《概率论与数理统计》第二章基础知识小结
概率论与数理统计第二章笔记
![概率论与数理统计第二章笔记](https://img.taocdn.com/s3/m/4a28f0c28bd63186bcebbcf0.png)
交通学院 学号1126002026 姓名 吕立正 课堂笔记第二章 随机变量及其分布 §1.随机变量与分布函数一、随机变量的概念定义:假设Ω为试验E 的样本空间,对任意的ω∈Ω都赋予一个实数X (ω)与之对应,则实值函数X ()称为随机变量,一般用X ,Y ,Z 或者,ξη 注:1、Z (ω)由ω唯一确定2、随机变量X 与实数x 的区别3、对实数x ,事件{X ≤x}有一定的概率,P{X ≤x} 二、分布函数定义:设(Ω, ,P )为概率空间,还为定义在Ω上的随机变量,对任意x ∈R ,一元实值函数F (x )= P{X ≤x},称为r ,v ,X 的概率分布函数,简称分布函数 注:1、F (x )= P{X ≤x},x ∈R2、分布函数是指描述随机变量分布的根本方法3、分布函数的性质性质1、(单调性)对任意的12X X ≤,有F (1X )≤F (2X ) 注:P (a X b <≤)=F (b )-F (a )P (a X b ≤≤)= F (b )-F (a )+P (X=a )P (a X b ≤<)= F (b )-F (a )+P (X=a )-P (X=b ) P (a X b <<)= F (b )-F (a )-P (X=b ) P (X a ≤)= F (a ) P (a X <)=1- F (a ) 性质2、(有界性):0≤F (x )1≤ 性质3、()lim ()1x F F x →+∞+∞==()lim ()0x F F x →-∞-∞==性质4、(右连续性) 对任意x ∈R ,有F (x+0)=F (x )证明:设x A ={X ≤x+ 1n} 则123......A A A ⊇⊇⊇且n ={}n A X x +∞=-∞⋂≤所以F(x)=P{X ≤x}=P(1n n A ∞=⋂)=lim ()n n P A →+∞=n +11lim (x+)=lim ()n n P X F x n→+∞→∞≤+由F(x)的单调性 F(x)=F(x+0)例:设r.v.X 的分布函数为F(x)=A+Barctanx x ∈R 求待定系数A.B 由F(+∞)=1 F(-∞)=0 得到lim (arctan )12x A B x A B π→+∞+=+=lim(arctan x)=a-02x A B B π→∞+= 所以A=12 B= 1π第二节 离散型r .v .及其分布一.基本概念定义:设X 为样本空间Ω的随机变量,若存在一个有限或可列无限集B ,使得P{X ∈B}=1则称X 为离散型r . v . 设其所有可列取值为{k X } K=1.2.3……n …则k P =P (X=k X ) K=1.2.3…..n …则称为X 的概率分布列[注]:1.概率分布列是描述离散型随机变量的概率分布的方法之一分布矩阵1212........................n n x x x p p p ⎛⎫⎪⎝⎭3.非负性:k P >0.k=1.2….. 归一性:K kP ∑=14.求离散型r . v . 分布列的步骤Step1:列出r . v . X 的所有可能取值 Step2:计算几个取值对应的概率例:甲乙两队进行比赛,规定谁先赢三局获胜。
概率论与数理统计第二章笔记
![概率论与数理统计第二章笔记](https://img.taocdn.com/s3/m/e9d86c4d77c66137ee06eff9aef8941ea76e4b3c.png)
概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。
在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。
二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。
根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。
离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。
2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。
对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。
通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。
三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。
这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。
2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。
这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。
四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。
通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。
通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。
个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。
通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。
结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。
概率论与数理统计知识点总结(免费超详细版)
![概率论与数理统计知识点总结(免费超详细版)](https://img.taocdn.com/s3/m/07210572767f5acfa1c7cd76.png)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计期末复习重要知识点
![概率论与数理统计期末复习重要知识点](https://img.taocdn.com/s3/m/466f7c19cf84b9d528ea7acf.png)
概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
概率论第2章总结
![概率论第2章总结](https://img.taocdn.com/s3/m/4977ed1e700abb68a882fb5d.png)
第二章 随机变量的散布及其数字特点一、内容提要(一)随机变量及其散布函数 1.随机变量设随机实验E 的样本空间为Ω,若是关于每一个样本点Ω∈ω,有一个实数X (ω)与之对应,且对任意的实数x ,()X x ω≤的概率都存在,那么称X (ω)为随机变量,简记为X. 2.随机变量的散布函数设X 为随机变量,x 为任意实数,那么函数 F (x )=P{X≤x },-∞<x <+∞ 称为随机变量X 的散布函数. 散布函数F (x )的性质: (1)0≤F(x )≤1,-∞<x <+∞ (2)F (x )是x 的非减函数 (3)F(-)lim ()0,()lim ()1x x F x F F x →-∞→-∞∞==+∞==;(4)F (x+0)=F (x ),即F (x )关于x 右持续. (二)离散型随机变量的概率散布 1.离散型随机变量若是随机变量X 所有可能的取值为有限个或无穷可列个,那么称X 为离散型随机变量。
2.概率散布若是离散型随机变量X 所有可能的取值为x 1,x 2,…,x k ,…,且取这些值的概率为{},1,2,...k k P X x p k ===那么称{},(1,2,...)k k P X x p k ===为随机变量X 的概率散布或散布律.X 的概率散布,也经常使用表格形式表示,如表2-1所示.表 2-1X x 1 x 2 … k x … p kP 1P 2…p k…3.概率散布的性质(1)p k ≥0,k =1,2,…(2).11=∑∞=k kp4.散布函数离散型随机变量X 的散布函数是一个阶梯形右边续函数:{}{}∑∑≤≤===≤=xx kkxx k k px X P x X P x F )((三)持续型随机变量的密度函数 1.持续型随机变量及其密度函数设随机变量X 的散布函数为F (x ),假设存在非负可积函数f (x ),使对任意的实数x ,有{}⎰∞-=≤=dxx f x X P x F x )()(那么称X 为持续型随机变量,而且称f (x )为X 的密度函数. 2.密度函数的性质 (1)f (x )≥0,(-∞<x <+∞); (2)⎰=+∞∞-1)(dx x f ;(3)持续型随机变量X 取任一实数a 的概率为0,即P {X=a }=0; (4)P {a≤X≤b }=P {a≤X <b }=P {a <X≤b }= P {a <X <b }=F(b)-F (a )=⎰badxx f )((5)若是f (x )在点x 处持续,那么F ′(x )=f (x ); (6)持续型随机变量X 的散布函数F (x )是x 持续函数.3.标准正态散布变量的分位数设X~N (0,1).关于给定的α(0<α<1),假设存在u α,使得 {}αα-=≤1u X P那么称u α为标准正态散布的双侧分位数,当α=,,时,u α别离等于,,. (四)随机变量函数的散布 1.随机变量函数X 为随机变量,那么X 的函数Y=g (X )也是一个随机变量,且当X 取值x 时,Y 取值y=g(x ),称Y 为随机变量X 的函数. 2.离散型随机变量函数的概率散布的求法 设随机变量X 的概率散布如表2-2所示. 表 2-2 X x 1 x 2 … x k… p P P …p …那么随机变量函数Y=g (X )是离散型随机变量,Y 的概率散布可借助于X 的概率散布求得.求Y=g(X)的概率散布的方式步骤是:(1)确信Y 的所有可能取值y k =g(x k )(k =1,2,…)并列表,如表2-3所示. 表 2-3X y 1 y 2 … y k … p k P 1 P 2 … p k … (2)确信Y=g(X)的概率散布.1)若是对不同的x k ,y k =g (x k ),(k =1,2,…)的值各不相同,那么表2-3即为Y=g (X )的概率散布表。
概率论与数理统计各章重点知识整理
![概率论与数理统计各章重点知识整理](https://img.taocdn.com/s3/m/c7ae666ba417866fb84a8ea4.png)
概率论与数理统计各章重点知识整理 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,.六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w+---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
概率论与数理统计(经管类)第二章知识点总结
![概率论与数理统计(经管类)第二章知识点总结](https://img.taocdn.com/s3/m/aee837c8bb4cf7ec4afed0ed.png)
第二章 随机变量及其概率分布1. 离散型随机变量()01k K K KP X x p p ==≥⎧⎪⎨=⎪⎩∑ 例1 设 ,则3.02.05.01=--=c------------------------------------------------------------------------------------------------ 8.知识点:离散型随机变量的分布律性质下列各表中可作为某随机变量分布律的是( ) A . B .C .D .答案:C解:A 事件概率不可能为负值 B ,D1i iP ≠∑返回:第二章 随机变量及其概率分布------------------------------------------------------------------------------------------------2.常见离散型随机变量(1)0—1分布:设X ~),1(p B ,则应用背景:一次抽样中,某事件A 发生的次数X ~),1(p B ,其中EX X P A P p ====)1()(例2 设某射手的命中率为p ,X 为其一次射击中击中目标的次数,则X ~),1(p B(2)二项分布:设X ~),(p n B ,则()(1),0,1,2,,k k n kn P X k C p p k n -==-=应用背景:n 次独立重复抽样中某事件A 发生的次数X ~),(p n B ,其中()p P A =为事件A 在一次抽样中发生的概率。
例3 某射手的命中率为0.8,X 为其5次射击中命中目标的次数,则X 取的可能值为5,,1,0 ,52()0.80.2k k k P X k C -==,即X ~)8.0,5(B记住:若X ~),(p n B ,则np EX =,)1(p np DX -=------------------------------------------------------------------------------------------------ 9.知识点:事件的关系及二项分布设每次试验成功的概率为)10(<<p p ,则在3次独立重复试验中至少成功一次的概率为( ) A .3)1(1p -- B .2)1(p p - C .213)1(p p C -D .32pp p ++答案:A解: 利用对立事件求解。
概率论与数理统计各章重点知识整理
![概率论与数理统计各章重点知识整理](https://img.taocdn.com/s3/m/b2a8874b14791711cd791712.png)
概率论与数理统计各章重点知识整理第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立. 2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立. 3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1)(3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2 )参数为μ,σ的正态分布 222)(21)(σμσπ--=x e x f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-y xdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度.2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f . (3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律.同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛),}{},{jji j j i p p y Y P y Y x X P ∙=====,}{},{∙=====i j i i j i p p x X P y Y x X P函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) 2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1) )1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。
概率论与数理统计总结之第二章
![概率论与数理统计总结之第二章](https://img.taocdn.com/s3/m/f70f9e69f5335a8102d2202a.png)
第二章 随机变量及其分布第一节 离散型随机变量离散型随机变量:若随机变量的取的值是有限个或可列无限多个,就叫做离散型随机变量 离散型随机变量的分布律:1)等式形式{},1,2,===k k P X x p k 且11∞==∑kk p2)表格形式:分布律性质:1. 0,1,2.....≥=k p k 2. 11∞==∑kk p步骤:1.找到所有可能取值2.算出每种取值的概率3.概率相加为1 方法:1.定取值:取值点就是分断点.2.概率:挨着减.3.三种重要的离散型随机变量: 1.(0-1)分布{}1(1),0,1(01)-==-=<<k k P X k p p k p2.二项分布(,)XB n p1)背景:独立地重复进行n 次实验,成功的次数服从二项分布. 2)若(,)XB n p ,则1(,1)--XB n p定义:若随机变量X 的可能有取值为0.1.2…n,而X 的分布律为()(1),0,1,2,...-==-=k kn k n P X k C p p k n其中01,1<<+=P p q 则称X 服从参数为n,p 的二项分布,记为(,)X B n pn 重伯努利试验伯努利试验:设试验E 只有两个可能结果:A 及A ,则称E 为伯努利试验,设P(A)=p(0<p<1),此时P(A )=1-p. 二项分布的应用:产品的合格与不合格,机器故障等 3.泊松定理:当X 服从二项分布,(,)XB n p ,若:lim 0(为常数),λλ→+∞=>n n np 则有:2lim ()(1),0,1,2,...!()λ--→+∞==-==k kk n knn e P X k C p p k n k泊松分布X ~P(λ)设随机变量X 所以可能取的值为0,1,2,…,而取各个值的概率为{}!λλ-===k k e p P X k k ,k=0,1,2,……其中λ>0是常数,则称X 服从参数为λ的泊松分布,记为X ~P(λ) 泊松分布的应用:某一时段时段内某一事件所发生的次数 第二节 非离散型随机变量:非离散型随机变量取任一指定点的实数值的概率都等于01.分布函数:设X 是一个随机变量,x 是任意实数,函数F(x)=P{X ≤x},(,)∈-∞+∞x 称为X 的分布函数 对于任意实数1x ,2x (1x <2x ),有122121{}{}{}()()<≤=≤-<=-P x X x P X x P X x F x F x随机变量的分布函数:定义:设X 是一个随机变量,对于任意实数x,令{}(),=≤-∞<<+∞F x P X x x 称()F x 为随机变量的概率分布函数,简称分布函数.利用分布函数()=X f x 求各种随机事件的概率: 1.{}()≤=P X a F a2.{}{}11()>=-≤=-P X a P X a F a3. {}(0)lim ()-→<=-=x aP X a F a F a 4. {}{}11(0)≥=-<=--P X a P X a F a5. {}{}{}()(0)==≤-<=--P X a P X a P X a F a F a6. {}{}{}()()<≤=≤-≤=-P a X b P X b P X a F b F a7. {}{}{}(0)(0)≤<=<-<=---P a X b P X b P X a F b F a8. {}{}{}(0)()<<=<-≤=--P a X b P X b P X a F b F a 9.{}{}{}()(0)≤≤=≤-<=--P a X b P X b P X a F b F a2. 分布函数的基本性质: 1) 非负性:0()1≤≤F x2) 规范性:()lim ()0,()lim ()1→-∞→+∞-∞==+∞==x x F F x F F x3) 单调不减性:对任意1212,()()<≤x x F x F x (函的的单调性判断可通过求导:导数大0,增,小于0,减) 4) 右连续性:()(0)lim ()()+→=+=+=x F x F x F x x F x性质2.4可用来确定分布函数中的未知参数.(只要分布函数含有未知参数,就用这两条来推得) 1.2.3.4是一个函数能够成为某一随机变量分布函数的充要条件.(4条共用以判定是否为分布函数)已知X 的分布函数F(x),可求出:{}{}{}()()()1()≤=<≤=->=-P X b F b P a X b F b F a P X b F b第三节 连续型随机变量1. 连续型随机变量及其概率密度定义:若对于随机变量X 的分布函数F(x),存在非负函数f(x),使对于任意实数x 有()()-∞=⎰xF x f t dt,则称X 为连续型随机变量, 概率密度的性质:1.f(x)≥0,(-∞≤≤+∞x )(非负性)2.()1∞-∞=⎰f x dx (规范性)(作用:可用来定义未知参数)(介于()=y f x 与X 轴之间在面积等G .)(1.2是判断一个函数是否是密度函数的充要条件) 3.{}()()(),<≤=-=≤⎰ba P a Xb F b F a f x dx a b(作用:求概率)(落在区间(a.b ]的概率是曲边梯形的积) (不论区间开闭,都一样,离散型无这性质) 4.分布函数()()-∞=⎰x F x f t dt是连续函数.5.连续型随机变量在任意点0x 取值概率0{}0==P X x6.若f(x)在点x 处连续,则有F ′(x)=f(x)(结合变上限积分的求导法则()*()()()-∞'==⎰xf x f t dtF x )(可用于已知分段函数求概率密度) 注意: 1.()()-∞=⎰x F t f t dt()F t 一定连续,但()f t 不一定连续.2. 0()1≤≤F x ()f x 不是概率,概率密度.()∆f x x 是概率.3. ()f x 大小可以反映概率的大小.当()f x 为分段函数时,F(x)也是分段函数,二者有相同的分段点. 均匀分布~(a,b)X U密度函数 1,,()0,其它⎧≤≤⎪-⎨⎪⎩a xb f x b a~(a,b)X U ,≤<≤a c d b ,则()-<<=-d c P c x d b a分布函数0,F(),,0,其它<⎧⎪-⎪≤≤⎨-⎪⎪⎩x a x a x a x b b a指数分布~()λX E密度函数 ,0(),0,0λλ-⎧>=⎨≤⎩x e x f x x分布函数1,0(),0,0λ-⎧->=⎨≤⎩x e x F x x正态分布2~(,)μσX N )密度函数22()21(),,2μσπσ--=-∞<<∞x f x ex标准正态~(0,1)X N概率密度 ()ϕx =2212πx e ,(-∞<<∞x )分布函数()Φx =2212π-∞⎰t xe dt (-∞<<∞x )正态分布曲线的性质:a) 曲线关于直线=x u 对称.对于任何0>h ,有:{}{},-<≤=≤<+P u h X u P u X u hb) 当=x u 取到最大值的时候,1(),2πσ=f u 在σ=±x u 处,曲线有拐点,曲线以x 轴为渐近线.c) 当σ取定,12<u u 时,212222()21()221()21()2μσμσπσπσ----==x x f x ef x e两条曲线可互相沿着X 轴平行移动而得,不改变形状,可见正太分布典线的位置完全由u 决定.d) 当u 取定,12σσ<时,221222()231()2421()21()2μσμσπσπσ----==x x f x ef x e可见,当σ越小,图形越尖锐.σ越大,图形越平缓,可见σ值刻画了正态随机变量取值的分散程度,σ越小分散程度越小,σ越大分散程度越大.其分布函数为:22()21()2μσπσ--=-∞⎰t x F x e dt()ϕx 的图形关于Y 轴对称.()ϕx 在x =0时取得最大值12π.特例:2()-∞=-∞⎰x F x e dx (2=tx )222()()22()212212πππ---∞∞⇒⇒-∞-∞∞⇒⇒-∞⎰⎰⎰t t t ted e dte dt标准正态分布函数的性质: a) ()1()Φ-=-Φx x b) ()()ϕϕ-=x x c)1(0)2Φ=d) {}2()1≤=Φ-P X a a 解决正态分布的步骤:1) 正态标准化. 一般分布:X ~N(μ,2σ)通过线性变换:σ-=x uz 化成标准正态.2) 利用标准正态的对称性 3) 查表计算引理:若X ~N(μ,2σ),其分布函数为F(x),则: 1.{}()()σ-=≤=Φx uF x P X x (从一般正态到标准正态)2.{}{}{}{}()()σσ<≤=≤≤=≤<--=<<=Φ-ΦP a X b P a X b P a X b b ua uP a X b3. {}{}1()σ->=≥=-Φa uP X a P X a第四节 随机变量函数的概率分布1. 离散型随机变量函数的概率分布概率对应 顺序重排2. 连续型随机变量函数的概率分布其概率密度为 '[()](),(),0,其他αβ⎧<<⎪=⎨⎪⎩X Y f h y h y y f y()h y 是根据()=Y g x 所求得的反函数()=x h y()'h y 是对反函数求导。
(完整版)概率论与数理统计知识点总结(免费超详细版)
![(完整版)概率论与数理统计知识点总结(免费超详细版)](https://img.taocdn.com/s3/m/a5c6afdffe4733687f21aa6c.png)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计复习资料知识点总结
![概率论与数理统计复习资料知识点总结](https://img.taocdn.com/s3/m/2775e5f61eb91a37f1115cd7.png)
《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论-第2章-小结[7页]
![概率论-第2章-小结[7页]](https://img.taocdn.com/s3/m/6fb5d104be23482fb4da4cce.png)
3
小结
01 知识点归纳 02 教学要求和学习建议
2 教学要求和学习建议
(1) 理解随机变量及其分布函数的概念,掌握其性质。 (2) 理解离散型随机变量及其分布律的概念和性质;熟练掌握二项
分布、泊松分布等常用分布及其应用。 (3) 理解连续型随机变量及其概率密度的概念和性质;熟练掌握正
概率论与数理统计(慕课版)
第2章 随机变量及其分布
本章小结
主讲教师 |
1Hale Waihona Puke 本章小结01 知识点归纳 02 教学要求和学习建议
1 知识点归纳
随机变量及其分布
分布函数 离散型随机变量
连续型随机变量
分布律 常用分布 概率密度 常用分布
二项分布 泊松分布 几何分布 超几何分布
正态分布 指数分布 均匀分布
离散型随机变量函数的分布 随机变量函数的分布
工具——掌握 使用——熟练 转换——灵活
离散型随机变量函数的分布 随机变量函数的分布
连续型随机变量函数的分布
6
概率论与数理统计(慕课版)
学海无涯,祝你成功!
主讲教师 |
态分布、指数分布和均匀分布及其应用。 (4) 会利用分布律、概率密度及分布函数计算有关事件的概率。 (5) 会求简单的随机变量函数的概率分布。
5
2 教学要求和学习建议
随机变量及其分布
分布函数 离散型随机变量
连续型随机变量
分布律 常用分布 概率密度 常用分布
二项分布 泊松分布 几何分布 超几何分布
正态分布 指数分布 均匀分布
概率论与数理统计知识点总结(详细)
![概率论与数理统计知识点总结(详细)](https://img.taocdn.com/s3/m/fb66a208f5335a8102d220b2.png)
《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑=§5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计第二章笔记
![概率论与数理统计第二章笔记](https://img.taocdn.com/s3/m/b3811a73a417866fb84a8eb7.png)
第二章 随机变量及其分布 §1.随机变量与分布函数一、随机变量的概念定义:假设Ω为试验E 的样本空间,对任意的ω∈Ω都赋予一个实数X (ω)与之对应,则实值函数X ()称为随机变量,一般用X ,Y ,Z 或者,ξη 注:1、Z (ω)由ω唯一确定2、随机变量X 与实数x 的区别3、对实数x ,事件{X ≤x}有一定的概率,P{X ≤x} 二、分布函数定义:设(Ω, ,P )为概率空间,还为定义在Ω上的随机变量,对任意x ∈R ,一元实值函数F (x )= P{X ≤x},称为r ,v ,X 的概率分布函数,简称分布函数 注:1、F (x )= P{X ≤x},x ∈R2、分布函数是指描述随机变量分布的根本方法3、分布函数的性质性质1、(单调性)对任意的12X X ≤,有F (1X )≤F (2X ) 注:P (a X b <≤)=F (b )-F (a )P (a X b ≤≤)= F (b )-F (a )+P (X=a )P (a X b ≤<)= F (b )-F (a )+P (X=a )-P (X=b ) P (a X b <<)= F (b )-F (a )-P (X=b ) P (X a ≤)= F (a ) P (a X <)=1- F (a ) 性质2、(有界性):0≤F (x )1≤ 性质3、()lim ()1x F F x →+∞+∞==()lim ()0x F F x →-∞-∞==性质4、(右连续性) 对任意x ∈R ,有F (x+0)=F (x ) 证明:设x A ={X ≤x+1n} 则123......A A A ⊇⊇⊇且n ={}n A X x +∞=-∞⋂≤所以F(x)=P{X ≤x}=P(1n n A ∞=⋂)=lim ()n n P A →+∞=n +11lim (x+)=lim ()nn P X F x n→+∞→∞≤+由F(x)的单调性 F(x)=F(x+0)例:设r.v.X 的分布函数为F(x)=A+Barctanx x ∈R 求待定系数A.B 由F(+∞)=1 F(-∞)=0 得到lim (arctan )12x A B x A B π→+∞+=+=lim (arctan x )=a-02x A B B π→∞+= 所以A=12B=1π第二节 离散型r .v .及其分布一.基本概念定义:设X 为样本空间Ω的随机变量,若存在一个有限或可列无限集B ,使得P{X ∈B}=1则称X 为离散型r . v . 设其所有可列取值为{k X } K=1.2.3……n …则k P =P(X=k X ) K=1.2.3…..n …则称为X 的概率分布列[注]:1.概率分布列是描述离散型随机变量的概率分布的方法之一分布矩阵1212........................n n x x x p p p ⎛⎫⎪⎝⎭3.非负性:k P >0.k=1.2….. 归一性:K kP ∑=14.求离散型r . v . 分布列的步骤Step1:列出r . v . X 的所有可能取值 Step2:计算几个取值对应的概率例:甲乙两队进行比赛,规定谁先赢三局获胜。
《概率论与数理统计》第二章基础知识小结
![《概率论与数理统计》第二章基础知识小结](https://img.taocdn.com/s3/m/ee8b90e9a300a6c30d229fdc.png)
《概率论与数理统计》第二章基础知识小结第二章、基础知识小结一、 离散型分布变量分布函数及其分布律 1. 定义:),3,2,1(}{ ===i p x X P i iX1x 2x 3x … k x …P1p 2p 3p … k p …2.分布律}{k p 的性质: (1);,2,1,0 =≥k p k (2)11=∑∞=k k p3.离散型随机变量的分布函数:∑≤=≤=xx kk px X P x F }{)(4.分布函数F (X )的性质: (1)1)(0≤≤x F(2))(x F 是不减函数,0)()(}{1221≥-=≤<x F x F x X x P(3)1)(,0)(=+∞=-∞F F ,即1)(lim ,0)(lim ==+∞→-∞→x f x f x x (4))(x F 右连续,即)()(lim )0(0x F x x F x F x =∆+=+→∆(5))()(}{}{}{a F b F a X P b X P b X a P -=≤-≤=≤<)(1}{1}{a F a X P a X P -=≤-=>5.三种常见的离散型随机变量的概率分布(1)0-1分布(),1(~p B X )X 0 1 Pp q(2)二项分布(),(~p n B X )n k q p C k X P p kn k k n k ,,2,1,0,}{ ====-(3)泊松分布()(~λP X ),,,2,1,0,!}{n k e k k X P p kk ====-λλ二、连续型随机变量分布函数及其概率密度 1.连续型随机变量的分布函数即概率密度定义:dt t f x X P x F x⎰∞-=<=)(}{)(其中,)(x F 为X 的分布函数,)(x f 为X 的概率密度。
2.概率密度的性质 (1)0)(≥x f (2)1)(=⎰+∞∞-dx x f(3)dx x f a F b F b X a P ba ⎰=-=≤<)()()(}{ (4))()(x f x F ='3.三种常见的连续型随机变量 (1)均匀分布(),(~b a U X )⎪⎩⎪⎨⎧≤≤-=其他,0,1)(b x a a b x f(2)指数分布()(~λE X )⎩⎨⎧≤>=-0,00,)(x x e x f x λλ(3)正态分布(),(~2σμN X )+∞<<-∞=--x ex f x ,21)(222)(σμσπ(4)标准正态分布()1,0(~N X )及其性质+∞<<-∞=-x ex f x ,21)(22π性质:A.)(1)(x x ΦΦ-=-B.21)0(=Φ(5)非标准正态分布标准化 设),(~2σμN X ,则z =x −μσ~N(0,1)三、随机变量函数的概率分布 1.离散型随机变量函数的概率分布 设离散型随机变量X 的分布律为:X1x 2x 3x …k x …P1p 2p 3p …k p …则X 的函数)(X g Y =的分布律为:X)(1x g )(2x g )(3x g … )(k x g …P1p 2p 3p …k p …2.连续型随机变量函数的分布设X 的连续型随机变量,其概率密度为)(x f X 。
《概率论与数理统计》复习-知识归纳整理
![《概率论与数理统计》复习-知识归纳整理](https://img.taocdn.com/s3/m/07b41de077eeaeaad1f34693daef5ef7ba0d122c.png)
《概率论与数理统计》复习大纲第一章 随机事件与概率基本概念随机试验E----指试验可在相同条件下重复举行,试验的结果具有多种可能性(每次试验有且仅有一个结果闪现,且事先知道试验可能闪现的一切结果,但不能预知每次试验确实切结果。
样本点ω ---随机试验E的每一具可能闪现的结果样本空间Ω----随机试验E的样本点的全体随机事件-----由样本空间中的若干个样本点组成的集合,即随机事件是样本空间的一具子集。
必然事件---每次试验中必然发生的事件。
不可能事件∅--每次试验中一定不发生的事件。
事件之间的关系包含A⊂B相等A=B对立事件,也称A的逆事件互斥事件AB=∅也称不相容事件A,B相互独立P(AB)=P(A)P(B)例1事件A,B互为对立事件等价于( D )A、A,B互不相容B、A,B相互独立C、A∪B=ΩD、A,B构成对样本空间的一具剖分例2设P(A)=0,B为任一事件,则(C )A、A=∅B、A⊂BC、A与B相互独立D、A与B互不相容事件之间的运算事件的交AB或A ∩B 例1设事件A、B满足A B¯=∅,由此推导不出(D)A、A⊂BB、A¯⊃B¯C、A B=BD、A B=B例2若事件B与A满足B – A=B,则一定有(B)A、A=∅B、AB=∅C、AB¯=∅D、B=A¯事件的并A∪B事件的差A-B 注意:A-B= A B= A-AB = (A∪B)-BA1,A2,…,An构成Ω的一具完备事件组(或分斥)−−指A1,A2,…,An两两互不相容,且∪i=1nAi=Ω运算法则交换律A∪B=B∪A A∩B=B∩A结合律(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C)分配律(A∪B)∩C=(AC)∪(BC) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律A∪B=A∩B A∩B=A∪B文氏图事件与集合论的对应关系表记号概率论集合论Ω样本空间,必然事件全集∅不可能事件空集ω基本事件元素A 事件全集中的一具子集A A的对立事件A的补集A⊂B 事件A发生导致事件B发生A是B的子集A=B 事件A与事件B相等A与B相等A∪B 事件A与事件B至少有一具发生A与B的并集AB 事件A与事件B并且发生A与B的交集知识归纳整理A-B事件A 发生但事件B 不发生A 与B 的差集 AB=∅ 事件A 与事件B 互不相容(互斥) A 与B 没有相同的元素古典概型 古典概型的前提是Ω={ω1,ω2, ω3,…, ωn ,}, n 为有限正整数,且每个样本点ωi 出现的可能性相等。
考研数学《概率论与数理统计》知识点总结
![考研数学《概率论与数理统计》知识点总结](https://img.taocdn.com/s3/m/c925eed465ce0508763213ba.png)
第一章概率论的基本概念第五章ﻩ大数定律及中心极限定理伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,Xn,…相互独立并服从同一分布,且E(X k)=μ,D(Xk)=σ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(Xk)=σ k2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤xp.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,Xn是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.~近似的min Q1 M Q3 max第七章ﻩ参数估计正态总体均值、方差的置信区间与单侧置信限(置信水平为)1122。
(完整版)概率论与数理统计知识点总结
![(完整版)概率论与数理统计知识点总结](https://img.taocdn.com/s3/m/3819862bce2f0066f433220b.png)
第1章随机事件及其概率在第二步某事件发生条件下第一步某事件的概率,就用贝叶斯公式我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发生或A 不发生;n次试验是重复进行的,即 A 发生的概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发 生与否是互不影响的。
这种试验称为伯努利概型,或称为 n 重伯努利试验。
用P 表示每次试验A 发生的概率,则A 发生的概率为1 p q ,用Pn (k ) 表示n 重伯努利试验中A 出现k (0 k n)次的概率,P n (k) C :P k q nkk 0,1,2, ,n5第二章随机变量及其分布(1)设离散型随机变量X 的可能取值为X k (k=1,2,…)且取各个值的概率, 即事件(X=X k )的概率为P(X=x k )=p k , k=1,2,…, 则称上式为离散型随机变量 X 的概率分布或分布律。
有时也用分 布列的形式给出: X | x 1,x 2, , x k ,P(X x k ) p 1, p 2,, p k ,。
显然分布律应满足下列条件:p k 1(1 )宀 0 , k1,2,, ( 2 ) k1(14)伯努利 概型散 随变 的 布(2 ) 设F (x )是随机变量X 的分布函数,若存在非负函数f(x ),对任意实数X ,有XF(x) f (x)dx则称X 为连续型随机变量。
f (X )称为X 的概率密度函数或密度函数, 简称概率密度。
密度函数具有下面4个性质:分布仁 f(x) 03、P(X i X X 2) F(X 2)F(X J f (x)dxX i4、P(x=a)=O,a为常数,连续型随机变量取个别值的概率为 0连 型 机 量 续 随变 的 密度2、f(x)dx 1。
第三章二维随机变量及其分布如果二维随机向量 (X , Y )的所有可能取值为至多可 列个有序对(x,y ),则称 为离散型随机量。
设=(X ,Y )的所有可能取值为(人『)(门1,2,),且事 件{= (X i ,y j )}的概率为 p ij,,称P {(X,Y ) (X i ,y j )} P j (i,j 1,2,)为=(X ,Y )的分布律或称为 X 和Y 的联合分布律。