非线性系统李雅普诺夫稳定性分析35页PPT

合集下载

非线性系统的李雅普诺夫稳定性分析

非线性系统的李雅普诺夫稳定性分析

(t ) f ( x ) x
克拉索夫斯基法(2/7)
定理5-11 非线性定常连续系统的平衡态xe=0为渐近稳定的充 分条件为
ˆ ( x ) J ( x) J ( x) J
为负定的矩阵函数,且
x f ( x) f ( x) V ( x) x
为该系统的一个李雅普诺夫函数。

a11 a21 a22 x12 0 a12 a22 0 a 0 21
时,V'(x)为负定。
即上述 aij 所满足的条件是 V'(x) 负定的一个充分条件。
而rot(gradV)=0的充分必要条件是: gradV的雅可比矩阵
Vi gradV ( x) x x j
nn
是对称矩阵,即
Vi V j x j xi i, j 1, 2, , n
当上述条件满足时,式(5-29)的积分路径可以任意选择,故 可以选择一条简单的路径,即依各个坐标轴xi的方向积分
由 场 论 知 识 可 知 , 若 梯 度 gradV 的 n 维 旋 度 等 于 零 , 即 rot(gradV)=0,则V可视为保守场,且上式所示的线积分与路 径无关。
V ( x ) (gradV ) dx

0
x
x n
0
V dx
i 1 i
i
(5 29)
变量梯度法 (4/10)
通常将aij选择为常数或t的函数。
变量梯度法 (6/10)
V ( x ) V1 (x ,0,,0) dx1 V2 (x , x ,0,,0) dx2 Vn
0
1
x1
x2

李雅普诺夫方法ppt课件

李雅普诺夫方法ppt课件
第三章 动态系统的稳定性及李雅普诺夫
分析方法
1
§1 稳定性基本概念
一、外部稳定性与内部稳定性 1.外部稳定性
考虑一个线性因果系统,在零初始条件下,如果对应于任意有界输 入的输出均为有界,则称该系统是外部稳定的。
u(t) k1
y(t) k2
系统的外部稳定性也称有界输入-有界输出(BIBO)稳定性。
10
单摆是Lyapunov意义下稳定或渐近稳定的例子。
xe
11
§2 李雅普诺夫稳定性分析方法
一、李雅普诺夫第一法
又称间接法,通过系统状态方程的解来分析系统的稳定性, 比较适用于线性系统和可线性化的非线性系统。
1.线性系统情况
线性定常连续系统平衡状态 xe 0 为渐近稳定的充要条件
是系统矩阵A的所有特征值都具有负实部。
S( ) ,则称平
衡状态 xe 为不稳定。
二维状态空间中零平衡状态 xe 0 为不稳定的几何解释如右图。
对于线性系统一般有:
lim
t
x(t, x0,t0 ) xe

对于非线性系统,也有可能趋于
S ( ) 以外的某个平衡点或某个极限环。
x2
x(t)
x(t0 ) xe
S( ) S( ) x1
4
3. 平衡状态
对于系统

x
f
(
x ,t )
(线性、非线性、定常、时变)
x (t0 ) x0
如果存在 xe,对所有的t有 f (xe,t) 0 成立,称状态 xe为上述 系统的平衡状态。
通常情况下,一个自治系统的平衡状态不是唯一的。而对于 线性定常连续系统的平衡状态有:
x Axe 0 ①若A非奇异,xe 0 唯一的平衡状态

5.4_非线性系统的李雅普诺夫稳定性分析解析

5.4_非线性系统的李雅普诺夫稳定性分析解析

克拉索夫斯基法(3/7)
V ( x ) [ f ( x ) f ( x )] f ( x ) f ( x ) x f ( x ) f ( x ) x x x f ( x) J ( x) f ( x) f ( x) J ( x) f ( x) ˆ ( x) f ( x) f ( x) J
克拉索夫斯基法(6/7)
例4-12 试确定如下非线性系统的平衡态的稳定性:
3x1 x2 f ( x) x 3 x x x 2 1 2
(t ) f ( x ) x
克拉索夫斯基法(2/7)
定理5-11 非线性定常连续系统的平衡态xe=0为渐近稳定的充 分条件为
ˆ ( x ) J ( x) J ( x) J
为负定的矩阵函数,且
V ( x) x x f ( x) f ( x)
为该系统的一个李雅普诺夫函数。

由于 V ( x) f ( x) f ( x)为系统的一个李雅普诺夫函数,即
f ( x) f ( x) 正定。
ˆ (x)负定,则 V ( x, t ) f ( x ) J ˆ ( x) f ( x )必为负定。 因此,若 J
所以 , 由定理 5-4 知 , 该非线性系统的平衡态 xe=0 是渐近稳 定的。
0 1 ˆ J ( x) J ( x) J ( x) 1 14
不是负定矩阵 , 故由克拉索夫斯基定理判别不出该系统 为渐近稳定的。
可见,该定理仅是一个充分条件判别定理。
克拉索夫斯基法(5/7)
若 V(x)=f(x)f(x) 正定 , 为 Lyapunov 函数 , 则说明只有当 x=0 时,才有V(x)=0,即原点是唯一的平衡态。 因此,只有原点是系统的由该定理判别出的渐 近稳定的平衡态一定是大范围渐近稳定的。 由克拉索夫斯基定理可知 ,系统的平衡态xe=0是渐近稳定 的条件是J(x)+J(x)为负定矩阵函数。 由负定矩阵的性质知 , 此时雅可比矩阵 J(x) 的对角线 元素恒取负值 , 因此向量函数 f(x) 的第 i 个分量必须包 含变量xi, 否则 , 就不能应用克拉索夫斯基定理判别该 系统的渐近稳定性。 将克拉索夫斯基定理推广到线性定常连续系统可知 :对称 矩阵A+A负定,则系统的原点是大范围渐近稳定的。

李雅普诺夫稳定性分析方法

李雅普诺夫稳定性分析方法
则是根据G(s)的特征值来分析其在小扰动 范围内运动稳定性.
(2)李雅普诺夫第二方法
• 也称直接法,属于直接根据系统结构判断内 部稳定性的方法.
• 该方法直接面对非线性系统,基于引入具有 广义能量属性的Lyapunov函数和分析李氏 函数的定量性, 建立判断稳定性的相应结 论.
• 因此直接法也是一般性方法----Lyapunov 第二法更具有一般性.
(2).平衡状态的形式.平衡状态 可由方程定 出,对二维自治系统, 的形式包括状态空 间中的点和线段.
(3).不唯一性.平衡状态 一般不唯一.
对定常线性系统而言,平衡状态 的解.
• 若矩阵A非奇,则有唯一解 • 若矩阵A奇异,则解 不唯一.
为方程
(4).孤立平衡状态,该状态是指状态空间彼此 分隔的孤立点形式的平衡状态,孤立平衡状 态的重要特征是:通过坐标移动可将其转换 为状态空间的原点.
• Lyapunov函数与
有关,用V(x)来
表示.
• 一般情况下V(x)>0 , 间的变化率.
表示能量随时
•当 少.
表明能量在运动中随时间推移而减
•当 加.
表明能量在运动中随时间推移而增
1.预备知识 1).标量函数V(x)性质意义:
令V(x)是向量x的标量函数,Ω是x空间包含 原点的封闭有限区域. (1).如果对所有区域Ω中的非零向量x,有 V(x)>0,且在x=0处有V(x)=0则在域Ω内称 V(x)为正定.
(3)用李氏方法分析的必要性 • 以一个例子说明:用特征值来判断线性时变
系统一般稳定性是会失效的.
• 其中特征值为 -1,-1.
• 但由于其解为
• 当 时,若 则必有 • 故平衡状态是不稳定的,即系统的实际表现

李雅普洛夫稳定性分析精品PPT课件

李雅普洛夫稳定性分析精品PPT课件
4、孤立平衡状态:如果多个平衡状态彼此是孤立的,则称这样 的状态为孤立平衡状态。单个平衡状态也是孤立平衡状态。
2.2 状态向量范数
符号 称为向量的范数,
为状态向量端点至
平衡状态向量端点的范数,其几何意义为“状态偏差
向量”的空间距离的尺度,其定义式为:
①范数 X 0 X e 表示初始偏差都在以Xe 为中心,δ为半径的 闭球域S(δ)内.
(2) 求系统的特征方程:
det(I
A)
1
求得:1 2,2 3
系统不是渐近稳定的。
6
1
(
2)(
3)
0
3.2 非线性系统的李亚普洛夫第一法
对非线性系统 X f (X ,t)
当f (X,t)为与X 同维的矢量函数,且对X 具有连续偏导数,则可将
向于无穷大时,有:
lim x
t
xe
0
即收敛于平衡状态xe,则称平衡状态xe为渐近稳定的。
如果 与初始时刻 t0无关,则称平衡状态xe为一致渐近稳定。
渐近稳定几何表示法:
Hale Waihona Puke 3、大范围渐近稳定如果对状态空间的任意点,不管初始偏差有多大,都有渐
近稳定特性,即:lim x t
xe
0
对所有点都成立,称平衡状态xe为大范围渐近稳定的。其
渐近稳定的最大范围是整个状态空间。
必要性:整个状态空间中,只有一个平衡状态。 (假设有2个平衡状态,则每个都有自己的稳定范 围,其稳定范围不可能是整个状态空间。)
结论:如果线性定常系统是渐近稳定的,则它一定是大范 围渐近稳定的。
4、不稳定 如果对于某一实数 0 ,不论 取得多么小,由 S( )内
域 S( ) ,当初始状态 x0 满足 x0 xe ( , t0 ) 时,对由此出发

李雅普诺夫稳定判据.ppt

李雅普诺夫稳定判据.ppt

例4.13 非线性系统的状态方程为


x1 x 2

x2

x1 (x12

x
2 2
)
x1 x2 (x12 x22 )
分析其平衡状态的稳定性。
解:确定平衡点:
xxe2e1
xe2 xe1
xe1(xe21 xe22 ) 0 xe2 (xe21 xe22 ) 0
取Q=I,P

P11

P12
P12
P22

,代入

T

0 1
1 P11

1

P12
P12 P22


P11

P12
P12 0
P22


1
1 1

10
0 1
P12

P11

P12
P12
P22 P22
不恒等于0,V (x) 也不恒等于0,因此, 系统平衡状态是大范围渐进稳定的。
李雅普诺夫函数不是唯一的。本例也可
取 则
V ( x)

1 2
[( x1
x2 ) 2
2 x12

x
2 2
]
V (x) (x1 x2 )(x1 x 2 ) 2x1 x1 x2 x 2
根据上述定义容易检验下列标量函数的正定性
1) V (x) = x12 2x22 是正定的;
2) V (x) = (x1 x2 )2 是半正定的,因为当 x1 x2 时 , V ( x) =0;
3)V (x) 0

非线性系统的李雅普诺夫稳定性分析共34页文档

非线性系统的李雅普诺夫稳定性分析共34页文档
ห้องสมุดไป่ตู้

29、在一切能够接受法律支配的人类 的状态 中,哪 里没有 法律, 那里就 没有自 由。— —洛克

30、风俗可以造就法律,也可以废除 法律。 ——塞·约翰逊
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
非线性系统的李雅普诺夫稳定性分析

26、我们像鹰一样,生来就是自由的 ,但是 为了生 存,我 们不得 不为自 己编织 一个笼 子,然 后把自 己关在 里面。 ——博 莱索

27、法律如果不讲道理,即使延续时 间再长 ,也还 是没有 制约力 的。— —爱·科 克

28、好法律是由坏风俗创造出来的。 ——马 克罗维 乌斯

李雅普诺夫稳定性理论PPT学习教案

李雅普诺夫稳定性理论PPT学习教案

xe 0
的解
Axe 是系统唯一存在的平衡状态,当A为非奇异时,则
0
xe
会有无穷多个。
5) 由于任意一个已知的平衡状态,都可以通过坐标变换将其变
0
换到坐标原点 xe 处。所以今后将只讨论系统在坐标原点处的
稳定性就可以了。
6) 稳定性问题都是相对于某个平衡状态而言的。(这一点从
线性定常系统中的描述中可以得到理解)
种平衡状态xe不稳定。
第26页/共66页
1.2 李雅普诺夫稳定性及判别方法
球域s()限制着初始状态x0的取值,球域s()规定了系统自由 响
(t ; x0 , t0 )
应 x(t ) 的边界。
如果x(t)为有界,则称xe稳定。
如果x(t)不仅有界而且有: lim x(t ) 0 则称 xe 渐近稳定
如果与t0无关,则称这种平衡状态是一致稳定的
第22页/共66页

1.2 李雅普诺夫稳定性及判别方法
若对应于每一个s(),都存在一个s(),使当t无限增长使,从
s()出发的状态轨线(系统的响应)总不离开s(),即系统响应的
幅值是有界的,则称平衡状态xe为李雅普诺夫意义下的稳定,
简称为稳定。
第23页/共66页
第28页/共66页
1.2 李雅普诺夫稳定性及判别方法
如果系统 对于有 界输入 u所引 起的输 出y是有 界的, 则称系 统为输 出稳定 。
线性定常 系统 ∑=(A ,b,c )输出 稳定的 充要条 件是其 传递函 数
W s c sI A b
1
的极点全 部位于s 的左半 平面。
线性系统的稳定判据
线性定常 系统 ∑=(A ,b,c )

李雅普诺夫稳定性的基本定理 PPT课件

李雅普诺夫稳定性的基本定理 PPT课件
李雅普诺夫第一法(1/7)
3.2.1 李雅普诺夫第一法
李雅普诺夫第一法又称间接法,它是研究动态系统的一次近似 数学模型(线性化模型)稳定性的方法。它的基本思路是: 首先,对于非线性系统,可先将非线性状态方程在平衡态 附近进行线性化, 即在平衡态求其一次Taylor展开式, 然后利用这一次展开式表示的线性化方程去分析系 统稳定性。 其次,解出线性化状态方程组或线性状态方程组的特征值, 然后根据全部特征值在复平面上的分布情况来判定系统 在零输入情况下的稳定性。
从定义可知,所谓正定函数,即指除零点外恒为正值的标量函 数。由正定函数的定义,我们相应地可定义 负定函数、 非负定(又称半正定或正半定)函数、 非正定函数(又称半负定或负半定)和 不定函数。
实函数的正定性(3/4)—函数定号性定义
定义3-6 设xRn,是Rn中包含原点的一个区域,若实函数V(x) 对任意n维非零向量x,都有V(x)<0;当且仅当x=0时,才有 V(x)=0,则称函数V(x)为区域上的负定函数。
李雅普诺夫第一法(2/7)
下面将讨论李雅普诺夫第一法的结论以及在判定系统的状态稳 定性中的应用。
设所讨论的非线性动态系统的状态方程为 x’=f(x)
其中f(x)为与状态向量x同维的关于x的非线性向量函数,其各元 素对x有连续的偏导数。
参看课本P167
李雅普诺夫第一法(5/7)
李雅普诺夫第一法的基本结论是: 1. 若线性化系统的状态方程的系统矩阵A的所有特征值都 具有负实部,则原非线性系统的平衡态xe渐近稳定,而且系 统的稳定性与高阶项R(x)无关。 2. 若线性化系统的系统矩阵A的特征值中至少有一个具有 正实部,则原非线性系统的平衡态xe不稳定,而且该平衡态 的稳定性与高阶项R(x)无关。 3. 若线性化系统的系统矩阵A除有实部为零的特征值外,其 余特征值都具有负实部,则原非线性系统的平衡态xe的稳 定性由高阶项R(x)决定。

稳定性与李雅普诺夫

稳定性与李雅普诺夫
1)V(x) > 0,则称V(x)为正定。例如V(x)=x12 +x22; 2)V(x) ≥ 0,则称V(x)为半正定(或非负定)。例如
V(x)=(x1 +x2)2; 3)V(x) < 0,则称V(x)为负定。例如V(x)=-(x12 +2x22); 4)V(x) ≤ 0,则称V(x)为半负定(或非正定)。例如
p
Δ1
p11 , Δ2
11
p
21
p
12
p
,…
, Δn P
22
矩阵 P(或 V(x))定号性的充要条件是:
1)若 Δi 0, i (1,2,, n) ,则 P(或 V(x))为正定;
2)若
Δi
0, 0,
i为偶数 i为奇数
,则
P(或
V(x))为负定;
3)若
Δi
0, 0,
i i
(1,2,, n
需要根据舍弃旳髙 阶项再分析 采用李雅普诺夫第 二法
举例:用李雅普诺夫第一法判断下列系统旳稳定性
x1 x1 x1x2
x2
x2
x1x2
第一步:令 x1 0, x2 0
求得系统旳平衡状态 x1e (0,0)T , x1e (1,1)T
第二步:将系统在平衡状态x1e附近线性化
f1 f1
(1)V(x)是满足稳定性判据条件的一个正定的标量函数,且 对于 x 应具有连续的一阶偏导数; (2)对于一个给定系统,如果 V(x)可以找到,那么通常是非 唯一的,这并不影响结论的一致性。 (3)V(x)的最简单形式是二次型函数 V(x) = xTP x,其中 P 为 实对称方阵,它的元素可以是定常的或时变的。但 V(x)并不一 定都是简单的二次型。 (4)如果 V(x)为二次型,且可表示为:

现代控制理论5.4 非线性系统的李雅普诺夫稳定性分析

现代控制理论5.4 非线性系统的李雅普诺夫稳定性分析

克拉索夫斯基法 (1/7)
5.4.1 克拉索夫斯基法
� 设非线性定常连续系统的状态方程为
̇ (t ) = f ( x ) x
� 对该系统有如下假设: 1) 所讨论的平衡态xe=0; 2) f(x)对状态变量x是连续可微的,即存在雅可比矩阵
J ( x ) = ∂f ( x ) / ∂xτ
� 对上述非线性系统 ,有如下判别渐近稳定性的克拉索夫斯 基定理。
0
1
x1
x2
0
(x1 , x2 ,0,⋯ ,0)
dx2 + ⋯ + ∫ ∇Vn (x , x ,⋯, x ) dxn
0
1 2
xn
n
变量梯度法 (5/10)
� 按变量梯度法构造李雅普诺夫函数方法的步骤如下。 1) 将李雅普诺夫函数V(x)的梯度假设为
⎡ a11 x1 + a12 x2 + ⋯ + a1n xn ⎤ ⎢a x + a x + ⋯ + a x ⎥ 22 2 2n n ⎥ grad V = ⎢ 21 1 ⎢ ⎥ ⋮ ⎢ ⎥ a x + a x + ⋯ + a x ⎣ n1 1 2n 2 nn n ⎦
非线性系统的李雅普诺夫稳定性分析(2/4)
� 本节主要研究Lyapunov方法在非线性系统中的应用。 � 由于非线性系统千差万别,没有统一的描述,目前也不存在 统一的动力学分析方法,因此对其进行稳定性分析是困难 的。 � 对于非线性系统,李雅普诺夫第二法虽然可应用于非线性 系统的稳定性判定,但其只是一个充分条件,并没有给出建 立李雅普诺夫函数的一般方法。 � 而只能针对具体的非线性系统进行具体分析。
̇1 = x2 ⎧x ⎨ ̇2 = − x2 − x13 ⎩x

哈尔滨工程大学自动控制原理第5章李雅普诺夫稳定性分析.ppt

哈尔滨工程大学自动控制原理第5章李雅普诺夫稳定性分析.ppt

则称系统的平衡状态xe是李雅普诺夫意义下稳定的.
式中:
的尺度。
为欧几里得范数,其几何意义是空间距离
8
该定义的几何含义是:设系统初始状态x0位于以平衡
状态xe为球心、δ为半径的闭球域S(δ)内,即
| |x x | (, t ) 0 e| 0
若能使系统方程的解 x(t;x0,t0) 在 t→∞ 的过程中,都位 于以xe为球心,任意规定的半径为ε的闭球域S(ε)内, 即
标量函数V(x)对所有S域(域S包含状态空间
的原点)中的非零状态x有V(x)>0且V(0) = 0,则
称V(x)在S域内是正定的。
如果时变函数V(x,t)有一个正定函数作为下限, 也就是说,存在一个正定函数W(x) ,使得
V ( x , t ) W ( x ) ,V ( 0 , t ) 0 , tt 0
t
l i m | |x (; tx , t ) x | 0 0 0 e|
则称此平衡状态xe是渐近稳定的。 经典控制理论中的稳定性定义与渐近稳定性对应。
若 δ与 t0 无关,且上式的极限过程与 t0 无关,则称
平衡状态是一致渐近稳定的。 从工程观点而言,渐近稳定更为重要。渐近稳定 即为工程意义下的稳定,而李雅普诺夫意义下的稳 定则是工程意义下的临界不稳定。 10
系统稳定性。
14
定理9-9 (P515) ※: 对线性定常系统 x ,有 A x , x ( 0 ) x , t 0 0 1 )系统的每一个平衡状态是李雅普诺夫意义下 稳定的充分必要条件为: A的所有特征值均具有 非正 ( 负或零 ) 实部,且实部为零的特征值是 A 的 最小多项式的单根。
11
7. 不稳定性

李雅普诺夫稳定性的定义.ppt

李雅普诺夫稳定性的定义.ppt
主要介绍 李雅普诺夫稳定性的定义以及 分析系统状态稳定性的李雅普诺夫理论和方法; 着重讨论 李雅普诺夫第二法及其在线性系统和3类非线性系统 的应用、 李雅普诺夫函数的构造、 李亚普诺夫代数(或微分)方程的求解等。
目录(1/1)
目 录
概述 5.1 李雅普诺夫稳定性的定义 5.2 李雅普诺夫稳定性的基本定理
平衡态
平衡态(3/4)
李雅普诺夫稳定性研究的平衡 态附近(邻域)的运动变化问题。 若平衡态附近某充分小邻 域内所有状态的运动最后 都趋于该平衡态,则称该 平衡态是渐近稳定的; 若能维持在平衡态附近某 个邻域内运动变化则称为 稳定的,如上图所示。
xe
x2
xe
x1
不稳定 若发散掉则称为不稳定的, 平衡态
定义5-1 动态系统 x’=f(x,t) 的平衡态是使 f(x,t)0 的状态,并用xe来表示。 从定义5-1可知,平衡态即指状态空间 中状态变量的导数向量为零向量的 点(状态)。
平衡态
平衡态
由于导数表示的状态的运动变 化方向,因此平衡态即指能够保 持平衡、维持现状不运动的状 态,如上图所示。
1范数范数为中心在所定义的范数度量意义下的长度为半径内的各点所组成空间体称为球域记为sx1范数下球域李雅普诺夫意义下的稳定性稳定性定义14李雅普诺夫稳定性定义基于上述数学定义和符号我们有如下李雅普诺夫意义下稳定性的定义
Ch.5 李雅普诺夫稳定性 分析
本章简介(1/2)
本章简介
本章讨论李雅普诺夫稳定性分析。
概述(2/5)
也可以说,系统的稳定性就是系统在受到外界干扰后,系统状 态变量或输出变量的偏差量(被调量偏离平衡位置的数值)过 渡过程的收敛性,用数学方法表示就是

第四章 李雅普诺夫稳定性PPT课件

第四章 李雅普诺夫稳定性PPT课件
第五章 李雅普诺夫稳定性分析
5.1 几个稳定性概念 5.2李雅普诺夫稳定性定理 5.3线性系统中李雅普诺夫稳定性分析 5.4非线性系统中李雅普诺夫稳定性分析
1
稳定性定义
稳定性与能控性,能测性一样,均是系统的结构性 质。一个动态系统的稳定性,通常指系统的平衡状 态是否稳定。简单的说,稳定性是指系统在扰动消 失后,由初始偏差状态恢复到原平衡状态的性能, 其是系统的一个自身动态属性。
系统的平衡状态是一致渐近稳定的。
10
李雅普诺夫稳定性定理
定理5-1(李雅普诺夫稳定性的基本定理) 并称 V ( x , t ) 是系统的一个李雅普诺夫函数。 进一步,若 V ( x , t ) 还满足: (3) limV(x,t) ,则系统的平衡状态是大
x
范围一致渐近稳定的。
11
李雅普诺夫稳定性定理
2
平衡状态
对于系统自由运动,令输入 u 0 ,系统的齐次状态方程

为 xf(x,t) (5-1)式(5-1)的解为 x(t) (t;x0,t0) (5-2)
式(5-2)描述了系统(5-1)在n维状态空间的运动轨线。
在式(5-1)所描述的系统中,存在状态点 x e ,当系统运动
到该点时,系统状态各分量维持平衡,不在随时间变化,即
发的状态轨迹都收敛于x e 。
8
李雅普诺夫稳定性定理
李雅普稳定性理论提出了判断系统稳定性的两 种方法。
1.第一方法:利用状态方程解的性质来判断系 统的稳定性。
2.第二方法:无须求解状态方程而是借助于象 征广义能量的李雅普诺夫函数 V ( x , t ) 及其对 时间的偏导数V• ( x , t ) 的符号特征直接判定平 衡状态的稳定性。
存在(,t0) 0,使得当 x0xe (,t0)时,系统(5-1) 从任意初始状态 x(t0) x0出发的解满足

李雅普诺夫稳定性分析

李雅普诺夫稳定性分析
第四章
李雅普诺夫稳定性分析
李雅普诺夫稳定性理论
李雅普诺夫理论在建立一系列关于稳定性概念的基础上,提出了判断 系统稳定性的两种方法: 间接法:利用线性系统微分方程的解来判断系统稳定性,又称之为李 雅普诺夫第一法; 直接法:首先利用经验和技巧来构造李雅普诺夫函数,进而利用李雅 普诺夫函数来判断系统稳定性,又称为李雅普诺夫第二法。
这表明, 当且仅当‖eAt‖≤ k <∞ 时,对任给的一个实数ε > 0,都对应存在和初始时 刻无关的一个实数 δ(ε)= ε /k,使得由满足不等式 ||x0 — xe|| ≤ δ(ε) (4-391) 的任一初态x0出发的受扰运动都满足不等式 xt; x0 ,0 xe e At x0 xe k , t 0 (4 392)
2)
证明 1) 设 xe 为线性定常系统(4-388+)的平衡状态,则由性质 e 0 和 Axe 0 x 可知,对于所有 t≥0 均有(可通过等式两边求微分证明下式)
xe e At xe (4 389) (4 390)
于是,考虑到 x(t; x0, 0) = eAtx0,有
x(t; x0 ,0) xe e At ( x0 xe ), t 0
2 李雅普诺夫意义下的稳定性
设系统初始状态位于以平衡状态xe为球心、δ为半径的闭球域S(δ)内,即 ||x0 - xe|| ≤ δ, t =t0 (4-385) 若能使系统方程的解x(t;x0,t0)在t→∞的过程中,都位于以xe为球心、任意规 定的半径为ε的闭球域S(ε)内,即 ||x(t;x0,t0)-xe|| ≤ ε,t≥t0 (4-386) 则称系统的平衡状态xe在李雅普诺夫意义下是稳定的。式中||· ||为欧几里德范 数,其几何意义是空间距离的尺度。 例如: ||x0 - xe||表示状态空间中, x0 点至 xe 点之间距离的尺度,数学表达式 为: ||x0 - xe|| = [(x10 – x1e)2+ (x20 – x2e)2+… +(xn0 – xne)2]1/2 (4-385)

现代控制理论李雅普诺夫稳定性理论精品PPT课件

现代控制理论李雅普诺夫稳定性理论精品PPT课件
则称xe是李雅普诺夫意义下稳定的。
时变系统: 与 t0有关 定常系统: 与t0无关,xe 是一致稳定的。
注意: -向量范数(表示空间距离)
欧几里得范数。 1
x0 xe [(x10 x1e )2 (xn0 xne )2 ]2 9
2.渐近稳定
1)xe是李雅普诺夫意义下的稳定
2)lim t
14
4.3 李雅普诺夫第一法(间接法) 利用状态方程解的特性来判断系统稳定性。
1. 线性定常系统稳定性的特征值判据
x Ax x(0) x0 t 0
1)李雅普诺夫意义下的稳定的充要条件:
Re(i ) 0 i 1,2,n
2)渐近稳定的充要条件:
Re( i ) 0 i 1,2,n
3)不稳定的充要条件:Re( i ) 0
正定; 负半定; 在非零状态恒为零;则原
点是李雅普诺夫意义下稳定的。
➢ 说明:沿状态轨迹能维持 V (x, t) 0 表示系统能
维持等能量水平运行,使系统维持在非零状态,而
不运行至原点。
33
❖定理4:若(1) V (x,t) 正定; (2) V (x,t) 正定
2.初态 x f (x,t)的解为 x(t; x0,t0 ) x(t0 , x0 , t0 ) x0 初态
3.平衡状态:
xe f (xe , t) 0 xe 系统的平衡状态 a.线性系统 x Ax x Rn
A非奇异: Axe 0 xe 0
A奇异:
Axe 0 有无穷多个 xe 5
x xe
其中:
g(x) --级数展开式中二阶以上各项之和
f (x)
f1
x1 f2
f1
x2 f2
f1
xn f2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
非线性系统李雅普诺夫稳定性分析
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
Thank youFra bibliotek
相关文档
最新文档