染色质免疫沉淀(ChIP)技术自我总结
实验总结及展望
文献内容
CHIP-chip(染色体免疫沉淀芯片技术)是分 析DNA与蛋白质相互作用的有力工具,文献 综述了该技术在分析DNA-蛋白质相互作用 的最新研究进展,这些研究为理解转录与 蛋白质组装过程提供了新的思路。
CHIP-chip技术原理
染色质免疫共沉淀-芯片(ChIP-chip),它 的基本原理是在生理状态下把细胞内的蛋白 质和DNA交联在一起,超声波将其打碎为一 定长度范围内的染色质小片段,然后通过所 要研究的目的蛋白质特异性抗体沉淀此复合 体,特异性地富集目的蛋白结合的DNA片段, 通过对目的片断的纯化与检测,从而获得蛋 白质与DNA相互作用的信息。
在DNA与蛋白分离后,进行PCR扩增,然后 与芯片进行杂交,可以确定已知蛋白的靶 基因,运用这种方法,可以确定某一蛋白 在染色体上的靶基因群。
3.证明了转录因子有时结合在非交 感顺序上
通过对CtrA,FNR结合位点的分析,发现有 时其结合在非交感顺序上,推测DNA拓扑结 构的改变影响了其序列特异性,或者是许 多转录因子的协同作用,减少了特定转录 因子的需求或者改变其序列特异性
4.转录因子有时结合在DNA位点但不 执行功能
CHIP-chip的应用过程中发现,将FNR剔除, 并不影响其邻近基因的表达 推测可能是以下几种原因:
1.结合部位没有启动子 2.转录因子不是调控转录,如NAP(nucleoid-associated protein核酸连接蛋白)调控染色体组装 3.大量转录因子存在的情况下,可能执行其他功能 4.可能其他因子对该基因影响更大 5.基因组在发生进化,基因结构发生变化
染色质免疫沉淀芯片流程图
CHIP-chip技术流程
CHIP-chip技术的优点
1.直接对活细胞进行作用,可以真实地反应体 内DNA与蛋白质的相互作用 2.甲醛的固定,可以检测到细胞某一时刻的 DNA与蛋白质的相互作用 3.染色体免疫沉淀与芯片技术的结合,可以在 整个基因组水平上分析DNA与蛋白质的相互 作用
CHIP技术
染色质免疫沉淀分析ChIP技术介绍染色质免疫沉淀分析ChIP 技术介绍(Chromatin Immunoprecipitation Assay, ChiP)(Abcam 公司与Upstate 公司都提供ChIP 抗体产品)染色质免疫沉淀法(Chromatin immunoprecitation,ChIP)就是研究体内DNA 与蛋白质相互作用的重要工具。
它可以灵敏地检测目标蛋白与特异DNA 片段的结合情况,还可以用来研究组蛋白与基因表达的关系。
核小体组蛋白可以发生多种翻译后的共价修饰,如乙酰化、甲基化、磷酸化、泛素化等,这些共价修饰与真核基因的表达密切相关。
根据“组蛋白密码”假说,组蛋白的各种共价修饰的组合会以协同或拮抗的方式诱导特异的下游生物学功能,因此,ChIP 也为研究组蛋白修饰在基因表达中的作用,全面阐明真核基因的表达调控机制提供了强有力的研究工具。
真核生物细胞状态就是由内源与外源因素共同影响的,所有信号传递途径的终点都就是DNA。
DNA 通过核蛋白复合物组成染色质,染色质就是基因调控的一个重要作用位点。
转录激活因子与辅助抑制因子的研究显示存在一种新的调节机制--“组蛋白密码”,其信息存在于组蛋白的转录后修饰等过程中。
该类修饰包括组蛋白磷酸化、乙酰化、甲基化、ADP-核糖基化等过程。
随着越来越多组蛋白核心结构区域与羧端修饰的确定,组蛋白密码在控制与调节基因功能过程中的作用越来越明确。
参与修饰的酶根据其作用的不同而分类:如组氨酸乙酰转移酶(HATs)可以将乙酰基团转到组蛋白上;组蛋白去乙酰酶(HDACs)可以去除氨基酸上的乙酰基团;组蛋白甲基转移酶(HMTs)可以将甲基基团转移到组蛋白上等不同组氨酸修饰标记对应于不同的生物学过程,它可以作为调节因子的作用位点,也可以用来改变染色质结构。
染色质免疫沉淀分析(ChiP)就是基于体内分析发展起来的方法,它的基本原理就是在活细胞状态下固定蛋白质-DNA 复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA 片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA 相互作用的信息。
染色质免疫沉淀技术及其应用
染色质免疫沉淀技术及其应用染色质免疫沉淀技术(chromatin immunoprecipitation,简称ChIP)是一种用来研究染色质中特定蛋白质与DNA结合的技术。
该技术的原理是利用特异性抗体与目标蛋白质结合,然后通过免疫沉淀将染色质中与目标蛋白质结合的DNA富集出来,进而可以研究该蛋白质与染色质中特定基因座的相互作用及对基因转录的调控。
ChIP技术的实验步骤主要包括:交联、收集染色质、核破碎、免疫沉淀、洗脱DNA和PCR/qPCR分析等。
将细胞或组织用交联剂(一般为甲醛)进行交联,固定染色质和蛋白质之间的相互作用。
然后,收集染色质并进行核破碎,使得DNA片段适合后续的PCR/qPCR分析,其中的方法有微核酸酶切割、超声波处理或者化学方法。
接着,利用特异性抗体与目标蛋白质结合,形成抗原-抗体复合物。
将抗原-抗体复合物进行免疫沉淀,将其中与目标蛋白质结合的DNA富集出来。
在沉淀步骤中可以通过离心、磁珠等方法来分离复合物。
之后,通过洗脱步骤将染色质中的DNA从抗原-抗体复合物中解离出来。
使用PCR/qPCR等方法对富集的DNA进行分析,通过验证目标蛋白质与特定基因座的结合情况,可以了解该蛋白质对基因转录的调控。
染色质免疫沉淀技术在生命科学研究中有着广泛的应用。
它可以用来研究染色质修饰与基因转录的关系。
可以检测组蛋白的乙酰化、甲基化等修饰与基因的转录活性之间的关联程度,揭示染色质修饰对基因表达调控的作用机制。
ChIP技术可以用于研究转录因子与基因的相互作用。
转录因子是调控基因表达的重要蛋白质,ChIP技术可以帮助确定特定转录因子与特定基因座的结合情况,进而了解转录因子对基因表达的作用机制。
ChIP技术还可以用于研究表观遗传调控。
表观遗传调控主要指非DNA序列相关的基因表达调控,包括DNA甲基化、组蛋白修饰等。
利用ChIP技术可以检测这些表观遗传标记与特定基因座的关联情况,从而揭示它们在基因表达调控中的作用。
染色质免疫沉淀分析——植物ChIP解决方案
染色质免疫沉淀分析——植物ChIP解决方案染色质免疫沉淀分析(ChIP) 是目前确定与特定蛋白结合的基因组区域或确定与特定基因组区域结合的蛋白质的比较好的一种方法。
so,我们今天来聊聊染色质免疫沉淀分析方法。
染色质免疫沉淀法(Chromatin immunoprecipitation,ChIP)是研究体内DNA与蛋白质相互作用的重要工具。
它可以灵敏地检测目标蛋白与特异DNA片段的结合情况,还可以用来研究组蛋白与基因表达的关系。
CHIP技术通过三大步骤实现:第一,甲醛固定后染色质分离和断片;第二,运用特异蛋白质抗体(CHIP级别),免疫共沉淀结合蛋白的染色质片段;第三,分析目标DNA。
这里我们就要说到CHIP技术工具之——植物染色质免疫沉淀试剂盒了。
它的原理是什么呢?不妨以P-2014植物染色质免疫沉淀试剂盒来举个栗子~~P-2014植物染色质免疫沉淀试剂盒旨在通过甲醛交联、物理或化学处理细胞核以及染色质,从而运用特异抗体结合蛋白进行免疫沉淀,然后萃取DNA,扩增分析,用以确定结合蛋白的目标DNA。
接下来再说说它的特征,P-2014植物染色质免疫沉淀试剂盒涵盖全套试剂,允许试验者有效地在体内研究蛋白-DNA相互关系。
整个过程可以在6小时内完成(哇哦,厉害了~)当然了,还有相当重要的一点:P-2014植物染色质免疫沉淀试剂盒适用于将特异性免疫沉淀与定性和定量PCR、MS-PCR、ChIP-Seq、ChIP-on-chip结合使用。
欧迈噶!P-2014植物染色质免疫沉淀试剂盒包括一个ChIP级二甲基组蛋白H3-K9抗体--阳性对照,以及一个正常小鼠IgG——阴性对照。
从染色质从样本中释放出来后,经剪切、断片,添加到包被了抗体的微孔中,蛋白质-DNA复合物经特异性抗体捕获,解交联后DNA被释放,通过离心柱,纯化并洗脱目的DNA。
洗脱下来的DNA可用于各种下游应用。
接着看看样本,起始材料可包括各种植物组织(花、叶、幼苗)。
染色质免疫沉淀(ChIP)实验分析
染色质免疫沉淀(ChIP)实验分析ChIP实验被用来鉴定染色质相关蛋白的定位和/或它们的翻译后修饰状态。
这种方法依赖于特异识别目的蛋白或修饰蛋白(例如组蛋白H3 Lys9甲基化)的抗体进行免疫沉淀和分析免疫共沉淀DNA。
早期实验方法依赖于使用温和的裂解条件,以保护蛋白质--DNA相互作用,但这种方法只适用于和DNA直接结合的蛋白。
甲醛交联方法的使用使得这样的分析可以扩展到与染色质关联的几乎任何蛋白。
非变性、非交联免疫沉淀实验使用直接和特定DNA结合蛋白结合的抗体从细胞中分离蛋白质--DNA复合物依赖于抽提和免疫沉淀的条件,尤其是在该条件下怎样使蛋白可溶并保持蛋白质-DNA的结合。
有几种方法已被成功使用,但是要注意到这一点,要根据蛋白质-DNA复合物所需的条件来调整实验条件。
该方法本质来说是利用低渗透压裂解细胞,分离细胞核,在低盐条件下使用核酸酶(DNaseI或微球菌核酸酶—Mnase)溶解染色质,接着使用抗体进行免疫沉淀识别目标蛋白。
使用多肽可以从免疫复合物中最先洗下蛋白质-DNA复合物,这可以减少在更严格的洗脱下来的,与DNA非特异性结合的蛋白污染。
提取的DNA可以克隆用于进一步分析、测序或用于探针阵列分析。
甲醛交联免疫沉淀实验这已成为研究染色质中动态蛋白质--DNA的强有力方法。
甲醛交联的染色质免疫沉淀的实验步骤见图二。
甲醛交联使我们能够检测到可能不直接结合DNA的蛋白质--染色质的结合。
这种交联方法产生蛋白质-蛋白质、蛋白质-DNA和蛋白质-RNA交联,因此适合于染色质不同成分以及瞬时关联的分析。
这也有效地被用于分析染色质翻译后修饰的存在与否。
这种方法最初在果蝇体系中是由Varshavski及其同事开发的,由Paro 修正的由两个酵母小组广泛使用和修正的。
图二该技术实验步骤适用于所有的ChIP实验,由于研究系统的不同或研究小组的偏好,在实验细节上略有不同。
此外,在新研究系统的第一次实验需要优化实验步骤。
关于染色质免疫共沉淀ChIP实验原理及实验总结
关于染色质免疫共沉淀ChIP实验原理及实验总结ChIP实验原理在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
可以利用ChIP研究转录因子(transcription factor, TF)与启动子(promoter)的关联性。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
ChIP实验步骤第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。
(培养基共有9ml)2、37摄氏度孵育10min。
3、终止交联:加甘氨酸至终浓度为0.125M。
450ul 2.5M甘氨酸于平皿中。
混匀后,在室温下放置5min即可。
4、吸尽培养基,用冰冷的PBS清洗细胞2次。
5、细胞刮刀收集细胞于15ml离心管中(PBS依次为5ml,3ml和3ml)。
预冷后2000rpm 5min收集细胞。
6、倒去上清。
按照细胞量,加入SDS Lysis Buffer。
CHIP原理
关于染色质免疫共沉淀ChIP实验原理及实验总结ChIP实验原理在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
可以利用ChIP研究转录因子(transcription factor,TF)与启动子(promoter)的关联性。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter 相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
ChIP实验步骤第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul37%甲醛,使得甲醛的终浓度为1%。
(培养基共有9ml)2、37摄氏度孵育10min。
3、终止交联:加甘氨酸至终浓度为0.125M。
450ul2.5M甘氨酸于平皿中。
混匀后,在室温下放置5min即可。
4、吸尽培养基,用冰冷的PBS清洗细胞2次。
5、细胞刮刀收集细胞于15ml离心管中(PBS 依次为5ml,3ml和3ml)。
预冷后2000rpm5min收集细胞。
6、倒去上清。
按照细胞量,加入SDS Lysis Buffer。
染色质与蛋白研究:染色质免疫共沉淀(ChIP)实验介绍(一)
染色质与蛋白研究:染色质免疫共沉淀(ChIP)实验介绍(一)前面的文章中已经向大家介绍了免疫共沉淀技术(IP)的原理和方法,这一技术可以帮助我们便捷地探究蛋白与蛋白之间的互相作用。
但若研究的靶蛋白可能发挥组蛋白修饰酶的功能,或是可能作为某种转录因子发挥作用,那么就要应用染色质免疫共沉淀技术(chromatin-immunoprecipitation,ChIP)方法来探究其与DNA 的直接调控了。
ChIP可以真实、完整地反映结合在DNA启动子区上的靶蛋白的调控信息,是目前基于全基因组水平研究DNA-蛋白质相互作用的标准实验技术。
接下来,我们一起来学习一下ChIP技术吧!1ChIP基本原理ChIP是在活细胞状态下固定蛋白质-DNA复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
ChIP不仅可以检测转录因子与DNA的动态作用,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。
基因的转录是从启动子区开始,由一系列的转录因子结合到基因的启动子区,通用转录因子结合在基本启动子区起始转录,而这个过程通常需要一些特异的转录因子结合在上游调节序列,使基因特异表达并维持的合适水平。
此外,基因的转录还会受到表观遗传的调控,如组蛋白甲基化修饰、乙酰化修饰等,组蛋白特异位点的修饰均可以直接影响基因的转录水平。
因此,ChIP主要用于研究特异的转录因子或组蛋白修饰酶与下游基因启动子区的结合,如果ChIP发现二者可以结合,那么这说明该基因可能是其下游基因。
要想进一步证明,还要做高低表达和荧光素酶等实验。
目前,ChIP与一些高通量测序的结合,扩大了其应用范围:比如,ChIP与基因芯片相结合建立的ChIP-ChIP已广泛用于特定反式因子靶基因的高通量筛选;ChIP-Seq是将深度测序技术与ChIP实验相结合,可分析全基因组范围内DNA结合蛋白结合位点、组蛋白修饰、核小体定位或DNA甲基化的高通量方法,可以应用到任何基因组序列已知的物种,并能确切得到每一个片段的序列信息;RNA-ChIP用于研究RNA在基因表达调控中的作用。
染色质免疫沉淀技术及其应用
染色质免疫沉淀技术及其应用
染色质免疫沉淀(ChIP)技术是一种用于分析染色质中特定蛋白质与DNA相互作用的方法。
ChIP技术是基于通过特定抗体与染色质中的蛋白质结合,并将其沉淀出来的原理来进行的。
这种方法可以用于识别组蛋白、转录因子或其他染色质相关蛋白在某个特定DNA 序列上的结合情况,进而帮助研究者了解基因调控机制、DNA复制和修复以及疾病发生和治疗机制。
ChIP技术流程包括染色质交联、染色质碎片化、抗体免疫沉淀、基因组DNA纯化和PCR扩增检测等步骤。
首先,将细胞或组织处理以使其蛋白质与DNA交联,然后通过超声波等方法将染色质碎片化成大小约500-1000bp的段落。
接下来,将碎片化的染色质与特定蛋白质抗体结合,并将该复合物通过免疫沉淀提取出来。
随后,通过去除交联蛋白质并纯化染色质DNA,可以筛查DNA序列上是否含有感兴趣的蛋白质结合位点。
最后,使用PCR 扩增和测序等方法来验证和分析这些序列。
ChIP技术是一种广泛应用于生命科学和医学领域的方法。
在基因转录调控方面,ChIP 技术可以用于研究转录因子的作用和结合位点,从而解析基因表达的分子机制。
在疾病研究方面,ChIP技术被用于鉴定癌症、糖尿病和神经系统疾病等疾病相关基因的调控机制。
此外,随着新一代高通量测序技术的广泛应用,ChIP-Seq技术已成为解析基因调控网络、全基因组范围内区分蛋白质结合位点等生命科学领域的重要方法。
总之,ChIP技术是一种有力的研究基因调控和表观遗传学的方法,有望为人类疾病细胞遗传学的深入了解提供帮助。
技术的不断改进和升级也将促进其在生命科学领域的广泛应用。
染色质免疫沉淀技术及其应用
染色质免疫沉淀技术及其应用染色质免疫沉淀(chromatin immunoprecipitation,ChIP)是一种用于研究染色质上特定蛋白质与DNA相互作用的技术。
该技术结合了免疫学和分子生物学的原理,可以定量和鉴定染色质上特定蛋白质与DNA结合的区域。
ChIP技术广泛应用于研究基因表达、DNA甲基化和三维染色质结构等领域。
ChIP的基本步骤包括染色质交联、DNA片段切割、免疫沉淀、DNA纯化和PCR分析。
要将细胞或组织中的染色质与蛋白质进行交联,形成染色质蛋白复合物,使得染色质与细胞核膜分离。
这个步骤通常通过添加甲醛或紫外辐射等方法来进行。
然后,通过DNA酶的消化作用将染色质切割成短片段,一般长度在100-500bp之间。
消化后的DNA片段与特定的抗体一起进行免疫沉淀,以还原染色质与蛋白质的结合。
免疫沉淀完成后,通过去除染色质蛋白复合物和抗体的结合,将免疫沉淀的DNA纯化。
纯化后的DNA可以进行PCR分析,以研究免疫沉淀的目标蛋白质在染色质上结合的局部区域。
ChIP技术可以用于研究多种蛋白质与DNA的相互作用。
可以通过ChIP技术分析转录因子与染色质上的特定基因启动子或增强子的结合,以探究基因的调控机制。
ChIP技术还可以用于研究组蛋白修饰和DNA甲基化等染色质修饰与基因表达的关系。
通过免疫沉淀染色质上的特定组蛋白修饰状态,可以揭示染色质结构和染色质重塑的分子机制。
结合下一代测序技术,特别是ChIP-seq技术,可以对整个基因组范围内的蛋白质-DNA 相互作用进行全面的研究。
还可以通过ChIP技术对转录因子-组蛋白-DNA三维染色质结构进行研究,以揭示基因表达调控的细节。
染色质免疫沉淀技术是一种重要的蛋白质-DNA相互作用研究工具。
它在基因表达调控、组蛋白修饰和三维染色质结构等领域有广泛的应用前景,对于揭示基因组功能和疾病发生机制具有重要的意义。
染色质免疫沉淀(ChIP)实验指南及技术总结
染色质免疫沉淀(ChIP)实验指南及技术总结第一篇:染色质免疫沉淀(ChIP)实验指南及技术总结染色质免疫沉淀(ChIP)实验指南及技术总结ChIP是一项比较流行的研究转录因子(transcription factor, TF)与启动子(promoter)相互结合的实验技术。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
一般ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
在PCR分析这一块,比较传统的做法是半定量-PCR。
但是现在随着荧光定量PCR的普及,大家也越来越倾向于Q-PCR了。
此外还有一些由ChIP衍生出来的方法。
例如RIP(其实就是用ChIP的方法研究细胞内蛋白与RNA的相互结合,具体方法和ChIP差不多,只是实验过程中要注意防止RNase,最后分析的时候需要先将RNA逆转录成为cDNA);还有ChIP-chip(其实就是ChIP富集得到的DNA-片段,拿去做芯片分析,做法在ChIP的基础上有所改变,不同的公司有不同的做法,要根据公司的要求来准备样品)。
第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。
染色质免疫沉淀技术
染色质免疫沉淀技术介绍染色质免疫沉淀技术(Chromatin Immunoprecipitation,ChIP)是一种用于研究染色质上特定蛋白质与DNA的相互作用的实验方法。
通过该技术,我们可以确定某个蛋白质在染色质上的结合位点,进而探究基因表达调控、表观遗传学和疾病发生等重要生物学问题。
ChIP的原理ChIP技术的基本原理是利用特异性抗体与目标蛋白质结合,然后通过免疫沉淀的方式将蛋白质及其结合的DNA分离出来。
具体步骤如下:1. 交联首先,将细胞或组织进行交联,使得染色质上的蛋白质与DNA形成稳定的结合。
常用的交联剂包括甲醛和二氧化硅。
2. 细胞裂解将交联后的细胞或组织进行裂解,释放出染色质。
3. DNA切割使用限制性核酸内切酶或超声波等方法将染色质切割成小片段。
切割后的DNA片段长度通常在200-1000碱基对之间。
4. 免疫沉淀将特异性抗体与目标蛋白质结合,形成抗原-抗体复合物。
然后将抗原-抗体复合物与染色质中的目标蛋白质结合的DNA片段一起免疫沉淀。
5. 分离DNA通过洗涤等步骤将非特异性结合的DNA片段去除,保留与目标蛋白质结合的DNA片段。
6. 解交联去除染色质与蛋白质的交联,使得DNA片段恢复单链状态。
7. DNA纯化将解交联后的DNA片段进行纯化,去除杂质。
8. DNA分析通过PCR、测序等方法对免疫沉淀得到的DNA片段进行分析,确定目标蛋白质结合的DNA序列。
应用ChIP技术在生命科学研究中得到了广泛应用,尤其是在以下领域:1. 基因表达调控通过ChIP技术,可以确定转录因子与染色质上的结合位点,进而揭示基因的调控机制。
研究人员可以通过ChIP-Seq等方法,高通量地鉴定转录因子结合位点,从而识别出与特定基因调控相关的转录因子。
2. 表观遗传学ChIP技术可以用于研究染色质修饰与基因表达调控之间的关系。
例如,通过ChIP-Seq可以鉴定出与DNA甲基化和组蛋白修饰相关的位点,进一步探究这些修饰与表观遗传学调控的机制。
染色质免疫沉淀技术及其应用
染色质免疫沉淀技术及其应用染色质免疫沉淀技术(ChIP)是一种用于研究染色质上蛋白质-DNA相互作用的重要实验技术。
它的基本原理是特异性抗体与染色质上的目标蛋白质结合,将其与DNA交联,并将其沉淀下来。
通过测定沉淀下来的复合物中的DNA序列,可以确定特定蛋白质与DNA的结合情况,从而揭示其在基因调控、表观基因组学和疾病发生中的重要作用。
ChIP技术通常分为两种类型:全基因组(全局)ChIP和目标特异性ChIP。
全基因组ChIP可用于研究全基因组范围内的蛋白质-DNA结合,并且可以利用高通量测序技术对沉淀下来的DNA样品进行测序,从而确定基因组上某一区域的结合情况。
在目标特异性ChIP 中,研究人员通常会先选择目标蛋白质,然后手工合成抗体并与该蛋白质结合,从而选择性地沉淀此类蛋白质-DNA复合物。
ChIP技术有许多应用,其中一个重要的应用是研究转录因子的作用机制。
转录因子是一类能够结合某些DNA序列并调节基因表达的蛋白质。
通过ChIP技术,研究人员可以确定基因组上所有的转录因子结合位点,并且可以在不同的条件下比较不同转录因子对特定基因的调控作用。
此外,ChIP技术还可用于研究表观遗传改变与疾病之间的关系。
比如,在癌症中,许多基因表达异常,而这些异常通常与DNA甲基化、组蛋白修饰和蛋白质-DNA 相互作用的改变有关。
ChIP技术可以协助研究人员研究这些变化,并确定它们与癌症起源和发展的关联。
ChIP技术还可用于研究疾病的治疗。
通过使用药物或其他干预方式改变基因表达,可以通过ChIP技术检测变化,并确定蛋白质-DNA复合物的形成和分解过程。
此外,在一些人类遗传病中,基因表达异常与某些转录因子的缺失或突变有关。
ChIP技术可以帮助研究人员确定这些因子的作用机制,从而提供治疗该病的新靶点。
总的来说,染色质免疫沉淀技术是重要的基因组学研究技术之一,并且在研究转录因子、基因调控以及表观基因组学、疾病发生等方面具有广泛应用前景。
染色质免疫沉淀技术及其应用
染色质免疫沉淀技术及其应用细胞核中包含着细胞的遗传物质DNA,以及DNA紧密结合的蛋白质,构成了染色质。
染色质免疫沉淀技术(Chromatin Immunoprecipitation,ChIP)是一种用于研究染色质蛋白质相互作用及其在基因调控中的作用的重要实验技术。
通过该技术可以识别染色质上与特定蛋白质结合的DNA序列,从而了解这些蛋白质在基因表达调控过程中的作用。
ChIP技术已经成为生物医学研究领域中不可或缺的实验手段,被广泛应用于基因转录调控、染色质结构与功能、疾病发生机制等领域,为我们深入了解基因表达调控机制、疾病发生发展提供了重要帮助。
ChIP技术的基本原理是利用抗体来特异识别并结合到染色质上的特定蛋白,然后通过交联、切割、免疫沉淀和逆交联等步骤来提取特定的DNA片段。
接着通过DNA序列分析技术,例如PCR、测序等,可以识别出与某个特定蛋白质结合的DNA序列。
ChIP技术主要包括以下几个步骤:细胞交联、细胞破碎、抗体免疫沉淀、DNA纯化和DNA序列分析。
这些步骤需要严格控制实验条件,确保实验结果的可靠性和准确性。
ChIP技术的应用非常广泛,特别是在以下几个方面:1. 基因转录调控研究ChIP技术可以帮助研究人员确定染色质上与特定转录因子结合的DNA序列,从而识别这些转录因子在基因调控过程中的作用。
研究人员可以利用ChIP技术来分析不同细胞状态下转录因子的结合模式,以及其对调控特定基因的影响,从而深入了解基因的表达调控网络。
2. 染色质结构与功能研究ChIP技术也被广泛应用于研究染色质的结构与功能。
通过识别与某个特定蛋白质结合的DNA序列,可以揭示该蛋白质在染色质组装、染色质结构维护、染色质重复序列稳定性维护等方面的作用,为深入理解染色质结构与功能提供了重要手段。
3. 疾病发生机制研究ChIP技术在研究疾病发生机制方面也具有重要的应用价值。
研究人员可以利用ChIP 技术来分析肿瘤细胞中染色质上与肿瘤相关蛋白质结合的DNA序列,从而揭示肿瘤相关基因的表达调控网络,为肿瘤的发生发展机制提供重要线索。
CHIP技术
染色质免疫沉淀分析ChIP技术介绍染色质免疫沉淀分析ChIP 技术介绍(Chromatin Immunoprecipitation Assay, ChiP)(Abcam 公司和Upstate 公司都提供ChIP 抗体产品)染色质免疫沉淀法(Chromatin immunoprecitation,ChIP)是研究体内DNA 与蛋白质相互作用的重要工具。
它可以灵敏地检测目标蛋白与特异DNA 片段的结合情况,还可以用来研究组蛋白与基因表达的关系。
核小体组蛋白可以发生多种翻译后的共价修饰,如乙酰化、甲基化、磷酸化、泛素化等,这些共价修饰与真核基因的表达密切相关。
根据“组蛋白密码”假说,组蛋白的各种共价修饰的组合会以协同或拮抗的方式诱导特异的下游生物学功能,因此,ChIP 也为研究组蛋白修饰在基因表达中的作用,全面阐明真核基因的表达调控机制提供了强有力的研究工具。
真核生物细胞状态是由内源和外源因素共同影响的,所有信号传递途径的终点都是DNA。
DNA 通过核蛋白复合物组成染色质,染色质是基因调控的一个重要作用位点。
转录激活因子和辅助抑制因子的研究显示存在一种新的调节机制--“组蛋白密码”,其信息存在于组蛋白的转录后修饰等过程中。
该类修饰包括组蛋白磷酸化、乙酰化、甲基化、ADP-核糖基化等过程。
随着越来越多组蛋白核心结构区域和羧端修饰的确定,组蛋白密码在控制和调节基因功能过程中的作用越来越明确。
参与修饰的酶根据其作用的不同而分类:如组氨酸乙酰转移酶(HATs)可以将乙酰基团转到组蛋白上;组蛋白去乙酰酶(HDACs)可以去除氨基酸上的乙酰基团;组蛋白甲基转移酶(HMTs)可以将甲基基团转移到组蛋白上等不同组氨酸修饰标记对应于不同的生物学过程,它可以作为调节因子的作用位点,也可以用来改变染色质结构。
染色质免疫沉淀分析(ChiP)是基于体内分析发展起来的方法,它的基本原理是在活细胞状态下固定蛋白质-DNA 复合物,并将其随机切断为一定长度范围内的染色质小片段,然后通过免疫学方法沉淀此复合体,特异性地富集目的蛋白结合的DNA 片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA 相互作用的信息。
染色质免疫共沉淀技术 终
姓名学号2013224010005 2013224010035 2013224010013 2013225010014 2013224010040染色质免疫沉淀法功能基因组学(Functional genomics)研究内容是人类基因组DNA序列变异性研究、基因组表达调控的研究、陌生生物体的研究和生物信息学的研究等。
目前功能基因组学的研究策略包括以下4个方面:1)建立表达图谱 2)随机突变筛选3)定向诱变 4)生物信息学研究.经典的技术在大量未知基因的研究中具有局限性,目前,一些新技术包括生物芯片、基因敲除(knock out)、转基因(knock in)、RNA干扰(RNAi)以及蛋白质组学研究中的各种技术,在功能基因组学研究中发挥越来越重要的作用。
本文就近几年来功能基因组学染色质免疫共沉淀技术(ChIP)方法的一些进展作简单介绍。
【概念】染色质免疫沉淀法(Chromatin immunoprecitation,ChIP)是研究体内DNA与蛋白质相互作用的重要工具[1]。
它可以灵敏地检测目标蛋白与特异DNA片段的结合情况,还可以用来研究组蛋白与基因表达的关系。
核小体组蛋白可以发生多种翻译后的共价修饰,如乙酰化、甲基化、磷酸化、泛素化等,这些共价修饰与真核基因的表达密切相关。
根据“组蛋白密码”假说,组蛋白的各种共价修饰的组合会以协同或拮抗的方式诱导特异的下游生物学功能,因此,ChIP也为研究组蛋白修饰在基因表达中的作用,全面阐明真核基因的表达调控机制提供了强有力的研究工具。
【背景】真核生物细胞状态是由内源和外源因素共同影响的,所有信号传递途径的终点都是DNA。
DNA通过核蛋白复合物组成染色质,染色质是基因调控的一个重要作用位点。
转录激活因子和辅助抑制因子的研究显示存在一种新的调节机制--“组蛋白密码”,其信息存在于组蛋白的转录后修饰等过程中。
该类修饰包括组蛋白磷酸化、乙酰化、甲基化、ADP-核糖基化等过程。
浅析染色质免疫沉淀(ChIP)技术在DNA与蛋白质相互作用研究中的重要性
浅析染色质免疫沉淀(ChIP)技术在DNA与蛋白质相互作用研究中的重要性染色质免疫沉淀(ChIP)是研究蛋白质-DNA相互作用的一项强大技术,广泛用于多个领域的染色质相关蛋白的研究(如组蛋白及其异构体,转录因子等),特别适用于已知启动子序列或整个基因位点的组蛋白修饰分析研究。
这项技术采用特定抗体来富集存在组蛋白修饰或者转录调控的DNA片段,通过多种下游检测技术(定量PCR,芯片,测序等)来检测此富集片段的DNA序列。
ChIP技术自诞生之后,已成功的应用于人或动物细胞和组织[1] 、植物组织[2]、酵母[3] 以及细菌、质粒[4] 。
由于在信号转导和表观遗传研究中的突出作用,ChIP 在肿瘤[5-7]、神经科学[8-10]、植物发育[11-13] 等领域中应用非常广泛,同时有关细胞凋亡[14]、雌激素信号转导[15] 、胰岛素抵抗[16] 、组织发育[1]的文献中也用到ChIP。
目前,最常见的有以下两种ChIP实验技术:1. nChIP:用来研究DNA及高结合力蛋白,采用微球菌核酸酶(micrococcal nuclease)消化染色质,然后进行片段富集及后续分析,适用于组蛋白及其异构体,例如[17-19] ;2. xChIP:用来研究DNA及低结合力蛋白,采用甲醛或紫外线进行DNA和蛋白交联,超声波片段化染色质,然后进行片段富集及后续分析,适用于多数非组蛋白的蛋白,例如[9, 15, 20]。
X-ChIP试验的一般过程以上两种方法在分离DNA-蛋白质复合物之后,对DNA进行PCR扩增,验证目标序列的存在。
除验证实验外,ChIP DNA也可以进行测序分析,这种方法被称为ChIP-seq[22];也可做芯片分析,这种方法被称为ChIP on CHIP或ChIP-CHIP[23] 。
这两种方法都可用于分析感兴趣蛋白结合的未知序列,而不需要知道目标序列的详细信息,因此可以进行探索性的研究。
当需要对DNA结合的蛋白复合物(两个或两个以上蛋白共同结合在DNA上)进行研究时,可以采用reChIP技术对DNA蛋白复合物进行再次富集,从而分析两种蛋白同时结合的DNA片段,例如转录调控因子及其受体复合物[24]。
ChIP(染色质免疫沉淀)实验心得
ChIP(染色质免疫沉淀)实验心得基于体内分析而发展的染色质免疫沉淀分析(Chromatin immunoprecipitation assay kit,ChIP)技术可以真实、完整地反映结合在DNA序列上的调控蛋白。
由于ChIP采用甲醛固定活细胞或者组织的方法,因此能比较真实的反映细胞内TF与Promoter的结合情况,还可以用来研究组蛋白的各种共价修饰与基因表达的关系。
近年来,这种技术得到不断的发展和完善。
采用结合微阵列技术在染色体基因表达调控区域检查染色体活性,是深入分析癌症、心血管病以及中央神经系统紊乱等疾病主要通路的一种非常有效的工具。
染色质免疫沉淀分析(ChiP)的基本原理是在活细胞状态下,当用甲醛处理时,相互靠近的蛋白与蛋白、蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter 相互结合时,它们必然靠的比较近或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
固定的蛋白质-DNA复合物通过超声或酶处理将其随机切断为一定长度范围内的染色质小片段,然后通过抗原抗体的特异性识别反应沉淀此复合体,特异性地富集目的蛋白结合的DNA片段,通过对目的片断的纯化与检测,从而获得蛋白质与DNA相互作用的信息。
通过qPCR或二代测序,筛选与目的蛋白互作的未知DNA信息。
今天小编将ChIP实验的一点心得体会拿出来与大家一同分享。
(一)关于细胞细胞的生长状态要好。
因为细胞的生长状态直接影响细胞内部的基因表达调控网络,也很有可能影响所研究的TF与其靶Promoter的结合。
一般而言,细胞密度长到75%-80%比较好。
(二)关于抗体抗体是实验成败的致命因素之一!必须是IP级别的抗体,单抗与多抗的选择也需要仔细考虑。
单抗和多抗两种抗体各有利弊。
单抗特异性强,背景低。
但是单抗有一个弱点,就是识别位点单一,而在ChIP甲醛交联的过程中,很有可能该位点被其它蛋白或核酸结合而被封闭,导致单抗不能识别靶蛋白。
染色质免疫共沉淀(ChIP)原理及注意事项
染色质免疫共沉淀(ChIP)原理及注意事项【前言】早期,人们就发现在细胞的生命活动中,DNA复制、mRNA转录与修饰以及病毒的感染等,都涉及基因-蛋白质相互作用,很多生理学家都探讨了这种现象的发生过程。
近年来,随着研究的深入,很多医学研究者已经将目光投向了基因-蛋白相互作用,期望在此水平上,另辟蹊径,深入分析癌症、心血管疾病、中央神经系统紊乱等疾病的主要代谢通路和发生机制。
染色质免疫共沉淀(ChIP)作为目前为止唯一的研究体内DNA与蛋白质相互作用的实验方法,深得人心。
很多人都希望接触和掌握此实验技术,希望从组蛋白修饰、转录调控、凋亡等角度深入研究病变机制,进而开发相应的药物。
总之,ChIP是一个有效且重要的实验技术。
下面就来聊聊它。
【正文】能够与DNA结合的蛋白有多种,主要分为组蛋白和非组蛋白。
一方面,染色体是由组蛋白和DNA构成的,组蛋白作为染色体的结构蛋白,可以与DNA形成核小体,组蛋白与DNA的结合关系是固定存在的,因此组蛋白的修饰作用成为研究的关键。
NaCl可解除组蛋白和DNA的交联关系。
(核小体结构图)另一方面,非组蛋白多是参与DNA复制、mRNA转录过程的一些功能蛋白,包括解链酶、切割酶、转录激活蛋白等等,它们与DNA、mRNA的结合关系是瞬时的,发挥完作用可能就及时脱离开了。
ChIP实验原理:在活细胞状态下,通过甲醛固定DNA-蛋白质复合物后,采用微球菌核酸酶(Micrococcal Nucleas)(注:早期使用的超声已经被淘汰了,不推荐使用)随机切断DNA,形成一个个一定长度范围内的染色质小片段,随后通过抗原-抗体特异性结合反应富集、沉淀这些小片段,然后通过对NaC、蛋白酶K解除蛋白质和DNA的交联,分离蛋白,纯化DNA,最后采用PCR检测DNA的序列信息,获取更多信息。
从上面的原理就可以看出,ChIP实验步骤大致可分5步:(1)1%甲醛处理使蛋白质与 DNA 交联;(2)细胞裂解,采用微球菌核酸酶消化形成染色质小片段;(3)抗原-抗体反应,促进免疫沉淀反应;(4)NaCl、蛋白酶 K 处理,解除DNA-蛋白交联;(5)DNA 纯化回收;(6)采用1.8%琼脂糖凝胶电泳、RT-PCR对DNA作进一步分析。
染色质免疫共沉淀(ChIP)实验 DNA实验技术方法汇总
染色质免疫共沉淀(ChIP)染色质免疫共沉淀可以:(1)组蛋白修饰酶的抗体作为“生物标记”;(2)转录调控分析;(3)药物开发研究;(4)DNA损失与凋亡分析。
1实验方法原理:在保持组蛋白和DNA联合的同时,通过运用对应于一个特定组蛋白标记的生物抗体,染色质被切成很小的片断,并沉淀下来。
IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“prorein A”特异性地结合到免疫球蛋白的FC片段的现象活用开发出来的方法。
目前多用精制的prorein A预先结合固化在argarose的beads上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原达到精制的目的。
2实验材料、试剂、仪器耗材:细胞样品甲醛、甘氨酸、PBS、SDS、Lysis Buffer、洗脱液、RNaseA、蛋白酶K、omega胶回收试剂盒等离心管、超声仪、电泳仪、离心机等3实验步骤:一、细胞的甲醛交联与超声破碎(第一天)1. 取出1平皿细胞(10 cm平皿),加入243 ul 37%甲醛,使得甲醛的终浓度为1%(培养基共有9 ml)。
2. 37℃孵育10 min。
3. 终止交联:加甘氨酸至终浓度为0.125 M。
450 ul 2.5 M甘氨酸于平皿中。
混匀后,在室温下放置5 min即可。
4. 吸尽培养基,用冰冷的PBS清洗细胞2次。
5. 细胞刮刀收集细胞于15 ml离心管中(PBS依次为5 ml,3 ml和3 ml)。
预冷后2 000 rpm 5 min收集细胞。
6. 倒去上清。
按照细胞量,加入SDS Lysis Buffer。
使得细胞终浓度为每200ul含2×106个细胞。
这样每100 ul溶液含1×106个细胞。
再加入蛋白酶抑制剂复合物。
假设MCF7长满板为5×106个细胞。
本次细胞长得约为80%。
即为4×106个细胞。
因此每管加入400 ul SDS Lysis Buffer。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染色质免疫沉淀(ChIP)技术自我总结实验原理:ChIP是一项比较流行的研究转录因子(transcription factor, TF)与启动子(promoter)相互结合的实验技术。
由于ChIP采用甲醛固定活细胞或者组织的方法,所以能比较真实的反映细胞内TF与Promoter的结合情况。
这个优势是EMSA这个体外研究核酸与蛋白相互结合的实验方法所不能比拟的。
当用甲醛处理时,相互靠近的蛋白与蛋白,蛋白与核酸(DNA或RNA)之间会产生共价键。
细胞内,当TF与Promoter相互结合(生物意义上的结合)时,它们必然靠的比较近,或者契合在一起,这个时候用甲醛处理,能使它们之间产生共价键。
ChIP的流程是:甲醛处理细胞——收集细胞,超声破碎——加入目的蛋白的抗体,与靶蛋白-DNA复合物相互结合——加入Protein A,结合抗体-靶蛋白-DNA复合物,并沉淀——对沉淀下来的复合物进行清洗,除去一些非特异性结合——洗脱,得到富集的靶蛋白-DNA复合物——解交联,纯化富集的DNA-片断——PCR分析。
PCR验证:在PCR分析这一块,比较传统的做法是半定量-PCR。
但是现在随着荧光定量PCR的普及,大家也越来越倾向于Q-PCR了。
此外还有一些由ChIP衍生出来的方法。
例如RIP(其实就是用ChIP的方法研究细胞内蛋白与RNA的相互结合,具体方法和ChIP差不多,只是实验过程中要注意防止RNase,最后分析的时候需要先将RNA 逆转录成为cDNA);还有ChIP-chip(其实就是ChIP富集得到的DNA-片段,拿去做芯片分析,做法在ChIP的基础上有所改变,不同的公司有不同的做法,要根据公司的要求来准备样品)。
具体实验步骤:第一天:(一)、细胞的甲醛交联与超声破碎。
1、取出1平皿细胞(10cm平皿),加入243ul 37%甲醛,使得甲醛的终浓度为1%。
(培养基共有9ml)2、37摄氏度孵育10min。
3、终止交联:加甘氨酸至终浓度为0.125M。
450ul 2.5M甘氨酸于平皿中。
混匀后,在室温下放置5min即可。
4、吸尽培养基,用冰冷的PBS清洗细胞2次。
5、细胞刮刀收集细胞于15ml离心管中(PBS依次为5ml,3ml和3ml)。
预冷后2000rpm 5min收集细胞。
6、倒去上清。
按照细胞量,加入SDS Lysis Buffer。
使得细胞终浓度为每200ul含2×106个细胞。
这样每100ul 溶液含1×106个细胞。
再加入蛋白酶抑制剂复合物。
假设MCF7长满板为5×106个细胞。
本次细胞长得约为80%。
即为4×106个细胞。
因此每管加入400ul SDS Lysis Buffer。
将2管混在一起,共800ul。
7、超声破碎:VCX750,25%功率,4.5S冲击,9S间隙。
共14次。
(二)、除杂及抗体哺育。
8、超声破碎结束后,10,000g 4度离心10min。
去除不溶物质。
留取300ul做实验,其余保存于-80度。
300ul中,100ul加抗体做为实验组;100ul不加抗体做为对照组;100ul加入4ul 5M NaCl (NaCl终浓度为0.2M),65度处理4h解交联,跑电泳,检测超声破碎的效果。
9、在100ul的超声破碎产物中,加入900ul ChIP Dilution Buffer和20ul的50×PIC。
再各加入60ul Protein A Agarose/Salmon Sperm DNA。
4度颠转混匀1h。
10、1h后,在4度静置10min沉淀,700rpm离心1min。
11、取上清。
各留取20ul做为input。
一管中加入1ul 抗体,另一管中则不加抗体。
4度颠转过夜。
(三)、检验超声破碎的效果。
取100ul超声破碎后产物,加入4ul 5M NaCl,65度处理4h解交联。
分出一半用酚/氯仿抽提。
电泳检测超声效果。
第二天:(一)、免疫复合物的沉淀及清洗。
12、孵育过夜后,每管中加入60ul Protein A Agarose/Salmon Sperm DNA。
4度颠转2h。
13、4度静置10min后,700rpm离心1min。
除去上清。
14、依次用下列溶液清洗沉淀复合物。
清洗的步骤:加入溶液,在4度颠转10min,4度静置10min沉淀,700rpm 离心1min,除去上清。
洗涤溶液:a. low salt wash buffer—-one washb. high salt wash buffer—–one washc. LiCl wash buffer——one washd. TE buffer——two wash15、清洗完毕后,开始洗脱。
洗脱液的配方:100ul 10%SDS,100ul 1M NaHCO3,800ul ddH2O,共1ml。
每管加入250ul洗脱buffer,室温下颠转15min,静置离心后,收集上清。
重复洗涤一次。
最终的洗脱液为每管500ul。
16、解交联:每管中加入20ul 5M NaCl(NaCl终浓度为0.2M)。
混匀,65度解交联过夜。
第三天:(一)、DNA样品的回收17、解交联结束后,每管加入1ul RNaseA(MBI),37度孵育1h。
18、每管加入10ul 0.5M EDTA,20ul 1M Tris.HCl(PH 6.5),2ul 10mg/ml 蛋白酶K。
45度处理2h。
19、DNA-片段的回收―――omega胶回收试剂盒。
最终的样品溶于100ul ddH2O。
(二)、PCR分析技术总结(一)、关于细胞细胞的生长状态要好。
因为细胞的生长状态直接影响细胞内部的基因表达调控网络,也很有可能影响你所研究的TF与其靶Promoter的结合。
一般细胞长到75%-80%比较好。
(二)、关于抗体!抗体是实验成败的致命因素之一!必须是IP级别的抗体,另外如果经济条件许可的话,尽量买大厂的抗体。
不推荐国产抗体和santa cruz的抗体,即使是IP级别的。
单抗与多抗的选择也需要仔细考虑。
两种抗体各有利弊。
单抗特异性强,背景低。
但是单抗有一个致命的弱点,就是识别位点单一,而在ChIP甲醛交联的过程中,很有可能该位点被其它蛋白或核酸结合而被封闭,导致单抗不能识别靶蛋白。
多抗虽然没有这个问题,但是多抗特异性较差,背景可能会偏高。
一般而言,如果没有十足把握(单抗的识别位点远离靶蛋白与核酸结合的区域),选择多抗比较稳妥一些。
(三)、关于交联与超声破碎!这一块的确是ChIP实验中比较难把握的部分。
交联的程度会影响到超声破碎的效果,交联的程度越高,超声破碎就越不易把基因组打碎成小片段。
交联不充分,只有一部分靶蛋白与其Promoter相结合,富集得到的Promoter的量不高,实验假阴性。
交联过充分,基因组上结合了太多的蛋白,对超声破碎造成障碍。
另外也会增加背景。
一般来讲,按照我的经验,交联条件取决于细胞类型。
不同的细胞系,交联的条件也不一样。
例如:NIH-3T3的交联条件是室温(25摄氏度)下15min,1%的甲醛浓度,而别的细胞系则可能完全不一样。
而超声破碎的条件,机器不一样,条件也不一样。
当然如果你有bioruptor这样的神器,那么超声破碎对你而言就是小菜一碟了。
一般,理想的超声破碎得到的片段大小是200bp-1000bp。
但是200bp-2000bp的范围也是可以接受的。
(四)、关于操作希望尽可能的保持低温(4度)。
沉淀的时候可以先在4度放置一会,等它自然沉降一些,再超低转速(500rpm等)离心使其完全沉降。
虽然说明书上说ChIP实验的过程中有几个可以停顿的地方,我还是希望你能够连续把它做完,直到PCR结果出来为止。
尽量避免实验中不可预知的影响因素。
(五)、关于解交联虽然说明书上说4小时已经足够,但是我还是希望你可以解交联过夜。
因为在那样的环境里,DNA不会降解,过夜解交联更充分些。
只是不要忘记在EP管口封上封口膜。
(六)、关于DNA-片段的回收需要注意的是:样品中SDS样品较高,普通的PCR产物回收试剂盒回收,很有可能会在最终的样品中混入SDS,影响PCR实验结果。
小Tip:过柱前,在样品中加入一定量的异丙醇,能有效的消除SDS沉淀。
染色质免疫沉淀(ChIP)实验中应注意的细节问题本文来自互联网搜索,仅供参考使用,最好实验条件需要自己摸索:1、cell counting:尽量做到准确,会影响input结果。
2、cross link:甲醛的终浓度是1%,这个基本所有的protocol上都会强调。
3、resuspend cells with SDS:一定要选用小的tip头,在液面下吹打,否则很容易产生气泡,后面的sonication就麻烦了。
4、sonication:ChIP中最重要的一部分,合适的条件要自己摸索,可以一次尝试不同次数的sonication,然后建议采用EZ-ChIP上推荐的方法看看sonication的效果如何。
5、加入salmon sperm DNA/Protein A or G之前要先混匀,因为salmon sperm DNA是很粘稠的物质,若不混匀,后面你会发现beads的量不一样,自然也会影响实验的结果。
6、wash 的时候前面几个步骤可以不用洗的太干净,但最后一个要尽量吸干净,必要时可用gel loading tips吸。
7、含beads的samples离心时,有的protocol上推荐是1000rpm,45秒,但可以根据情况调整,但要注意转速不能太快防止beads破碎。
(当然如果采用的是magnetic的beads就不存在这个问题)8、reverse crosslink可以是65°4个小时,也可以overnight。
9、reverse crosslink后的在进行下面步骤之前建议先离心,把蒸发到离心管盖子上的部分离下来。
10、每次行real time PCR之前都要把sample离心保证取样的准确。
11、1~10ul的枪取3ul以上才比较准确,所以考虑好自己PCR反应体系的配置。
Upstate生物技术公司chip试剂盒英文Protocol ChIP assay: Chromatin immunoprecipitation assay was performed according to the protocol of ChIP assay kit (Upstate Biotechnology, Lake Placid, NY).1, For cells cultured in 2D, about 1—2×107 S1 cells were growth in 100mm dish, and were cross-linked by adding formaldehyde to final concentration of 1% and incubated in room temperature for 10 minutes. For cells growth in 3D, cells were isolated from EHS using PBS/EDTA, and also cross-linked as cells growth in 2D.2, Wash cells twice using ice cold PBS containing protease inhibitors (1mM phenylmethylsulfonyl fluoride (PMSF), 1microgram/ml aprotinin and 1microgram/ml pepstatin A). Note: Add protease inhibitors to PBS just prior to use. PMSF has a half-life of approximately 30 minutes in aqueous solutions.3, Scrape cells into conical tube, Pellet cells for 4 minutes at 2000 rpm at 4℃.4, Cells were washed with PBS and resuspended in ChIP lysis buffer (1% SDS, 10mM EDTA, 50 mM Tris-HCl pH8.0) add protease inhibitors (inhibitors: 1mM PMSF, 1microgram/ml aprotinin and 1microgram/ml pepstatin A).. After incubated 10 minutes on ice, cells were sonicated to shear DNA to lengths between 200 and 1000 basepairs being sure to keep samples ice cold.5, Centrifuge samples (part A, step 7) for 10 minutes at 13,000 rpm at 4℃, and detected the OD260 of the lysates.6, Sonicated lysates were then diluted to OD260 2 with ChIP dilution buffer (). 60 ul protein A-agarose beads (Upstate Catalog # 16-157) was added to sonicated lysates and rotated at 4 for one hour to reduce the non-specific dinding.7, Pellet agarose by brief centrifugation and collect the supernatant fraction, 20ul of lystates were taken out as input control.9, Add the immunoprecipitating antibody (the amount will vary per antibody) to the 2ml supernatant fraction and incubate 2h at 4℃with rotation. For a negative control, perform a no-antibody immunoprecipitation by incubating the supernatant fraction with 60 microliters of Salmon Sperm DNA/Protein A Agarose Slurry for one hour at 4℃with rotation.10, Pellet agarose by gentle centrifugation (700 to 1000 rpm at 4℃, ~1min). Carefully remove the supernatant that contains unbound, non-specific DNA. Wash the protein A agarose/antibody/histone complex for 3-5 minutes on a rotating platform with 1ml of each of the buffers listed in the order as given below:Low salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH8.0, 150 mM NaCl); High salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH8.0, 500 mM NaCl); LiCl buffer (0.25 M LiCl, 1% NP-40, 1% SDC, 1 mM EDTA, 10 mM Tris-HCl pH8.0); TE buffer (20 mM Tris-HCl pH8.0, 1 mM EDTA pH8.0).11, Elute the histone complex from the antibody by adding 250 microliter elution buffer (1%SDS, 0.1M NaHCO3) to the pelleted protein A agarose/antibody/histone complex from step 10 above. Vortex briefly to mix and incubate at room temperature for 15 minutes with rotation. Spin down agarose, and carefully transfer the supernatant fraction (eluate) to another tube and repeat elution. Combine eluates (total volume=approximately 500 microliters.)12, Add 20 microliters 5M NaCl to the combined eluates (500 microliters) and reverse histone-DNA crosslinks by heating at 65℃for 4 hours.Note: Include the input DNA from this step.13, Add 10 microliters of 0.5M EDTA, 20 microliters 1M Tris-HCl, pH 6.5 and 2 microliters of 10mg/ml Proteinase K to the combined eluates and incubate for one hour at 45℃.14, Recover DNA by phenol/chloroform extraction and ethanol precipitation. Addition of an inert carrier, such as 20micrograms glycogen, helps visualize the DNA pellet. Wash pellets with 70% ethanol and air dry.15, Resuspend pellets in an appropriate buffer for PCR or slot-blot reactions. PCR or slot-blot conditions must be determined empirically.。