自动控制原理例题与习题

合集下载

自动控制原理习题及解答

自动控制原理习题及解答
系统的稳态误差,可应用叠加原理求出,即系统的稳态误差是各部分输入所引起的误差的总和。所以,系统的稳态误差可按下式计算:
对于本例,系统的稳态误差为
本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以
系统的稳态误差为
解毕。
例3-21控制系统的结构图如图3-37所示。假设输入信号为r(t)=at( 为任意常数)。
解劳斯表为
1 18
8 16
由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。解毕。
例3-17已知系统特征方程为
试判断系统稳定性。
解本例是应用劳斯判据判断系统稳定性的一种特殊情况。如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。
(3)写中间变量关系式
式中,α为空气阻力系数 为运动线速度。
(4)消中间变量得运动方程式
(2-1)
此方程为二阶非线性齐次方程。
(5)线性化
由前可知,在=0的附近,非线性函数sin≈,故代入式(2-1)可得线性化方程为
例2-3已知机械旋转系统如图2-3所示,试列出系统运动方程。
图2-3机械旋转系统
解:(1)设输入量作用力矩Mf,输出为旋转角速度。
运动方程可直接用复阻抗写出:
整理成因果关系:
图2-15电气系统结构图
画结构图如图2-15所示:
求传递函数为:
对上述两个系统传递函数,结构图进行比较后可以看出。两个系统是相似的。机一电系统之间相似量的对应关系见表2-1。
表2-1相似量
机械系统
xi
x0

自动控制原理试题库20套和答案详解

自动控制原理试题库20套和答案详解

自动控制原理试题库20套和答案详解一、填空(每空1分,共18分)1.自动控制系统的数学模型有、、共4种。

2.连续控制系统稳定的充分必要条件是。

离散控制系统稳定的充分必要条件是。

3.某统控制系统的微分方程为:dc(t)+0.5C(t)=2r(t)。

则该系统的闭环传递函数dtΦσ;调节时间ts(Δ。

4.某单位反馈系统G(s)= 100(s?5),则该系统是阶2s(0.1s?2)(0.02s?4)5.已知自动控制系统L(ω)曲线为:则该系统开环传递函数G(s)= ;ωC6.相位滞后校正装置又称为调节器,其校正作用是。

7.采样器的作用是,某离散控制系统(1?e?10T)G(Z)?(单位反馈T=0.1)当输入r(t)=t时.该系统稳态误差(Z?1)2(Z?e?10T)为。

二. 1.R(s) 求:C(S)(10分)R(S)2.求图示系统输出C(Z)的表达式。

(4分)四.反馈校正系统如图所示(12分)求:(1)Kf=0时,系统的ξ,ωn和在单位斜坡输入下的稳态误差ess.(2)若使系统ξ=0.707,kf应取何值?单位斜坡输入下ess.=?五.已知某系统L(ω)曲线,(12分)(1)写出系统开环传递函数G(s)(2)求其相位裕度γ(3)欲使该系统成为三阶最佳系统.求其K=?,γmax=?六、已知控制系统开环频率特性曲线如图示。

P为开环右极点个数。

г为积分环节个数。

判别系统闭环后的稳定性。

(1)(2)(3)七、已知控制系统的传递函数为G0(s)?校正装置的传递函数G0(S)。

(12分)一.填空题。

(10分)1.传递函数分母多项式的根,称为系统的2. 微分环节的传递函数为3.并联方框图的等效传递函数等于各并联传递函数之4.单位冲击函数信号的拉氏变换式5.系统开环传递函数中有一个积分环节则该系统为型系统。

6.比例环节的频率特性为。

7. 微分环节的相角为8.二阶系统的谐振峰值与有关。

9.高阶系统的超调量跟10.在零初始条件下输出量与输入量的拉氏变换之比,称该系统的传递函数。

自动控制原理八套习题集_(含答案),科

自动控制原理八套习题集_(含答案),科

自动控制原理1一、单项选择题(每小题1分,共20分)9. 一阶微分环节Ts s G +=1)(,当频率T=ω时,则相频特性)(ωj G ∠为( ) A.45° B.-45° C.90° D.-90° 10.最小相位系统的开环增益越大,其( )A.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。

12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s ks G ,当k =( )时,闭环系统临界稳定。

A.10B.20C.30D.4013.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数有( ) A.0 B.1 C.2 D.3 14.单位反馈系统开环传递函数为()ss s s G ++=652,当输入为单位阶跃时,则其位置误差为( ) A.2 B.0.2 C.0.5 D.0.05 15.若已知某串联校正装置的传递函数为1101)(++=s s s G c ,则它是一种( )A.反馈校正B.相位超前校正C.相位滞后—超前校正D.相位滞后校正 16.稳态误差e ss 与误差信号E (s )的函数关系为( )A.)(lim 0s E e s ss →= B.)(lim 0s sE e s ss →=C.)(lim s E e s ss ∞→= D.)(lim s sE e s ss ∞→=17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是( ) A.减小增益 B.超前校正 C.滞后校正 D.滞后-超前 18.相位超前校正装置的奈氏曲线为( )A.圆B.上半圆C.下半圆D.45°弧线 19.开环传递函数为G (s )H (s )=)3(3s s K,则实轴上的根轨迹为( )三、名词解释(每小题3分,共15分) 31.稳定性32.理想微分环节 33.调整时间 34.正穿越 35.根轨迹四、简答题(每小题5分,共25分)36.为什么说物理性质不同的系统,其传递函数可能相同 ? 举例说明。

自动控制原理练习题

自动控制原理练习题

自动控制原理练习题1. 小车倒车入库问题考虑一个小车倒车入库问题,假设小车以恒定的速度直线倒车。

已知小车的初始位置为P,目标是将小车倒车入停车位Q。

设停车位Q 相对于初始位置P的偏移量为d,方向为与小车移动方向相反的方向。

请回答以下问题:a) 在没有任何控制的情况下,小车如何倒车入库?b) 如何利用反馈控制使得小车能够准确倒车入库?c) 请解释闭环控制与开环控制之间的区别,并分析在这个倒车入库问题中应该选择哪种控制方法?2. PID控制器PID控制器是一种广泛应用于工业控制系统中的控制器。

它通过对错误信号的比例、积分和微分三个部分进行加权求和来调节控制器的输出。

请回答以下问题:a) 请解释PID控制器中比例、积分和微分三个部分的作用和原理。

b) 在实际应用中,如何确定PID控制器的参数?c) 请列举PID控制器的优点和缺点,并举例说明其应用领域。

3. 反馈系统的稳定性在控制系统中,稳定性是一个重要的性能指标。

稳定性可以通过系统的极点位置来判断。

请回答以下问题:a) 什么是系统的极点?它们与系统的稳定性有什么关系?b) 请解释零极点分布对系统稳定性的影响。

c) 如何利用极点配置来设计稳定的控制系统?4. 系统传递函数和频率响应系统的传递函数和频率响应是分析和设计控制系统的重要工具。

请回答以下问题:a) 什么是系统的传递函数?如何从系统的微分方程中推导出传递函数?b) 什么是系统的频率响应?如何利用频率响应来分析系统的稳定性和性能?c) 请解释Bode图和Nyquist图分别代表了什么,并举例说明它们的应用。

5. 状态空间表示和观测器设计状态空间表示是一种用于描述控制系统动态行为的方法。

观测器是一种用于估计系统状态的补偿器。

请回答以下问题:a) 什么是状态空间表示?如何将系统微分方程转化为状态空间表示?b) 什么是观测器?它的作用是什么?如何设计一个观测器?c) 请解释最优观测器与线性二次估计问题的关系,并简要介绍最优观测器的设计方法。

(完整版)自动控制原理课后习题及答案

(完整版)自动控制原理课后习题及答案

第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。

用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。

(2) 缺点:不能自动调节被控量的偏差。

因此系统元器件参数变化,外来未知扰动存在时,控制精度差。

2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。

它是一种按偏差调节的控制系统。

在实际中应用广泛。

⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。

1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。

解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。

闭环控制系统常采用负反馈。

由1-1中的描述的闭环系统的优点所证明。

例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。

1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++= (6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dt dt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变 (4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。

《自动控制原理》试题(卷)与答案解析(A26套)

《自动控制原理》试题(卷)与答案解析(A26套)

《⾃动控制原理》试题(卷)与答案解析(A26套)⾃动控制原理试卷A(1)1.(9分)设单位负反馈系统开环零极点分布如图所⽰,试绘制其⼀般根轨迹图。

(其中-P 为开环极点,-Z ,试求系统的传递函数及单位脉冲响应。

3.(12分)当ω从0到+∞变化时的系统开环频率特性()()ωωj j H G 如题4图所⽰。

K 表⽰开环增益。

P 表⽰开环系统极点在右半平⾯上的数⽬。

v 表⽰系统含有的积分环节的个数。

试确定闭环系统稳定的K 值的范围。

4.(12分)已知系统结构图如下,试求系统的传递函数)(,)(s E s C,3==p v (a ),0==p v (b )2,0==p v (c )题4图题2图5.(15分)已知系统结构图如下,试绘制K 由0→+∞变化的根轨迹,并确定系统阶跃响应分别为衰减振荡、单调衰减时K 的取值范围。

6.(15分)某最⼩相位系统⽤串联校正,校正前后对数幅频特性渐近线分别如图中曲线(1)、(2)所⽰,试求校正前后和校正装置的传递函数)(),(),(21s G s G s G c ,并指出Gc (S )是什么类型的校正。

7.(15分)离散系统如下图所⽰,试求当采样周期分别为T=0.1秒和T=0.5秒输⼊)(1)23()(t t t r ?+=时的稳态误差。

8.(12分)⾮线性系统线性部分的开环频率特性曲线与⾮线性元件负倒数描述曲线如下图所⽰,试判断系统稳定性,并指出)(1x N -和G (j ω)的交点是否为⾃振点。

参考答案A(1)1、根轨迹略,2、传递函数)9)(4(36)(++=s s s G ;单位脉冲响应)0(2.72.7)(94≥-=--t e3、 21,21,21><≠K K K 4、6425316324215313211)()(G G G G G G G G G G G G G G G G G G s R s C ++++= 642531632421653111)()(G G G G G G G G G G G G G G G G G s R s E +++-= 5、根轨迹略。

自动控制原理典型习题含答案

自动控制原理典型习题含答案

自动控制原理习题一、(20分) 试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。

解:所以: 32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,指出在s 平面右半部的极点个数。

(要有劳斯计算表)解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。

三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=0.25s,试求:(1)特征参数n ωξ,; (2)计算σ%和t s ;(3)若要求σ%=16%,当T 不变时K 应当取何值解:(1)求出系统的闭环传递函数为:因此有:(2) %44%100e %2-1-=⨯=ζζπσ(3)为了使σ%=16%,由式可得5.0=ζ,当T 不变时,有:四.(15分)已知系统如下图所示,1.画出系统根轨迹(关键点要标明)。

2.求使系统稳定的K 值范围,及临界状态下的振荡频率。

解① 3n =,1,2,30P =,1,22,1m Z j ==-±,1n m -=②渐进线1条π ③入射角同理 2ϕ2135sr α=-︒④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入222K K-0=1K ⇒=,s = 所以当1K >时系统稳定,临界状态下的震荡频率为ω五.(20分)某最小相角系统的开环对数幅频特性如下图所示。

要求(1) 写出系统开环传递函数;(2) 利用相角裕度判断系统的稳定性;(3) 将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。

解(1)由题图可以写出系统开环传递函数如下:(2)系统的开环相频特性为截止频率 1101.0=⨯=c ω相角裕度:︒=+︒=85.2)(180c ωϕγ故系统稳定。

(3)将其对数幅频特性向右平移十倍频程后,可得系统新的开环传递函数其截止频率 10101==c c ωω而相角裕度 ︒=+︒=85.2)(18011c ωϕγγ=故系统稳定性不变。

自动控制原理试题及答案

自动控制原理试题及答案

自动控制原理试题及答案一、单项选择题(每题2分,共20分)1. 自动控制系统中,开环系统与闭环系统的主要区别在于()。

A. 是否有反馈B. 控制器的类型C. 系统是否稳定D. 系统的响应速度答案:A2. 在控制系统中,若系统输出与期望输出之间存在偏差,则该系统()。

A. 是闭环系统B. 是开环系统C. 没有反馈D. 是线性系统答案:B3. 下列哪个是控制系统的稳定性条件?()A. 所有闭环极点都位于复平面的左半部分B. 所有开环极点都位于复平面的左半部分C. 所有闭环极点都位于复平面的右半部分D. 所有开环极点都位于复平面的右半部分答案:A4. PID控制器中的“P”代表()。

A. 比例B. 积分C. 微分D. 前馈答案:A5. 在控制系统中,超调量通常用来衡量()。

A. 系统的稳定性B. 系统的快速性C. 系统的准确性D. 系统的鲁棒性答案:C6. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则闭环传递函数T(s)是()。

A. G(s)H(s)B. G(s)H(s)/[1+G(s)H(s)]C. 1/[1+G(s)H(s)]D. 1/G(s)H(s)答案:B7. 根轨迹法是一种用于()的方法。

A. 系统稳定性分析B. 系统性能分析C. 系统设计D. 系统故障诊断答案:B8. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则T(s)的零点是()。

A. G(s)的零点B. H(s)的零点C. G(s)和H(s)的零点D. G(s)和H(s)的极点答案:A9. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则T(s)的极点是()。

A. G(s)的零点B. H(s)的零点C. 1+G(s)H(s)的零点D. G(s)和H(s)的极点答案:C10. 一个系统如果其开环传递函数为G(s)H(s),闭环传递函数为T(s),则系统的稳态误差与()有关。

自动控制原理试卷及答案20套

自动控制原理试卷及答案20套

D.抛物线响应函数 答 ( )
3、(本小题 3 分) 如图所示是某系统的单位阶跃响应曲线,下面关于性能指标正确的是――
h (t )
1 .3
1.02
1
0
t
2
B.
4
C.
6
8
10
12
14
A.
t r 6s
t s 4s
t p 14s
D.
% 30%

( ) 4、(本小题 5 分)
W (s)
答案参见我的新浪博客:/s/blog_3fb788630100muda.html
第 7 页 共 42 页
QQ753326843
考研直通车
6.已知非线性控制系统的结构图如图 7-38 所示。为使系统不产生自振,是利用 描述函数法确定继电特性参数 a,b 的数值。 (15 分)
答案参见我的新浪博客:/s/blog_3fb788630100muda.html 第 1 页 共 42 页
QQ753326843
考研直通车
r _
e
2 0 1
u
1 s2
c
六、采样控制系统如图所示,已知 K 10, T 0.2s : 1.求出系统的开环脉冲传递函数。 1 2 2.当输入为 r (t ) 1(t ) t * 1(t ) 2 t * 1(t ) 时,求稳态误差 e ss 。
第 5 页 共 42 页
QQ753326843
3.当输入为
1 2 2
考研直通车
r (t ) 1(t ) t * 1(t ) t * 1(t ) 时,求稳态误差 e ss 。
R(s)
E (s)
1 e sT s

自动控制原理例题详解线性离散控制系统的分析与设计考习题及答案

自动控制原理例题详解线性离散控制系统的分析与设计考习题及答案

精心整理2007一、(22分)求解下列问题: 1. (3分)简述采样定理。

解:当采样频率s 大于信号最高有效频率h 的2倍时,能够从采样信号e *(t)中 完满地恢复原信号e(t)。

(要点:s 2 h )。

2. (3分)简述什么是最少拍系统。

解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻 上无稳态误差的随动系统。

3. (3分)简述线性定常离散系统稳定性的定义及充要条件。

解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零, 则称系统稳定。

稳定的充要条件是:所有特征值均分布在 Z 平面的单位圆内。

4. ( 3分)已知X(z)如下,试用终值定理计算x( s )。

解:经过验证(z 1)X( z)满足终值定理使用的条件,因此,zx( ) lim( z 1)X( z) lim -22。

z 1z 1z z 0.55. (5分)已知采样周期T=1秒,计算qz)=Z[G(s)G(s)]。

试用Z 变换法计算输出序列c(k) , k >0。

解:1、( 10分)已知计算机控制系统如图1所示,采用数字比例控制D(z) K ,其中K>0。

设采样 周期 T=1s , e 10.368。

注意,这里的数字控制器 D(z)就是上课时的G c (z)。

1. ( 5分)试求系统的闭环脉冲传递函数 垒也X i (z)2. ( 5分)试判断系统稳定的K 值范围解:G(z) (1 z 1)Z[1丄]s s 11z (1 z )(T7 ;z 1)e(z 1)(12 1、z (1 e )ze 1)e 16. (5分)已知系统差分方程、 初始状态如下:c(k 2)6c(k 1) 8c(k)1(k) , c(0)=c(1)=0X i sT2.( 5分)特征方程为z e 1 K Ke 1 0特征根为z e 1 K Ke 1欲使系统稳定,需满足条件|彳[e 1 K Ke ] 1 则使系统稳定的K 值范围为0K 2.16三、(8分)设数字控制系统的框图如下R( z ----- ----------- *Z G C(z ------ * G[ z) ——► q z已知G(z)秒)设计响应单位阶跃输入信号时 (1 z 1)(1 0.6065z 1)(10.0067 z 1)的最少拍系统(要求给出Gc(z)及qz)、E(z))。

自动控制原理例题与习题范文

自动控制原理例题与习题范文

自动控制原理例题与习题第一章自动控制的一般概念【例1】试述开环控制系统的主要优缺点。

【答】开环控制系统的优点有:1. 1.构造简单,维护容易。

2. 2.成本比相应的死循环系统低。

3. 3.不存在稳定性问题。

4. 4.当输出量难以测量,或者要测量输出量在经济上不允许时,采用开环系统比较合适(例如在洗衣机系统中,要提供一个测量洗衣机输出品质,即衣服的清洁程度的装置,必须花费很大)。

开环控制系统的缺点有:1. 1.扰动和标定尺度的变化将引起误差,从而使系统的输出量偏离希望的数值。

2. 2.为了保持必要的输出品质,需要对标定尺度随时修正。

【例2】图1.1为液位自动控制系统示意图。

在任何情况下,希望液面高度c维持不变,试说明系统工作原理,并画出系统原理方框图。

图1.1 液位自动控制系统示意图【解】系统的控制任务是保持液面高度不变。

水箱是被控对象,水箱液位是被控量,电位器设定电压u r(表征液位的希望值c r)是给定量。

当电位器电刷位于中点位置(对应u r)时,电动机不动,控制阀门有一定的开度、使水箱中流入水量与流出水量相等。

从而液面保持在希望高度c r上。

一旦流入水量或流出水量发生变化,例如当液面升高时,浮子位置也相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一定的控制电压,驱动电动初通过减速器减小阀门开度,使进入水箱的液体流量减少。

这时,水箱液面下降,浮子位置相应下降,直到电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度。

反之,若水箱液位下降,则系统会自动增大阀门开度,加大流入水量,使液位升到给定高度c r。

系统原理方框图如图1.2所示。

图1.2 系统原理方框图习题1.题图1-1是一晶体管稳压电源。

试将其画成方块图并说明在该电源里哪些起着测量、放大、执行的作用以及系统里的干扰量和给定量是什么?题图1-12.如题图1-2(a)、(b)所示两水位控制系统,要求(1)画出方块图(包括给定输入量和扰动输入量);(2)分析工作原理,讨论误差和扰动的关系。

(完整版)自动控制原理习题及答案.doc

(完整版)自动控制原理习题及答案.doc

第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。

解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示。

1—2 题1—2图是仓库大门自动控制系统原理示意图。

试说明系统自动控制大门开闭的工作原理,并画出系统方框图。

题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。

与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。

反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。

系统方框图如图解1—2所示。

1—3 题1-3图为工业炉温自动控制系统的工作原理图。

分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。

题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。

炉子的实际温度用热电偶测量,输出电压f u 。

f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。

在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。

当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。

自动控制原理典型习题(含答案)

自动控制原理典型习题(含答案)

自动控制原理习题一、(20分) 试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。

解:所以:32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,指出在s 平面右半部的极点个数。

(要有劳斯计算表)解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。

66.06503366101234s s s s s -三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=0.25s,试求:(1)特征参数n ωξ,; (2)计算σ%和t s ; (3)若要求σ%=16%,当T 不变时K 应当取何值? 解:(1)求出系统的闭环传递函数为:TK s T s T K Ks TsK s /1/)(22++=++=Φ因此有:25.0212/1),(825.0161======-KT T s T K n n ωζω(2) %44%100e %2-1-=⨯=ζζπσ%)2)((2825.044=∆=⨯=≈s t n s ζω(3)为了使σ%=16%,由式%16%100e %2-1-=⨯=ζζπσ可得5.0=ζ,当T 不变时,有:)(425.04)(425.05.021212/11221--=⨯===⨯⨯===s T K s T T n n ωζζω四.(15分)已知系统如下图所示,1.画出系统根轨迹(关键点要标明)。

2.求使系统稳定的K 值范围,及临界状态下的振荡频率。

解① 3n =,1,2,30P =,1,22,1m Z j ==-±,1n m -= ②渐进线1条π ③入射角1ϕ()18013513513590360135135=︒+︒+︒+︒-︒=︒+︒=︒同理 2ϕ2135sr α=-︒④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入X rX cK S 3S 2+2S +2222K K-0=1K ⇒=,2s j =± 所以当1K >时系统稳定,临界状态下的震荡频率为2ω=。

自动控制原理试题及答案解析

自动控制原理试题及答案解析

自动控制原理一、简答题:(合计20分, 共4个小题,每题5分)1. 如果一个控制系统的阻尼比比较小,请从时域指标和频域指标两方面说明该系统会有什么样的表现?并解释原因。

2. 大多数情况下,为保证系统的稳定性,通常要求开环对数幅频特性曲线在穿越频率处的斜率为多少?为什么?3. 简要画出二阶系统特征根的位置与响应曲线之间的关系。

4. 用根轨迹分别说明,对于典型的二阶系统增加一个开环零点和增加一个开环极点对系统根轨迹走向的影响。

二、已知质量-弹簧-阻尼器系统如图(a)所示,其中质量为m 公斤,弹簧系数为k 牛顿/米,阻尼器系数为μ牛顿秒/米,当物体受F = 10牛顿的恒力作用时,其位移y (t )的的变化如图(b)所示。

求m 、k 和μ的值。

(合计20分)F)t图(a) 图(b)三、已知一控制系统的结构图如下,(合计20分, 共2个小题,每题10分)1) 确定该系统在输入信号()1()r t t =下的时域性能指标:超调量%σ,调节时间s t 和峰值时间p t ;2) 当()21(),()4sin3r t t n t t =⋅=时,求系统的稳态误差。

四、已知最小相位系统的开环对数幅频特性渐近线如图所示,c ω位于两个交接频率的几何中心。

1) 计算系统对阶跃信号、斜坡信号和加速度信号的稳态精度。

2) 计算超调量%σ和调节时间s t 。

(合计20分, 共2个小题,每题10分) [1%0.160.4(1)sin σγ=+-,s t =五、某火炮指挥系统结构如下图所示,()(0.21)(0.51)KG s s s s =++系统最大输出速度为2 r/min ,输出位置的容许误差小于2,求:1) 确定满足上述指标的最小K 值,计算该K 值下的相位裕量和幅值裕量; 2) 前向通路中串联超前校正网络0.41()0.081c s G s s +=+,试计算相位裕量。

(合计20分, 共2个小题,每题10分)(rad/s)自动控制原理模拟试题3答案答案一、 简答题1. 如果二阶控制系统阻尼比小,会影响时域指标中的超调量和频域指标中的相位裕量。

《自动控制原理》习题及解答

《自动控制原理》习题及解答

自动控制原理习题及解答1. 引言自动控制原理是控制工程中最基础的一门课程,是研究系统的建模、分析和设计的基础。

通过习题的练习和解答,可以加深对自动控制原理的理解和掌握。

本文档将提供一些常见的自动控制原理习题及其解答,希望对学习者有所帮助。

2. 习题2.1 系统建模习题1:一个质量为m的弹簧振子的运动方程可以表示为:$$m\\frac{d^2x(t)}{dt^2} + c\\frac{dx(t)}{dt} + kx(t) = 0$$其中,m(m)为振子的位移,m为阻尼系数,m为弹性系数。

请利用拉普拉斯变换求解该系统的传递函数。

解答:对原方程两边进行拉普拉斯变换得:mm2m(m)+mmm(m)+mm(m)=0整理后可得传递函数:$$\\frac{X(s)}{F(s)} = \\frac{1}{ms^2 + cs + k}$$其中,m(m)为输出的拉普拉斯变换,m(m)为输入的拉普拉斯变换。

2.2 系统分析习题2:有一个开环传递函数为$G(s) =\\frac{3}{s(s+2)(s+5)}$的系统,求该系统的阻尼比和自然频率。

解答:该系统的传递函数可以表示为:$$G(s) = \\frac{3}{s(s+2)(s+5)}$$根据传递函数的形式可以得知,该系统是一个三阶系统,有三个极点。

通过对传递函数进行因式分解可以得到:$$G(s) = \\frac{A}{s} + \\frac{B}{s+2} + \\frac{C}{s+5}$$将上述表达式通分并整理后可得:$$G(s) = \\frac{3s^2 + 16s + 5}{s(s+2)(s+5)}$$通过对比系数可以得到:$$A = 1, B = -\\frac{2}{3}, C = \\frac{5}{3}$$根据阻尼比和自然频率的定义,可以得到:$$\\zeta = \\frac{c}{2\\sqrt{mk}}, \\omega_n =\\sqrt{\\frac{k}{m}}$$其中,m为系统的阻尼系数,m为系统的弹性系数,m为系统的质量。

《自动控制原理》典型考试试题

《自动控制原理》典型考试试题

《 自动控制原理 》典型考试试题(时间120分钟)院/系 专业 姓名 学号第二章:主要是化简系统结构图求系统的传递函数,可以用化简,也可以用梅逊公式来求一、(共15分)已知系统的结构图如图所示。

请写出系统在输入r(t)和扰动n(t)同时作用下的输出C(s)的表达式。

G4H1G3G1G 2N(s)C(s)R(s)--+++二 、(共15分)已知系统的结构图如图所示。

试求传递函数)()(s R s C ,)()(s N s C 。

三、(共15分)已知系统的结构图如图所示。

试确定系统的闭环传递函数C(s)/R(s)。

G1G2R(s)-++C(s)-+四、(共15分)系统结构图如图所示,求X(s)的表达式G4(s)G6(s)G5(s)G1(s)G2(s)N(s)C(s)R(s)--G3(s)X(s)五、(共15分)已知系统的结构图如图所示。

试确定系统的闭环传递函数C(s)/R(s)和C(s)/D(s)。

G1G2R(s)-++C(s)-+D(s)G3G4六、(共15分)系统的结构图如图所示,试求该系统的闭环传递函数)()(s R s C 。

七、(15分)试用结构图等效化简求题图所示各系统的传递函数)()(s R s C一、(共15分)某控制系统的方框图如图所示,欲保证阻尼比ξ=0.7和响应单位斜坡函数的稳态误差为ss e =0.25,试确定系统参数K 、τ。

二、(共10分)设图(a )所示系统的单位阶跃响应如图(b )所示。

试确定系统参数,1K 2K 和a 。

三、(共15分)已知系统结构图如下所示。

求系统在输入r(t)=t 和扰动信号d(t)=1(t)作用下的稳态误差和稳态输出)(∞C2/(1+0.1s)R(s)-C(s)4/s(s+2)E(s) D(s)四、(共10分)已知单位负反馈系统的开环传递函数为:2()(2)(4)(625)KG s s s s s =++++试确定引起闭环系统等幅振荡时的K 值和相应的振荡频率ω五、(15分)设单位反馈系统的开环传递函数为12 )1()(23++++=s s s s K s G α若系统以2rad/s 频率持续振荡,试确定相应的K 和α值第三章:主要包括稳、准、快3个方面稳定性有2题,绝对稳定性判断,主要是用劳斯判据,特别是临界稳定中出现全零行问题。

自动控制原理题目(含答案)

自动控制原理题目(含答案)

《自动控制原理》复习参考资料一、基本知识11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。

2、闭环控制系统又称为反馈控制系统。

3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。

4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。

5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。

6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。

7、两个传递函数分别为G1(s)与G2(s)的环节,以并联方式连接,其等效传递函数为G1(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。

8、系统前向通道传递函数为G(s),其正反馈的传递函数为H(s),则其闭环传递函数为G(s)/(1- G(s)H(s))。

9、单位负反馈系统的前向通道传递函数为G(s),则闭环传递函数为G(s)/(1+ G(s))。

10、典型二阶系统中,ξ=0.707时,称该系统处于二阶工程最佳状态,此时超调量为4.3%。

11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。

12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。

13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。

14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。

15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。

16、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。

17、对于典型二阶系统,惯性时间常数T 愈大则系统的快速性愈差。

18、应用频域分析法,穿越频率越大,则对应时域指标t s 越小,即快速性越好19最小相位系统是指S 右半平面不存在系统的开环极点及开环零点。

20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、 补偿校正与复合校正四种。

自动控制原理试题库20套和答案详细讲解

自动控制原理试题库20套和答案详细讲解

. . word.zl-一、填空〔每空1分,共18分〕1.自动控制系统的数学模型有、、、共4种。

2.连续控制系统稳定的充分必要条件是。

离散控制系统稳定的充分必要条件是。

3.某统控制系统的微分方程为:dtt dc )(+0.5C(t)=2r(t)。

那么该系统的闭环传递函数 Φ(s)=;该系统超调σ%=;调节时间t s (Δ=2%)=。

4.某单位反应系统G(s)=)402.0)(21.0()5(1002+++s s s s ,那么该系统是阶 型系统;其开环放大系数K=。

5.自动控制系统L(ω)曲线为:那么该系统开环传递函数G(s)=;ωC =。

6.相位滞后校正装置又称为调节器,其校正作用是。

7.采样器的作用是,某离散控制系统)()1()1()(10210T T e Z Z e Z G -----=〔单位反应T=0.1〕当输入r(t)=t 时.该系统稳态误差为。

二. 1.求图示控制系统的传递函数.求:)()(S R S C 〔10分〕R(s)2.求图示系统输出C〔Z〕的表达式。

〔4分〕四.反应校正系统如下图〔12分〕求:〔1〕K f=0时,系统的ξ,ωn和在单位斜坡输入下的稳态误差e ss.〔2〕假设使系统ξ=0.707,k f应取何值?单位斜坡输入下e ss.=?. . word.zl-. word.zl-〔1〕〔2〕〔3〕五.某系统L 〔ω〕曲线,〔12分〕〔1〕写出系统开环传递函数G 〔s 〕 〔2〕求其相位裕度γ〔3〕欲使该系统成为三阶最正确系统.求其K=?,γmax =?六、控制系统开环频率特性曲线如图示。

P 为开环右极点个数。

г为积分环节个数。

判别系统闭环后的稳定性。

〔要求简单写出判别依据〕〔12分〕. word.zl-七、控制系统的传递函数为)1005.0)(105.0(10)(0++=s s s G 将其教正为二阶最正确系统,求校正装置的传递函数G 0〔S 〕。

〔12分〕一.填空题。

自动控制原理习题及解答

自动控制原理习题及解答

自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。

解:(1) 设输入为y r ,输出为y 0。

弹簧与阻尼器并联平行移动。

(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。

(3) 写中间变量关系式 (4) 消中间变量得 (5) 化标准形 其中:215K K T +=为时间常数,单位[秒]。

211K K K K +=为传递函数,无量纲。

例2-2 已知单摆系统的运动如图2-2示。

(1) 写出运动方程式 (2) 求取线性化方程解:(1)设输入外作用力为零,输出为摆角? ,摆球质量为m 。

(2)由牛顿定律写原始方程。

其中,l 为摆长,l ? 为运动弧长,h 为空气阻力。

(3)写中间变量关系式 式中,α为空气阻力系数dtd lθ为运动线速度。

(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。

(5)线性化由前可知,在? =0的附近,非线性函数sin ? ≈? ,故代入式(2-1)可得线性化方程为例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。

解:(1)设输入量作用力矩M f ,输出为旋转角速度? 。

(2)列写运动方程式 式中, f ?为阻尼力矩,其大小与转速成正比。

(3)整理成标准形为 此为一阶线性微分方程,若输出变量改为?,则由于代入方程得二阶线性微分方程式例2-4 设有一个倒立摆安装在马达传动车上。

如图2-4所示。

图2-2 单摆运动图2-3 机械旋转系统倒立摆是不稳定的,如果没有适当的控制力作用在它上面,它将随时可能向任何方向倾倒,这里只考虑二维问题,即认为倒立摆只在图2-65所示平面内运动。

控制力u 作用于小车上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理例题与习题第一章自动控制的一般概念【例1】试述开环控制系统的主要优缺点。

【答】开环控制系统的优点有:1. 1.构造简单,维护容易。

2. 2.成本比相应的死循环系统低。

3. 3.不存在稳定性问题。

4. 4.当输出量难以测量,或者要测量输出量在经济上不允许时,采用开环系统比较合适(例如在洗衣机系统中,要提供一个测量洗衣机输出品质,即衣服的清洁程度的装置,必须花费很大)。

开环控制系统的缺点有:1. 1.扰动和标定尺度的变化将引起误差,从而使系统的输出量偏离希望的数值。

2. 2.为了保持必要的输出品质,需要对标定尺度随时修正。

【例2】图1.1为液位自动控制系统示意图。

在任何情况下,希望液面高度c维持不变,试说明系统工作原理,并画出系统原理方框图。

图1.1 液位自动控制系统示意图【解】系统的控制任务是保持液面高度不变。

水箱是被控对象,水箱液位是被控量,电位器设定电压u r(表征液位的希望值c r)是给定量。

当电位器电刷位于中点位置(对应u r)时,电动机不动,控制阀门有一定的开度、使水箱中流入水量与流出水量相等。

从而液面保持在希望高度c r上。

一旦流入水量或流出水量发生变化,例如当液面升高时,浮子位置也相应升高,通过杠杆作用使电位器电刷从中点位置下移,从而给电动机提供一定的控制电压,驱动电动初通过减速器减小阀门开度,使进入水箱的液体流量减少。

这时,水箱液面下降,浮子位置相应下降,直到电位器电刷回到中点位置,系统重新处于平衡状态,液面恢复给定高度。

反之,若水箱液位下降,则系统会自动增大阀门开度,加大流入水量,使液位升到给定高度c r。

系统原理方框图如图1.2所示。

图1.2 系统原理方框图习题1.题图1-1是一晶体管稳压电源。

试将其画成方块图并说明在该电源里哪些起着测量、放大、执行的作用以及系统里的干扰量和给定量是什么?题图1-12.如题图1-2(a)、(b)所示两水位控制系统,要求(1)画出方块图(包括给定输入量和扰动输入量);(2)分析工作原理,讨论误差和扰动的关系。

3.如题图1-3所示炉温控制系统,要求(1)指出系统输出量、给定输入量、扰动输入量、被控对象和自动控制器的各组成部分并画出方块图;(2)说明该系统是怎样得到消除或减少偏差的。

4. 图1-4是液位自动控制系统原理示意图。

在任意情况下,希望液面高度c维持不变,试说明系统工作原理并画出系统方块图。

图1-4 液位自动控制系统5. 图1-5是仓库大门自动控制系统原理示意图。

试说明系统自动控制大门开闭的工作原理并画出系统方块图。

图1-5 仓库大门自动开闭控制系统第二章 拉普拉斯变换【例2.1】求以下F(s)的极点:s e s F --=11)(【解】:其极点可由下式求得:e -s =1即1)sin (cos )(=-=-+-ωωσωσj e e j由上式得到σ=0,ω=πn 2±(n=0,1,2,…)。

因此,极点位于s=πn j 2±, n=0,1,2,…【例2.2】求函数f(t)的拉普拉斯变换:f(t)=0, t<0 =te -3t t>=0【解】:因为21)(][s s G t L ==由拉普拉斯变换性质可得:3)3(1)3(][)(+=+==-s s G te L s F t【例2.3】求下列函数的拉普拉斯变换:f(t)=0, t<0 =)sin(θω+t t>=0 其中,θ为常数。

【解】:因为θωθωθωsin cos cos sin )sin(t t t +=+所以【例2.4】已知2)1(32)(+++=s s s s F ,用部分分式展开法求其反变换。

【解】:s=-1是F(s)的三重极点,此时F(s)的部分分式展开应包括三项:有三个待定系数,其中再确定和2阶项对应的b 2值: 同理可求得系数b 1:结果:其拉氏反变换为:【例2.5】用MATLAB 求下列函数的部分分式展开:33221)1()1(1)()()(+++++==s b s b s b s A s B s F 2]32[])()()1[(12133=++=+=-=-=s s s s s A s B s b 0]22[]32[])()()1[(])1(2[])()()1[()1()1()()()1(1213221211332213=+=++=+=∴=++=+++++=+-=-=-=-=s s s s s s s ds ds A s B s ds d b b b s b s A s B s ds d b s b s b s A s B s 1)32(!21])()()1[(!21122213221=⎥⎥⎦⎤⎢⎢⎣⎡++=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+=-=-=s s s s ds d s A s B s ds d b 3)1(211)(+++=s s s F )0()1(])1(211[)(2231≥+=+=+++=----t e t e t e s s L t f t t t 2222sin cos ωθωωθ+++=s ss ][cos sin ][sin cos )][sin(t L t L t L ωθωθθω+=+22sin cos ωθθω++=s s【解】: 输入如下指令:>> num = [2 5 3 6] num =2 53 6>> den = [1 6 11 6] den =1 6 11 6>> [r ,p,k] = residue(num,den) r =-6.0000 -4.0000 3.0000 p =-3.0000 -2.0000-1.0000 k =2故其拉氏反变换为:【例2.6】已知某控制系统的微分方程为: 【解】:对微分方程取拉氏变换:整理后得:习题F(s) =2S 3+5S 2+3S+6S 3+6S 2+11S+62132436)(++++-++-=s s s S F )(2346)(23t e e e t f t t t δ++--=---0)(2)]0()([3)]0()0()([2=+-+'--s X x s sX x sx s X s )0()()2()(212)2)(1(3233)(22≥+-+=∴++-++=++++=++++=--t e b a e b a t x s b a s b a s s ab as s s ab as s X t t 。

求系统响应)(,)0(,)0(023t x b x a x x x x ='==+'+''1、 1、 求下列函数的拉氏变换:f(t)=0 t<0 =e -0.4t cos12t t>=02、 2、 求下列函数的拉氏变换:f(t)=0 t<0 =3sin(5t+θ) t>=03、 3、 求下列函数的拉氏变换:f(t)=0 t<0 =te -t sin5t t>=04、 4、 求下列函数的拉氏变换:f(t)=0 t<0=cos ωt ∙sin ωt t>=05、 5、 求下列函数的拉氏反变换:15)(36)()1(1)(32+=+=+++=-s e s F s s s F s s s s s F s6、 6、 用MA TLAB 求下列函数的部分分式展开:304621630965)()5)(3)(1()4)(2(10)(2342342++++++++=+++++=s s s s s s s s s F s s s s s s F7、 7、 解下列微分方程:0)0(3)0(0372='==+'+''x x x x x8、 8、 解下列微分方程:bx t A ax x ==+')0(sin ω第三章 控制系统的数学模型【例3.1】RC 网络如图3.1所示,其中u 1,u 2分别为网络的输入量和输出量。

现要求:(1) (1) 画出网络相应的结构图;(2) (2) 求传递函数U 2(s)/U 1(s),化为标准形式;(3) (3) 讨论组件R1,R2,C1,C2参数的选择是否影响网络的绝对稳定性。

图3.1 RC 网络【解】(1)根据图3.1所示列方程: 输入回路U 1=R 1I 1+(I 1+I 2)/(C 2s) (3.1) 输出回路U 2=R 2I 2+(I 1+I 2)/(C 2s) (3.2) 中间回路I 1R 1=(R 2+1/(C 1s))I 2 (3.3)由式(3.1)s C R sC I s C 1U I 2122211=- (3.4)由式(3.3)1s C R s C R I I 121112+=(3.5) 由式(3.2)222122I )s C 1R (I s C 1U ++=(3.6)由式 (3.4)、式(3.5)、式(3.6)可画出系统结构图如图3.2所示。

图3.2 系统结构图(2)用梅逊公式求出:1s )C R C R C R (s C C R R 1s C )R R (s C C R R sC 11s C R s C R 1s C R s C 1sC 11s C R s C )s C 1R (1s C R s C R 1s C R s C )s (U )s (U 111221221211212212121212212221222121121212+++++++=∙+∙++∙++++∙+=(3)元件R l ,R 2,C 1,C 2参数均为大于零的常数,且系统特征多项式是二阶,无论R 1,R 2,C 1,C 2怎样取值,系统特征多项式系数总大于零,故不影响系统的绝对稳定性。

【例3.2】某系统结构图如图3.3所示,R(s)为输入,P(s)为扰动,C(s)为输出。

试: (1) (1) 画出系统的信号流图;(2) (2) 用梅逊公式求其传递函数C(s)/R(s);(3) (3) 说明在什么条件下,输出C(s)不受扰动P(s)的影响。

图3.3 系统结构图【解】(1)将图3.3中各端口信号标注出来(图3.4(a )),然后依之画出相应的信号流图(图3.4(b ))。

图3.4 信号流图(2)该系统有4条回路,2条前向通道。

35134321232213513432123221H G G H G G G G H G G H G G 1)H G G H G G G G H G G H G G (1++++=-----=∆43211G G G G P = 11=∆ 512G G P = 12=∆3513432123221514321H G G H G G G G H G G H G G 1G G G G G G )s (R )s (C +++++=(3)扰动P(s)到输出C(s)有2条前向通道。

相关文档
最新文档