11.6独立重复试验模型
独立重复试验概率公式的特点独立重复试验的概率求法
一、独立重复试验(1)独立重复试验的意义:做n次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验。
(2)一般地,在n次独立重复试验中,设事件A发生的次数为X,在每件试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A 恰好发生k次的概率为此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。
(3)独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
(4)独立重复试验概率公式的特点:是n次独立重复试验中某事件A恰好发生k次的概率。
其中,n是重复试验的次数,p是一次试验中某事件A发生的概率,k是在n次独立重复试验中事件A恰好发生的次数,需要弄清公式中n,p,k的意义,才能正确运用公式。
1、独立重复试验:在同样的条件下,重复各次之间相互独立地进行的一种试验。
2、n次独立重复试验中某事件恰好发生k次的概率:如果在1次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率记为P n(k)=。
二、求独立重复试验的概率:(1)在n次独立重复试验中,“在相同条件下”等价于各次试验的结果不会受其他试验的影响,即2,…,n)是第i次试验的结果.(2)独立重复试验是相互独立事件的特例,只要有“恰好”“恰有”字样的用独立重复试验的概率公式计算更简单,要弄清n,p,k的意义。
三、独立重复试验的定义和特点1独立重复试验又称伯努利试验,是一种在相同条件下可以重复的试验,每次试验都是相互独立的。
在每个实验中,事情发生的概率是相同的,只有两种测试结果:事情要么发生,要么不发生。
2一般来说,相同条件下的$n$重复测试称为$n$独立重复测试。
在$n个独立的重复测试中,$a$事件的次数用$x$表示。
假设每个测试中事件$a$的概率为$p$,则$p(x=k)=\rm C^k_np^k(1p)^nk$,$k=0,1,2,\cdots,n$。
2025年高考数学一轮复习-11.6-二项分布与超几何分布【导学案】
2025年高考数学一轮复习-11.6-二项分布与超几何分布【课程标准】1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态分布曲线了解正态分布的概念,并进行简单应用.【必备知识精归纳】一、二项分布1.伯努利试验只包含两个可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X 表示事件A发生的次数,则X的分布列为P(X=k)= p k(1-p)n-k,k=0,1,2,…,n.如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布,记作X~B(n,p).3.两点分布与二项分布的均值、方差(1)当n=1时,随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).二、超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)= - -,k=m,m+1,m+2,…,r,其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.三、正态分布1.定义-( - ) ,x∈R,其中μ∈R,σ>0为参数,若随机变量X的概率分布密度函数为f(x则称随机变量X服从正态分布,记为X~N(μ,σ2).2.正态曲线的特点(1)曲线是单峰的,它关于直线x=μ对称;(2)曲线在x=μ处达到峰值(3)当|x|无限增大时,曲线无限接近x轴.3.3σ原则(1)P(μ-σ≤X≤μ+σ)≈0.6827;(2)P(μ-2σ≤X≤μ+2σ)≈0.9545;(3)P(μ-3σ≤X≤μ+3σ)≈0.9973.【基础小题固根基】教材改编易错易混1,2,43,51.(教材变式)已知X~B(20,p),且E(X)=6,则D(X)等于()A.1.8B.6C.2.1D.4.2【解析】选D.因为X服从二项分布X~B(20,p),所以E(X)=20p=6,得p=0.3,故D(X)=np(1-p)=20×0.3×0.7=4.2.2.(教材变式)在含有3件次品的10件产品中,任取4件,X表示取到的次品的个数,则P(X=2)=.【解析】由题意得P(X=2)=C32C72C104=310.答案:3103.(对二项分布意义不理解致误)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【解析】选A.3次投篮投中2次的概率为P(k=2)=C32×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C32×0.62×(1-0.6)+0.63= 0.648.4.(教材提升)某班有50名同学,一次数学考试的成绩X服从正态分布N(110,102).已知P(100<X≤110)=0.34,估计该班学生数学成绩在120分以上的有人.【解析】因为考试的成绩X服从正态分布N(110,102),所以该正态曲线关于X=110对称,因为P(100<X≤110)=0.34.所以P(X>120)=P(X≤100)=12×(1-0.34×2)=0.16.所以该班数学成绩在120分以上的人数约为0.16×50=8.答案:85.(二项分布应用不准致误)在一次招聘中,主考官要求应聘者从20道备选题中一次性随机抽取5道题,并独立完成所抽取的5道题,乙能正确完成每道题的概率为45,且每道题完成与否互不影响,记乙能正确完成的题数为Y,则Y的数学期望为.【解析】由题意知Y~B5,45,所以E(Y)=5×45=4.答案:4二项分布[典例1](1)出租车司机从饭店到火车站途中经过6个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是13.则这位司机在途中遇到红灯数X 的均值为,方差为.【解析】X的所有可能取值是0,1,2,3,4,5,6,这位司机经过一个交通岗就是一次试验,有遇到红灯和未遇到红灯两个结果,X=k(k∈N,k≤6)的事件相当于6次独立重复经过一个交通岗的试验,恰有k次遇到红灯的事件,于是得随机变量X~B6,13,所以E(X)=6×13=2,D(X)=6×13×1-13=43.答案:243(2)(2022·福州模拟)在一次国际大型体育运动会上,某运动员报名参加了3个项目的比赛.已知该运动员在这3个项目中,每个项目能拿奖的概率都是23,那么在本次运动会上:①求该运动员至少能拿2项奖的概率;②若该运动员能拿奖的项目数为X,求X的分布列及均值.【解析】①依题意知,该运动员在每个项目上“能拿奖”为独立事件,并且每个事件发生的概率相同.设该运动员能拿奖的项目数为随机变量ξ,“该运动员至少能拿2项奖”为事件A,则有P(A)=P(ξ=2)+P(ξ=3)=C3223213+C33233=2027;②由①可知,X~B3,23,则P(X =0)=C301-233=127,P(X=1)=C31·23·1-232=29,P(X=2)=C32·232·1-23=49,P(X=3)=C33·233=827,所以X的分布列为X0123P1272949827所以均值E(X)=0×127+1×29+2×49+3×827=2.(或E(X)=3×23=2)【方法提炼】1.求n重伯努利试验概率的三个步骤(1)判断:依据n重伯努利试验的特征,判断所给试验是否为独立重复试验.(2)分拆:判断所求事件是否需要分拆.(3)计算:就每个事件依据n重伯努利试验的概率公式求解,最后利用互斥事件概率加法公式计算.2.求随机变量X的均值与方差时,可首先分析X是否服从二项分布,如果X~B(n,p),则用公式E(X)=np,D(X)=np(1-p)求解,可大大减少计算量.【对点训练】张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线有A1,A2,A3三个路口,各路口遇到红灯的概率均为12;L2路线有B1,B2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走L1路线,求最多遇到1次红灯的概率;(2)若走L2路线,求遇到红灯次数X的数学期望;(3)若张先生想在上班的途中,“平均遇到红灯次数最少”,则张先生应从上述两条路线中选择哪条上班路线,并说明理由.【解析】(1)设走L1路线最多遇到1次红灯为A事件,则P(A)=C30×123+C31×12×122=12.所以走L1路线,最多遇到1次红灯的概率为12.(2)依题意,知X的可能取值为0,1,2.P(X=0)=1-34×1-35=110,P(X=1)=34×1-35+1-34×35=920,P(X=2)=34×35=920.随机变量X的分布列为X012P110920920E(X)=110×0+920×1+920×2=2720.(3)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布,即Y~B3,12,所以E(Y)=3×12=32.因为E(X)<E(Y),所以张先生应选择L2路线上班.【加练备选】从某企业生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4∶2∶1.(1)求这些产品的质量指标值落在区间[75,85]内的频率;(2)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间[45,75)内的产品件数为X,求X的分布列与数学期望.【解析】(1)设落在区间[75,85]内的频率为x,则落在区间[55,65),[65,75)内的频率分别为4x和2x.依题意得(0.004+0.012+0.019+0.030)×10+4x+2x+x=1,解得x=0.05.所以落在区间[75,85]内的频率为0.05.(2)从该企业生产的这种产品中随机抽取3件,相当于进行了3次独立重复试验,所以X服从二项分布B(n,p),其中n=3.由(1)得,落在区间[45,75)内的频率为0.3+0.2+0.1=0.6,将频率视为概率得p=0.6.因为X的所有可能取值为0,1,2,3,则P(X=0)=C30×0.60×0.43=0.064,P(X=1)=C31×0.61×0.42=0.288,P(X=2)=C32×0.62×0.41=0.432,P(X=3)=C33×0.63×0.40=0.216.所以X的分布列为X0123P0.0640.2880.4320.216所以X的数学期望为E(X)=0×0.064+1×0.288+2×0.432+3×0.216=1.8(或直接根据二项分布的均值公式得到E(X)=np=3×0.6=1.8).超几何分布[典例2](1)某外语学校的一个社团中有7名同学,其中2人只会法语,2人只会英语,3人既会法语又会英语.现选派3人到法国的学校交流访问,则恰有2人会法语的概率为;既会法语又会英语的人数X的均值为.【解析】设事件A为“选派的3人中恰有2人会法语”,则P(A)=C52C21C73=47.方法一:依题意知X的取值为0,1,2,3,P(X=0)=C43C73=435,P(X=1)=C42C31C73=1835,P(X=2)=C41C32C73=1235,P(X=3)=C33C73=135,所以X的分布列为X0123P43518351235135所以E(X)=0×435+1×18+2×1235+3×135=97.方法二:E(X)=3×37=97.答案:4797(2)从某校高三年级中随机抽取100名学生,对其视力情况进行统计(两眼视力不同,取较低者统计),得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在[4.1,4.3)的概率为110.①求a,b的值;②若高校B专业的报考资格为任何一眼裸眼视力不低于5.0,已知在[4.9,5.1)中有13的学生裸眼视力不低于5.0.现用分层随机抽样的方法从[4.9,5.1)和[5.1,5.3)中抽取4名同学,4人中有资格(仅考虑视力)报考B专业的人数为随机变量ξ,求ξ的分布列.【解析】①由频率分布直方图的性质,得×0.2=110,( +0.75+1.75+ +0.75+0.25)×0.2=1,解得b=0.5,a=1.②在[4.9,5.1)中,共有15人,其中5人裸眼视力不低于5.0,在这15人中,抽取3人,在[5.1,5.3)中,共有5人,抽取1人,随机变量ξ的可能取值为1,2,3,4,P(ξ=1)=C103C50C153=2491,P(ξ=2)=C102C51C153=4591,P(ξ=3)=C101C52C153=2091,P(ξ=4)=C100C53C153=291,所以ξ的分布列如下ξ1234P249145912091291【方法提炼】超几何分布的特点(1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体数X 的概率分布.(2)超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其本质是古典概型.【对点训练】某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本并称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图(如图).(1)根据频率分布直方图,求上述抽取的40件产品中质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X 为质量超过505克的产品数量,求X 的分布列,并求其均值;(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.【解析】(1)质量超过505克的产品的频率为5×0.05+5×0.01=0.3,所以质量超过505克的产品数量为40×0.3=12(件).(2)质量超过505克的产品数量为12件,则质量未超过505克的产品数量为28件,X 的可能取值为0,1,2,X服从超几何分布.P(X=0)=C120C282C402=63130,P(X=1)=C121C281C402=2865,P(X=2)=C122C280C402=11130,所以X的分布列为X012P63130286511130所以X的均值为E(X)=0×63130+1×2865+2×11130=35;(3)根据样本估计总体的思想,取一件产品,该产品的质量超过505克的概率为310.从流水线上任取2件产品互不影响,该问题可看成2重伯努利试验,质量超过505克的产品数量Y的可能取值为0,1,2,且Y~B2,310,P(Y=k)=C2 ×1-3102-k×310k,所以P(Y=0)=C20×7102=49100,P(Y=1)=C21×310×710=2150,P(Y=2)=C22×3102=9100.所以Y的分布列为Y012P4910021509100正态分布角度1正态分布的性质[典例3](1)设有一正态总体,它的正态密度曲线是函数f(x)的图象,且-( -10)28(x∈R),则这个正态总体的平均数与标准差分别是()f(xA.10与8B.10与2C.8与10D.2与10【解析】选B.因为f(xe-( -10)28,所以σ=2,μ=10,即正态总体的平均数与标准差分别为10与2.-( - )22 2(x∈R,i=1,2,3)的图象(2)(2023·深圳模拟)已知三个正态密度函数φi(x如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3D.μ1<μ2=μ3,σ1=σ2<σ3【解析】选D.由正态曲线关于直线x=μ对称,知μ1<μ2=μ3;σ的大小决定曲线的形状,σ越大,总体分布越分散,曲线越“矮胖”,σ越小,总体分布越集中,曲线越“瘦高”,则σ1=σ2<σ3.实际上,由φ1(μ1)=φ2(μ2)>φ3(μ3),亦可知σ1=σ2<σ3.(3)(2021·新高考Ⅱ卷)某物理量的测量结果服从正态分布N(10,σ2),则下列结论中不正确的是()A.σ越小,该物理量一次测量结果落在(9.9,10.1)内的概率越大B.该物理量一次测量结果大于10的概率为0.5C.该物理量一次测量结果大于10.01的概率与小于9.99的概率相等D.该物理量一次测量结果落在(9.9,10.2)内的概率与落在(10,10.3)内的概率相等【解析】选D.对于A,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A正确,不符合题意;对于B,由正态密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B正确,不符合题意;对于C,由正态密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C正确,不符合题意;对于D,因为该物理量一次测量结果落在(9.9,10.0)的概率与落在(10.2,10.3)的概率不同,所以一次测量结果落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D 错误,符合题意.【方法提炼】利用正态分布性质解题的关键点对X~N(μ,σ2)中的μ,σ的意义不清楚,特别是对μ的认识不清楚,就会在解题时无从下手.这里μ是随机变量X的均值,σ是标准差,x=μ是正态密度曲线的对称轴.角度2正态分布的概率计算[典例4](1)(2023·运城模拟)在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.6,则ξ在[2,+∞)内取值的概率为()A.0.8B.0.4C.0.3D.0.2【解析】选D.因为ξ服从正态分布N(1,σ2)(σ>0),所以曲线的对称轴是直线x=1,又ξ在(0,2)内取值的概率为0.6,根据正态曲线的性质,则ξ在[2,+∞)内取值的概率为P(ξ≥2)=1-0.62=0.2.(2)(2022·安阳模拟)已知某次数学考试的成绩服从正态分布N(116,64),则成绩在140分以上的考生所占的百分比约为()(参考数据:P(μ-3σ≤X≤μ+3σ≈0.997)A.0.3%B.0.23%C.1.5%D.0.15%【解析】选D.依题意,得μ=116,σ=8,所以μ-3σ=92,μ+3σ=140.而服从正态分布的随机变量在[μ-3σ,μ+3σ]内取值的概率约为0.997,所以成绩在区间(92,140)内的考生所占的百分比约为99.7%.从而成绩在140分以上的考生所占的百分比约为1-99.7%2=0.15%.(3)(2022·新高考Ⅱ卷)已知随机变量X服从正态分布N(2,σ2),且P(2<X≤2.5)=0.36,则P(X>2.5)=.【解析】因为X~N(2,σ2),所以P(X<2)=P(X>2)=0.5,因此P(X>2.5)=P(X>2)-P(2<X≤2.5)=0.5-0.36=0.14.答案:0.14【方法提炼】正态分布下两类常见的概率计算(1)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.(2)利用正态密度曲线的对称性研究相关概率问题,涉及的知识主要是正态密度曲线关于直线x=μ对称,及曲线与x轴之间的面积为1.注意下面结论的活用:①对任意的a,有P(X<μ-a)=P(X>μ+a);②P(X<x0)=1-P(X≥x0);③P(a<X<b)=P(X<b)-P(X≤a).角度3正态分布的综合应用[典例5](1)为了解高三复习备考情况,某校组织了一次阶段考试.若高三全体考生的数学成绩x近似服从正态分布N(100,17.52).已知成绩在117.5分以上的学生有80人,则此次参加考试的学生成绩低于82.5分的概率为;如果成绩大于135分的为特别优秀,那么本次数学考试成绩特别优秀的大约有人.(若X~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.68,P(μ-2σ≤X≤μ+2σ)≈0.95)【解析】因为数学成绩x服从正态分布N(100,17.52),则P(100-17.5≤x≤100+17.5)=P(82.5≤x≤117.5)≈0.68,所以此次参加考试的学生成绩低于82.5分的概率为P(x<82.5)=1- (82.5≤ ≤117.5)2≈1-0.682=0.16.又P(100-17.5×2≤x≤100+17.5×2)=P(65≤x≤135)≈0.95,所以数学成绩特别优秀的概率为P(x>135)=1- (65≤ ≤135)2≈1-0.952=0.025.又P(x<82.5)=P(x>117.5)≈0.16,则本次考试数学成绩特别优秀的人数大约是800.16×0.025≈13.答案:0.1613(2)为了解某年龄段人群的午休睡眠时间,随机抽取了1000名该年龄段的人作为被调查者,统计了他们的午休睡眠时间,得到如图所示的频率分布直方图.①求这1000名被调查者的平均午休睡眠时间 (同一组中的数据用该组区间的中点值作代表);②由直方图可以认为被调查者的午休睡眠时间Y服从正态分布N(μ,σ2),其中μ,σ2分别取被调查者的平均午休睡眠时间 和方差s2,那么这1000名被调查者中午休睡眠时间低于43.91分钟的人数估计有多少?③如果用这1000名被调查者的午休睡眠情况来估计某市该年龄段所有人的午休睡眠情况,现从全市所有该年龄段的人中随机抽取5人,记午休睡眠时间不超过73.09分钟的人数为X,求E(X)(精确到0.01).附:(i)s2=212.75,212.75≈14.59.(ii)Y~N(μ,σ2),则P(μ-σ≤Y≤μ+σ)≈0.6827;P(μ-2σ≤Y≤μ+2σ)≈0.954 5;P(μ-3σ≤Y≤μ+3σ)≈0.9973.【解析】①由题意知,第一组至第六组的区间中点值分别为35,45,55,65,75,85,对应的频率分别为0.1,0.2,0.3,0.15,0.15,0.1.所以 =35×0.1+45×0.2+55×0.3+65×0.15+75×0.15+85×0.1=58.5(分钟),所以这1000名被调查者的平均午休睡眠时间 =58.5分钟.②由题意得Y~N(58.5,14.592),则P(43.91≤Y≤73.09)=P(μ-σ≤Y≤μ+σ)≈0.6827,所以P(Y>73.09)=P(Y<43.91)≈1-0.68272= 0.15865,所以这1000名被调查者中午休睡眠时间低于43.91分钟的估计有0.158 65×1000≈159(人).③在全市该年龄段人中抽取午休睡眠时间不超过73.09分钟的人的概率P≈1-0.15865=0.84135,由题意得X~B(5,0.84135),所以E(X)=5×0.84135≈4.21.【方法提炼】解决正态分布问题有三个关键点(1)对称轴x=μ.(2)标准差σ.(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.提醒只有在标准正态分布下对称轴才为x=0.【对点训练】1.(2023·常州模拟)若随机变量X~B(3,p),Y~N(2,σ2),若P(X≥1)=0.657,P(0<Y<2)=p,则P(Y>4)等于()A.0.2B.0.3C.0.7D.0.8【解析】选A.由题意,P(X≥1)=1-P(X=0)=1-(1-p)3=0.657,解得p=0.3,则P(0<Y<2)=0.3,所以P(Y>4)=P(Y<0)=0.5-P(0<Y<2)=0.2.2.在某校高三年级的高考全真模拟考试中,所有学生考试成绩的取值X(单位:分)是服从正态分布N(502,144)的随机变量,模拟“重点控制线”为490分(490分及490分以上都是重点),若随机抽取该校一名高三考生,则这位同学的成绩不低于“重点控制线”的概率为()(附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973)A.0.6827B.0.65865C.0.84135D.0.34135【解析】选C.X~N(502,144),则σ=12,因为P(502-12≤X≤502+12)≈0.6827,所以P(X<490)≈1-0.68272=0.15865,即P(X≥490)≈1-0.15865=0.84135.3.对一个物理量做n次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差εn~N0,2 ,为使误差εn在(-0.5,0.5)的概率不小于0.9545,至少要测量次.(若X~N(μ,σ2),则P(|X-μ|≤2σ)≈0.9545)【解析】根据正态曲线的对称性知要使误差εn在(-0.5,0.5)的概率不小于0.9545,则(μ-2σ,μ+2σ)⊂(-0.5,0.5),又μ=0,σ所以0.所以n≥32.答案:32【加练备选】1.已知随机变量ξ~N(μ,σ2),有下列四个命题:甲:P(ξ<a-1)>P(ξ>a+2);乙:P(ξ>a)=0.5;丙:P(ξ≤a)=0.5;丁:P(a<ξ<a+1)<P(a+1<ξ<a+2).如果只有一个假命题,则该命题为()A.甲B.乙C.丙D.丁【解析】选D .由于乙、丙的真假性相同,所以乙、丙都是真命题,故a =μ;根据正态密度曲线的对称性可知,甲:P (ξ<μ-1)>P (ξ>μ+2)为真命题;P (μ<ξ<μ+1)>P (μ+1<ξ<μ+2),所以假命题是丁.2.为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程中可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得 =116∑ =116xi =9.97,s.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数 作为μ的估计值,用样本标准差s 作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查,剔除(-3,+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ≤Z ≤μ+3σ)≈0.9973,0.997316≈0.9577,0.008≈0.09.【解析】(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9973,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0027,故X~B (16,0.0027).因此P (X ≥1)=1-P (X =0)=1-0.997316≈0.0423;X 的数学期望E (X )=16×0.0027=0.0432.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0027,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0423,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程中可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由 =9.97,s ≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出有一个零件的尺寸在(-3,+3)之外,因此需对当天的生产过程进行检查.剔除(-3,+3)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.∑ =1162=16×0.2122+16×9.972≈1591.134,剔除(-3,+3)之外的数据9.22,剩下数据的样本方差为115×(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09.。
n次独立重复试验的模型及二项分布
第八节 n 次独立重复试验与二项分布[备考方向要明了]考什 么怎 么 考1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.相互独立事件、n 次独立重复试验的概率求法是每年高考的热点,特别是相互独立事件、n 次独立重复试验及二项分布的综合更是高考命题的重中之重,如2012年山东T19等.[归纳·知识整合]1.条件概率及其性质条件概率的定义条件概率的性质设A 、B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生条件下,事件B 发生的条件概率(1)0≤P (B |A )≤1(2)如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A )2.事件的相互独立性(1)定义:设A 、B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立.(2)性质:①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ),P (AB )=P (A )P (B ). ②如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也相互独立. [探究] 1.“相互独立”和“事件互斥”有何不同?提示:两事件互斥是指两事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,两个事件相互独立不一定互斥.3.独立重复试验与二项分布独立重复试验 二项分布定义在相同条件下重复做的n 次试验称为n 次独立重复试验 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率计算公式 A i (i =1,2,…,n )表示第i次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n )在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n )[探究] 2.二项分布的计算公式和二项式定理的公式有何联系? 提示:如果把p 看成a,1-p 看成b ,则C k n p k(1-p )n -k就是二项式定理中的通项.[自测·牛刀小试]1.若事件E 与F 相互独立,且P (E )=P (F )=14,则P (EF )的值等于( )A .0 B.116C.14D.12解析:选B EF 代表E 与F 同时发生, 故P (EF )=P (E )·P (F )=116.2.已知P (B |A )=12,P (AB )=38,则P (A )等于( )A.316B.1316C.34D.14解析:选C 由P (AB )=P (A )P (B |A )可得P (A )=34.3.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是( )A .0.26B .0.08C .0.18D .0.72解析:选A P =0.8×0.1+0.2×0.9=0.26.4.掷一枚不均匀的硬币,正面朝上的概率为23,若将此硬币掷4次,则正面朝上3次的概率是________.解析:设正面朝上X 次,则X ~B ⎝ ⎛⎭⎪⎫4,23, P (X =3)=C 34⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫131=3281. 答案:32815.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________.解析:设事件A 为“周日值班”,事件B 为“周六值班”, 则P (A )=C 16C 27,P (AB )=1C 27,故P (B |A )=P AB P A =16.答案:16条件概率[例1] (1)甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A .0.6B .0.7C .0.8D .0.66(2)市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是________.[自主解答] (1)甲市为雨天记为事件A ,乙市为雨天记为事件B ,则P (A )=0.2,P (B )=0.18,P (AB )=0.12,故P (B |A )=P AB P A =0.120.2=0.6.(2)记A =“甲厂产品”,B =“合格产品”,则P (A )=0.7,P (B |A )=0.95.故P (AB )=P (A )·P (B |A )=0.7×0.95=0.665.[答案] (1)A (2)0.665在本例2中条件改为“甲厂产品的合格率是95%,其中60%为一级品”,求甲厂产品中任选一件为一级品的概率.解:设甲厂产品合格为事件A ,一级品为事件B ,则甲厂产品中任一件为一级品为AB , 所以P (AB )=P (A )P (B |A )=95%×60%=0.57.———————————————————条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A );(2)基本事件法:借古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件AB .(1)从5道题中不放回地依次抽取2道的事件数为n (Ω)=A 25=20;根据分步乘法计数原理,n (A )=A 13×A 14=12; 于是P (A )=n A n Ω =1220=35.(2)因为n (AB )=A 23=6,所以P (AB )=n AB n Ω =620=310.(3)法一:由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率 P (B |A )=P AB P A =31035=12.法二:因为n (AB )=6,n (A )=12,所以P (B |A )=n AB n A =612=12.相互独立事件的概率[例2] 某果园要用三辆汽车将一批水果从所在城市E 运至销售城市F ,已知从城市E 到城市F 有两条公路.统计表明:汽车走公路Ⅰ堵车的概率为110,不堵车的概率为910;走公路Ⅱ堵车的概率为35,不堵车的概率为25,若甲、乙两辆汽车走公路Ⅰ,第三辆汽车丙由于其他原因走公路Ⅱ运送水果,且三辆汽车是否堵车相互之间没有影响.(1)求甲、乙两辆汽车中恰有一辆堵车的概率; (2)求三辆汽车中至少有两辆堵车的概率.[自主解答] 记“汽车甲走公路Ⅰ堵车”为事件A , “汽车乙走公路Ⅰ堵车”为事件B . “汽车丙走公路Ⅱ堵车”为事件C .(1)甲、乙两辆汽车中恰有一辆堵车的概率为P 1=P (A ·B )+P (A ·B )=110×910+910×110=950.(2)甲、乙、丙三辆汽车中至少有两辆堵车的概率为P 2=P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )+P (A ·B ·C )=110×110×25+110×910×35+910×110×35+110×110×35=59500. ——————————————————— 求相互独立事件同时发生的概率的方法(1)利用相互独立事件的概率乘法公式直接求解;(2)正面计算较繁或难以入手时,可从其对立事件入手计算.2.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘,已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率; (2)求红队队员获胜总盘数为1的概率.解:(1)设甲胜A 为事件D ,乙胜B 为事件E ,丙胜C 为事件F ,则D ,E ,F 分别表示事件甲不胜A 、事件乙不胜B 、事件丙不胜C .因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5.红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF . 由于以上四个事件两两互斥且各盘比赛的结果相互独立, 因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55. (2)由题意知ξ可能的取值为0,1,2,3.又由(1)知D ] E ]F 、D E F 、D E -F -是两两互斥事件,且各盘比赛的结果相互独立.P (ξ=1)=P (D E F )+P (D E F )+P (D E -F -)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35. 即红队队员获胜1盘的概率为0.35.独立重复试验与二项分布[例3] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.(1)从甲、乙、丙三台机床加工的零件中各取一件检验,求至少有一件一等品的概率; (2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,求它是一等品的概率;(3)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取4件检验,其中一等品的个数记为X ,求X 的分布列.[自主解答] (1)设从甲、乙、丙三台机床加工的零件中任取一件是一等品分别为事件A ,B ,C ,则P (A )=0.7,P (B )=0.6,P (C )=0.8.所以从甲、乙、丙三台机床加工的零件中各取一件检验,至少有一件一等品的概率为P 1=1-P (A )P (B )P (C )=1-0.3×0.4×0.2=0.976.(2)将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,它是一等品的概率为P 2=2×0.7+0.6+0.84=0.7.(3)依题意抽取的4件样品中一等品的个数X 的可能取值为0,1,2,3,4,则P (X =4)=C 04×0.74=0.2401, P (X =3)=C 14×0.3×0.73=0.4116, P (X =2)=C 24×0.32×0.72=0.2646, P (X =1)=C 34×0.33×0.7=0.0756, P (X =0)=C 44×0.34=0.0081.∴X 的分布列为:X 4 3 2 1 0 P0.24010.41160.26460.07560.0081———————————————————二项分布满足的条件(1)每次试验中,事件发生的概率是相同的. (2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生. (4)随机变量是这n 次独立重复试验中事件发生的次数.3.如图,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.解:(1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意,P (A )=14.(2)依题意识,X ~B ⎝ ⎛⎭⎪⎫3,14,从而X 的分布列为: X 0 1 2 3 P27642764964164(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C 区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.1个技巧——抓住关键词求解相互独立事件的概率在应用相互独立事件的概率公式时,要找准关键字句,对含有“至多有一个发生”,“至少有一个发生”,“恰有一个发生”的情况,要结合对立事件的概率求解.1个明确——明确常见词语的含义解题过程中要明确事件中“至少有一个发生”“至多有一个发生”“恰有一个发生”“都发生”“都不发生”“不都发生”等词的意义.已知两个事件A ,B ,则(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A B ; (4)A ,B 恰有一个发生的事件为A B ∪A B ; (5)A ,B 至多一个发生的事件为A B ∪A B ∪A B .易误警示——独立事件概率求法中的易误点[典例] (2012·珠海模拟)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.[解] (1)设X 为射手在5次射击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率为P (X =2)=C 25×⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-233=40243. (2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. (3)由题意可知,ξ的所有可能取值为0,1,2,3,6,P (ξ=0)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A 2 A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29. P (ξ=2)=P (A 1A 2A 3)=23×13×23=427,P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827,P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232=827,所以ξ的分布列为:ξ0 1 2 3 6 P12729427827827[易误辨析]1.本题第(2)问因不明独立事件与独立重复试验的区别,误认为是n 次独立重复试验,可导致求得P =C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132=80243这一错误结果;2.本题第(2)问中因忽视连续三次击中目标,另外两次未击中导致分类不准确; 3.正确区分相互独立事件与n 次独立重复试验是解决这类问题的关键. [变式训练]某中学在运动会期间举行定点投篮比赛,规定每人投篮4次,投中一球得2分,没有投中得0分,假设每次投篮投中与否是相互独立的.已知小明每次投篮投中的概率都是13.(1)求小明在投篮过程中直到第三次才投中的概率; (2)求小明在4次投篮后的总得分ξ的分布列.解:(1)设小明第i 次投篮投中为事件A i ,则小明在投篮过程中直到第三次才投中的概率为P =P (A 1)·P (A 2)·P (A 3)=23×23×13=427.(2)由题意知ξ的可能取值为0,2,4,6,8,则P (ξ=0)=⎝ ⎛⎭⎪⎫234=1681;P (ξ=2)=C 14×⎝ ⎛⎭⎪⎫13×⎝ ⎛⎭⎪⎫233=3281;P (ξ=4)=C 24×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫232=827;P (ξ=6)=C 34×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫23=881;P (ξ=8)=⎝ ⎛⎭⎪⎫134=181. 所以ξ的分布列为:ξ0 2 4 6 8 P16813281827881181一、选择题(本大题共6小题,每小题5分,共30分)1.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( )A .0.12B .0.42C .0.46D .0.88解析:选D 由题意知,甲、乙都不被录取的概率为(1-0.6)·(1-0.7)=0.12.故至少有一人被录取的概率为1-0.12=0.88.2.(2013·济南模拟)位于直角坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为13,向右移动的概率为23,则质点P 移动五次后位于点(1,0)的概率是( )A.4243 B.8243 C.40243D.80243解析:选D 依题意得,质点P 移动五次后位于点(1,0),则这五次移动中必有某两次向左移动,另三次向右移动,因此所求的概率等于C 25⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫233=80243.3.(2013·荆州质检)已知随机变量ξ服从二项分布ξ~B ⎝ ⎛⎭⎪⎫6,13,即P (ξ=2)等于( )A.316B.1243C.13243D.80243解析:选D 已知ξ~B ⎝ ⎛⎭⎪⎫6,13,P (ξ=k )=C k n p k q n -k,当ξ=2,n =6,p =13时,有P (ξ=2)=C 26⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-136-2=80243.4.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A.18 B.14 C.25D.12解析:选B P (A )=C 23+C 22C 25=410=25,P (A ∩B )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P A ∩B P A =110410=14.5.将一枚硬币连掷5次,如果出现k 次正面向上的概率等于出现k +1次正面向上的概率,那么k 的值为( )A .0B .1C .2D .3解析:选C 由C k 5⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫125-k =C k +15⎝ ⎛⎭⎪⎫12k +1·⎝ ⎛⎭⎪⎫155-k -1,即C k 5=C k +15,故k +(k +1)=5,即k =2.6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为( ) A.35 B.15 C.45D.25解析:选A 设该队员每次罚球的命中率为p (其中0<p <1),则依题意有1-p 2=1625,p 2=925.又0<p <1,因此有p =35. 二、填空题(本大题共3小题,每小题5分,共15分)7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析:设种子发芽为事件A ,种子成长为幼苗为事件B (发芽,又成活为幼苗)出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.答案:0.728.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,用ξ表示这5位乘客在第20层下电梯的人数,则P (ξ=4)=________.解析:考察一位乘客是否在第20层下电梯为一次试验,这是5次独立重复试验,故ξ~B ⎝⎛⎭⎪⎫5,13,即有P (ξ=k )=C k 5⎝ ⎛⎭⎪⎫13k ×⎝ ⎛⎭⎪⎫235-k,k =0,1,2,3,4,5. 故P (ξ=4)=C 45⎝ ⎛⎭⎪⎫134×⎝ ⎛⎭⎪⎫231=10243.答案:102439.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是________.解析:设“任取一书是文科书”的事件为A ,“任取一书是精装书”的事件为B ,则A 、B 是相互独立的事件,所求概率为P (AB ).据题意可知P (A )=40100=25,P (B )=70100=710,故P (AB )=P (A )·P (B )=25×710=725.答案:725三、解答题(本大题共3小题,每小题12分,共36分)10.在一次数学考试中,第21题和第22题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做每一道题的概率均为12.(1)求其中甲、乙两名学生选做同一道题的概率;(2)设这4名考生中选做第22题的学生个数为ξ,求ξ的概率分布.解:(1)设事件A 表示“甲选做第21题”,事件B 表示“乙选做第21题”,则甲、乙两名学生选做同一道题的事件为“AB +A - B -”,且事件A 、B 相互独立.故P (AB +A B )=P (A )P (B )+P (A )P (B )=12×12+⎝ ⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-12=12.(2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~B ⎝⎛⎭⎪⎫4,12则P (ξ=k )=C k 4⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫1-124-k =C k 4⎝ ⎛⎭⎪⎫124(k =0,1,2,3,4).故变量ξ的分布列为:ξ0 1 2 3 4 P11614381411611.下图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图.(1)求直方图中x 的值;(2)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X 的分布列.解:(1)依题意及频率分布直方图知,0.02+0.1+x +0.37+0.39=1,解得x =0.12. (2)由题意知,X ~B (3,0.1) 因此P (X =0)=C 03×0.93=0.729,P (X =1)=C 13×0.1×0.92=0.243, P (X =2)=C 23×0.12×0.9=0.027, P (X =3)=C 33×0.13=0.001.故随机变量X 的分布列为:X 0 1 2 3 P0.7290.2430.0270.00112.“石头、剪刀、布”是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势1次记为1次游戏,“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”;双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的.(1)求出在1次游戏中玩家甲胜玩家乙的概率;(2)若玩家甲、乙双方共进行了3次游戏,其中玩家甲胜玩家乙的次数记作随机变量X ,求X 的分布列.解:(1)玩家甲、乙双方在1次游戏中出示手势的所有可能结果是:(石头、石头);(石头,剪刀);(石头,布);(剪刀,石头);(剪刀,剪刀);(剪刀,布);(布,石头);(布,剪刀);(布,布).共有9个基本事件,玩家甲胜玩家乙的基本事件分别是:(石头,剪刀);(剪刀,布);(布,石头),共有3个.所以在1次游戏中玩家甲胜玩家乙的概率P =13.(2)X 的可能取值分别为0,1,2,3.X ~B ⎝ ⎛⎭⎪⎫3,13,则 P (X =0)=C 03·⎝ ⎛⎭⎪⎫233=827, P (X =1)=C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫232=1227, P (X =2)=C 23·⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫231=627, P (X =3)=C 33·⎝ ⎛⎭⎪⎫133=127. X 的分布列如下:X 0 1 2 3 P82712276271271.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为( ) A.18 B.14 C.12D.116解析:选A 理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件A ·C ·B ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C )=12.所以P (A ·B ·C )=P (A )·P (B )·P (C )=18.2.将一枚硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________. 解析:由题意知,正面可以出现6次,5次,4次,所求概率P =C 66⎝ ⎛⎭⎪⎫126+C 56⎝ ⎛⎭⎪⎫126+C 46⎝ ⎛⎭⎪⎫126=1+6+1564=1132. 答案:11323.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率. 解:(1)该公司决定对该项目投资的概率为P =C 23⎝ ⎛⎭⎪⎫132 ·23+C 33⎝ ⎛⎭⎪⎫133=727. (2)该公司放弃对该项目投资且投票结果中最多有一张“中立”票,有以下四种情形:“同意”票张数 “中立”票张数 “反对”票张数 事件A 0 0 3 事件B 1 0 2 事件C 1 1 1 事件D12P (A )=C 33⎝ ⎛⎭⎪⎫133=127,P (B )=C 13⎝ ⎛⎭⎪⎫133=19, P (C )=C 13C 12⎝ ⎛⎭⎪⎫133=29,P (D )=C 13⎝ ⎛⎭⎪⎫133=19. ∵A 、B 、C 、D 互斥,∴P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=1327.。
11.6二项分布正态分布及应用
在每次试验中事件A发生的概率为p,那么在n次
独立重复试验中,事件A恰好发生k次的概率为
k k C p P(X=k)= n (1-p)n-k,k=0,1,2,„,n .此时称 随机变量X服从 二项分布,记作 X~B( 1.设随机变量X~B (6, ), 则P(X=3)等于 2
4.一个电路如图所示,A、B、C、D、E、 1 F为6个开关,其闭合的概率都是 , 2 且是相互独立的,则灯亮的概率是
55 61
. 设A与B中至少有一个不闭合的事件为T,
解析
E与F至少有一个不闭合的事件为R 则 P(T ) P( R) 1 1 1 3 , 2 2 4 所以灯亮的概率 P 1 P(T ) P( R) P(C ) P( D) 55 . 61
80 4 命中一次的概率为 1 C 0 (1 p ) , 4 81 1 2 即(1 p) 4 , 解得 . 81 3
3.小王通过英语听力测试的概率是 1 ,他连续测 3 4 试3次,那么其中恰有1次获得通过的概率是 9 . 解析 所求概率 P C1 (1)1 (1 1) 31 4 . 3 3 3 9
5 16 .
解析
∵X~B (6, 1 ), 2
3 6
1 3 1 3 5 P( X 3) C ( ) (1 ) . 2 2 16
2.一射手对同一目标独立地射击四次,已知至少 命中一次的概率为 80 ,则此射手每次射击命 81 2 中的概率为 3 . 解析 设此射手每次射击命中的概率为p,至少
典型例题
深度剖析
【例1】甲、乙、丙三人参加了一家公司的招聘面 试,面试合格者可正式签约.甲表示只要面试合
格就签约;乙、丙则约定:两人面试都合格就一 同签约,否则两人都不签约.设每人面试合格的概 1 率都是 ,且面试是否合格互不影响.求: 2 (1)至少有1人面试合格的概率; (2)没有人签约的概率. 分析 (1)相互独立事件是指两个试验中,两事 件发生的概率互不影响;相互对立事件是指同一 次试验中,两个事件不会同时发生;但必有一次 会发生. (2)求用“至少”表述的事件的概率时,先求其 对立事件的概率往往比较简单.
独立重复试验与二项分布 课件
1
4
4
k k
11 4 7 4
7 4
k
11 4
k 2.
P2 (2)
C
2 10
( 1 )2 4
(3)8 4
0.28
例2.有译电员若干员,每人独立 破到译 译密 出码密的码概 的率 概均 率为 为013.9,若9,至要少达 要配备多少人?
(lg2=0.3010,lg3=0.4771)
袋中有12个球,其中白球4个,
则:C13P(1 P)2 C23P(2 1 P) C33P3 19 27
3P(1 P)2 3P(2 1 P) P3 19 27
P3 3P(1 P) 19 , P 1
27
3
例2.甲、乙两个篮球运动员投篮 命中率为0.7及0.6,若每人各投3次, 试求甲至少胜乙2个进球的概率
P(甲胜3个球) (0.7)(3 1 0.6)3 0.021952
P( 3) P( 0) 1 3 3 3 3 5 5 25
例4.有10道单项选择题,每题有4个选支,某人随机选定 每题中其中一个答案,求答对多少题的概率最大?并求 出此种情况下概率的大小.
解:设“答对k题”的事件为A,用P1(0 k)表示其概率,由
P10 (k )
P10 (k 1)
可以发现
P(Bk ) C3k pkq3k,k=0,1,2,3
一般地,在n次独立重复试验中,设事件A发生的次数 为X,在每次试验中事件A发生的概率是P,那么在n次 独立重复试验中,这个事件恰好发生k次的概率
A
P( X k) Cnk pk (1 p)nk,k 0,1,2,, n
此时称随机变量X服从二项分布,记作X~B(n,p), 并称p为成功概率。
独立重复试验与二项分布教学课件
在二项分布中,成功的次数可以通过概率计算得出,这有助 于理解概率的基本概念和计算方法。
04
二项分布的期望和方差
二项分布的期望
定义
二项分布的期望值是所有可能事件概率的加 权和,即E(X)=np,其中X是二项随机变量, n是试验次数,p是单次试验成功的概率。
计算方法
二项分布的期望值可以通过公式E(X)=np计 算得出,也可以通过Excel等工具进行计算。
随着独立重复试验次数的增加,成功的概率会趋近于预期的成功率,而失败的 概率则会趋近于1减去预期的成功率。
试验次数对二项分布形状的影响
试验次数越多,二项分布的形状越接近正态分布,这有助于理解中心极限定理 。
独立重复试验成功次数与二项分布的关系
成功次数是二项分布的参数
在独立重复试验中,成功的次数决定了二项分布的具体形态 ,如期望值和方差。
独立重复试验的特点包括各次试验结果相互独立,即一次试验的结果不会影响到其他试验的结果;每次试验只 有两种可能的结果,通常表示为成功或失败;每次试验的成功概率相同,即每次试验成功的概率都是恒定的。 这些特点使得独立重复试验在概率统计中具有广泛的应用。
独立重复试验的应用场景
独立重复试验的应用场景包括遗传学、保险、统计学等 领域。
独立重复试验的应用场景包括遗传学、保险、统计学等 领域。
02
二项分布的介绍
二项分布的定义
二项分布是一种离散概率分布,描述了在独 立重复试验中成功的次数。
在n次独立重复试验中,成功的概率为p,失 败的概率为q=1-p。
二项分布记为B(n,p),其中n表示试验次数, p表示单次试验成功的概率。
二项分布的参数
二项分布累积概率图
独立重复试验与二项分布
2.2.3独立重复试验与二项分布学习目标 1.理解n次独立重复试验的模型(重点).2.理解二项分布(重、难点). 3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题(难点).知识点1独立重复试验1.独立重复实验的定义一般地,在相同条件下重复做的n次试验称为n次独立重复实验.2.独立重复试验中事件A恰好发生k次的概率一般地,如果在1次实验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n. 【预习评价】(1)有放回地抽样试验是独立重复试验吗?(2)在n次独立重复试验中,各次试验的结果相互有影响吗?提示(1)是.有放回地抽样试验是相同条件下重复做的n次试验,是独立重复试验.(2)在n次独立重复试验中,各次试验的结果相互之间无影响.因为每次试验是在相同条件下独立进行的,所以第i次试验的结果不受前i-1次结果的影响(其中i=1,2,…,n).知识点2二项分布一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.【预习评价】(1)你能说明两点分布与二项分布之间的关系吗?提示两点分布是特殊的二项分布,即X~B(n,p)中,当n=1时,二项分布便是两点分布,也就是说二项分布是两点分布的一般形式.(2)若随机变量X ~B ⎝ ⎛⎭⎪⎫5,13,则P (X =2)=( )A.⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233B.⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133C.C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133D.C 25⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233题型一独立重复试验的判断【例1】判断下列试验是不是独立重复试验:(1)依次投掷四枚质地不同的硬币,3次正面向上;(2)某人射击,击中目标的概率是稳定的,他连续射击了10次,其中6次击中;(3)口袋中装有5个白球,3个红球,2个黑球,依次从中抽取5个球,恰好抽出4个白球.规律方法独立重复试验的判断依据(1)要看该实验是不是在相同的条件下可以重复进行.(2)每次试验相互独立,互不影响.【训练1】下列事件:①运动员甲射击一次,“射中9环”与“射中8环”;②甲、乙两运动员各射击一次,“甲射中10环”与“乙射中9环”;③甲、乙两运动员各射击一次,“甲、乙都射中目标”与“甲、乙都没射中目标”;④在相同的条件下,甲射击10次,5次击中目标.其中是独立重复试验的是()A.①B.②C.③D.④题型二独立重复试验的概率【例2】某单位6个员工借助互联网开展工作,每个员工上网的概率是0.5(相互独立).(1)求至少3人同时上网的概率;(2)至少几人同时上网的概率小于0.3.规律方法解答独立重复试验中的概率问题要注意以下几点:(1)先要判断问题中所涉及的试验是否为n次独立重复试验;(2)要注意分析所研究的事件的含义,并根据题意划分为若干个互斥事件的并.(3)要善于分析规律,恰当应用排列、组合数简化运算.【训练2】甲、乙两队进行排球比赛,已知在一局比赛中甲队胜的概率为2 3,没有平局.(1)若进行三局两胜制比赛,先胜两局者为胜,甲获胜的概率是多少?(2)若进行五局三胜制比赛,甲获胜的概率为多少?【例3】某公司安装了3台报警器,它们彼此独立工作,且发生险情时每台报警器报警的概率均为0.9.求发生险情时,下列事件的概率:(1)3台都未报警;(2)恰有1台报警;(3)恰有2台报警.【迁移1】(变换所求)例3条件不变,求3台都报警的概率.【迁移2】(变换所求)例3条件不变,求至少有2台报警的概率.【迁移3】 (变换所求)例3条件不变,求至少有1台报警的概率.规律方法 利用二项分布来解决实际问题的关键(1)在实际问题中建立二项分布的模型,也就是看它是否为n 次独立重复试验. (2)随机变量是否为在这n 次独立重复试验中某事件发生的次数,满足这两点的随机变量才服从二项分布,否则就不服从二项分布.【训练3】 100件产品中有3件不合格品,每次取一件,有放回地抽取3次,求取得不合格品的件数X 的分布列.课堂达标1.若X ~B (5,0.1),则P (X ≤2)等于( ) A.0.665 B.0.008 56 C.0.918 54D.0.991 442.一头猪服用某药品后被治愈的概率是90%,则服用这种药的5头猪中恰有3头被治愈的概率为( ) A.0.93B.1-(1-0.9)3C.C 35×0.93×0.12D.C 35×0.13×0.923.在4次独立重复试验中,事件出现的概率相同,若事件A 至少出现一次的概率为6581,则事件A 在一次试验中出现的概率为________.4.将一枚均匀的硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为________.5.在等差数列{a n }中,a 4=2,a 7=-4.现从数列{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取三次,假定每次取数互不影响,求在这三次取数中,取出的数恰好为两个正数和一个负数的概率.课堂小结1.独立重复试验要从三方面考虑:第一,每次试验是在相同条件下进行的;第二,各次试验中的事件是相互独立的;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.2.如果一次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k )=C k n p k (1-p )n -k .此概率公式恰为[(1-p )+p ]n 展开式的第k +1项,故称该公式为二项分布公式.基础过关1.已知随机变量ξ~B ⎝ ⎛⎭⎪⎫6,13,则P (ξ=2)等于( ) A.316 B.4243 C.13243 D.802432.3位同学参加测试,假设每位同学能通过测试的概率都是13,且各人能否通过测试是相互独立的,则至少有1位同学能通过测试的概率为( ) A.827B.49C.23D.19273.投篮测试中,每人投3次,至少投中2次才算通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A.0.648B.0.432C.0.36D.0.3124.某射手射击1次,击中目标的概率为0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第三次击中目标的概率为0.9;②他恰好击中目标3次的概率为0.93×0.1;③他至少击中目标1次的概率为1-0.14.其中正确结论的序号为________.5.某市公租房的房源位于A ,B ,C 三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,该市的4位申请人中恰有2人申请A 片区房源的概率为________.6.一个学生通过某种英语听力测试的概率是12,他连续测试n 次,要保证他至少有一次通过的概率大于0.9,求n 的最小值.7.在一次抗洪抢险中,准备用射击的办法引爆从上游漂流而下的一个巨大汽油罐,已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击是相互独立的,且命中的概率都是23. (1)求油罐被引爆的概率;(2)若引爆或子弹打光则停止射击,设射击次数为X ,求X 不小于4的概率.能力提升8.箱子里有5个黄球,4个白球,每次随机取出1个球,若取出黄球,则放回箱中重新取球,若取出白球,则停止取球,那么在4次取球之后停止取球的概率为( ) A.35×14B.⎝ ⎛⎭⎪⎫593×49 C.C 14×⎝ ⎛⎭⎪⎫593×49 D.C 14×⎝ ⎛⎭⎪⎫493×59 9.口袋里放有大小相同的两个红球和一个白球,每次有放回地摸取一个球,定义数列{a n },a n =⎩⎨⎧-1,第n 次摸取红球,1,第n 次摸取白球,如果S n 为数列{a n }的前n 项和,那么S 7=3的概率为( ) A.C 57×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫235B.C 27×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫135C.C 57×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫135D.C 27×⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫23210.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P移动五次后位于点(2,3)的概率是________(用数字作答).11.甲、乙两人投篮命中的概率分别为p,q,他们各投两次,若p=12,且甲比乙投中次数多的概率恰好等于736,则q的值为________.12.一名学生每天骑自行车上学,从家到学校的途中有5个交通岗,假设他在各交通岗遇到红灯的事件是相互独立的,并且概率都是1 3.(1)求这名学生在途中遇到红灯的次数ξ的分布列;(2)求这名学生在首次遇到红灯或到达目的地停车前经过的路口数η的分布列;(3)这名学生在途中至少遇到一次红灯的概率.13.(选做题)实力相当的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.。
2021版高考数学苏教版(新课程版)一轮复习 11.6 条件概率与事件的独立性、正态分布
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
核心考点·精准研析考点一条件概率、事件的独立性1.市场调查发现,大约的人喜欢在网上购买家用小电器,其余的人则喜欢在实体店购买家用小电器.经工商局抽样调查发现网上购买的家用小电器合格率约为,而实体店里的家用小电器的合格率约为.现工商局12315电话接到一个关于家用小电器不合格的投诉,则这台被投诉的家用小电器是在网上购买的可能性是( )A. B. C. D.2.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传四个项目,每人限报其中一项,记事件A为“4名同学所报项目各不相同”,事件B为“只有甲同学一人报关怀老人项目”,则P(A|B)的值为( )A. B.C. D.3.甲、乙两人玩投篮游戏,规则如下:两人轮流投篮,每人至多投2次,甲先投,若有人投中即停止投篮,结束游戏,已知甲每次投中的概率为,乙每次投中的概率为,求:乙投篮次数不超过1次的概率.世纪金榜导学号【解析】1.选A.不合格小电器在网上购买的概率为×=,不合格小电器在实体店购买的概率为×=,所以这台被投诉的家用小电器是在网上购买的可能性是=.2.选C.因为P(B)=,P(AB)=,所以P(A|B)==.3.记“甲投篮投中”为事件A,“乙投篮投中”为事件B.“乙投篮次数不超过1次”包括三种情况:一种是甲第1次投篮投中,另一种是甲第1次投篮未投中而乙第1次投篮投中,再一种是甲、乙第1次投篮均未投中而甲第2次投篮投中,所求的概率是P=P(A+·B+··A)=P(A)+P(·B)+P(··A)=P(A)+P()·P(B)+P()·P()·P(A)=+×+××=.所以乙投篮次数不超过1次的概率为.1.条件概率的3种求法定义法先求P(A)和P(AB),再由P(B|A)=求P(B|A)基本事件法借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件AB所包含的基本事件数n(AB),得P(B|A)=缩样法缩小样本空间的方法,就是去掉第一次抽到的情况,只研究剩下的情况,用古典概型求解,它能化繁为简2.相互独立事件同时发生的概率的两种求法(1)直接法:利用相互独立事件的概率乘法公式.(2)间接法:从对立事件入手计算.考点二n次独立重复试验、二项分布【典例】1.种植某种树苗,成活率为0.9.若种植这种树苗5棵,则恰好成活4棵的概率约为( )A.0.33B.0.66C.0.5D.0.452.某气象站天气预报的准确率为80%,计算:(结果保留到小数点后2位)(1)5次预报中恰有2次准确的概率.(2)5次预报中至少有2次准确的概率.(3)5次预报中恰有2次准确,且其中第3次预报准确的概率. 【解题导思】序号联想解题1种5棵成活4棵联想到n次独立重复试验恰好发生k次的概率公式2 (1)联想到用公式p k(2)由“至少2次”联想到对立事件“最多1次”,即0次,1次(3)转化为4次独立重复试验恰好发生1次试验模型【解析】1.选A.根据n次独立重复试验中,事件A恰好发生k次的概率公式得到种植这种树苗5棵,则恰好成活4棵的概率为0.94(1-0.9)≈0.33.2.令X表示5次预报中预报准确的次数,则X~B5,,故其分布列为P(X=k)=k1-5-k(k=0,1,2,3,4,5).(1)“5次预报中恰有2次准确”的概率为P(X=2)=2×1-3=10××≈0.05.(2)“5次预报中至少有2次准确”的概率为P(X≥2)=1-P(X=0)-P(X=1)=1-×0×1-5-××1-4=1-0.000 32-0.006 4≈0.99. (3)“5次预报中恰有2次准确,且其中第3次预报准确”的概率为××1-3×≈0.02.1.熟记概率公式n次独立重复试验中事件A恰好发生k次的概率为p k(1-p)n-k.2.判断某随机变量是否服从二项分布的关键点(1)在每一次试验中,事件发生的概率相同.(2)各次试验中的事件是相互独立的.(3)在每一次试验中,试验的结果只有两个,即发生与不发生.1.位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是,质点P移动五次后位于点(2,3)的概率是( )A. B. C. D.【解析】选B.如图,由题可知,质点P必须向右移动2次,向上移动3次才能位于点(2,3),问题相当于5次重复试验向右恰好发生2次的概率.所求概率为P=×2×3=×5=.2.设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=,则P(η≥1)=________.【解析】P(ξ≥1)=1-P(ξ<1)=1-p0·(1-p)2=,所以p=,P(η≥1)=1-P(η=0)=1-04=1-=.答案:3.在一次数学考试中,第14题和第15题为选做题.规定每位考生必须且只需在其中选做一题.设4名考生选做这两题的可能性均为.设这4名考生中选做第15题的学生数为ξ,求ξ的分布列.【解析】随机变量ξ的可能取值为0,1,2,3,4,且ξ~B4,.所以P(ξ=k)=k1-4-k=4(k=0,1,2,3,4).所以变量ξ的分布列为ξ0 1 2 3 4P考点三正态分布命题精解读考什么:(1)正态曲线的应用.(2)正态分布与统计的综合应用.怎么考:正态分布作为考查数学应用意识的重要载体,在高考题中经常出现,试题常以选择题、填空题形式出现.学霸好方法巧用正态曲线的性质解题(1)正态曲线关于直线x=μ对称,用此性质可以进行灵活转化.(2)正态曲线与x轴之间的面积是1.正态曲线的应用【典例】1.已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(-2≤ξ≤2)= ( )A.0.447B.0.628C.0.954D.0.9772.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在17.5岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示.若体重大于58.5 kg小于等于62.5 kg属于正常情况,则这1 000名男生中属于正常情况的人数是( )A.997B.954C.819D.683【解析】1.选C.因为随机变量ξ服从标准正态分布N(0,σ2), 所以正态曲线关于直线x=0对称.又P(ξ>2)=0.023,所以P(ξ<-2)=0.023.所以P(-2≤ξ≤2)=1-2×0.023=0.954.2.选D.由题意,可知μ=60.5,σ=2,所以P(58.5<X<62.5)=P(μ-σ<X<μ+σ)≈0.683,从而属于正常情况的人数是1 000×0.683≈683.如何利用正态曲线的性质解题?提示:充分利用正态曲线的对称性及正态曲线与x轴之间的面积为1.①正态曲线关于直线x=μ对称,从而在关于x=μ对称的区间上概率相等.②P(X<a)=1-P(X≥a),P(X≤μ-a)=P(X≥μ+a).3σ原则的应用【典例】1.在如图所示的矩形中随机投掷30 000个点,则落在曲线C 下方(曲线C为正态分布N(1,1)的正态曲线)的点的个数的估计值为( )附:正态变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)内取值的概率分别是0.683,0.954,0.997.A.4 985B.8 185C.9 970D.24 5582.工厂制造的某机械零件尺寸X服从正态分布N4,,问在一次正常的试验中,取1 000个零件时,不属于区间(3,5]这个尺寸范围的零件大约有多少个? 世纪金榜导学号【解析】1.选B.由题意P(0<X<3)=P(0<X≤2)+P(2<X<3)=0.683+(0.954-0.683)=0.818 5,所以落在曲线C下方的点的个数的估计值为30 000×=8 185.2.因为X~N4,,所以μ=4,σ=.所以不属于区间(3,5]的概率为P(X≤3)+P(X>5)=1-P(3<X≤5)=1-P(4-1<X≤4+1)=1-P(μ-3σ<X≤μ+3σ)≈1-0.997=0.003,所以1 000×0.003=3个,即不属于区间(3,5]这个尺寸范围的零件大约有3个.正态分布与统计的交汇问题【典例】近年来“双十一”已成为中国电子商务行业的年度盛事,并且逐渐影响到国际电子商务行业.某商家为了准备今年“双十一”的广告策略,随机调查了1 000名客户在去年“双十一”前后10天内网购所花时间T(单位:时),并将调查结果绘制成如图所示的频率分布直方图.由频率分布直方图可以认为,这10天网购所花的时间T近似服从N(μ,σ2),其中μ用样本平均值代替,σ2=0.24.(1)计算μ,并利用该正态分布求P(1.51<T<2.49).(2)利用由样本统计获得的正态分布估计整体,将这10天网购所花时间在(2,2.98)小时内的人定义为目标客户,对目标客户发送广告提醒.现若随机抽取10 000名客户,记X为这10 000人中目标客户的人数. (ⅰ)任取一人,求该人是目标客户的概率;(ⅱ)问:10 000人中目标客户的人数X为何值时概率最大?附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-σ<Z<μ+σ)≈0.683,P(μ-2σ<Z<μ+2σ)≈0.954,P(μ-3σ<Z<μ+3σ)≈0.997,≈0.49. 世纪金榜导学号【解析】(1)μ=0.4×(0.050×0.8+0.225×1.2+0.550×1.6+0.825×2.0+0.600×2.4+0.200×2.8+0.050×3.2)=2,从而T服从N(2,0.24),又σ=≈0.49,从而P(1.51<T<2.49)=P(μ-σ<T<μ+σ)≈0.683.(2)(ⅰ)任意抽取1名客户,该客户是目标客户的概率为P(2<T<2.98)=P(μ<T<μ+2σ)=P(μ-2σ<T<μ+2σ)≈×0.954=0.477.(ⅱ)X服从B(10 000,0.477),P(X=k)=0.477k(1-0.477)10 000-k=0.477k·0.52310 000-k(k=0,1,2,…,10 000).设当X=k(k≥1,k∈N)时概率最大,则有得解得4 770-0.523<k<4 770+0.477,所以k=4 770.所以10 000人中目标客户的人数为4 770时概率最大.1.已知随机变量X服从正态分布N(3,σ2),则P(X<3)等于( )A. B. C. D.【解析】选D.由正态分布图象知,μ=3为该图象的对称轴,P(X<3)=P(X>3)=.2.随机变量X服从标准正态分布,则X的总体在区间(-3,3)内取值的概率为( ) A.0.998 B.0.997C.0.944D.0.841【解析】选B.标准正态分布N(0,1),σ=1,区间(-3,3),即(-3σ,3σ),概率P=0.997.1.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为 ( )A. B. C. D.【解析】选C.函数f(x)=x2+2x+ξ不存在零点,则Δ=4-4ξ<0,ξ>1,因为ξ~N(1,σ2),所以μ=1,P=.2.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2019年春节前夕, A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数 (同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X 的分布列.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为σ=≈11.95;②若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)≈0.683,P(μ-2σ<Z<μ+2σ)≈0.954.【解析】(1)所抽取的100包速冻水饺的该项质量指标值的样本平均数为=5×0.1+15×0.2+25×0.3+35×0.25+45×0.15=26.5.(2)①因为Z服从正态分布N(μ,σ2 ), μ=26.5,σ≈11.95,所以P(14.55<Z<38.45)=P(26.5-11.95<Z<26.5+11.95)≈0.683,所以Z落在区间(14.55,38.45)内的概率约为0.683.②根据题意得X~B4,,所以P(X=0)=4=,P(X=1)=4= ;P(X=2)=4= ;P(X=3)=4= ;P(X=4)=4=.所以X的分布列为X 0 1 2 3 4P关闭Word文档返回原板块快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。
独立重复试验(2019年11月)
独立重复试验
2007.05.17
复习回顾:
1、互斥事件:不可能同时发生的两个事件。 对立事件:必有一个发生的互斥事件。 相互独立事件:事件A(或B)是否发生对事件B (或A)发生的概率没有影响。
2、互斥事件有一个发生的概率公式:
相互独立事件同时发生的概率公式:
问题引入: 某射手射击1次,击中目标的概率是 0.9,现连续射击4次. 求:前三次命中,最后一次不中的概率;
都准确的概率的和,即P= P5 (4) P5 (5)
例1:某气象站天气预报的准确率为80%,计算 (结果保留两个有效数字):
① 5次预报中恰有4次准确的概率;
② 5次预报中至少有4次准确的概率。 解① : 5次预报中恰有4次准确的概率为
P5 (4) C54 0.84 1 0.81
② 5次预报中至少有4次准确的概率,就是 5次预报中恰有4次准确的概率与5次预报
变式:某射手连续射击n次,每次击中 目标的概率都是p,求恰好有k次命 中的概率.
二、独重复试验概率的计算
一般地,在n次独立重复试验中,如果事
件A在其中1次试验中发生的概率是P,那
么在n次独立重复试验中这个事件恰好发
生k次的概率
Pn (k ) Cnk Pk (1 P)nk
1 3
或Pn k Cnk pk qnk q 1 p
;
魏军攻县瓠 夏 大赦 凡十七条 封宕昌王 姜产之等十一人 」及太后崩后数日 颇忽时务 省平蛮府 甲寅 领司徒江夏王义恭为骠骑将军 更申五年 故镇东将军李安人配飨太祖庙庭 扬州牧 少有大志 立皇弟休范为顺阳郡王 三月 丙寅 公远稽殷 宋大将军彭城王义康被黜 二月丁丑 癸卯 癸 亥 三月甲戌 余如故 太子詹事徐湛之为左仆射 余依赦制 夏四月
高三数学独立重复试验课件(新编201912)
C
C
3 4
(3)3 5
2 5
D C3 (2)3 1
43 3
4.一批产品共有100个,次品率为 3% ,从中有放回抽取3个恰有1个 次品的概率是( A )
A C1 0.03 (1 0.03)2 3
独 立 重 复 实 验
复 习:
相互独立事件A、B同时发生的 概率:
P(AB)=P(A)P(B)
1独立重复实验:
独立重复实验的定义:
在同等条件下 独立进行的重复实验
;宠物X光机 宠物X光机
;
谓搭配不当;B句“掀起了……”后面缺少了中心词“高潮”,造成动宾搭配不当;C句歧义,“有人认为…… 化有利于”和“有人认为”这种认识“有利于”两个意思间杂,不清楚。 考点:病句判断 点评:本题不难,常见病句容易判断,平时学习中对病句的判断训练比较多,学生具备一 定的能力。把句子写正确是非常重要的,句子通顺才能正确表达意思,传递信息,进行正常的交流。 129.下面这段文字有三句话,各有一处语病,请加以修改。(3分) ①了给百姓创立更为优良的就医环境,卫生部准备在全国推广“先诊疗后结算”的服务模式。②所谓“先诊疗后结算”,是 指患者在门诊诊疗时,先缴纳押金,统一待本次所有诊疗结束后再去结账。③实施“先诊疗后结算”的服务模式,患者就诊时间可节省大约20%以上。 结果①“创立”改为“创设”或“创造”②将“统一”放到“结账”前③删去“以上”,或删去“大约” 解析 130.下面句子没有语病的 一项是() A.受日本大地震影响,中国部分地区3月16日开始发生食盐抢购。 B.消减贫富差别,建立社会保障体系的关键在于经济能否发展。 C.以快乐心面对人生,于艰难处寻觅快乐,人的生命便有了亮色。 D.通过这个阶段的复习,同学们普遍的成绩提高了。 131.下列文段中
独立重复试验
例3:有10道单项选择题,每题有4个 选择项,某人随机选定每题中的一个 答案, (1)问答对5道题的概率是多少?
(2)答对多少题的概率最大?并求出 此种情况下概率的大小?
例3:有10道单项选择题,每题有4个选择项,某人随 机选定每题中的一个答案,求答对多少题的概率最大? 并求出此种情况下概率的大小? P 解:设“答对k道题”为事件A,用 表示其概率, 10 k k 1 11k 由 k 1 k 3 10k 3 k 1 1
相互独立事件同时发生的概率
独立重复试验
2007.05.17
复习回顾:
不可能同时发生的两个事件。 1、互斥事件: 对立事件:必有一个发生的互斥事件。 事件A(或B)是否发生对事件B 相互独立事件: (或A)发生的概率没有影响。 2、互斥事件有一个发生的概率公式:
P A B P A P B
原题:某射手连续射击4次,每次击中目标 的概率都是0.9,求恰好有三次命中的概率.
C 0.9 1 0.9
3 4 3 1
变式:某射手连续射击n次,每次击中 目标的概率都是p,求恰好有k次命 中的概率.
C P 1 P
k n k
nk
二、独立重复试验概率的计算
一般地,在n次独立重复试验中,如果事 件A在其中1次试验中发生的概率是P,那 么在n次独立重复试验中这个事件恰好发 生k次的概率
=0.432
课堂小结: 1.对n次独立重复试验的理解 2.公式 P n (k ) C P (1 P)
k n页
广式点心的主要特点是用料精博,品种繁多,款式新颖,口味清新多样,制作精细,咸甜兼备,能适应四季节令和各方人士的需要。各款点 心都讲究色泽和谐,造型各异,相映成趣,令人百食不厌。[1]
独立重复试验完整版课件
新课导入
[导入二] 投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p.连续 掷一枚图钉3次,仅出现1次针尖向上的概率是多少?
预习探究
知识点一 n次独立重复试验 一般地,在相同条件下重复做的n次试验称为 n次独立重复试验 .
预习探究
[思考] 独立重复试验有什么特点? 解:(1)每次试验都在相同的条件下进行,试验只有两种结果:要么发生, 要么不发生; (2)每次试验中,事件A发生的概率相同,是否发生相互独立,互不影响试 验的结果.
的概率为0.2.现有5人接种该疫苗,恰有2
人出现发热反应的概率为
.
[答案] 0.204 8
新课导入
[导入一] 分析下面的试验,它们有什么共同特点? (1)投掷一粒骰子5次; (2)某人射击1次,击中目标的概率是0.8,他射击10次; (3)实力相当的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就 算胜出,并停止比赛); (4)一个盒子中装有5个球(3个红球和2个黑球),有放回地依次从中取5个球; (5)生产一种零件,出现次品的概率是0.04,生产这种零件4件.
预习探究
[探究] 如何判断一个随机变量是否服从二项分布? 解:一个随机变量服从二项分布必须满足两个条件:试验是n次独立重复试验 ;随机变量X的取值是事件A发生的次数.二者缺一不可.
考点类析
考点一 投掷四枚质地不同的骰子; (2)某人射击,每次击中目标的概率是稳定的, 他连续射击了10次; (3)口袋中装有5个白球、3个红球、2个黑球, 依次从中不放回地抽取5个球; (4)甲、乙两运动员各射击一次,相互没有影响 .
预习探究
[判断]判断下列说法是否正确? (1)有放回地抽样试验是独立重复 试验. ( √ ) (2)在n次独立重复试验中,各次试 验的结果相互没有影响.( √ )
二项分布与n次独立重复试验的模型-精品
二项分布与n次独立重复试验的模型【知识点的知识】1、二项分布:一般地,在〃次独立重复的试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为P,则P(X=k)〃力攵=(),1,2,…〃,此时称随机变量X服从二项分布,记作X~B(72,p),并记(1・〃)nk=h(k,n,〃).2、独立重复试验:(1)独立重复试验的意义:做〃次试验,如果它们是完全同样的一个试验的重复,且它们相互独立,那么这类试验叫做独立重复试验.(2)一般地,在〃次独立重复试验中,设事件4发生的次数为X,在每件试验中事件A发生的概率为P,那么在〃次独立重复试验中,事件A恰好发生k次的概率为。
(X=A)=C: p k(1-p)n'k,k=0,1,2,…小此时称随机变量X服从二项分布,记作X〜8(小p), 并称p为成功概率.(3)独立重复试验:若〃次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这〃次试验是独立的.(4)独立重复试验概率公式的特点:P〃(k)=c5/'(I・p)"勺是〃次独立重复试验中某事件A恰好发生Z次的概率.其中,〃是重复试验的次数,〃是一次试验中某事件A发生的概率,左是在〃次独立重复试验中事件A恰好发生的次数,需要弄清公式中小〃,左的意义,才能正确运用公式.【典型例题分析】典例1:如果C〜8(100,2),当P(C=攵)取得最大值时-,攵=50.2解:•・・C〜B(100,—2当P(g=k)= c|)k呜)1。
工端口g)叫由组合数知,当女=50时取到最大值.故答案为:50.典例2:一个盒子里有2个黑球和机个白球(”22,且加EN*),现举行摸奖活动:从盒中取球,每次取2个,记录颜色后放回.若取出2球的颜色相同则为中奖,否则不中.(I)求每次中奖的概率〃(用〃z表示);(II)若m=3,求三次摸奖恰有一次中奖的概率;(III)记三次摸奖恰有一次中奖的概率为/(p),当〃z为何值时,/(p)取得最大值?解:(I)・・♦取出2球的颜色相同则为中奖,2 2・・・每次中奖的概率〃=T~^=1-m+2;C JR+2m+3m+2(11)若加=3,每次中奖的概率p=2,5・・•三次摸奖恰有一次中奖的概率为心•■1,(1-春)2=黑;J5 5 125(III)三次摸奖恰有一次中奖的概率为/(p)=C;p(l-p)2=3p3・6p2+3p(OVpVl),:.f(〃)=3(p-1)(3p-1),・•・/(〃)在(0,—)上单调递增,在(1,1)上单调递减,3 32・・〃=《时,/(p)取得最大值,即〃=$%&=23 m2+3m+23・・・加=2,即机=2时,f(p)取得最大值.【解题方法点拨】独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.。
独立重复试验模型讲课讲稿
一般地,在n次独立试验中,如果每次试验的可能结果只有两个,且它们相互对立,即只考虑两个事件A和 ,并且在每次实验中,事件A发生的概率都不变.这样的n次独立试验叫做n次伯努利实验.
可以证明(证明略),如果在每次实验中事件A发生的概率为 ,事件A不发生的概率 ,那么,在n次伯努利实验中,事件A恰好发生k次的概率为
这个公式叫做伯努利公式,其中
【说明】
n次伯努利实验中,事件A恰好发生k次的概率公式可以看成是二项式
展开式中的第k+1项.
*巩固知识典型例题
例1某气象站天气预报的准确率为80%.计算(结果保留两位有效数字)
(1)5次预报中恰有4次准确的概率;
(2)5次预报中至少有4次准确的概率.
解预报5次相当于作5次独立重复实验.记“预报1次,结果准确”为事件A,则
(1)恰有8次击中目标的概率;
(2)至少有2次击中目标的概率;
(3)仅在第8次击中的概率;
板书
小结1Βιβλιοθήκη .3伯努利概率模型伯努利公式:如果在每次实验中事件A发生的概率为 ,事件A不发生的概率 ,那么,在n次伯努利实验中,事件A恰好发生k次的概率为
这个公式叫做伯努利公式,其中
作业
A组 4、5、6
新授
*动脑思考探索新知
情景:
1)、射击n次,每次射击可能击中目标,也可能不中目标,而且当射击条件不变时,可以认为每次击中目标的概率p是不变的;
2)、抛掷一颗质地均匀的骰子n次,每一次抛掷可能出现“5”,也可能不出现“5”,而且每次掷出“5”的概率p都是1/6;
3)、种植n粒棉花种子,每一粒种子可能出苗,也可能不出苗,其出苗率是67%。
1、n次独立重复试验的定义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习 事件A 是否发生对事件B 事件 (或B )是否发生对事件 (或A ) 发生的概率没有影响,这样的两个事件叫做相 发生的概率没有影响,这样的两个事件叫做相 互独立事件. 互独立事件. 结论:如果A、 为相互独立事件 为相互独立事件, 结论:如果 、B为相互独立事件,则 P( A ∩ B) = P( A) P( B)
在质量管理中常用的质量管理控制图, 例3 在质量管理中常用的质量管理控制图,如图 所示,其中CL叫做中心线 叫做中心线, 叫做上控制线, 所示,其中 叫做中心线,UCL叫做上控制线, 叫做上控制线 LCL叫做下控制线,在上下控制线之间,一个随 叫做下控制线, 叫做下控制线 在上下控制线之间, 机的点落在中心线两侧的概率相等(各位0.5). 机的点落在中心线两侧的概率相等(各位 ) 试求11个独立点中恰有 个独立点中恰有10个点落在中心线同一侧 试求 个独立点中恰有 个点落在中心线同一侧 的概率. 的概率
P( A) = p = 0.6 P( A) = 1 − p = 1 − 0.6 = 0.4 3 0 (1) P3 (3) = C3 0.6(1 − 0.6) = 0.216; 2 2 1 (2) P3 (2) = C3 0.6 (1 − 0.6) = 0.432; 1 1 2 (3) P3 (1) = C3 0.6 (1 − 0.6) = 0.288; (4) P3 (0) = C30 0.60 (1 − 0.6)3 = 0.064
y UCL CL LCL 0 x
件产品中有3件不合格品 例1 100件产品中有 件不合格品,每次取出一件, 件产品中有 件不合格品,每次取出一件, 又放回的抽取三次,试求恰好有一件不合格品的概率. 又放回的抽取三次,试求恰好有一件不合格品的概率 由于三次是独立的, 解:由于三次是独立的,如果把每次操取都看 做一次实验, 做一次实验, 每次试验只有两种可能的结果“ 每次试验只有两种可能的结果“抽到合 格品” 抽到不合格品” 格品”或“抽到不合格品”,因此这是三次独立重 复试验 设A = {第i次抽到不合格品} 则A = 第i次抽到合格品
i
i
又设A= {3次抽取恰有1件不合格品}
{
}
由题设知P(A1 )=P(A 2 )=P(A 3 )=0.03, 则P( A1 )=P(A 2 )=P(A 3 )=0.97
一般地, 一般地,如果在一次实验中某事件发生的概率 次独立重复试验中, 是p,那么在n次独立重复试验中,这个事恰好发生 ,那么在 次独立重复试验中 k次的概率为: 次的概率为: 次的概率为
两个相互独立事件都发生的概率, 两个相互独立事件都发生的概率,等于每 个事件发生的概率的积. 个事件发生的概率的积
推广:如果事件 A1 , A2 ,⋅ ⋅ ⋅, An 相互独立,那么
P ( A1∩A2∩⋅⋅⋅∩An ) = P( A) P ( A2 ) ⋅⋅⋅ P( An )
以上两个公式叫做概率的乘法公式 概率的乘法公式. 概率的乘法公式
Pn (ξ = k ) = C P (1 − k )
k n k
n−k
在人寿保险事业中, 例2 在人寿保险事业中,很重视某一年龄的投保人的死 亡率,假如每个投保人能活到65岁的概率为 岁的概率为0.6,试问: 亡率,假如每个投保人能活到 岁的概率为 ,试问: 个投保人全部活到65岁的概率 (1)3个投保人全部活到 岁的概率; ) 个投保人全部活到 岁的概率; 个投保人有2人活到 岁的概率; (2)3个投保人有 人活到 岁的概率; ) 个投保人有 人活到65岁的概率 个投保人有1人活到 岁的概率; (3)3个投保人有 人活到 岁的概率; ) 个投保人有 人活到65岁的概率 (4)3个投保人都活不到 岁的概率; ) 个投保人都活不到65岁的概率; 个投保人都活不到 岁的概率 解:设 A = {1个人能活到65岁}, A = 做 次试验 次试验, 在相同条件下,重复的做n次试验,如果每一次试验结 果出现的概率都不依赖于其他各实验的结果, 果出现的概率都不依赖于其他各实验的结果,那么我们 就把这n次试验叫做 次独立试验. 次试验叫做n次独立试验 就把这 次试验叫做 次独立试验 例如:对一批产品进行抽样试验,每次抽取1件,又 例如:对一批产品进行抽样试验,每次抽取 件 放回的抽取n次 放回的抽取 次. 如果构成n次独立试验的每一次实验只有两种可 如果构成 次独立试验的每一次实验只有两种可 能的结果A及 那么这样的n次独立试验 次独立试验, 能的结果 及 A ,那么这样的 次独立试验,就叫 次独立重复试验或 重伯努利试验 重伯努利试验. 做n次独立重复试验或n重伯努利试验 次独立重复试验 次独立重复试验中, 在n次独立重复试验中,事件恰好发生 k次的 次独立重复试验中 次的 概率问题,叫做独立重复试验概型 伯努力概型. 独立重复试验概型或 概率问题,叫做独立重复试验概型或伯努力概型