
EC
概括:找出图中的直角三角形,用勾股定理求出 未知边。 怎么求EF?做垂线,构造直角三角形。
总结:怎么应用勾股定理解决折叠问题?
1.抓住折叠前后的图形是全等形,找出图 中的直角三角形(可做垂线段构造直角三角 形)。
2.设未知数,找等量关系,根据直角三角形 的三边关系列方程(组)。
课堂练习:
折叠问题中的勾股定理
引入:
勾股定理反应的是直角三角形三边 的关系。应用勾股定理由已知边求出 未知边。
这节课应用勾股定理来解决折叠中 的诸多问题
请按下列要求折叠矩形纸片ABCD 并画出折叠后的几何图形
• 1:把矩形边AB折在边AD上。 • 2:把矩形ABCD边AB 折在对角线AC上。 • 3:把矩形ABCD沿对角线AC对折。 • 4: 使矩形的顶点B恰好与点D重合。
D1E的长。 (3)求四边形ABCE的面积。
A
D
E
B
D1
C
AB=AB1=CD=BE=6, B1D=EC=2,
A
B1
D
AE2=AB2+BE2 =62+62=72
AE= 72
B
E
C
问题2:边AB落在AC上,你能提出哪 些问题?你能求出哪些线段长?
A
提示:ΔABE折叠到哪?AB折 在何处?
Dபைடு நூலகம்B1
∠B折在何处?图中又产生哪
些直角三角形?
B
C
E
思考:在哪个直角三角形中,有已知边,且 未知边之间有数量关系,可利用勾股定理求 出未知边呢?
x2+42=(8-x)2
得x=3.
∴DB=5
课后作业:
1,如图,在长方形纸片ABCD中,AB= 12,BC=5,点E在AB上将ΔADE沿 DE折叠,使点A落在对角线BD上的点A1 处,则AE的长为多少?
勾股定理在折叠问题和最短路径中的应用(精品)-完整版PPT课件
R
D A
S
F
C
B
小 结: 把几何体适当展开成平面图形, 再利用“两点之间线段最短”, 或点到直线“垂线段最短”等性
质来解决问题。
走的最短路程是多少?
F
3 2
A2
四、节节高升
例4、如图,长方体的长为15cm,宽为10cm,高为 20cm,点B到点C的距离为5cm,一只蚂蚁如果要沿 着长方体的表面从A点爬到B点,需要爬行的最短距
离是多少?
B C 20
分析 根据题意分析蚂蚁爬行的路线有 两种情况如图①② ,由勾股定理可求
得图1中AB最短
B
A
A
2 如图,一个圆柱的底面周长为60cm,高AB =18cm, AF=1cm,CD=1cm,蚂蚁从C点爬行到F点的最短路程
是多少?
A E
F.
.C D
三、长方体中的最值问题
例3、如图,一只蚂蚁从实心长方体的顶点A出发, 沿长方体的表面爬到对角顶点C1处(三条棱长如图 所示),问怎样走路线最短?最短路线长为多少?
2点的对称性:对称点连线被对称轴(折痕)垂直平分
全等性
折
轴对称 本 质 折叠问题
对称性
重结果 叠
精 髓
利用方程思想
折叠问题
1、两手都要抓:重视“折”,关注“叠” 2、本质:轴对称(全等性,对称性) 3、关键:根据折叠实现等量转化 4、基本方法:构造方程:
(1)根据勾股定理得方程。 (2)根据相似比得方程。 (3)根据面积得方程。
D1 A1 D
A
4
C1
B1
1 C
2 B
分析: 根据题意分析蚂蚁爬行的路线有三种情 况如图①②③ ,由勾股定理可求得图1中AC1爬
专题:勾股定理折叠问题 PPT课件
的第一、二个步骤是:①先裁下了一张长BC 20cm宽,AB 16cm
的矩形纸片ABCD,②将纸片沿着直线AE折叠,点D恰好落
在BC边上的F处,…… 请你根据①②步骤解答下列问题:
(1)找出图中∠FEC的余角;
A
D
(2)计算EC的长.
E
B
FC
3.如图,矩形纸片ABCD中,AB=4cm,BC=8cm,现将A、
二、矩形的折叠
1.如图,折叠矩形纸片ABCD,先折出折痕(对角线)BD, 再折叠,使AD落在对角线BD上,得折痕DG,若AB = 2,BC = 1, 求AG。
D
C
• A´
AG
B
2.为了向建国六十周年献礼,某校各班都在开展丰富多彩的
庆祝活动,八年级(3)班开展了手工制作竞赛,每个同学都
在规定时间内完成一件手工作品.陈莉同学在制作手工作品
5、动ห้องสมุดไป่ตู้操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,
使点A落在BC边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的
端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E
在BC边上可移动的最大距离为
.
BE
C
P
A
QD
6、把图一的矩形纸片ABCD折叠,B,C两点恰好重合落 在AD边上的点P处(如图二),已知∠MPN=90°,PM=3, PN=4,那么矩形纸片ABCD的面积为_______。
C重合,使纸片折叠压平,设折痕为EF,
①求DF的长;
②求重叠部分△AEF的面积;
③求折痕EF的长。
D´
④着色部分的面积为多少? A
FD
BE
C
第11讲勾股定理折叠问题
第十一讲勾股定理折叠问题一、知识梳理初中数学中,有关折叠的问题也是相对比较难的问题,主要涉及求角的度数、求线段的长度、求周长、面积等,其中求线段的长度的问题必然用到勾股定理.图形折叠问题核心实质是轴对称性质,即先找出对称轴,再观察元素不变量与变量,然后运用所学知识合理、有序、全面解决问题。
图形折叠对象主要是三角形、矩形、梯形等,考查问题涉及点坐标、角度、线段、周长、面积、图形规律、最值、三角函数、比例、解析式等等,折叠问题中,“折”是过程,“叠”是结果,此题型灵活多变,能考查学生的自主探索能力与空间想象能力以及推理能力,解决折叠问题,首先要对图形折叠有一定准确定位,把握折叠实质,从点、线、面三个方面发现图形中的位置关系和数量关系,抓住图形的变量和不变量,其次探索折叠变化规律,充分挖掘图形隐含的几何性质,运用所学知识合理、有序、全面解决问题。
折叠性质:①对应线段相等(能够重合的线段)②对应角相等(能够重合的角)性质记忆:折叠必有角相等、边相等。
处理策略:求什么设什么,找直角三角形,用勾股定理二、典型例题(1)折叠与角度问题例1、如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=25°,则∠CDE=__________.解:∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,∠ACB=90°,∴∠BCD=∠ECD=45°,∠B=∠CED,∵∠A=25°,∴∠B=90°-25°=65°,∴∠CED=65°,∴∠CDE=180°-45°-65°=70°,故答案为:70°.例2、如图,在△ABC 中,∠ACB=90°,将∠A 折叠,使点A 落在边CB 上的点A′处,折痕为CD ;若∠A′DC=84°,则∠B=________°.解:∵△CDA′与△CDA 关于CD 成轴对称,∴∠ADC=∠A′DC=84°,∵∠ACB=90°,∴∠DCA=∠DCB=45°,∵∠CDA=∠B+∠DCB ,∴∠B=84°-45°=39°故答案为:39.(2)折叠与线段长度例3、如图,有一张直角三角形纸片,90ACB ∠=︒,5cm AB =,3cm AC =,现将ABC ∆折叠,使边AC 与AB 重合,折痕为AE ,则CE 的长为()A .1cmB .2cmC .3cm2D .5cm 2【解析】∵90ACB ∠=︒,5cm AB =,3cm AC =∴4BC ===由折叠可知CE=DE,AC=AD ,90ADE ACE ∠=∠=︒设CE x =,则4,2,BE x BD AB AD =-=-=在Rt BDE 中∵222DE BD BE +=∴2222(4)x x +=-解得32x =故选C例4、如图,在矩形ABCD 中,6,8AB AD ==,点E 是边A D 上一动点,将ABE △沿直线BE 对折,点A 的落点为A ',当A DE ' 为直角三角形时,线段AE 的长为()A .3B .4C .6或3D .3或4【答案】C 【分析】当A DE ' 为直角三角形时,有两种情况:①当点A '在矩形内部时,如图1所示,先利用勾股定理求出BD =10,根据折叠的性质得90BA E DA E ''∠=∠=︒,设AE =x ,则A E x '=,DE =8-x ,然后在Rt A DE ' 中运用勾股定理计算出x 的值即可;②当点A '落在边BC 上时,如图2所示,此时四边形ABA E '是正方形,得出AE =AB =6.【详解】解:∵四边形ABCD 是矩形∴∠A =∠C =90°,AB =6,AD =8∴10BD ===当A DE ' 为直角三角形时,有两种情况:①当点A '在矩形内部时,如图1所示,由折叠的性质得,AE A E '=,6A B AB '==设AE x =,则A E x '=,8DE x =-∴1064DA BD A B ''=-=-=在Rt A DE ' 中,222A E DA DE ''+=∴2224(8)x x +=-解得,x =3∴AE =3;②当点A '落在边BC 上时,如图2所示,此时四边形ABA E '是正方形,∴AE =AB =6故选:C .例5、如图,在Rt ABC 的纸片中,90C ∠=︒,5AC =,13AB =.点D 在边BC 上,以A D 为折痕将ADB △折叠得到AD B ' ,A B '与边BC 交于点E .若D EB ' 为直角三角形,则BD 的长是_______.【答案】7或263【分析】由勾股定理可以求出BC 的长,由折叠可知对应边相等,对应角相等,当△DEB′为直角三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD 的长.【详解】解:在Rt ABC 中,12BC ===,(1)当90ED B ∠'=︒时,如图1,过点B ′作B F AC '⊥,交AC 的延长线于点F ,由折叠得:13AB AB ='=,BD B D C F ='=,设BD x =,则B D CF x '==,12B F CD x '==-,在Rt AFB' 中,由勾股定理得:222(5)(12)13x x ++-=,即:270x x -=,解得:10x =(舍去),27x =,因此,7BD =.(2)当90D EB ∠'=︒时,如图2,此时点E 与点C 重合,由折叠得:13AB AB ='=,则1358B C '=-=,设BD x =,则B D x '=,12CD x =-,在Rt △B CD ¢中,由勾股定理得:222(12)8x x -+=,解得:263x =,因此263BD =.故答案为:7或263.例6、如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,将边AC A 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B'处,两条折痕与斜边AB 分别交于点E 、F ,则△B'FC 的面积为______________.【答案】9625【分析】由题意可得AB=10,根据面积可得CE=4.8,根据勾股定理可求BE=6.4,由折叠可求∠ECF=45°,可得EC=EF=4.8,即可求BF 的长,可求面积.【详解】解:∵Rt △ABC 中,∠ACB=90°,AC=6,BC=8,∴BA==10,∵将边AC 沿CE 翻折,使点A 落在AB 上的点D 处,∴∠AEC=∠CED ,∠ACE=∠DCE ,∵∠AED=180°,∴∠CED=90°,即CE ⊥AB ,∵S △ABC =12AB×EC=12AC×BC ,∴EC=4.8,在Rt △BCE 中,=6.4,∵将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B′处,∴BF=B'F ,∠BCF=∠B'CF ,∵∠BCF+∠B'CF+∠ACE+∠DCE=∠ACB=90°,∴ECF=45°,又CE ⊥AB ,∴∠EFC=∠ECF=45°,∴CE=EF=4.8,∵BF=BE-EF=6.4-4.8=1.6,∴△BFC 的面积为:12FB×EC=18249625525⨯⨯=,由翻折可知,△B'FC 的面积=△BFC 的面积=9625故答案为9625.【点睛】本题考查了折叠问题,勾股定理,根据折叠的性质求∠ECF=45°是本题的关键.(2)折叠与最值问题例7、如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值()A .不存在B .等于1cmC .等于2cmD .等于2.5cm【解析】当C′落在AB 上,点B 与E 重合时,AC'长度的值最小,∵∠C=90°,AC=4cm ,BC=3cm ,∴AB=5cm ,由折叠的性质知,BC′=BC=3cm ,∴AC′=AB-BC′=2cm .故选:C .例8、如图,矩形纸片ABCD,3AD=,折叠纸片,使点A落在BC边上的E处,AB=,5折痕为PQ,当点E在BC边上移动时,折痕的端点P、Q也随之移动,若限定点P、Q分别在AB、A D边上移动,则点E在BC边上可移动的最大距离为()A.1B.2C.4D.5【答案】B【分析】根据翻折变换,当点Q与点D重合时,点E到达最左边,当点P与点B重合时,点E到达最右边,所以点E就在这两个点之间移动,分别求出这两个位置时EB的长度,然后两数相减就是最大距离.【详解】解:如图1,当点D与点Q重合时,根据翻折对称性可得ED=AD=5,在Rt△ECD中,ED2=EC2+CD2,即52=(5-EB)2+32,解得EB=1,例9、如图2,当点P与点B重合时,根据翻折对称性可得EB=AB=3,∵3-1=2,∴点E在BC边上可移动的最大距离为2.故选:B .例10、如图,在矩形ABCD 中,10AB =,12AD =,点E 是AB 的中点,点F 是A D 边上的动点,将AEF ∆沿EF 翻折,得到A EF '∆,则A C '的最小值是()A .6B .7C .8D .9【答案】C 【分析】求A C '的最小值,先求出EC 的大小,再根据EA A C EC ''+≥,求出A C '的范围即可.【详解】解析:连接E C 在△A CE '中,可得EA A C EC ''+≥.在Rt EBC ∆中,由勾股定理,得13EC ==.由折叠可知,5EA EA '==,∴8A C '≥故选C .【点睛】本题主要考查了三角形三边的大小关系及勾股定理,正确掌握三角形三边的大小关系及勾股定理是解题的关键.例11、如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.【答案】1【分析】分别找到两个极端,当M 与A 重合时,AP 取最大值,当点N 与C 重合时,AP 取最小,即可求出线段AP 长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB是正方形,在Rt △ABC 中,,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,∴AP 的最小值为AD PD=4-线段AP 长度的最大值与最小值之差为(1AP AP=341----故答案为1例12、如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.【答案】2【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE 长,代入求出即可.【详解】如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠ABC=45°,∴∠B=45°,∵,∴,即,∴△PEB 的周长的最小值是.故答案为.【点睛】本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P 点的位置.三、课堂练习1.如图所示,将长方形ABCD 沿DE 折叠,使点C 恰好落在BA 边上,得到点C′,若∠C′EB=40°,求∠EDC′的度数.2.在Rt △ACB 中,∠ACB =90°,点D 在边AB 上,连接CD ,将△ADC 沿直线CD 翻折,点A 恰好落在BC 边上的点E 处,若AC =3,BE =1,则DE 的长是_____.【答案】157【分析】过点D 作DHAC ⊥于H ,DF BC ⊥于F ,由折叠的性质可得3AC CE ==,45ACD BCD ∠=∠=︒,由勾股定理可求5AB =,由面积法可求D F 的长,由勾股定理可求D E 的长.【详解】解:如图,过点D 作DHAC ⊥于H ,DF BC ⊥于F ,将ADC ∆沿直线CD 翻折,3AC CE ∴==,45ACD BCD ∠=∠=︒,4BC ∴=,D H AC ⊥ ,DF BC ⊥,45ACD BCD ∠=∠=︒,DF DH ∴=,45DCF FDC ∠=∠=︒,DF CF ∴=,22291625AB AC BC =+=+= ,5AB ∴=,111222ABC S AC BC AC DH BC DF ∆=⨯⨯=⨯⨯+⨯⨯ ,127DF ∴=,127DF ∴=,127DF CF ∴==,97EF =,157DE ∴===,故答案为:157.3.如图,矩形ABCD 中,AB=8,BC=4,把矩形ABCD 沿过点A 的直线AE 折叠,点D 落在矩形ABCD 内部的点D′处,则CD′的最小值是()A .4B .C .4-D .4+【答案】C 【解析】【分析】根据翻折的性质和当点D'在对角线AC 上时CD′最小解答即可.【详解】解:当点D'在对角线AC 上时CD′最小,∵矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,∴AD=AD'=BC=2,在Rt△ABC中,=4∴,故选:C.4.如图,在长方形ABCD的边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上的点F处.已知AB=6cm,△ABF的面积是24cm2.(1)求BF的长;(2)求AD的长;(3)求点E与点C的距离.【答案】(1)8cm;(2)10cm;(3)83 cm【分析】(1)由在长方形ABCD中,AB=6cm,△ABF的面积是24cm2,即可求得BF的长;(2)由(1),易得AD=AF,DE=EF,即可求得AF的长,然后得出AD的长;(3)首先设EC=xcm,则EF=DE=(6﹣x)cm.由勾股定理得:CE2+CF2=EF2求出x 的值即可得出答案.【详解】(1)∵ABCD是长方形,∴△ABF是直角三角形,∵△ABF面积是24cm2,∴12AB•BF=24.∵AB=6cm,∴BF=8cm;(2)由题意知,△ADE和△AFE重合,则△ADE≌△AFE,则AD=AF,DE=EF.在Rt△ABF中,由勾股定理得10AF===(cm).则AD=10cm;(3)∵BC=AD=10cm,∴CF=BC﹣BF=2cm.设EC =xcm ,则EF =DE =(6﹣x )cm .由勾股定理得:CE 2+CF 2=EF 2,∴x 2+22=(6﹣x )2,解得:83x =,∴点E 与点C 间的距离是83cm.【点睛】此题考查长方形的性质、勾股定理、折叠的性质,(3)是此题的难点,根据(2)求出CF ,由折叠得到EF =DE ,设EC =xcm ,因此利用勾股定理列得关于x 的关系式解出x 的值,由此解答此题.5.在矩形纸片ABCD 中,3AB =,5AD =.如图所示,折叠纸片,使点A 落在BC 边上的'A 处,折痕为PQ ,当点'A 在BC 边上移动时,折痕的端点P ,Q 也随之移动,若限定点P 、Q 分别在线段AB 、A D 边上移动,则点'A 在BC 边上可移动的最大距离为()A .1B .2C .3D .4【答案】B 【分析】根据翻折变换,当点Q 与点D 重合时,点A′到达最左边,当点P 与点B 重合时,点A′到达最右边,所以点A′就在这两个点之间移动,分别求出这两个位置时A′B 的长度,然后两数相减就是最大距离.【详解】解:如图1,当点D 与点Q 重合时,根据翻折对称性可得A’D=AD=5,在Rt △A’CD 中,A’D 2=A’C 2+CD 2,即52=(5-A’B)2+32,解得A’B=1;如图2,当点P与点B重合时,根据翻折对称性可得A’B=AB=3,∵3-1=2,∴点A’在BC边上可移动的最大距离为2.故选B.6.矩形ABCD中,AB=4,BC=6,点E是AB的中点,点F是BC上任意一点,把△EBF沿直线EF翻折,点B落在点P处,则PC的最小值是_______________.【答案】2【详解】连接CE,当点P在CE上时,CP的值最小.CE===∴=-=.CP CE EP2故答案为:2.7.如图,在长方形纸片ABCD 中,3AB =,9AD =,折叠纸片ABCD ,使顶点C 落在边A D 的点G 处,折痕分别交边A D 、BC 于点E 、F .(1)求证:GEF △是等腰三角形(2)求GEF △面积的最大值.【答案】(1)见解析;(2)152【分析】(1)根据翻折的性质得到EFC EFG ∠=∠,根据//AD BC 得到EFC GEF ∠=∠,从而得到EFG GEF ∠=∠,问题得证;(2)根据GEF △高为AB=3,得到当点G 与点A 重合时,GEF △的面积最大.根据勾股定理求出AF=5,进而得到GE=5,即可求出GEF △的面积.【详解】(1)由翻折得:EFC EFG ∠=∠.∵//AD BC ,∴EFC GEF ∠=∠,∴EFG GEF ∠=∠,∴GE=GF ,∴GEF △是等腰三角形.(2)如图,∵GEF △高为AB=3,∴当GE 最大时GEF △的面积最大,∴当点G 与点A 重合时,GEF △的面积最大.在Rt ABF 中,222AF AB BF =+,∴()22239AF AF =+-,解得:5AF =,∴5GE AF ==,∴GEF △的面积最大值=1155322=⨯⨯=.四、举一反三1.如图,EF 是正方形两对边中点的连线段,将∠A 沿DK 折叠,使它的顶点A落在EF 上的G 点,求∠DKG 的度数.2.如图,在Rt ABC 中,90,A AB AC ∠=︒==,点,E F 分别是边,AB BC 上的动点,沿EF 所在直线折叠B Ð,使点B 的对应点B ′始终落在边AC 上,若FB C ' 为直角三角形,则BF 的长为__________.【解析】90,A AB AC ∠=︒==,∴∠C=45°,2BC ==,折叠后,要使FB C ' 为直角三角形,则有:FB C ' 也为等腰直角三角形,①当90B FC '∠=︒时,∴45C FB C '∠=∠=︒,此时点B '与点C 重合,∴E 、F 分别是AB 、BC 的中点,∴112BF BC ==,②当90FB C'∠=︒时,∴45C B FC '∠=∠=︒,∴BF FB B C ''==,在Rt B FC '△中,FC F '=,BC=BF+FC ,∴)12BC BF BF =+=+=,解得:2BF =-;故答案为2-或1.3.如图,Rt △ABC 中,AB =18,BC =12,∠B =90°,将△ABC 折叠,使点A 与BC 的中点D 重合,折痕为MN ,则线段BN 的长为()A .8B .6C .4D .104.如图,长方形纸片ABCD ,10AB =,8BC =,点P 在BC 边上,将CDP 沿DP 折叠,点C 落在E 处,PE ,D E 分别交AB 于点O ,F ,且OP OF =,则A F 长为______.【答案】103【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=10-x 、BF=PC=8-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.【详解】解:∵将△CDP 沿DP 折叠,点C 落在点E 处,∴DC=DE=10,CP=EP .在△OEF 和△OBP 中,90EOF BOP E B OF OP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△OEF ≌△OBP (AAS ),∴OE=OB ,EF=BP .设EF=x ,则BP=x ,DF=DE -EF=10-x ,又∵BF=OB+OF=OE+OP=PE=PC ,PC=BC-BP=8-x ,∴AF=AB -BF=2+x .在Rt △DAF 中,AF 2+AD 2=DF 2,∴(2+x )2+82=(10-x )2,∴43x =;∴410233AF =+=.故答案为:103.5.如图,在矩形ABCD 中,AB=3,AD=4,点E 是AD 边上一动点,将△ABE 沿BE 折叠,使点A 的对应点A′恰好落在矩形ABCD 的对角线上,则AE 的长为_______.答案:3924or 6.如图,已知等腰△ABC 中,AB =AC =5,BC =8,E 是BC 上的一个动点,将△ABE 沿着AE 折叠到△ADE 处,再将边AC 折叠到与AD 重合,折痕为AF ,当△DEF 是等腰三角形时,BE 的长是___________.【答案】52或258或74.【分析】分三种情况讨论:DE=DF ,DE=EF ,EF=DF .利用等腰三角形的性质和全等三角形解题.【详解】解:由折叠可知,BE=DE ,DF=CF ,AD=AB=AC=5,当DE=DF 时,如图1,此时DE=DF=BE=CF ,∵AB=AC ,∴∠B=∠C ,在△ABE 和△ACF 中,AB AC B C BE CF =⎧⎪=⎨⎪=⎩∠∠∴△ABE ≌△ACF ,∴AE=AF ,∴AD 垂直平分EF ,∴EH=FH ,142BH CH BC ===,∴3AH ===,∴532HD =-=,设BE DE x ==,则4EH x =-,则在直角△DHE 中,()22242x x -+=,解得52x =,当DE=EF 时,如图2,作AH ⊥BC 于H ,连接BD ,延长AE 交BD 于N ,可知BE=DE=EF ,∵AH ⊥BC ,AB=AC ,BC=8∴BH=CH=4,∴3AH ===,设EH m =,则4BE EF m ==-,∴()8242CF m m =--=,即2DF m=∵AB=AD ,∠BAN=∠DAN ,∴AN ⊥BD ,BN=DN ,∴12EN DF m ==,∴EN EH=在△AHE 和△BNE 中,90AHE BNE EH ENAEH BEN ==︒⎧⎪=⎨⎪=⎩∠∠∠∠∴△AHE ≌△BNE ,∴AE=BE ,设BE AE x ==,则4EH x =-,在直角△AEH 中,()22243x x -+=,解得258x =,当DF=EF 时,如图3,过A 作AH ⊥BC 于H ,延长AF 交DC 于M,同理258 EF CF==∴252578884 BE=--=故答案为:52或258或74.【点睛】本题考查了折叠问题,全等三角形的判定和性质,等腰三角形的性质,注意分类讨论是解题的关键.7.如图,等腰△ABC中,AB=AC=10,BC=12,AD平分B A C∠,且AD=8,P,Q分别是AB、AD上的动点,连接BP,PQ,则BP+PQ的最小值为___.【答案】9.6【分析】过C作CQ⊥AB于Q,交AD于P,得到CQ=BP+PQ的最小值,由勾股定理不求得AD=8,再利用等面积法即可求得其值.【详解】∵AB=AC,AD是角平分线,∴AD⊥BC,BD=CD,∴B点,C点关于AD对称,如图,过C作CQ⊥AB于Q,交AD于P,则CQ=BP+PQ的最小值,根据勾股定理得,AD=8,利用等面积法得:AB•CQ=BC•AD,∴CQ=12310BC ADAB⨯==9.6故答案为:9.6.8.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,联结CE.(1)求证:AD∥CE;(2)求CE的长.【答案】(1)见解析;(2)75【分析】(1)由折叠的性质可得DE=BD ,AE=AB ,可证EF=BF ,AD ⊥BE ,由等腰三角形的性质可求∠DBE =∠DEB ,∠DEC =∠DCE ,由三角形的内角和定理可求CE ⊥BE ,可得结论;(2)由三角形的面积公式可求BF 的长,由勾股定理可求CE 的长.【详解】证明:(1)∵∠BAC =90°,AB =3,AC =4,∴BC 5==,∵点D 是BC 的中点,∴AD =BD =DE =52,∵将△ABD 沿AD 翻折得到△AED ,∴DE =BD ,AE =AB ,∴AD 垂直平分BE ,∴EF =BF ,AD ⊥BE ,∵DE =DB =CD ,∴∠DBE =∠DEB ,∠DEC =∠DCE ,∵∠DBE +∠DEB +∠DEC +∠DCE =180°,∴∠DEB +∠DEC =90°,∴∠BEC =90°,∴CE ⊥BE ,∴AD ∥CE ;(2)∵S △ABC =12×AC ×AB =12×3×4=6,且CD =BD ,∴S △ADB =12S △ABC =3,∴12AD ×FB =3,∴FB =125,∴BE =245,∴CE 75==.【点睛】本题考查了翻折变换,直角三角形的性质,平行线的判定,三角形的面积公式,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.五、课后练习一、选择题1.如图,在△ABC 中,AB =10,AC =6,BC =8,将△ABC 折叠,使点C 落在AB 边上的点E 处,AD 是折痕,则△BDE 的周长为()A .6B .8C .12D .14【解析】在Rt △ABC 中,∵AC =6,BC =8,∠C =90°,∴AB ==10,由翻折的性质可知:AE =AC =6,CD =DE ,∴BE =4,∴△BDE 的周长=DE +BD +BE =CD +BD +E =BC +BE =8+4=12.故选:C .2.如图,将等腰直角三角形ABC (90ABC ∠=︒)沿EF 折叠,使点A 落在BC 边的中点1A 处,6BC =,那么线段AE 的长度为()A .5B .4C .4.25D .154【解析】由折叠的性质可得AE=A 1E ,∵△ABC 为等腰直角三角形,BC=6,∴AB=6,∵A 1为BC 的中点,∴A 1B=3,设AE=A 1E=x ,则BE=6-x ,在Rt △A 1BE 中,由勾股定理可得32+(6-x )2=x 2,解得x=154,故选:D .3.如图,矩形ABCD ,AB =3,BC =4,点E 是AD 上一点,连接BE ,将△ABE 沿BE 折叠,点A 恰好落在BD 上的点G 处,则AE 的长为()A .2B .52C .32D .3【解析】在Rt △ABD 中,AB=3,AD=BC=4,∴BD=5由折叠得,∠BGE=∠A=90°,BG=AB=3,EG=AE ,∴DG=BD-BG=2,DE=AD-AE=4-AE ,在Rt △DEG 中,EG 2+DG 2=DE 2,∴AE 2+4=(4-AE )2,∴AE=32.故选:C .4.如图,在四边形ABCD 中,∠A =∠B =90°,∠C =60°,BC =CD =8,将四边形ABCD 折叠,使点C 与点A 重合,折痕为EF ,则BE 的长为()A .1B .2CD .2【解析】作DG ⊥BC ,连接AE ,在Rt △CDG ,∠DCG=60°,得出CG=4,∴DG=4AB=,设BE=x ,则CE=8-x ,根据折叠得AE=CE=8-x ,在Rt △ABE 中,AE 2=AB 2+BE 2,即(8-x)2)2+x 2解得x=1,故选A.5.如图,有一块直角三角形纸片,两直角边6AC cm =,8BC cm =,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【解析】在RT△ABC中,∵AC=6,BC=8,∴AB=10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB−AE=10−6=4,设CD=DE=x,在RT△DEB中,∵DE2+EB2=DB2,∴x2+42=(8−x)2∴x=3,∴CD=3.故选:B.6.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC =9,则BF的长为()A.4B.C.4.5D.5【解析】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.二、填空题7.如图,在矩形ABCD 中,AB =5,BC =6,P 为AD 上一动点,把△ABP 沿BP 翻折,使点A 落在点F 处,连接CF ,若BF =CF ,则AP 的长为_____.【答案】53【分析】过点F 作EN ∥DC 交BC 于点N ,交AD 于点E ,设AP =x ,则PF =x ,得出(3﹣x )2+12=x 2,解方程即可得解.【详解】解:过点F 作EN ∥DC 交BC 于点N ,交AD 于点E ,∵四边形ABCD 是矩形,∴∠A =∠D =∠DCB =90°,∴FN ⊥BC ,FE ⊥AD ,∵BF =CF ,BC =6,∴CN =BN =3,由折叠的性质可知,AB =BF =5,AP =PF ,∴4FN ==,∴EF =EN ﹣FN =5﹣4=1,设AP =x ,则PF =x ,∵PE 2+EF 2=PF 2,∴(3﹣x )2+12=x 2,解得,53x =,故答案为:53.【点睛】本题主要考查了折叠变换的性质、等腰三角形的性质、矩形的性质、勾股定理的综合运用;熟练掌握折叠变换的性质、勾股定理是关键.8.如图,三角形纸片ABC 中,∠ACB =90 ,BC =6,AB =10.在AC 边上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则CE 的长为________.【答案】3【分析】根据折叠得,BD=AB=10,EA=ED,求出CD=4,在直角三角形CDE中,设未知数,利用勾股定理列方程求解即可.【详解】∵∠ACB=90 ,BC=6,AB=10∴8=由折叠得,BD=AB=10,EA=ED,设CE=x,则EA=ED=8−x,在Rt△DCE中,CD=10−6=4,由勾股定理得,x2+42=(8−x)2,解得,x=3故填:3.9.如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在射线BC上运动,AD=AB=1,则△ADE的周长最小值为______.【答案】1+【分析】作D点关于BC的对称点D’,连接AD’与BC的交点即为E点,此时△ADE的周长为AD+AE+DE=AD+AD’,故可求解.【详解】作D点关于BC的对称点D’,连接AD’与BC的交点即为E点,此时△ADE的周长最小,即△ADE的周长AD+AE+DE=AD+AD’,∵在四边形ABCD中,AD∥BC,AB⊥BC,AD=AB=1∴四边形ABFD为正方形,∴AD+AD’=1+1+1+.10.如图,矩形ABCD中,AB=1,BC=2,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为___________.【答案】12-或1.【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出-1,设BE=x,则EB′=x,CE=2-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=1,BC=2,∴=∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=1,∴CB′=1-,设BE=x,则EB′=x,CE=2-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+1-)2=(2-x)2,解得x=51 2-,∴BE=1 2;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=1.故答案为:12-或1.11.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.【答案】9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.12.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.【答案】.【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=2,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=2,∴,∵FP=FC=2,∴-2,∴点P到边AB距离的最小值是-2.故答案为:.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.12.如图,折叠矩形纸片ABCD ,使B 点落在A D 上一点E 处,折痕FG 的两端点分别在AB BC 、上(含端点),且6,10AB BC ==.则AE 的最大值是_____,最小值是_______.【答案】6;2.【分析】点G 在AB 边上,点F 在BC 边上.分别利用当点F 与点C 重合时,以及当点G 与点A 重合时,求出AE 的极值进而得出答案:【详解】解:如图,设AE 的长度为,x 当点F 与点C 重合时,根据翻折对称性可得10,EC BC ==在Rt CDE ∆中,222,CE CD ED =+即()22210106AE =-+,解得2,AE =即2,x =如图,当点G 与点A 重合时,根据翻折对称性可得6,AE AB ==即6x =;所以AE 的最大值是6,最小值为2.故答案是:6,2.三、解答题13.如图,在矩形ABCD 中,AB=8,BC=10,E 为CD 边上一点,将△ADE 沿AE 折叠,使点D 落在BC 边上的点F 处.(1)求BF 的长;(2)求CE的长.【答案】(1)BF长为6;(2)CE长为3,详细过程见解析.【分析】(1)由矩形的性质及翻折可知,∠B=90°,AF=AD=10,且AB=8,在Rt△ABF中,可由勾股定理求出BF的长;(2)设CE=x,根据翻折可知,EF=DE=8-x,由(1)可知BF=6,则CF=4,在Rt△CEF中,可由勾股定理求出CE的长.【详解】解:(1)∵四边形ABCD为矩形,∴∠B=90°,且AD=BC=10,又∵ AFE是由 ADE沿AE翻折得到的,∴AF=AD=10,又∵AB=8,在Rt△ABF中,由勾股定理得:,故BF的长为6.(2)设CE=x,∵四边形ABCD为矩形,∴CD=AB=8,∠C=90°,DE=CD-CE=8-x,又∵△AFE是由△ADE沿AE翻折得到的,∴FE=DE=8-x,由(1)知:BF=6,故CF=BC-BF=10-6=4,CF+CE=EF,在Rt△CEF中,由勾股定理得:2224+x=(8-x),解得:x=3,∴222故CE的长为3.14.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)【答案】(1)∠CBD=20°;(2)AD=164;(3)△BCD 的周长为m+2【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB ,设CD=x ,则AD=BD=8-x ,再在Rt △CDB 中利用勾股定理可得x 2+62=(8-x )2,再解方程可得x 的值,进而得到AD 的长;(3)根据三角形ACB 的面积可得112AC CB m =+ ,进而得到AC•BC=2m+2,再在Rt △CAB 中,CA 2+CB 2=BA 2,再把左边配成完全平方可得CA+CB 的长,进而得到△BCD 的周长.【详解】(1)∵把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合,∴AD=DB ,设CD=x ,则AD=BD=8-x ,在Rt △CDB 中,CD 2+CB 2=BD 2,x 2+62=(8-x )2,解得:x=74,AD=8-74=164;(3)∵△ABC的面积为m+1,∴12AC•BC=m+1,∴AC•BC=2m+2,∵在Rt△CAB中,CA2+CB2=BA2,∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB,∴CD+DB+BC=m+2.即△BCD的周长为m+2.15.如图,长方形ABCD中,AB=8,BC=10,在边CD上取一点E,将△ADE折叠后点D恰好落在BC边上的点F处(1)求CE的长;(2)在(1)的条件下,BC边上是否存在一点P,使得PA+PE值最小?若存在,请求出最小值:若不存在,请说明理由.【答案】(1)3;(2.【分析】(1)先判断出AF=AD=8,进而利用勾股定理求出BF=6,最后在Rt△ECF,利用勾股定理,即可得出结论;(2)先作出点E关于BC的对称点E,进而求出DE',再利用勾股定理即可得出结论.【详解】解:(1)长方形ABCD中,AB=8,BC=10,∴∠B=∠BCD=90°,CD=AB=8,AD=BC=10,由折叠知,EF=DE,AF=AD=8,在Rt△ABF中,根据勾股定理得,BF6,∴CF=BC﹣BF=4,设CE=x,则EF=DE=CD﹣CE=8﹣x,在Rt△ECF中,根据勾股定理得,CF2+CE2=EF2,∴16+x2=(8﹣x)2,∴x=3,∴CE=3;(2)如图,延长EC 至E '使CE '=CE =3,连接AE '交BC 于P ,此时,PA +PE 最小,最小值为AE ',∵CD =8,∴DE '=CD +CE '=8+3=11,在Rt △ADE '中,根据勾股定理得,AE '.16.如图,在矩形ABCD 中,2,AB AD m ==,动点P 从点D 出发,沿射线DA 以每秒1个单位的速度向点A 方向运动,连接CP ,把PDC △沿PC 翻折,得到PEC V .设点P 的运动时间为()t s .(1)若3m =,当P E B 、、三点在同一直线上时,求t 的值;(2)若点E 到直线BC 的距离等于1,求t 的值;(3)若AE 的最小值为1,直接写出m 的值.【答案】(1)t=3(2)t=;(3)m=【分析】(1)如图1中,设PD=t .则PA=3-t .首先证明BP=BC=6,在Rt △ABP 中利用勾股定理即可解决问题;(2)通过添加辅助线,构造直角三角形再解决问题;(3)当点A,点E ,点C 在同一条直线上时,AE 最短,利用勾股定理求值即可.【详解】解:(1)如图1中,设PD=t .则PA=3-t∵P 、B 、E 共线,∴∠BPC=∠DPC ,∵AD ∥BC ,∴∠DPC=∠PCB ,∴∠BPC=∠PCB ,∴BP=BC=3,在Rt △ABP 中,∵AB 2+AP 2=BP 2,∴22+(3-t )2=32,∴t=3(舍去)或∴当t=3P E B 、、三点在同一直线上.(2)过点E 作MN ⊥BC ,交AD 于点M∵四边形ABCD 是矩形,MN ⊥BC∴MN ⊥AD∵点E 到直线BC 的距离等于1∴EN=1∵MN=AB=2,EC=CD=2,∴EN=MN-EN=2-1=1∴在Rt △ENC 中,∴MD=∵由题意得:-t,ME=MN-EN=2-1=1,EP=PD=t∴在Rt △MPE 中,222=ME MP PE +即:)2221=t +,解得:(3)如图,当点A,点E ,点C 在同一条直线上时,AE 最短.由题意得:AE=1,EC=CD=AB=2∴在Rt△ABC中,BC=∴.【点睛】本题考查四边形综合题、矩形的性质、勾股定理,学会构造图形思考问题是解答此题的关键,属于中考压轴题.。
《勾股定理》PPT教学课件(第1课时)
数统一”的思想方法,更具有科学创新
的重大意义。
获取新知
猜想直角三角形的三边关系
一起探究
问题1
4 AB=___
5
1、 BC=___,
3 AC=___,
B
25
S蓝 =___,
9
16 S红 =___
2、 S黄 =___,
C
A
S黄+S蓝=S红
3、S黄、S蓝与S红的关系是__________.
最短时,x=1.5
所以最短是1.5+0.5=2(m).
答:这根铁棒的长应在2~3 m之间.
2m
AC 2 AB 2 BC 2 12 22 5
AC 5 2.24
A
1m
B
因为AC大于木板的宽2.2m,所以木板能从门框内通过.
我们已经学习了勾股定理,利用勾股定理,我们可以解决一
些实际问题.
在应用中关键是利用转化思想将实际问题转化为直角三角形
模型,常见类型有:
(1)已知直角三角形的任意两边,求第三边;
则这三个半圆形的面积之间的关系式是
S1 S 2 S3
.(用图中字母表示)
勾股定理与图形面积
归纳:
与直角三角形三边相连的正方形、半圆及正多边形、圆都具有相同的
结论:
两直角边上图形面积的和等于斜边上图形的面积.
本例考查了勾股定理及半圆面积的求法,解答此类题目的关键是仔细
观察所给图形,面积与边长、直径有平方关系,就很容易联想到勾股
基本思想方法:勾股定理把“形”与
C
“数”有机地结合起来,即把直角三角
形这个“形”与三边关系这一“数”结
人教版数学八年级下册:17.1 勾股定理 课件(共35张PPT)
探究 如图,以Rt△ 的三边为边向外作正方形,
其面积分别为 S1 、S2、S3,请同学们想一想
S1 、S2、S3 之间有何关系呢?
S2 + S3 =a2+b2
S1=c2
B
S1c a S2
b
A S3 C
∵a2+b2=c2
S2 + S3 = S1
探究S1、S2、S3之间的关系
S2
S3
1 2
a 2
2
1 2
b 2
2
1 a2 1 b2
8
8
S1
1 2
c 2
2
1
8
c2
由勾股定理得 a2+b2=c2
∴S2+S3=S1
S2
c
SS3 2
A
S1
S1
动手操作:例2如图,Rt△ABC中
,AC=8,BC=6,∠C=90°,分别 以AB、BC、AC为直径作三个半圆 ,那么阴影部分的面积为__24_ .
A
E
D
B
F
C
A
A =625
225
400
81
B =144
225
2、如图所示的图形中,所 有的四边形都是正方形,所 有的三角形都是直角三角形 ,其中最大的正方形的边长 是8厘米,则正方形A,B, C,D的面积之和是 __6_4_____平方厘米
利用勾股定理解决平面几何问题3——折叠中的计算问题
能算好算直接算,不能算不好算,设未知数,列方程(勾股定理、全等、相似等)
利用勾股定理解决平面几何问题1— —最短路径问题
《勾股定理》PPT优质课件(第3课时)
A•
2 3 C4
也可以使OA=2, AB=3,同样可
以求出C点.
探究新知
方法点拨 利用勾股定理表示无理数的方法: (1)利用勾股定理把一个无理数表示成直角边是两个正 数的直角三角形的斜边. (2)以原点为圆心,以无理数斜边长为半径画弧与数轴 存在交点,在原点左边的点表示是负无理数,在原点右边 的点表示是正无理数.
解:S△ABC
33
1 1 2 2
1 23 2
1 13 2
7. 2
课堂检测
拓广探索题
若△ABC三边的长分别为 5a,2 2a, 17a (a>0),请利用图中的正
方形网格(每个小正方形的边长为a)画出相应的△ABC,并求
出它的面积.
A
解:如图, AB a2 2a2 5a,
B
BC 2a2 2a2 2 2a,
得x2+ 42=(8-x)2, 解得 x=3. 即EC的长为3cm.
D E FC
链接中考
如图,在平面直角坐标系中,A(4,0),B(0,3), 以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C, 则点C坐标为__(-_1_,__0_)__.
课堂检测
基础巩固题
1.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴
巩固练习
如图,在5×5正方形网格中,每个小正方形的边 长均为1,画出一个三角形的长分别为 2 、2、10 . 解:如图所示. A C
B
探究新知
知识点 4 利用勾股定理在折叠问题中求线段的长度
如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折 叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3, 求AM的长.
巩固练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
3
C D
B
E
A
E
A
A
E
DD
F
B
F
C
C
A
.
B D
EC
CA
B
B
D E FC
4
项目一、折叠 直角三角形
例 1: 如图,小颍同学折叠一个直角三角形 的纸片,使A与B重合,折痕为DE,若已知 AC=8cm,BC=6cm,你能求出CE的长吗?
B
D
A
E
C
.
5
练习:如图,有一张直角三角形纸片,两直 角边AC=6cm,BC=8cm, 现将直角边沿直 线AD折叠,使点C落在斜边AB上的点E, 求CD的长.
E
A
D
B
(D)
F
C
(C)
.
8
❖2、如图,把矩形纸片ABCD沿对角线AC 折叠,点B落在点E处,EC与AD相交于点 F.若AB=6,BC=8,
❖求:
(1)△FAC是等腰三角形
(2)求CF的长
A
E FD
(3)求△FAC的周长和面积.
.
B
9C
这节课你有哪些收获?
1、折叠的实质:轴对称. 2、选择合适的直角三角形利用勾 股定理列方程解决折叠问题.
.
6
项目二、折叠长方形
例2:如图所示,长方形ABCD沿AE折叠,使点D落在
BC边上的点F处,已知AB=8cm,BC=10cm,求CE的
长。 A
8
B
解:根据折叠可知,△AFE≌△ADE,
10
D
∴AF=AD=10cm,EF=ED, AB=8 cm,EF+EC=DC=8cm,
∴在Rt△ABF中
B FA2F A2B 12 08 26 cm
.
10
作业:
长方形还可以怎样折叠,要求折 叠一次,给出两个已知条件,提出 问题,并解答问题。(把自己的折 叠方法画在下面)
.
11
再见
.
12
10
10
8-x
E FC=BC-BF=4Байду номын сангаасm
x 设EC=xcm ,则EF=DC-EC=(8-x)cm
6
F 4 C 在Rt△EFC中,根据勾股定理得
EC²+FC²=EF²
即x²+4²=(8-x)²,x=3cm,
∴EC的长. 为3cm。
7
练习:1、在矩形纸片ABCD中,AD=8cm ,AB=4cm,按图所示方式折叠,使点B 与点D重合,折痕为EF,求DE的长。
课程名称:勾股定理的应用 上下册:八年级下册 版本:人教版 工作单位:灵寿县第二初级中学 姓名:安学玲
.
1
勾股定理的应用 ——折叠问题
.
2
学习目标: 理解折叠的实质,会进行线段的转移;掌握
利用勾股定理解决问题的方法
学习重难点: 重点:理解折叠的实质,会进行线段的转移;掌 握利用勾股定理解决问题的方法 难点:如何将已知条件,设出的未知数转移到同 一个直角三角形中,最终利用勾股定理解决问题