ENVI实习直方图匹配,校正,分类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ENVI实习
一实验目的
(1)主要学习ENVI软件的基本功能
(2)ENVI 软件完成影像增强(包括直方图匹配和去云)、融合、正射校正和监督、非监督分类四个大方面的试验。
(3)掌握视窗操作模块的功能和操作技能
二软件和设备
一套
三实验原理
各个任务的试验原理和操作详细见下面操作,再次不详述。
一、图像增强(算法、原理、对比图)
1、直方图匹配
在ENVI 中使用Histogram Matching 工具可以自动地把一幅实现图像的直方图匹配到另一幅上,从而使两幅图像的亮度分布尽可能地接近。使用该功能以后,在该功能被启动的窗口内,输入直方图将发生变化,以与所选图像显示窗口的当前输出直方图相匹配。在灰阶和彩色图像上,都可以使用该功能。
操作步骤:选择Enhance > Histogram Matching,出现Histogram Matching Input parameters 对话框,在Match To中选择想匹配的图像。在Input Histogram 会有Image、Scroll、Zoom、Band、、ROI来选择如数直方图的来源,下图为输入图像数据及其所用的拉伸(直方图匹配之前):
下图为Match To 想匹配的图像及其拉伸:
利用直方图匹配后图像2的直方图结果:
从结果可以看出,匹配后的图像在亮度上已经明显增强,从偏暗增强为较亮;其直方图与#1中的图像直方图在亮度上分布也很接近。
2、图像去云
常规的云处理算法会随云的覆盖类型的不同而不同,对在大范围内存在薄云的影像来说,采用同态滤波法较好。同态滤波法把频率过滤与灰度变化结合起来,分离云与背景地物,最终从影像中去除云的影响,这种方法由于涉及到滤波器以及截至频率的选择,在滤波的过程中有时会导致一些有用信息的丢失。对于局部有云的影像来说,一般使用时间平均法,这种算法适用于地物特征随时间变化较小的地区,如荒漠、戈壁等地区;对于植被覆盖茂密的地区,由于植被的长势与时间有密切的关系,不同时相的植被长势在影像中有明显的区别,这种简单的替代算法不再适用。
对影像进行去云处理,不光是要简单地提高影像分类及制图的精度,同时也是对影像进行大气纠正以及对地物信息进行提取的重要步骤。最好有一种算法是能够从影像中去除云的影响,同时还能够恢复不同云区覆盖下的地物光谱信息。在本例中,我选择的去云方法没有用常规的空间域图像增强,滤波等方法,而是利用自己定义掩膜的方法。具体操作步骤如下:
1)使用BasicTool >statistics >compute statistic,弹出如下Compute Statistics Input File 对话框。点击OK,弹出如下对话框。选择Histograms 复选框
2)然后点击OK,查看统计信息。
取两条绿线间的灰度值阈值范围,然后使用BasicTool >masking>Apply Mask,弹出对话框。点击Mask Option>Build Mask,弹出Mask Definition对话框,选择Option>Select Input Mask Data Range,选中需处理的影像文件,点击OK。又弹出Input for Data Range Mask对话框,在Data Min Value 文本框中输入,在Data Max 对话框中输入,然后选择Mask Pixel if Any band matches range。
点击OK!然后再在Mask Definition 中选择Memory ,点击OK,此时已经生成了掩膜结果:
3)可在Available Bands List中看到Mask Band。然后在Apply Mask对话框中点击OK。会弹出Apply Mask Parameters对话框,点击Memory,点击OK。.此时在Available Bands List中显示出掩膜后结果。对比图如下:
二、图像融合试验
1、ENVI中的融合算法
由于由于不同的遥感数据具有不同的空间分辨率、波谱分辨率和时间分辨率,如果将它们各自的优势综合起来,可以弥补单一图像上信息的不足。遥感数据融合是对不同空间分辨率遥感图像的融合处理,使处理后的遥感图像既具有较高的空间分辨率(高空间分辨率数据),同时又具有多光谱特征(较低分辨率数据),从而达到图像增强的目的。图像融合的关键是融合前两幅图像的配准(Registration)以及处理过程中融合方法的选择,只有将不同空间分辨率的图像精确地进行了配准,使两种分辨率的影像覆盖同一地理区域、有相同的像素大小、影像大小以及相同的方位,才可能得到满意的融合效果;而对于融合方法的选择,则取决于被融合图像的特性以及融合的目的,同时,需要对融合方法的原理有正确的认识。
融合方法有很多,典型的有HSV、Brovey、PC、CN、SFIM、Gram-Schmidt 等。下面介绍一下原理:
(1)HSV(hue, saturation, and value:色调,饱和度,亮度值)可进行RGB 图像到HSV色度空间的变换,用高分辨率的图像代替颜色亮度值波段,自动用最近邻、双线性或三次卷积技术将色度和饱和度重采样到高分辨率像元尺寸,然后再将图像变换回RGB色度空间。输出的RGB图像的像元将与高分辨率数据的像元大小相同。
(2)Brovey锐化方法对彩色图像和高分辨率数据进行数学合成,从而使图像锐化。彩色图像中的每一个波段都乘以高分辨率数据与彩色波段总和的比值。函数自动地用最近邻、双线性或三次卷积技术将3个彩色波段重采样到高分辨率像元尺寸。输出的RGB图像的像元将与高分辨率数据的像元大小相同。
(3)用Gram-Schmidt 可以对具有高分辨率的高光谱数据进行锐化。第一步,从低分辨率的波谱波段中复制出一个全色波段。第二步,对该全色波段和波谱波段进行Gram-Schmidt变换,其中全色波段被作为第一个波段。第三步,用Gram-Schmidt 变换后的第一个波段替换高空间分辨率的全色波段。最后,应用Gram-Schmidt反变换构成pan锐化后的波谱波段。
(4)用PC 可以对具有高空间分辨率的光谱图像进行锐化。第一步,先对多光谱数据进行主成分变换。第二步,用高分辨率波段替换第一主成分波段,在此之前,高分辨率波段已被缩放匹配到第一主成分波段,从而避免波谱信息失真。第三步,进行主成分反变换。函数自动地用最近邻、双线性或三次卷积技术将高光谱数据重采样到高分辨率像元尺寸。
(5)CN波谱锐化的彩色标准化算法也被称为能量分离变换(Energy Subdivision Transform),它使用来自锐化图像的高空间分辨率(和低波谱分辨率)波段对输入图像的低空间分辨率(但是高波谱分辨率)波段进行增强。该功能仅对包含在锐化图像波段的波谱范围内的输入波段进行锐化,其他输入波段被直接输出,不发生变换。锐化图像波段的波谱范围由波段中心波长和FWHM(full width-half maximum)值限定,这两个参数都可以在锐化图像的ENVI头文件中获得。
(6)SFIM(基于亮度调节的平滑滤波)融合是通过平滑滤波将高分辨率影像匹配到低分辨率影像,与小波变换相似,但其算法过程和计算时间比小波变换要显著简化。