竖曲线计算范例

合集下载

竖曲线高程计算公式(一)

竖曲线高程计算公式(一)

竖曲线高程计算公式(一)竖曲线高程计算公式在土木工程和道路设计中,竖曲线是指公路或铁路沿纵向发生变化的曲线。

通过计算竖曲线的高程,我们可以确定道路或铁路的纵向轮廓,确保车辆或列车在垂直方向上的安全行驶。

本文将介绍竖曲线高程计算公式的相关内容,并提供示例说明。

标准竖曲线要素在计算竖曲线高程之前,我们需要了解一些标准竖曲线的要素,包括以下几个参数:1.起点高程(E1):竖曲线的起点高程,通常为已知值。

2.终点高程(E2):竖曲线的终点高程,也为已知值。

3.起点纵坡比(G1):起点的纵向坡度,表示每单位水平距离对应的竖向高度变化。

4.终点纵坡比(G2):终点的纵向坡度,同样表示每单位水平距离对应的竖向高度变化。

5.曲线长度(L):竖曲线的水平长度,即起点到终点之间的距离。

6.曲线中点(P):竖曲线的中点,即起点和终点之间的一半距离。

通常情况下的竖曲线高程计算公式在绝大多数情况下,我们可以使用以下公式来计算竖曲线的高程:E = E1 + G1 * P + (4 * (E2 - E1) - (G1 + G2) * L) *(P / L) * (1 - (P / L))其中,E为竖曲线的任意点的高程。

示例说明我们来通过一个具体的示例来解释竖曲线高程计算公式的应用。

假设一条道路的起点高程为100米,终点高程为150米,起点纵坡比为,终点纵坡比为,曲线长度为200米。

现在我们需要计算该曲线上距离起点100米处的高程。

根据上述公式,我们可以依次计算:•起点到终点的水平距离为200米,因此曲线中点P为100米。

•根据公式,可得到:E = 100 + * 100 + (4 * (150 - 100) - ( + ) * 200)* (100 / 200) * (1 - (100 / 200))化简后计算得到:E = 100 + 3 + (4 * 50 - * 200) * *= 100 + 3 + (200 - 10) *= 100 + 3 +=因此,在距离起点100米处的位置,竖曲线的高程为米。

学习之竖曲线

学习之竖曲线

隧道内竖曲线计算当正线相邻坡段坡度差≥1‰,应设置竖曲线,竖曲线形式为圆曲线。

竖曲线计算公式如下:L=Rsh×λ/2000(L为竖曲线全长的一半,单位:m)y=x2/2R(y为竖曲线高度,单位:m)其中:Rsh—竖曲线半径(m),10000~20000m;x—竖曲线始点至计算纵距之距离,单位m;λ—为相邻竖曲线的代数差。

在设计图中,竖曲线的位置的标高应表示为:括号内的标高为未考虑竖曲线影响的标高,括号外的标高为已考虑竖曲线影响的标高。

一、竖曲线要素的计算公式相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。

1.二次抛物线基本方程:或ω:坡度差(%);L:竖曲线长度;R:竖曲线半径2.竖曲线诸要素计算公式竖曲线长度或竖曲线半径R: (前提:ω很小)L=Rω竖曲线切线长:T=L/2=Rω/2竖曲线上任一点竖距h:竖曲线外距:例题4-3ω=-0.09 凸形;L=Rω=2000*0.09=180mT=L/2=90mE=T2/2R=2.03m起点桩号=k5+030 - T =K4+940起始高程=427.68 - 5%*90=423.18m=k5+000-k4+940=60m 桩号k5+000处:x1切线高程=423.18+60*0.05=426.18m 2/2R=602/2*2000=0.90mh1=x1设计高程=426.18 - 0.90=425.28m=k5+100-k4+940=160m 桩号k5+100处:x2切线高程=423.18+160*0.05=431.18m 2/2R=1602/2*2000=6.40mh2=x2设计高程=431.18 - 6.40=424.78m。

竖曲线计算方法

竖曲线计算方法

竖曲线一、有关规定线路大中修纵断设计有关规定。

1. 设计坡长一般不短于该区段到发线有效长的一半,个别困难地段,应不短于200m。

2. 采用抛物线形竖曲线时,凡相邻坡段的坡段代数差大于2‰时,须设计竖曲线,竖曲线长度每20m的变坡率,凸形应不大于1‰,凹形应不大于0.5‰。

抛物线形竖曲线最好设计在平面曲线两端缓和曲线之外,仅在困难条件下,允许冲迭而不受缓和曲线的限制。

抛物线形竖曲线不能设计在无碴桥梁上。

3. 采用圆曲线形竖曲线时,凡相邻坡段的坡度代数差大于3‰时,须设计竖曲线。

竖曲线半径应根据运营条件采用20000-10000m;困难条件下不小于5000m。

圆曲线形竖曲线不应侵入缓和曲线、道岔及无碴桥梁上。

二、圆曲线形竖曲线的计算竖曲线的几何要素(如下图)及标高的近似计算式如下:切线长度: T=R/2000 ⊿i(m)竖曲线长度: C≈2T(m)竖曲线纵距: y≈x2/2R(m) 式中x——竖曲线横距(m)竖曲线外矢距 E=T2/2R(m)竖曲线标高 H=h±y(m) 式中 h——计算点的路肩设计标高(m);y——竖曲线上计算点的纵距,凹形竖曲线取“+”,凸竖曲线取“-”形。

不同半径的竖曲线纵距如表竖曲线纵距表y(m)不同半径的竖曲线要素如表竖曲线要素表(m)三、抛物线形竖曲线的计算抛物线形竖曲线在作为竖曲线使用的范围内,曲率变化非常小,在工程实施上与圆曲线形竖曲线无甚差别,即实质上是大半径的圆曲线形竖曲线,其换算半径:R=1000⊿l/r(m)式中 ⊿l ——抛物线形竖曲线的短坡段长度(m ),一般采用20m ; r ——每一短坡段的变坡率(‰)。

⊿l 为20m ,R 与γ的对应关系如表3。

抛物线形竖曲线的几何要素及标高可沿用下列公式计算:⊿i=i 1+i 2 C ’=20⊿i/γ T ≈C ’/2 y ≈γ/40000x 2 E 0≈γ/40000T 2式中 i 1 i 2 ——坡度,用千分率表示; ⊿i ——两相邻坡段的坡度,代数差;y E 0 ——根据表3换算;C ——抛物线形竖曲线长度,取整至m 。

竖曲线运算步骤及公式讲解

竖曲线运算步骤及公式讲解

1 / 2
竖曲线上高程计算
已知:①第一坡度:i 1(上坡为“+”,下坡为“-”)
②第二坡度:i 2(上坡为“+”,下坡为“-”)
③变坡点桩号:S Z
④变坡点高程:H Z
⑤竖曲线的切线长度:T
⑥待求点桩号:S
计算过程:
1、切线上任意点与竖曲线间的竖距h 通过推导可得:
==PQ h )()(2112li y l x R y y A A q p ---=-R
l 22= 2、竖曲线曲线长: L = R ω
3.竖曲线切线长: T= T A =T B ≈ L/2 =
2
ωR 4、竖曲线的外距: E =R T 22
5. 竖曲线上任意点至相应切线的距离:R
x y 22
= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ;
R —为竖曲线的半径,m 。

竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤
如下:
(1)计算竖曲线的基本要素:竖曲线长:L ;切线长:T ;外距:E 。

(2)计算竖曲线起终点的桩号: 竖曲线起点的桩号 = 变坡点的桩号-T
(3)计算竖曲线上任意点切线标高及改正值:
切线标高 = 变坡点的标高±(x T -)⨯i ;改正值:y=R
x 22 (4)计算竖曲线上任意点设计标高
某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高 + y
某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高- y
-----精心整理,希望对您有所帮助!。

竖曲线计算

竖曲线计算

2.3.1竖曲线计算(Ⅰ)计算竖曲线一:已知起点高程88m ,设变坡点1桩号为K1+500,高程为80m ,%0.5331-=i ,已知变坡点2桩号为K2+650,高程87,%0.6082=i ,竖曲线半径为9000m 。

1. 计算竖曲线要素141.1%)5333.0(%608.012=--=-=i i ω,为凹形。

曲线长:m R L 78.102%141.19000=⨯==ω 切线长:m L T 39.51278.1022=== 外 距:m R T E 146.09000289.51222=⨯== K0+500=80+0.146=80.1462. 计算竖曲线起终点桩号起点桩号8.6144K139.51)500K1(+=-+=起点高程m 234.80%)533.0(39.5180=-⨯-=终点桩号 1.3955K139.51)500K1(+=++=终点高程m 342.80%)608.0(39.5180=⨯+=3. 各桩号的设计高程的计算1. 桩号K1+450横距 X=K1+450-(K1+448.61) =1.39m ,竖距 Y=X 2/2R=1.392/(2×9000)=0.001m则K1+450的切线高程=80+(51.39-1.39)×0.533%=80.233m 设计高程=80.233+0.0001=80.233m .2.桩号K1+550横距 X=K1+551.39-(K1+550)=1.39m竖距 Y=X 2/2R=1.392/(2×9000)=0.001m则K1+550的切线高程=80+(51.30-1.39)×0608%=80.432m 设计高程=80.432+0.001=80.149m(Ⅱ)计算竖曲线二:已知变坡点2桩号为K2+650,高程87,%0.6082=i ,终点桩号为K3+879.852高80.554,%-0.5243=i ,竖曲线半径为12000m 。

竖曲线计算实例

竖曲线计算实例

第二节 竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采用平曲线或二次抛物线两种。

在设计和计算上为方便一般采用二次抛物线形式。

纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。

当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。

一、竖曲线如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。

当 i 1- i 2为正值时,则为凸形竖曲线。

当 i 1 - i 2 为负值时,则为凹形竖曲线。

(一)竖曲线基本方程式我国采用的是二次抛物线形作为竖曲线的常用形式。

其基本方程为:Py x 22=若取抛物线参数P 为竖曲线的半径 R ,则有:Ry x 22= Rx y 22=(二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距h 通过推导可得:==PQ h )()(2112li y l x R y y A A q p ---=-Rl 22=2、竖曲线曲线长: L = R ω3、竖曲线切线长: T= T A =T B ≈ L/2 =2ωR 4、竖曲线的外距: E =RT 22⑤竖曲线上任意点至相应切线的距离:Rx y 22=式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ;R —为竖曲线的半径,m 。

二、竖曲线的最小半径(一)竖曲线最小半径的确定1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。

(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。

竖曲线运算步骤及公式讲解

竖曲线运算步骤及公式讲解

竖曲线上高程计算
已知:①第一坡度:i 1(上坡为“+”,下坡为“-”)
②第二坡度:i 2(上坡为“+”,下坡为“-”)
③变坡点桩号:S Z
④变坡点高程:H Z
⑤竖曲线的切线长度:T
⑥待求点桩号:S
计算过程:
1、切线上任意点与竖曲线间的竖距h 通过推导可得:
==PQ h )()(2112li y l x R y y A A q p ---=-R
l 22= 2、竖曲线曲线长: L = R ω
3.竖曲线切线长: T= T A =T B ≈ L/2 =
2ωR
4、竖曲线的外距: E =R
T 22
5. 竖曲线上任意点至相应切线的距离:R
x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ;
R —为竖曲线的半径,m 。

竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下:
(1)计算竖曲线的基本要素:竖曲线长:L ;切线长:T ;外距:E 。

(2)计算竖曲线起终点的桩号: 竖曲线起点的桩号 = 变坡点的桩号-T
(3)计算竖曲线上任意点切线标高及改正值:
切线标高 = 变坡点的标高±(x T -)⨯i ;改正值:y=R
x 22 (4)计算竖曲线上任意点设计标高
某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高 + y 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高- y。

道路竖曲线计算

道路竖曲线计算

道路竖曲线计算第⼆节竖曲线设计纵断⾯上相邻两条纵坡线相交的转折处,为了⾏车平顺⽤⼀段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采⽤平曲线或⼆次抛物线两种。

在设计和计算上为⽅便⼀般采⽤⼆次抛物线形式。

纵断⾯上相邻两条纵坡线相交形成转坡点,其相交⾓⽤转坡⾓表⽰。

当竖曲线转坡点在曲线上⽅时为凸形竖曲线,反之为凹形竖曲线。

⼀、竖曲线如图所⽰,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡⾓为ω= i 1-i 2 ,其中i 1、i 2为本⾝之值,当上坡时取正值,下坡时取负值。

当 i 1- i 2为正值时,则为凸形竖曲线。

当 i 1 - i 2 为负值时,则为凹形竖曲线。

(⼀)竖曲线基本⽅程式我国采⽤的是⼆次抛物线形作为竖曲线的常⽤形式。

其基本⽅程为:Py x 22=若取抛物线参数P 为竖曲线的半径 R ,则有:Ry x 22= Rx y 22=(⼆)竖曲线要素计算公式竖曲线计算图⽰1、切线上任意点与竖曲线间的竖距h 通过推导可得:==PQ h )()(2112li y l x R y y A A q p ---=-Rl 22=2、竖曲线曲线长: L = R ω3、竖曲线切线长: T= T A =T B ≈ L/2 =2ωR 4、竖曲线的外距: E =RT 22⑤竖曲线上任意点⾄相应切线的距离:Rx y 22=式中:x —为竖曲任意点⾄竖曲线起点(终点)的距离, m ;R —为竖曲线的半径,m 。

⼆、竖曲线的最⼩半径(⼀)竖曲线最⼩半径的确定1.凸形竖曲线极限最⼩半径确定考虑因素(1)缓和冲击汽车⾏驶在竖曲线上时,产⽣径向离⼼⼒,使汽车在凸形竖曲线上重量减⼩,所以确定竖曲线半径时,对离⼼⼒要加以控制。

(2)经⾏时间不宜过短当竖曲线两端直线坡段的坡度差很⼩时,即使竖曲线半径较⼤,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽⽽过,冲击增⼤,乘客不适;从视觉上考虑也会感到线形突然转折。

道路竖曲线计算

道路竖曲线计算

第二节竖曲线设计纵断血上相邻两条纵坡线相交的转折处,为了行车平顺用一段1111线来缓和,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采用半曲线或一•次抛物线两种。

在设计和计算上为方便般采用二次抛物线形式。

纵断血上相邻两条纵坡线相交形成转坡点,其相交角阳转坡角表示。

当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。

一、竖曲线如图所示,设相邻两纵坡坡度分別为八和则相邻两坡度的代数总艮卩转坡角为3 =i.-i2 ,其屮A、i2为木身之值,当上坡时取正值,下坡时取负值。

当ii-认为正值时,则为凸形竖曲线。

当h - 12为负值时,则为凹形竖曲线。

(一)竖曲线基本方程式我国采用的是一•次抛物线形作为竖曲线的常用形式。

具基木方程为:x2 = 2Pv若取抛物线参数P为竖曲线的半径R,则有:2x2 = 2Rv y = -^―‘ 2R(二)竖曲线要素计算公式|h = PQ =片_儿二五匕7尸-仞_ 〃J =养2、竖曲线曲线长: L = R33、竖曲线切线长:T= T A =T H〜L/2 =—24、竖I山线的外距:E =—2R2x⑤竖曲线上任总点至柑应切线的距离:y = —2R式中:x 一为竖曲任意点至竖曲线起点(终点)的距离,m:R—为竖Illi线的半径,恥二、竖曲线的最小半径(一)竖曲线最小半径的确定1.门形竖曲线极限最小半径确定考虑因索(1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上垂量减小,所以确定竖曲线半径时,对离心力要加以控制。

(2)经行时间不宜过短当竖曲线两端H线坡段的玻度羌很小时,即使竖1山线半径较人,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增人,乘客不适;从视觉上考虑也会感到线形突然转折。

因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。

(3)满足视距的要求汽车行驶在口形竖曲线上.如果竖Illi线半径太小.会阻描创机的视线。

3.竖曲线设计

3.竖曲线设计

纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,称为竖曲线。

在纵坡设计时.由于纵断面上只反映水平距离和竖直高度,因此竖曲线的切线长与弧长是其在水平面上的投影,切线支距是竖直的高程差,相邻两条纵坡线相交角用转坡角表示。

当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线:一、竖曲线要素计算公式如图1-3-6所示,设转坡处相邻两纵坡度分别为i1和i2,转坡角以w表示,则转坡角w为式中符号意义同前。

从以上两种情况的计算公式可知,式(1-3-12)计算结果明显大于式(1-3-10),因此是凸形竖曲线上满足视距要求的计算公式。

(二)按行程时间求竖曲线最小长度和半径汽车从直坡段驶入竖曲线时,当竖曲线的转坡角很小,即使半径较大,如果其竖曲线长度过短,汽车倏忽而过,冲击力大,旅客会感到不舒适,太短的竖曲线长度从视觉上也会感到线形突然转折。

因此,应限制汽车在竖曲线上的行程时间不宜过短.以此来控制竖曲线的最小长度和半径,即式中:v——计算行车速度,km/h;t——汽车在竖曲线上行程时间,一般取t=3s。

(三)按径向离心力求坚曲线最小长度和半径汽车在竖曲线上行驶时,产生径向离心力。

这个力在凸形竖曲线上是减少重力.在凹形竖曲线上是增加重力,如果这种离心力达到某种程度时,旅客就会有不舒适的感觉,同时对汽车的悬挂系统也有不利影响。

因此,应对径向离心力加以控制。

汽车在竖曲线上行驶时其径向离心力为式中:F——径向离心力,N;G——汽车的总重力,N;g——重力加速度,m/s2;V—计算行车速度,km/h;v——车速,m/s;R——竖曲线半径,m。

为保证车辆在竖曲线上行驶的安全和舒适,根据试验得知,一般应将F/G控制在0.025以内,则得竖曲线最小半径为:根据汽车在凸形竖曲线上行驶的视距要求,行程时间及径向离心力三种影响因素,分别计算出凸形竖曲线的最小长度和半径,取其中较大者作为确定依据。

各级公路的竖曲线最小长度和半径规定如表l-3-9所示。

竖曲线高程计算公式推导过程及计算流程

竖曲线高程计算公式推导过程及计算流程

竖曲线高程计算公式推导及计算流程1. 竖曲线介绍竖曲线是指在纵断面内,两个坡线之间为了延长行车视距或者减小行车的冲击力,而设计的一段曲线。

一般可以用圆曲线和抛物线来充当竖曲线。

由于圆曲线的计算量较大,所以,通常采用抛物线作为竖曲线,以减少计算量。

2. 竖曲线高程计算流程竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下:a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距Eb. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-Tc. 计算竖曲线上任意点切线标高及改正值: 切线标高=变坡点的标高±(x T -)⨯i 改正值:221x Ry =d. 计算竖曲线上任意点设计标高某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高+ y 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高-y3. 竖曲线高程计算公式推导已知条件:第一条直线的坡度为1i ,下坡为负值, 第一条直线的坡度为2i ,上坡为正值, 变坡点的里程为K ,高程为H , 竖曲线的切线长为B A T T T ==, 待求点的里程为X K 曲线半径R竖曲线特点:抛物线的对称轴始终保持竖直,即:X 轴沿水平方向,Y 轴沿竖直方向,从而保证了X 代表平距,Y 代表高程。

抛物线与相邻两条坡度线相切,抛物线变坡点两侧一般不对称,但两切线长相等。

竖曲线高程改正数计算公式推导 设抛物线方程为:()021≠++=a c bx ax y 设直线方程为:()02≠+=k b kx y由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得:00==b c ;分别对21y y 、求导可得:b ax y +=2'1k y ='2当0=x 时,由图可得:b i y ==1'1k i y ==1'2当L x =时,由图可得:12'12i aL i y +==由上式可得:RL L i i a 212212==-=ω 所以抛物线方程为:x i x Ry 12121+=直线方程为:x i y 12=对于竖曲线上任意一点P ,到其切线上Q 点处的竖直距离,即高程改正数y 为:21122121X RX i X i X R y y y P Q =-+=-= 竖曲线曲线元素推导竖曲线元素有切线长T 、外失距E 和竖曲线长L 三个元素,推导过程如下: 由图可知:2tan ω=R T 由于转角ω很小,所以可近似认为22tanωω=,因此可得:2ωR T =由图易得:ωR L = 将切线长T 带入到221x Ry =中可得 外失距RT E 22=4. 曲线高程计算示例已知:某条道路变坡点桩号为K25+460.00,高程为780.72.m ,i1=0.8%,i2=5%,竖曲线半径为5000m 。

竖曲线计算公式

竖曲线计算公式

第三节竖曲线纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。

可采用抛物线或圆曲线。

一、竖曲线要素的计算公式相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1ω为正时,是凹曲线;ω为负,是凸曲线。

2.竖曲线诸要素计算公式竖曲线长度或竖曲线半径R: (前提:ω很小)L=Rω竖曲线切线长:T=L/2=Rω/2竖曲线上任一点竖距h:竖曲线外距:例题4-3ω=-0.09 凸形;L=Rω=2000*0.09=180mT=L/2=90mE=T2/2R=2.03m起点桩号=k5+030 - T =K4+940起始高程=427.68 - 5%*90=423.18m 桩号k5+000处:x1=k5+000-k4+940=60m切线高程=423.18+60*0.05=426.18m h1=x21/2R=602/2*2000=0.90m设计高程=426.18 - 0.90=425.28m 桩号k5+100处:x2=k5+100-k4+940=160m切线高程=423.18+160*0.05=431.18m h2=x22/2R=1602/2*2000=6.40m设计高程=431.18 - 6.40=424.78m曲线放样心得—坐标法结合偏角法的桥梁---CAD关于曲线放样的方法有偏角法、坐标法、切线支距法等等,这里就不在做详细说明。

众所周知,在应用坐标法放样曲线时,缓和曲线上每10m要计算一个坐标点,圆曲线上每20m要计算一个坐标点,计算公式复杂、繁琐、而且容易出错(在没有坐标计算程序的前提下)。

本人在测量放样中总结、实践了一种比较简易的曲线坐标放样方法,具体过程如下:第一步:在CAD中画出要放样的曲线的切线方向。

(必须按照设计提供的坐标画)第二步:计算曲线要素,根据切线长度就可以定出ZH、HZ两点的放样坐标。

(以带有缓和的曲线为例)第三步:利用偏角计算公式分别计算缓和曲线上+10m、+20m……圆曲线上+10m、+20m……对应的偏角。

竖曲线运算步骤及公式讲解

竖曲线运算步骤及公式讲解

竖曲线上高程计算
已知:①第一坡度:i 1(上坡为“+”,下坡为“-”)
②第二坡度:i 2(上坡为“+”,下坡为“-”)
③变坡点桩号:S Z
④变坡点高程:H Z
⑤竖曲线的切线长度:T
⑥待求点桩号:S
计算过程:
1、切线上任意点与竖曲线间的竖距h 通过推导可得:
==PQ h )()(2112li y l x R y y A A q p ---=-R
l 22= 2、竖曲线曲线长: L = R ω
3.竖曲线切线长: T= T A =T B ≈ L/2 =
2ωR
4、竖曲线的外距: E =R
T 22
5. 竖曲线上任意点至相应切线的距离:R
x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ;
R —为竖曲线的半径,m 。

竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下:
(1)计算竖曲线的基本要素:竖曲线长:L ;切线长:T ;外距:E 。

(2)计算竖曲线起终点的桩号: 竖曲线起点的桩号 = 变坡点的桩号-T
(3)计算竖曲线上任意点切线标高及改正值:
切线标高 = 变坡点的标高±(x T -)⨯i ;改正值:y=R
x 22 (4)计算竖曲线上任意点设计标高
某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高 + y 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高- y。

竖曲线计算实例

竖曲线计算实例

第二节 竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓与,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采用平曲线或二次抛物线两种。

在设计与计算上为方便一般采用二次抛物线形式。

纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。

当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。

一、竖曲线如图所示,设相邻两纵坡坡度分别为i 1 与i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。

当 i 1- i 2为正值时,则为凸形竖曲线。

当 i 1 - i 2 为负值时,则为凹形竖曲线。

(一)竖曲线基本方程式我国采用的就是二次抛物线形作为竖曲线的常用形式。

其基本方程为:Py x 22=若取抛物线参数P 为竖曲线的半径 R ,则有:Ry x 22= Rx y 22=(二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距h 通过推导可得:==PQ h )()(2112li y l x R y y A A q p ---=-Rl 22=2、竖曲线曲线长: L = R ω3、竖曲线切线长: T= T A =T B ≈ L/2 =2ωR 4、竖曲线的外距: E =RT 22⑤竖曲线上任意点至相应切线的距离:Rx y 22=式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;R —为竖曲线的半径,m 。

二、竖曲线的最小半径(一)竖曲线最小半径的确定1、凸形竖曲线极限最小半径确定考虑因素 (1)缓与冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。

(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。

竖曲线计算实例

竖曲线计算实例

竖曲线计算实例第⼆节竖曲线设计纵断⾯上相邻两条纵坡线相交的转折处,为了⾏车平顺⽤⼀段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采⽤平曲线或⼆次抛物线两种。

在设计和计算上为⽅便⼀般采⽤⼆次抛物线形式。

纵断⾯上相邻两条纵坡线相交形成转坡点,其相交⾓⽤转坡⾓表⽰。

当竖曲线转坡点在曲线上⽅时为凸形竖曲线,反之为凹形竖曲线。

⼀、竖曲线如图所⽰,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡⾓为ω= i 1-i 2 ,其中i 1、i 2为本⾝之值,当上坡时取正值,下坡时取负值。

当 i 1- i 2为正值时,则为凸形竖曲线。

当 i 1 - i 2 为负值时,则为凹形竖曲线。

(⼀)竖曲线基本⽅程式我国采⽤的是⼆次抛物线形作为竖曲线的常⽤形式。

其基本⽅程为:Py x 22=若取抛物线参数P 为竖曲线的半径 R ,则有:Ry x 22= Rx y 22=(⼆)竖曲线要素计算公式竖曲线计算图⽰1、切线上任意点与竖曲线间的竖距h 通过推导可得:==PQ h )()(2112li y l x R y y A A q p ---=-Rl 22=2、竖曲线曲线长: L = R ω3、竖曲线切线长: T= T A =T B ≈ L/2 =2ωR 4、竖曲线的外距: E =RT 22⑤竖曲线上任意点⾄相应切线的距离:Rx y 22=式中:x —为竖曲任意点⾄竖曲线起点(终点)的距离, m ;R —为竖曲线的半径,m 。

⼆、竖曲线的最⼩半径(⼀)竖曲线最⼩半径的确定1.凸形竖曲线极限最⼩半径确定考虑因素(1)缓和冲击汽车⾏驶在竖曲线上时,产⽣径向离⼼⼒,使汽车在凸形竖曲线上重量减⼩,所以确定竖曲线半径时,对离⼼⼒要加以控制。

(2)经⾏时间不宜过短当竖曲线两端直线坡段的坡度差很⼩时,即使竖曲线半径较⼤,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽⽽过,冲击增⼤,乘客不适;从视觉上考虑也会感到线形突然转折。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲
课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计
教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。

重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。

难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。

第三节 竖曲线设计
纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。

竖曲线的形状,通常采用平曲线或二次抛物线两种。

在设计和计算上为方便一般采用二次抛物线形式。

纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。

当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。

一、竖曲线
如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。

当 i 1- i 2为正值时,则为凸形竖曲线。

当 i 1 - i 2 为负值时,则为凹形竖曲线。

(一)竖曲线基本方程式
我国采用的是二次抛物线形作为竖曲线的常用形式。

其基本方程为:
Py x 22=
若取抛物线参数P 为竖曲线的半径 R ,则有:
Ry x 22
= R
x y 22
= (二)竖曲线要素计算公式
竖曲线计算图示
1、切线上任意点与竖曲线间的竖距h 通过推导可得:
==PQ h )()(2112
li y l x R y y A A q p ---=-R
l 22=
2、竖曲线曲线长: L = R
ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =
2
ω
R 4、竖曲线的外距: E =R
T 22
⑤竖曲线上任意点至相应切线的距离:R
x y 22
= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ;
R —为竖曲线的半径,m 。

二、竖曲线的最小半径 (一)竖曲线最小半径的确定
1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击
汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。

(2)经行时间不宜过短
当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然
转折。

因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。

(3)满足视距的要求
汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。

为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。

2.凹形竖曲线极限最小半径确定考虑因素
(1)缓和冲击:
在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。

(2)前灯照射距离要求
对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。

(3)跨线桥下视距要求
为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。

(4)经行时间不宜过短
汽车在凹形竖曲线上行驶的时间不能太短,通常控制汽车在凹形竖曲线上行驶时间不得小于3秒钟。

a凸、凹形竖曲线都要受到上述缓和冲击、视距及行驶时间三种因素控制。

b竖曲线极限最小半径是缓和行车冲击和保证行车视距所必须的竖曲线半径的最小值,该值只有在地形受限制迫不得已时采用。

c通常为了使行车有较好的舒适条件,设计时多采用大于极限最小半径1.5~2.0倍,该值为竖曲线一般最小值。

我国按照汽车在竖曲线上以设计速度行驶3s行程时间控制竖曲线最小长度。

d各级公路的竖曲线最小长度和半径规定见教材表3-6所列,在竖曲线设计时,不但保证竖曲线半径要求,还必须满足竖曲线最小长度规定。

公路竖曲线最小半径和竖曲线最小长度表
3—6
三、竖曲线的设计和计算 (一)竖曲线设计
竖曲线设计,首先应确定合适的半径。

在不过分增加工程量的情况下,宜选择较大的竖曲线半径;只有当地形限制或其它特殊困难时,才选用极限最小半径。

从视觉观点考虑,竖曲线半径通常选用表3-6所列一般最小值的1.5~4.0倍,即如下表所示(见教材表3-7):
1.同向竖曲线:特别是两同向凹形竖曲线间如果直线坡段不长,应合并为单曲线或复曲线形式的竖曲线,避免出现断背曲线。

2.反向竖曲线:反向竖曲线间应设置一段直线坡段,直线坡段的长度一般不小于设计速度的3秒行程。

3.竖曲线设置应满足排水需要。

(二)竖曲线计算
竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下: (1)计算竖曲线的基本要素:竖曲线长:L ;切线长:T ;外距:E 。

(2)计算竖曲线起终点的桩号:竖曲线起点的桩号 = 变坡点的桩号-T
竖曲线终点的桩号 = 变坡点的桩号+T
(3)计算竖曲线上任意点切线标高及改正值:
切线标高 = 变坡点的标高±(x T -)⨯i ;改正值:y=R
x
22
(4)计算竖曲线上任意点设计标高 某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高- y 某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高 + y
〔例4-1〕:某山岭区二级公路,变坡点桩号为 K3+030 .00,高程为427 .68 ,前坡为上坡,i 1= +5%,后坡为下坡,i 2 = - 4%,竖曲线半径 R=2000m 。

试计算竖曲线诸要素以及桩号为 K3+000.00 和K3+100.00处的设计标高。

(1)计算竖曲线要素
ω= i 1 - i 2 = 5% - (-4%) =0.09 所以该竖曲线为凸形竖曲线 曲线长:L = R ω=2000 ×0.09 = 180 m 切线长:T = L/2 =180 / 2 = 90m
外距 : E =03.22000
29022
2=⨯=R T m
(2)竖曲线起、终点桩号
竖曲线起点桩号=(K3+030.00)- 90 = K2+940.00 竖曲线终点桩号= (K3+030.00) + 90 = K3 +120.00 (3)K3+000.00、K3+100.00的切线标高和改正值
K3+000.00的切线标高= 427.68 -(K3+030.00-K3+000.00)×5%= 426.18m
K3+000.00的改正值 =m K K 90.02000
2)00.940200.0003(2
=⨯+-+
K3+100.00的切线标高=427.68 -(K3+100.00- K3+030.00)×4%= 424.88m
K3+100.00的改正值=m K K 10.02000
2)00.100300.1203(2
=⨯+-+
4)K3+000.00和K3+100.00的设计标高
K3+000.00的设计标高= 426.18 - 0.9 = 425.28m K3+100.00的设计标高= 424.88 - 0.1 =424.78 m。

相关文档
最新文档