六年级数学思维能力试卷及答案
【小学数学】小学六年级数学思维训练题(含答案)
![【小学数学】小学六年级数学思维训练题(含答案)](https://img.taocdn.com/s3/m/d05bde1c03020740be1e650e52ea551810a6c9c6.png)
【小学数学】小学六年级数学思维训练题(含答案)思维训练题(含答案)1、两个相同的瓶子装满酒精溶液。
一个瓶中酒精与水的比2︰3;另一个瓶中酒精与水的比是3︰5;若把两瓶酒精溶液混合;混合后酒精与水的比是多少?分析与解答:因为两个瓶子相同;可以分别求出每个瓶中酒精占瓶子容积的几分之几;在求出混合后酒精和水各占容器容积的几分之几;即可求出混合后酒精与水的比。
2、某饮料店有一桶奶茶;上午售出其中的25%;下午售出30升;晚上售出剩下的10%;最后剩下的奶茶再减6升刚好半桶;问一桶奶茶共有多少升?【考点】L6:分数和百分数应用题【分析】设一桶奶茶共有a升;则晚上售出(a﹣25%a﹣30)×10%;此时剩下(a﹣25%a﹣30)×(1﹣10%);对应着50%a+6;列出方程求解.【解答】解:设一桶奶茶共有a升(a﹣25%a﹣30)×(1﹣10%)=50%a+6(0.75a﹣30)×0.9=0.5a+60.675a﹣27=0.5a+60.175a=333、学校里买来了5个保温瓶和10个茶杯;共用了90元钱。
每个保温瓶是每个茶杯价钱的4倍;每个保温瓶和每个茶杯各多少元?分析与解:根据每个保温瓶的价钱是每个茶杯的4倍;可把5个保温瓶的价钱转化为20个茶杯的价钱。
这样就可把5个保温瓶和10个茶杯共用的90元钱;看作30个茶杯共用的钱数。
解:每个茶杯的价钱:=3(元)90÷(4×5+10)每个保温瓶的价钱3×4=12(元)答:每个保温瓶12元;每个茶杯3元。
4、某工地运进一批沙子和水泥;运进沙子袋数是水泥的2倍。
每天用去30袋水泥;40袋沙子;几天以后;水泥全部用完;而沙子还剩120袋;这批沙子和水泥各多少袋?分析与解:由己知条件可知道;每天用去30袋水混;同时用去30×2袋沙子才能同时用完。
但现在每天只用去40袋沙子;少用(30×2-40)袋;这样オ累计出120袋沙子。
六年级趣味数学思维训练题50道及答案
![六年级趣味数学思维训练题50道及答案](https://img.taocdn.com/s3/m/79c9a11e76232f60ddccda38376baf1ffc4fe3be.png)
六年级趣味数学思维训练题50道及答案(1) 【图形分割】如图,要求把正方形分成四块,两个正方形共分为八块,使每块的大小和形状都相同,而且都带一个○.(2) 【图形面积】如图所示,在正方形ABCD 中,红色,绿色正方形的面积分别是52和13,且红,绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点,求黄色正方形面积.(3) 【行程问题】龟兔进行10000米跑步比赛。
兔每分钟跑400米,龟每分钟跑80米,兔每跑5分钟歇25分钟,谁先到达终点?(4) 【统筹规划】有1993名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小.(5) 【行程问题】已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程绿黄红D C B A与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫,狗,兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?(6)【逻辑推理】在S岛上居住着100个人,其中一些人总是说假话,其余人则永远说真话,岛上的每一位居民崇拜三个神之一:太阳神,月亮神和地球神.向岛上的每一位居民提三个问题:⑴您崇拜太阳神吗?⑴您崇拜月亮神吗?⑴您崇拜地球神吗?对第一个问题有60人回答:“是”;对第二个问题有40人回答:“是”;对第三个问题有30人回答:“是”.他们中有多少人说的是假话?(7)【统筹规划】小明骑在牛背上赶牛过河.共有甲,乙,丙,丁4头牛.甲牛过河需要1分钟,乙牛过河需要2分钟,丙牛过河需要5分钟,丁牛过河需要6分钟.每次只能赶两头牛过河,那么小明要把这4头牛都赶到对岸,最小要用__________分钟.(8)【不定方程】庙里有若干个大和尚和若干个小和尚,已知7个大和尚每天共吃41个馒头,29个小和尚每天共吃11个馒头,平均每个和尚每天恰好吃一个馒头.问:庙里至少有多少个和尚?(9)【行程问题】有两支香,第一支长34厘米;第二支长18厘米,同时点燃后,都是平均每分钟燃掉2厘米,多少分钟后第一支香的长度是第二支香的长度的3倍(10)【年龄问题】同学们可能知道,歌星,影星一般都不愿意公开自己的年龄。
2019-2020年六年级数学思维能力试卷及答案
![2019-2020年六年级数学思维能力试卷及答案](https://img.taocdn.com/s3/m/4372c743168884868762d6a3.png)
六年级数学思维综合能力测试六07.10.2019-2020年六年级数学思维能力试卷及答案1、将下列式子添上小括号,使结果最大,并计算出来:12 +15 ×14 +8 ÷4 ÷ 2 =()2、用30米长的篱笆围成一个长方形鸡舍,若长方形一面靠墙,则长=()米,宽=()米时面积最大,最大面积是()。
3、在一个正方形操场的四周插上红旗,4个角上也插上红旗,如果每条边上插15面,那么四周一共插了()面红旗。
4、八月份最后一天是星期三,那么12月31日是星期()。
5、如图,一只电子青蛙在8等分的圆周上有规律地跳跃,开始跳跃时电子青蛙在A点,以后依次跳到B、C、D点,从A点算起,跳到E点要跳()次。
6、篮子里有一些苹果,3个3个地数多1个,5个5个地数也多1个,7个7个数不多也不少,那么篮子里最少有()个苹果。
7、一个边防哨所有6名战士,他们轮流派出2名战士站岗放哨,时时刻刻保卫祖国的边疆,从晚上8点到第二天清晨5点,这些战士平均每人能休息()小时。
8、有80名战士要过一座281米长的大桥,每4人排一横行,每行之间相距1米,战士们前进的速度是每秒4米,这支队伍从上桥到下桥,共需要()分钟。
9、王奶奶说:我养的兔的头加鸡的脚正好是14,鸡的头加鹅的脚正好是19,鹅的头加兔的脚正好是23,兔有()只,鹅有()只,鸡有()只。
10、有24个不同的含有数字2,4,5和9的四位数。
(1)当这些数按从小到大的次序排列时,处在第12个位置上的是()。
(2)这24个数的平均数是()。
11、有6个谜语让50人猜,猜对的共有202个,已知每人至少猜对2个,猜对2个的有5人,猜对4个的有9人,猜对3个和猜对5个的人数同样多,6个谜语全猜对的有()人。
12、一群小朋友购买售价是3元和5元的两种商品。
每人购买的数量最少是一件。
他们也可购买相同的商品。
但每人的购买总金额不得超过15元,若小朋友中至少有三人购买的两种商品的数量完全相同,问这群小朋友最少有()人。
人教版六年级数学思维提升试卷及参考答案
![人教版六年级数学思维提升试卷及参考答案](https://img.taocdn.com/s3/m/71bcd102cfc789eb172dc8e0.png)
数学试题卷 第1页(共4页)六年级数学思维提升试卷(时间:80分钟,满分100分)一、填空题。
(第1-3题每小题3分,第4-7题每小题4分,第8-10题每小题5分,共40分)1. 把2017减去它的21,再减去余下的31,再减去余下的41,依此类推,一直减去余下的20161,那么最后剩下的数是( )。
2. 小丁、小钱、小王、小韩、小傅参加学校围棋比赛,而且都进入了前五名。
发奖前,老师让他们猜一猜各自的名次。
小丁说:小钱第三,小王第五;小钱说:小傅第四,小韩第五;小王说:小丁第一,小傅第四;小韩说:小王第一,小钱第二;小傅说:小丁第三,小韩第四。
老师说:每个名次都有人猜对。
那么,获第四名的是( )。
3. 甲、乙两位探险者要到沙漠深处探险,他们每天可走25千米,已知每人最多可带一个人20天的食物和水,如果允许将部分食物存放在途中,那么其中一个人最远可走入沙漠( )千米。
4. 有一些自然数按照右边规律排列,则上起第10行,左起第8列的数是 ( )。
5. 如下图,右面的4个图形,只有一个是左边的纸板折叠起来的,这个图形是( )。
6. 如图所示的四个圆形跑道,每个跑道长都是1千米。
甲、乙、丙、丁四人同时从交点O 出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时6千米,每小时8千米,每小时10千米。
从出发到四人再次相遇,四人一共跑了( )千米。
7. 有黑色、白色、黄色、银色的筷子各8根,混杂放在一起,黑暗中想从这些筷子中取出颜色不同的三双筷子,至少要取出( )根才能保证达到要求。
8. 右图圆锥体底面半径为1.5厘米,AB 长为9厘米,一只甲壳虫从A 点出发绕圆锥表面爬一圈回到A 点,问最短路程是( )厘米。
9. 用面积为1、2、3、4的4张长方形纸片拼成如右图所示的长方形。
图中阴影部分的面积是 ( )。
10. 一批工人到甲乙两个工地进行清理工作。
甲工地的工作量是乙工地的工作量的211倍。
上午去甲工地的人数是去乙工地人数的3倍,下午这批工人中有125在乙工地工作,其他工人去甲工地。
六年级数学思维题15题及详细答案
![六年级数学思维题15题及详细答案](https://img.taocdn.com/s3/m/ee0b9e55bfd5b9f3f90f76c66137ee06eff94e37.png)
六年级数学思维题15题及详细答案1. 问题:速度问题一个人骑车行驶,平均速度是20公里/小时。
如果他行驶了2.5小时,那他总共行驶了多远?答案:行驶的距离= 速度×时间= 20km/h ×2.5h = 50公里。
2. 问题:找规律1,3,6,10,15, _____ , 下一个数是多少?答案:下一个数是21,因为这个数列的规律是前一项加当前项的顺序值,如1+2=3,3+3=6,6+4=10,10+5=15。
3. 问题:几何题一个正三角形的所有边都是6厘米,那么它的周长是多少?答案:周长= 边长×3 = 6cm ×3 = 18厘米。
4. 问题:时间计算从早上7:35到下午3:20,过去了多少分钟?答案:具体时间段= 下午3:20 -早上7:35 = 7小时和45分钟= 465分钟。
5. 问题:容积计算一个长方体的长是5米,宽是4米,高是3米,计算它的体积。
答案:体积= 长×宽×高= 5m ×4m ×3m = 60立方米。
6. 问题:找不同下列数列中哪个数字不符合规律:2,4,7,9,11,13。
答案:7,因为其他数都是偶数。
7. 问题:平均值计算5个学生的年龄分别是10、11、12、10和11岁,求这个群体的平均年龄。
答案:平均年龄= (10 + 11+ 12 + 10 + 11) ÷5 = 54 ÷5 = 10.8岁。
8. 问题:百分比计算在一次测验中,一名学生答对了18题,总共有20题。
这名学生的正确率是多少?答案:正确率= 答对的题目数÷总题目数×100% = 18 ÷20 ×100% = 90%.9. 问题:比例计算一场电影的时长为120分钟,现希望将其压缩为原来的一半,压缩后的电影时长是多久?答案:压缩后的电影时长= 120分钟×0.5 = 60分钟。
六年级数学思维训练试题
![六年级数学思维训练试题](https://img.taocdn.com/s3/m/736f1d5c11a6f524ccbff121dd36a32d7375c798.png)
六年级数学思维训练试题篇1:六年级数学思维训练试题六年级数学思维训练试题有一堆球,如果是10的倍数个,就平均分成10堆,并且拿走9堆;如果不是10的'倍数个,就添加几个球(不超过9个),使这堆球成为10的倍数个,然后将这些球平均分成10堆,并且拿走9堆。
这个过程称为一次操作。
如果最初这堆球的个数…9899.连续进行操作,直至剩下1个球为止,那么共进行了次操作;共添加了个球。
答案:189次;802个。
解析:这个数共有189位,每操作一次减少一位。
操作188次后,剩下2,再操作一次,剩下1。
共操作189次。
这个189位数的各个数位上的数字之和是(1+2+3+…+9)20=900。
由操作的过程知道,添加的球数相当于将原来球数的每位数字都补成9,再添1个球。
所以共添球1899-900+1=802(个)。
篇2:六年级数学思维训练试题某筑路队承担了修一条公路的任务。
原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。
这条公路全长多少米?想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。
根据每天多修80米可求已修的天数,进而求公路的全长。
解:已修的天数:(720×3-1200)÷80=960÷80=12(天)公路全长:(720+80)×12+1200=800×12+1200=9600+1200=10800(米)答:这条公路全长10800米。
篇3:数学思维训练试题数学思维训练试题有甲、乙两人,其中,甲只说假话,而不说真话;乙则是只说真话,不说假话。
但是,他们两个人在回答别人的问题时,只通过点头与摇头来表示,不讲话。
有一天,一个人面对两条路:A与B,其中一条路是通向京城的,而另一条路是通向一个小村庄的。
这时,他面前站着甲与乙两人,但他不知道此人是甲还是乙,也不知道“点头”是表示“是”还是表示“否”。
六年级数学思维练习题及答案
![六年级数学思维练习题及答案](https://img.taocdn.com/s3/m/68bb69c7afaad1f34693daef5ef7ba0d4a736dc0.png)
六年级数学思维练习题及答案六年级数学思维练习题及答案在各个领域,我们会经常接触并使用试题,借助试题可以为主办方提供考生某方面的知识或技能状况的信息。
什么样的试题才能有效帮助到我们呢?下面是小编为大家收集的六年级数学思维练习题及答案,欢迎阅读与收藏。
六年级数学思维练习题及答案11、老师在黑板上写了13个自然数,让小王计算平均数(保留两位小数),小王计算出的答案上12.43。
老师说最后一位数字错了,其他的数字都对。
请问正确的答案应该是________。
2、老王的体重的2/5与小李体重的2/3相等。
老王的体重的3/7比小李体重的3/4轻1.5千克,则老王的体重为_______千克,小李的体重为________千克。
3、在一次考试中,某班数学得100分的有17人,语文得100的有13人,两科都得100分的有7人,两科至少有一科得100分的共有_________人;全班45人中两科都不得100的有__________人。
4、有一水果店进了6筐水果,分别装着香蕉和橘子,重量分别为8,9,16,20,22,27千克,当天只卖出一筐橘子,在剩下的五筐中香蕉的重量是橘子重量的两倍,问当天水果店进的有___________筐是香蕉。
5、如图,在半圆的边界周围有6个点A1,A2,A3,A4,A5,A6,其中A1,A2,A3在半圆的直径上,问以这6个点为端点可以组成___________个三角形。
6、有100名学生要到离学校33千米的某公园,学生的步行速度是每小时5千米,学校只有一辆能坐25人的汽车,汽车的速度是每小时55千米,为了花最短的时间到达公园,决定采用步行与乘车相结合的办法,那么最短时间为__________。
7、有48本书分给两组小朋友。
已知第二组比第一组多5人,若把书全部分给第一组,每人4本,有剩余;每人5本,书不够,又若全给第二组,每人3本,有剩余;每人4本,书不够,那么第二组有___________人。
六年级思维测试题及答案
![六年级思维测试题及答案](https://img.taocdn.com/s3/m/bf997a1f178884868762caaedd3383c4bb4cb4b6.png)
六年级思维测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是质数?A. 15B. 23C. 45D. 51答案:B2. 一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,那么它的体积是多少立方厘米?A. 480B. 480C. 400D. 360答案:A3. 一个数除以1/3,相当于将这个数乘以多少?A. 1/3B. 3C. 9D. 27答案:B4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:C5. 一个分数的分子和分母都乘以同一个数,这个分数的大小会如何变化?A. 变大B. 变小C. 不变D. 无法确定答案:C6. 如果一个数的3倍是45,那么这个数是多少?A. 15B. 45C. 5D. 135答案:A7. 一个数的倒数是1/4,那么这个数是多少?A. 4B. 1/4C. 1/16D. 16答案:A8. 一个数的20%是10,那么这个数是多少?A. 50B. 100C. 200D. 500答案:B9. 一个钟表的分针每分钟转6度,那么它一小时转多少度?A. 360B. 720C. 1080D. 1440答案:A10. 一个数的1/4加上这个数的1/3等于1,这个数是多少?A. 12/5B. 3/4C. 4/3D. 5/12答案:A二、填空题(每题4分,共40分)11. 如果一个数的1/2等于12,那么这个数是______。
答案:2412. 一个数的3倍加上这个数等于40,这个数是______。
答案:1013. 一个长方体的长是10厘米,宽是5厘米,高是4厘米,它的表面积是______平方厘米。
答案:18014. 一个圆的直径是10厘米,它的周长是______厘米。
答案:31.415. 如果一个数的1/3加上这个数的1/4等于1/2,这个数是______。
答案:6/716. 一个数的2/5等于20,这个数是______。
六年级数学思维能力测评(一)(含详细答案)
![六年级数学思维能力测评(一)(含详细答案)](https://img.taocdn.com/s3/m/d9f58438b90d6c85ec3ac6eb.png)
(5) (6)
3、求未知数x(每小题2分,共4分)。
(1) (2)
4、列式计算(每小题2分,共4分)
(1) 与 的和比 多多少?(2) 除以1.6与0.4的差,商是多少?
四、根据图形解答问题(2分)。
将直径为3cm的半圆绕逆时针旋转60o,此时直径AB为AC的位置。求阴影部分面积。
五、应用题(共8题,3分+3分+4分+4分+4分+4分+5分+5分,共32分)
答:小王后120米用了36秒
7、解:实际购物:220+180=400(元)………………2分
实际付钱:220+80=300(元)………………2分
300÷400=75%………………1分
答:打七五折
8、解:由乙的行进方式知,甲从背后追上乙时必是甲乙都从D往C走时。(……1分)
(1)当甲第一次从A到B后往回走到D时,共花了(80+120+100+100)÷5=80秒,此时乙走了4×80=320米,此位置在C,E之间距C点20米,离E点10米的位置,甲无法在此处追上乙。
8、如图,甲从A出发,不断往返于A、B之间,乙从C出发,沿C—E—F—D—C围绕矩形不断行走,两人同时出发。已知AC=80米,CD=EF=120米,CE=DF=30米,DB=100米。甲的速度是每秒5米,乙的速度是每秒4米。问:甲从背后第一次追上乙的地点距离点D多少米?
小升初思维能力(一)参考答案
6.15
9、当a=()时,式子(29 8a)× 的值是10,当a=()时,式子(29 8a)÷ 的值是45。
10、六(3)班有48人,女生占全班的 ,转来()名女生后,女生占全班的 。
(word完整版)六年级数学思维训练试题
![(word完整版)六年级数学思维训练试题](https://img.taocdn.com/s3/m/c362e01b102de2bd9705884a.png)
六 年 级 数 学 思 维 训 练试题11、 计算:(1) 28 X 1111 + 9999 X 8=姓名(2) 36 X 1.09 + 1.2 X 67.3 =2、 计算:(1) 4.75 - -9.63 + (8.25 — 1.37)= 2003 (2) 2004X …「= 20053、甲乙丙三个共存钱1620元,已知甲存的钱是丙的3倍,乙存的钱是丙的2倍,那么甲存钱( )元,乙存了()元,丙存了()元。
4、 一台彩电的价钱是一台冰箱价钱的 3倍,买一台彩电比买一台冰箱多用 2800元,那么一台彩电 ()元。
5、 两个数的和是78,差是16,那么较大的一个数是( ),较小的一个数是( )。
&今年小明和小刚年龄和是25岁,四年后,小刚比小明大 3岁,那么四年后小刚( )岁。
7、 两个数的和是80,积是1456,这两个数分别是()和()。
8、 有10个同学握手话别,每两个同学握一次手,他们一共握了()次手。
9、 有一列字母 ACAABAACAABA •…问:第74个字母是( ),这前74个字母中一共有()个A 10、 右图中有( )个三角形。
11、 22只小鸡和小兔在一起,共有脚64只,那么其中有()只小鸡,有()只小兔。
12、两个数的和是374,大数去掉十位数字后和小数一样大,那么大数是( )。
13、某化肥厂生产一批化肥,原计划每天生产60吨,实际每天比原计划多生产15吨,结果提前了6天完成任务,这批化肥有( )吨。
14、 甲、乙、丙三人的平均年龄17岁,加入丁,四人的平均年龄19岁,那么丁( )岁。
15、如果某类自然数有四个不同的质因数,那么这样的自然数中最小的是()。
六年级数学思维训练试题2姓名 ___________2 2 2 2 =(2)13X 15 + 15X 17 + 17X 19 +……+ 37 X 39 = ----------------------- 2、 计算:9999X 2222+ 3333X 3334= __________3、 一个自然数与19的乘积的最后三位数是321,满足这个条件的最小自然数是( )。
【小学数学】六年级数学思维训练题(有答案及解析)
![【小学数学】六年级数学思维训练题(有答案及解析)](https://img.taocdn.com/s3/m/66536859ddccda38376bafac.png)
【小学数学】六年级数学思维训练题(有答案及解析)1.甲、乙两队进行象棋对抗赛;甲队的三人是张、王、李;乙队的三人是赵、钱、孙;按照以往的比赛成绩看;张能胜钱;钱能胜李;李能胜孙;但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?2.甲、乙、丙、丁与小强五位同学一起比赛象棋;每两人都要比赛一盘.到现在为止;甲已经赛了4盘;乙赛了3盘;丙赛了2盘;丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?3.甲、乙、丙三名选手参加马拉松比赛;起跑后甲处在第一的位置;在整个比赛过程中;甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)4.有10名选手参加乒乓球单打比赛;每名选手都要和其它选手各赛一场;而且每场比赛都分出胜负;请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?5.6支足球队进行单循环比赛;即每两队之间都比赛一场.每场比赛胜者得3分;负者得0分;平局各得1分;请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局;那么各队总分之和是多少?6.红、黄、蓝三支乒乓球队进行比赛;每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次;按照获胜场数进行排名;并按照排名获得一定的分数;第一名得9分;第二名得8分;…;第九名得1分;除产生个人名次外;每个队伍还会计算各自队员的得分总和;按团体总分的高低评出团体名次.最后;比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员;第二名是一位蓝队队员;相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队;总分16分;第二名是红队;第三名是蓝队.请问:红队队员分别得了多少分?7.5支球队进行单循环赛;每两队之间比赛一场;每场比赛胜者得3分;负者得0分;打平则双方各得1分;最后5支球队的积分各不相同;第三名得了7分;并且和第一名打平.请问:这5支球队的得分;从高到低依次是多少?8.有A、B、C三支足球队;每两队比赛一场;比赛结果为:A:两胜;共失2球;B:进4球;失5球;C:有一场踢平;进2球;失8球.则A与B两队间的比分是多少?9.一次考试共有10道判断题;正确的画“√”;错误的画“×”;每道题10分;满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得分.1 2 3 4 5 6 7 8 9 10 得分题号学生甲××√√××√×√√70 乙×√×√√××√√×70 丙√×××√√√×××60 丁×√×√√×√×√×10.赵、钱、孙、李、周5户人家;每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸;而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛;每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?12.五行(火水木金土)相生相克;其中每一个元素都生一个;克一个;被一个生和被一个克;水克火是我们熟悉的;有一个俗语叫做“兵来将挡;水来土掩”;是说土能克水.另外;水能生木;火能生土.请把五行的相生相克关系画出来.13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场);每天同时在3个场地各进行一场比赛;已知第一天B对D;第二天C对E;第三天D对F;第四天B对C请问:第五天与A队比赛的是哪支队伍?14.A、B、C三个篮球队进行比赛;规定每天比赛一场;每场比赛结束后;第二天由胜队与另一队进行比赛;败队则休息一天;如此继续下去;最后结果是A队胜10场;B队胜12场;C队胜14场;则A队共打了几场比赛?15.甲、乙、丙、丁四名同学进行象棋比赛;每两人都比赛一场;规定胜者得2分;平局各得1分;输者得0分;请问:(1)一共有多少场比赛?(2)四个人最后得分的总和是多少?(3)如果最后结果甲得第一;乙、丙并列第二;丁是最后一名;那么乙得了多少分?16.五支足球队进行循环赛;即每两个队之间都要赛一场;每场比赛胜者得2分;输者得0分;平局两队各得1分.比赛结果各队得分互不相同.已知:①第一名的队没有平过;②第二名的队没有输过;③第四名的队没有胜过;问:第一名至第五名各得多少分?全部比赛共打平过几场?17.4支足球队进行单循环比赛;即每两队之间都比赛一场.每场比赛胜者得3分;负者得0 分;平局各得1分.比赛结果;各队的总得分恰好是4个连续的自然数.问:输给第一名的队的总分是多少?18.甲、乙、丙、丁、戊五个同学的各科考试成绩如表;已知:①每门功课五个人的分数恰巧分别为l、2、3、4、5;②五个人的总分互不相同;且从高到低的顺序排列是:甲、乙、丙、丁、戊;③丙有四门功课的分数相同.请你把表格补充完整.语文数学英语音乐美术总分田24乙丙丁 4戊 3 519.一次足球赛;有A、B、C、D四个队参加;每两队都赛一场;按规则;胜一场得2分;平一场得1分;负一场得0分.比赛结束后;B队得5分;A队得1分.所有场次共进了9个球;B队进球最多;共进了4个球;C队共失了3个球;D队1个球也未进;A队与C队的比赛比分是2:3.问:A队与B队的比赛比分是多少?20.A、B、C、D四个足球队进行循环比赛.赛了若干场后;A、B、C三队的比赛情况如表:问:D赛了几场?D赛的几场的比分各是多少?场数胜平负进球失球A 3 2 1 0 2 0B 2 1 1 0 4 3C 2 0 0 2 3 6D21.九个外表完全相同的小球;重量分别是1;2;…;9.为了加以区分;它们都被贴上了数字标签;可是有一天;不知被哪个调皮鬼重新乱贴了一通.我们用天平做了两次称量;得到如下结果:(1)①②>③④⑤⑥⑦;(2)③⑧=⑦;请问:⑨号小球的重量是多少?22.A、B、C、D、E五位同学分别从不同的途径打听到五年级数学竞赛获得第一名的那位同学的情况:A打听到的:姓李;是女同学;13岁;东;B打听到的:姓张;是男同学;11岁;;C打听到的:姓陈;是女同学;13岁;东;D打听到的:姓黄;是男同学;11岁;西;E打听到的:姓张;是男同学;12岁;东.’实际上第一名同学的情况在上面都出现过;而且这五位同学的消息都仅有一项正确;那么第一名的同学应该是哪个区的;今年多少岁呢?三、超越篇23.在一次射击练习中;甲、乙、丙三位战士打了四发子弹;全部中靶;其中命中情况如下:(1)每人四发子弹命中的环数各不相同;(2)每人四发子弹命中的总环数均为17环;(3)乙有两发命中的环数分别与甲其中两发一样;乙另外两发命中的环数与丙其中两发一样;(4)甲与丙只有一发环数相同;(5)每人每发子弹的最好成绩不超过7环.问:甲与丙命中的相同环数是几?24.一次象棋比赛共有10位选手参加;他们分别来自甲、乙、丙3个队.每人都与其余9人比赛一盘;每盘胜者得1分;负者得0分;平局各得0.5分.结果乙队平均得分为3.6分;丙队平均得分为9分;那么甲队平均得多少分?25.A、B、C、D、E这5支足球队进行循环赛;每两队之间比赛一场.每场比赛胜者得3分;负者得0分;打平则双方各得1分;最后5支球队的积分各不相同;从高到低依次为D、A、E、B、C又已知5支球队当中只有A没输过;只有C没赢过;而且B战胜了E.请问:战胜过C的球队有哪些?26.10名选手参加象棋比赛;每两名选手间都要比赛一次;已知胜一场得2分;平一场得1分;负一场不得分.比赛结果:选手们所得分数各不相同;前两名选手都没输过;前两名的总分比第三名多20分;第四名得分与后四名所得总分相等;问:前六名的分数各为多少?27.现有A、B、C共3支足球队举行单循环比赛;即每两队之间都要比赛一场.比赛积分的规定是胜一场积2分;平一场积1分;负一场积0分;表1是一张记有比赛详细情况表格;但是;经过核对;发现表中恰好有4个数字是错误的;请你把正确的结果填入表2中.表1场数胜负平进球失球积分A 2 2 0 1 0 2 3B 2 1 1 0 3 6 2C 1 2 1 2 0 1 1 表2场数胜负平进球失球积分ABC28.9个小朋友从前到后站成一列.现在将红黄蓝三种颜色的帽子各三顶分别戴在这些小朋友的头上.每个小朋友都只能看到站在他前面的小朋友帽子的颜色.后来统计了一下;发现他们看到的红颜色帽子的总次数等于他们看到的黄颜色帽子的总次数;也等于他们看到的蓝颜色帽子的总次数.已知从前往后数第三个小朋友戴着红帽子;第六个小朋友戴着黄帽子;请问:最后一个小朋友戴着什么颜色的帽子?29.有A、B、C三支球队进行比赛;每一轮比赛三个队之间各赛一场.每队胜一场得2分;平一场得1分;负一场不得分.如果三支球队共比赛了7轮;最后A胜的场数最多;B输的场数最少;C的得分最高<这些都没有并列).请问:A得了多少分?30.阿奇和8个好朋友去李老师家玩;李老师给每人发了一顶帽子;并在每个人的帽子上写了一个两位数;这9个两位数互不相同;且每个小朋友只能看见别人帽子上的数.李老师在纸上写了一个自然数A;问这9位同学:“你们知道自己帽子上的数能否被A整除吗?知道的请举手;”结果有4人举手.李老师又问:“现在你们知道自己帽子上的数能否被24整除吗?知道的请举手.”结果有6人举手.已知阿奇两次都举手了;并且这9位同学都足够聪明且从不说谎.请问:除了阿奇之外的人帽子上8个两位数的总和是多少?参考答案与试题解析一、兴趣篇1.甲、乙两队进行象棋对抗赛;甲队的三人是张、王、李;乙队的三人是赵、钱、孙;按照以往的比赛成绩看;张能胜钱;钱能胜李;李能胜孙;但是第一轮的三场比赛他们都没有成为对手.请问:第一轮比赛的分别是谁对谁?【分析】张能胜钱;说明第一轮只会碰赵或者孙;钱能胜李;说明第一轮只会碰赵或者孙;钱能胜李;说明第一轮只会碰张;或者是王;而李能胜孙;说明第一轮只会碰赵或者钱;由于都没有碰到对手;说明钱只能对上王;遇张不行;故王与钱;而李由于只能碰赵或者钱;在钱有对手的情况下只能选赵;故李与赵;最后得出张与孙.【解答】解:根据上述分析可知:张能胜钱;说明第一轮只会碰赵或者孙;钱能胜李;说明第一轮只会碰张;或者是王;李能胜孙;说明第一轮只会碰赵或者钱综上所述:第一轮比赛是张与孙;王与钱;李与赵答:第一轮比赛是张与孙;王与钱;李与赵.2.甲、乙、丙、丁与小强五位同学一起比赛象棋;每两人都要比赛一盘.到现在为止;甲已经赛了4盘;乙赛了3盘;丙赛了2盘;丁赛了1 盘.问:小强已经赛了几盘?分别与谁赛过?【分析】这道题按照常规思路似乎不太好解决;我们画个图试试;用五个点分别表示参加比赛的五个人;如果某两人已经赛过;就用线段把代表这两个人的点连接起来;因为甲已经赛了4盘;除了甲以外还有4个点;所以甲与其他4个点都有线段相连(见下图);根据图即可做出解答.【解答】解:用五个点分别表示参加比赛的五个人;如果某两人已经赛过;就用线段把代表这两个人的点连接起来;因为甲已经赛了4盘;除了甲以外还有4个点;所以甲与其他4个点都有线段相连(见左下图);因为丁只赛了1盘;所以丁只与甲有线段相连;因为乙赛了3盘;除了丁以外;乙与其他三个点都有线段相连(见右上图);因为丙赛了2盘;右上图中丙已有两条线段相连;所以丙只与甲、乙赛过;由上页右图清楚地看出;小强赛过2盘;分别与甲、乙比赛;答:小强赛过2盘;分别与甲、乙比赛.3.甲、乙、丙三名选手参加马拉松比赛;起跑后甲处在第一的位置;在整个比赛过程中;甲的位置共发生了7次变化.比赛结束时甲是第几名?(注:整个比赛过程中没有出现三人跑在同一位置的情形.)【分析】据题意可知;甲原为第一名(奇数);第一次位置交换后;甲成了第二名(偶数);第二次位置交换后;甲不是第二名;成了第一名或第三名(奇数);第三次位置变化后;不管之前甲处于第一名还是第三名;这次甲肯定又成了第二名(偶数);…;所以可以知道;当甲交换了奇数次位置时;甲一定是第二名;偶数次时;甲一定不在第二名.【解答】解:据题意可知;当甲与共交换了奇数次位置时;甲一定是第二名;偶数次时;甲一定不在第二名.所以甲共交换了7次位置时;7是奇数;则甲一定是在第二名.答:比赛的结果甲是第二名.4.有10名选手参加乒乓球单打比赛;每名选手都要和其它选手各赛一场;而且每场比赛都分出胜负;请问:(1)总共有多少场比赛?(2)这10名选手胜的场数能否全都相同?(3)这10名选手胜的场数能否两两不同?【分析】(1)因为每一个选手都和其他选手进行一场比赛;属于单循环赛制中;参赛人数与比赛场数的关系为:比赛场数=×参赛人数×(人数﹣1);由此代入求得问题;【解答】解:(1)×10×(10﹣1)=45(场);答:一共要进行45场比赛.(2)45÷10=4(个)…5(场)(不相同;有余数.)答:这10名选手胜的场数不相同.(3)45可以分成1;2;3;4;5;6;7;8;9;0的数列(有五列;是整数;可以)答:这10名选手胜的场数可以两两不同.5.6支足球队进行单循环比赛;即每两队之间都比赛一场.每场比赛胜者得3分;负者得0分;平局各得1分;请问:(1)各队总分之和最多是多少分?最少是多少分?(2)如果在比赛中出现了6场平局;那么各队总分之和是多少?【分析】(1)6支足球队进行单循环比赛;即每两队之间都比赛一场;所以一个球队赛5场;加入五场全胜;则得分最多是:3×5=15分;有一个球队5场全负;得分最少是0分.(2)出现了6场平局;得12分;一共1赛15场;剩下9场就是输或者赢了;9×3=27分;那么总分就是:12+27=39分.【解答】解:(1)每支球队赛5场;全胜得分最多:5×3=15(分)最少得分就是全输得0分:答:各队总分之和最多是15分;最少是0分.(2)6×5÷2=15(场)6×2+(15﹣6)×3=12+27=39(分)答:那么各队总分之和是39分.6.红、黄、蓝三支乒乓球队进行比赛;每队派出3名队员参赛.比赛规则如下:参赛的9名队员进行单循环赛决出名次;按照获胜场数进行排名;并按照排名获得一定的分数;第一名得9分;第二名得8分;…;第九名得1分;除产生个人名次外;每个队伍还会计算各自队员的得分总和;按团体总分的高低评出团体名次.最后;比赛结果没有并列名次.其中个人评比的情况是:第一名是一位黄队队员;第二名是一位蓝队队员;相邻的名次的队员都不在同一个队.团体评比的情况是:团体第一的是黄队;总分16分;第二名是红队;第三名是蓝队.请问:红队队员分别得了多少分?【分析】首先总分是45分;黄队16分;红蓝共29分;又团队第一的是黄队且比赛结果没有并列名次;故只能是红队15分;蓝队14分.第一名是一位黄队队员有9分;第二名是一位蓝队队员有8分;即黄队另两名队员共有7分;蓝队另两名队员共有6分;又每名队员至少1分故第三名是一位红队队员有7分;即红队另两名队员共有8分..又相邻的名次的队员都不在同一个队故第四名的得6分的队员是黄队;此时黄队最后一名队员1分.故得5分的不是蓝队队员;不然蓝队又有一名队员1分矛盾.故得5分为红队队员;此时红队有一名是3分.故剩下的蓝队为4分和2分;刚好共6分.故得分情况如下:黄:9、6、1 蓝:8、4、2 红:7、5、3;据此解答即可.【解答】解:1.由于1到9名分数分别是9到1分;那么总共9人总分就是45分2.由于团队第一名16分;第二名只能是小于等于15;第三名小于等于14.而总分是45.所以第二;第三只能分别是15分;14分.(因为16+15+14=45;没有其他组合等于45分)因此第二名红对共得15分.3.由于单打前两名分别由黄队和蓝队的队员获得.因此红对个人得分最多的一个小于等于7分.又因为相邻名次没有同队的人员;所以红对的三人得分可能是7;5;3或者7;4;2等几种(没有列全).但是红队总分能达到15分的组合只有7+5+3=15.所以红对队员分别得了7;5;3分.答:红队队员分别得了7;5;3分.7.5支球队进行单循环赛;每两队之间比赛一场;每场比赛胜者得3分;负者得0分;打平则双方各得1分;最后5支球队的积分各不相同;第三名得了7分;并且和第一名打平.请问:这5支球队的得分;从高到低依次是多少?【分析】由于5支足球队进行单循环赛;每两队之间进行一场比赛;则每一队都要和其它四队赛一场;即每支球队进行了4场比赛;全胜得12分;第三名得了7分;并且和第一名打平得一分;那么另三场只能是两胜一负;因各队得分都不相同;第一名平一场;如平再负一场就和第三名得分一样;如果再平一场就得8分;这都不符合题意;所以剩下三场只能胜;积3×3+1=10分;也就是胜2、4、5名;第二名只能是三胜一负;积3×3+0=9分.也就是胜3、4、5名;第三名胜4、5;负2;平1;第四名为负1、2、3;第五名也负1、2、3又因各队比分不同则4胜5积3分;第五名全负;积0分.【解答】解:由题意可知;每支球队进行了4场比赛;第三名得了7分;并且和第一名打平;那么另三场只能是两胜一负;因各队得分都不相同;第一名平一场;另三场只能胜;积3×3+1=10分;也就是胜2、4、5名;第二名只能是三胜一负;积3×3+0=9分.也就是胜3、4、5;第三名胜4、5;负2;平1;第四名为负1、2、3;第五名也负1、2、3名;又因各队比分不同则4胜5积3分;则第五名全负;积0分;即:第一名:10分;第二名:9分;第三名:7分;第四名:3分;第五名:0分.答:第一名:10分;第二名:9分;第三名:7分;第四名:3分;第五名:0分.8.有A、B、C三支足球队;每两队比赛一场;比赛结果为:A:两胜;共失2球;B:进4球;失5球;C:有一场踢平;进2球;失8球.则A与B两队间的比分是多少?【分析】A两战两胜;C有一场平说明比赛胜负情况如下:A胜B A胜C B平C;而B C 的比分:0:0 这种情况不存在因为A共失球两个而B C共进球6个1:1 同上2:2 适合条件 B另外两个球攻入A的球门3:3 不存在 C共进球两个所以得出B:C 为2:2则C另外6个失球失给A;B剩下两个进球;3个失球是跟A比赛的时候故可得出结论:A胜B 3比2A胜C 6比0B平C 2比2【解答】解:总进球=总失球A进球+4+2=2+5+8A进球=9A全胜那么B与C打平又因为B比C多进2球那么B对A进的球比 C对A进的球多2个又因为A只失2球那么B对A进2球 C对A进0球那么B:C=2:2那么A:B=3;2答:A与B两队间的比分是3:2.9.一次考试共有10道判断题;正确的画“√”;错误的画“×”;每道题10分;满分为100分.甲、乙、丙、丁4名同学的解答及甲、乙、丙3名同学得分如下表所示.丁应得90分.1 2 3 4 5 6 7 8 9 10 得分题号学生甲××√√××√×√√70 乙×√×√√××√√×70 丙√×××√√√×××60 丁×√×√√×√×√×【分析】观察甲与乙的答案可知;A、B有1、4、6、9这四道题答案相同;6道题答案不同.因为每人都是70分;所以4道答案相同的题都答对了;6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;又丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错;又丙得60分;所以丙的其他题目全部答对;即2;3;5;7;8;10的答案分别是×;×、√、√、×、×.由此可知;这10道题的答案分别是:据此即能得出丁得多少分.【解答】解:由于A、B有1、4、6、9这四道题答案相同;6道题答案不同.且每人都是70分;所以4道答案相同的题都答对了;6道答案不同的题各对了3道;由此可知第1、4、6、9题的答案分别是×、√、×、√;由于丙的1、4、6、9题的答案分别是√、×、√、×;所以丙的这四道题答错;又丙得60分;所以丙的其他题目全部答对;即2;3;5;7;8;10的答案分别是×;×、√、√、×、×.这10道题的答案分别是:所以丁的只的2题;扣10分;得90分.故答案为:90.10.赵、钱、孙、李、周5户人家;每户至少订了A、B、C、D、E这5种报纸中的一种.已知赵、钱、孙、李分别订了其中的2、2、4、3种报纸;而A、B、C、D这4种报纸在这5户人家中分别有1、2、2、2家订户.周姓订户订有这5种报纸中的几种?报纸E在这5户人家中有几家订户?【分析】通过分析可知:赵钱孙李一共订了:2+2+4+3=11份A;B;C;D一共订了:1+2+2+2=7份根据题意;周至少订了1份5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份;假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户;这与一共有5户矛盾所以周只能订1种;订E的有5户【解答】解:赵钱孙李订的份数:2+2+4+3=11份A;B;C;D订的份数:1+2+2+2=7份根据题意可知周至少订了1份所以5人一共最少订了11+1=12份那么订E的就有12﹣7=5户如果周订的不止1份;假设周至少订了2份那么5人订报总数至少为11+2=13份那么订E的至少有:13﹣7=6户;这与一共有5户矛盾所以周只能订1种;订E的有5户答:周姓订户订有这5种报纸中的1种;报纸E在这5户人家中有5家订户.二、拓展篇11.编号为1、2、3、4、5、6的同学进行围棋比赛;每2个人都要赛1盘.现在编号为1、2、3、4、5的同学已经赛过的盘数和他们的编号数相等.请问:编号为6的同学赛了几盘?【分析】从5号队员开始讨论;他和另外5个队员各赛了1场;由此得出1号只跟5号赛了1场;由此类推即可得出结果.【解答】解:因为是每2个人都要赛1盘;所以可以这样推理:①5号赛了5场;说明他与1;2;3;4;6;各赛了1场;②1号赛1场;那么1号只跟5号赛了1场;③4号赛了4场;除了跟5号赛1场;另外3场是跟2;3;6号;④那么2号此时分别和5号、4号已赛了2场;④3号赛了3场;除了和4号;5号之外;又和6号赛了1场.将上述推理过程用图表示为:答:此时6号已经赛了3场.12.五行(火水木金土)相生相克;其中每一个元素都生一个;克一个;被一个生和被一个克;水克火是我们熟悉的;有一个俗语叫做“兵来将挡;水来土掩”;是说土能克水.另外;水能生木;火能生土.请把五行的相生相克关系画出来.【分析】五行有‘五行相生’和‘五行相克’;‘五行相生’是互相生旺的意思;表示生成化育;‘五行相克’就是互相反驳、互相战斗、制衡.五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木据此解答即可.【解答】解:根据五行相生:水生木→木生火→火生土→土生金→金生水五行相克:木克土→土克水→水克火→火克金→金克木得出图为:13.A、B、C、D、E、F六个国家的足球队进行单循环比赛(即每队都与其他队赛一场);每天同时在3个场地各进行一场比赛;已知第一天B对D;第二天C对E;第三天D对F;第四天B对C请问:第五天与A队比赛的是哪支队伍?【分析】因“A、B、C、D、E、F六个国家的足球队单循环比赛(即每队都与其他队赛一场);每天同时在3个场地各进行一场比赛”;根据已经进行的比赛场次进行推理;据此解答即可.【解答】解:第二天A不能对B;否则A对B、D对F与第三天D对F矛盾;所以应当B对F、A对D.第三天A也不能对B;否则C对E与第二天C对E矛盾;应当B对E(不能B对C;与第四天矛盾);A对C.第四天B对C;D对E;A对F;所以第五天A对B.答:第五天与A队比赛的是B支队伍.14.A、B、C三个篮球队进行比赛;规定每天比赛一场;每场比赛结束后;第二天由胜队与另一队进行比赛;败队则休息一天;如此继续下去;最后结果是A队胜10场;B队胜12场;C队胜14场;则A队共打了几场比赛?。
小学六年级数学思维能力(奥数)竞赛题(含答案)
![小学六年级数学思维能力(奥数)竞赛题(含答案)](https://img.taocdn.com/s3/m/345319722e3f5727a5e962a6.png)
小学六年级数学思维能力(奥数)竞赛题1、6666×74-3333×48=89.6×6.32+8.96×36.8=2、一个数,个、十位交换位置后得到的两位数比原数小27,问这样的数有 ___个。
3、两人玩猜拳,约定:赢一次得3分,输一次扣2分,起始分20分,玩了10次后,小红共有40分,她赢了 ___ 次。
4、河中有A、B两点距离210千米,甲、乙两艘船分别从A、B两地出发,相向而行2小时相遇;甲、乙两艘船朝一个方向行驶14小时,甲追上乙,问甲的速度是____。
5、有100块糖,分成5份、要求每一份都要比上一份多两块,问5份中,最少的一份有 ___块,最多一份有 ____ 块。
6、A、B两地中,甲1小时走完,乙2小时走完,甲乙同时出发,在某一时刻中,甲未走的路程是乙未走的路程的一半,这一时刻,两人走了 ____ 分钟。
7、一个正方体,使其表面积扩大4倍,则棱长扩大了 ____ 倍,体积扩大了 ____ 倍。
8、下图,大圆中,三个小圆的圆心都在大圆直径上,大圆周长20厘米,问三个小圆的周长之和为 ________。
9、如图,阴影部分面积为1/3平方厘米,DE:CE=1:3,求矩形ABCD的面积。
10、一个棱长为3厘米的立方魔方,将六面中间挖空(挖的孔贯穿魔方),挖空部分的表面边长为1厘米,求剩余部分的表面积。
11、有一种饮料的瓶身呈圆柱形(不包括瓶颈),瓶子的容积为400立方厘米,现在瓶中装着一些饮料,正放时,液体高20厘米,倒放时空余部分高5厘米,求瓶内饮料的体积为多少?答案:1. 333300; 8962.63. 84. 605.16;246.407.2 ;88. 20厘米9.8/3平方厘米10. 72平方厘米11. 320立方厘米。
六年级下册数学思维训练练习100题及答案
![六年级下册数学思维训练练习100题及答案](https://img.taocdn.com/s3/m/b55a93c782d049649b6648d7c1c708a1284a0adc.png)
六年级下册数学思维训练练习100题及答案题目一:运算与算法1. 计算:(23 + 45)× 3。
2. 填写适当的操作符,使等式成立:(7 × 2)÷ 4 _____ 3。
3. 将0.8化成百分数。
4. 按照顺序计算:14 ÷ 2 - 3 × 4。
5. 完成等式:29 - (5 + 8)= _____ - 11。
题目二:分数和小数1. 计算:(2/3)+(1/4)。
2. 将10%化成小数。
3. 用分数表示0.75。
4. 按照顺序计算:1.2 ÷ 0.3 × 1.5。
5. 完成等式:2/5 × 6/7 = _____。
题目三:面积和周长1. 已知正方形的周长为32cm,求它的边长和面积。
2. 一个长方形的长和宽之比为5:3,如果长为15cm,求宽和周长。
3. 某个图形的面积为28cm²,如果它的长和宽之比为3:4,求它的长和宽。
4. 某个图形的周长为24cm,如果它的长和宽之比为2:3,求它的长和宽。
5. 一个正方形的面积是49cm²,求它的边长和周长。
题目四:时间与距离1. 按照给定速度,已知距离为300m,求用时。
2. 从A地到B地的距离是160km,汽车以每小时80km的速度行驶,求所需时间。
3. 甲、乙两人同时从A地出发,到B地的距离是240km,甲每小时60km,乙每小时70km,问谁先到达B地?4. 甲、乙两人从同一地点同时出发,甲向北行驶,乙向南行驶。
已知甲的速度是40km/h,乙的速度是50km/h,如果两人相距100km时停下来,求行驶的时间。
5. 甲、乙两人同时从A地出发,朝同一方向行驶。
已知甲的速度是60km/h,乙的速度是40km/h,如果两人相距600km时相遇,求他们出发多久。
题目五:图形与变换1. 完成等式:2小时 = _____分钟。
2. 如果一个正方形的边长是5cm,求它的周长。
六年级数学思维训练题,100道含解析及答案
![六年级数学思维训练题,100道含解析及答案](https://img.taocdn.com/s3/m/d83efc54326c1eb91a37f111f18583d049640f32.png)
小学六年级数学思维训练题2022年5月------------------------------------先找感觉-------------------- 1、将一根电线截成15段。
一部分每段长8米,另一部分每段长5米。
长8米的总长度比长5米的总长度多3米。
这根铁丝全长多少米?解析:可运用列方程解决。
解:设长8米的为x段,长5米的为(15-x)段,则有:8x-5×(15-x)=3x=68米每段的电线总长:6x8=48(米)5米每段的电线总长:(15-6)×5=45(米)全长:48+45=93(米)答:这根铁丝长93米。
2、有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 解析:这个等差数列的首项是3.公差是4,项数是100。
要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项为:3+4×(100-1)=3993、将1--6 这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大。
解析:因为计算三条线上的和时,a、b、c都被计算了两次。
由题可知:1+2+3+4+5+6+(a+b+c)÷3没有余数1+2+3+4+5+6=21,21÷3=7没有余数,那么a+b+c的和除以3也没有余数。
在1-6六个数中,只有4+5+6的和最大,且除以3没有余数,因此a、b、c分别为4、56,(1+2+3+4+5+6+4+5+6)÷3=12因此有以上填法。
4、有这样一个数列:1.2.3.4,…,99,100。
请求出这个数列所有项的和。
解析:如果我们把1.2.3.4,…,99,100与列100,99,…,3.2.1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1)。
其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。
六年级思维训练测试卷及参考答案
![六年级思维训练测试卷及参考答案](https://img.taocdn.com/s3/m/a1d2a1d129ea81c758f5f61fb7360b4c2e3f2a0b.png)
六年级思维训练测试卷及参考答案1,小李和小王原有邮票的张数比是7:3,后来小李又买进15张,小王送人8张,这是两个人的张数比是5:2,求原来两人各有几张邮票【解】设小李有7χ张,小王有3χ张.①②2(7χ+15)=5(3χ-8) ③14χ+30=15χ-40④χ=70 70×7=490(张)……小李70×3=210(张)……小王答:小李有490张,小王有210张.2,某工厂第一车间原有工人120名,现在调出给第二车间后,这时第一车间的人数比第二车间现有人数的还多3名.求第二车间原来有多少名【解】①120×=15(人)②(15+3)÷(1-)=126(人) ③126-15=111(人)答:第二车间原来有111人.3,学校图书室内有一架故事书,借出总数的75%之后,又放上60本,这时架上的书是原来总数的.求现在书架上放着多少本书【解】60÷[-(1-75%)]×=240(本) 答:现在书架上放着240本书.4,一块西红柿地,今年获得丰收.第一天收下全部的,装了3筐还余12千克,第二天把剩下的全部收完,正好装了6筐.这块地共收了多少千克【解】12÷(-×3)=288(千克)或12÷[×6-(1-)]=288(千克)答:这块地共收了288千克.5,甲,乙两个长方形,它们周长相等,甲的长与宽之比是4:3,乙的长与宽的比是3:2,求甲与乙的面积比. 【解】①设周长的一半为[4+3,3+2]=35(厘米) ②4:3=20:15 ③3:2=21:14④(20×15):(21×14)=50:49 答:甲与乙的面积比50:49.6,库房有一批货物,第一天运走22吨,第二天运走的吨数比第一天多,还剩下这批货物的,这批货物有多少吨【解】22×(1++1)÷(1-)=86(吨) 答:这批货物有86吨.7,小明计算25道竞赛题,做对一道得6分,做错一道扣4分,结果小明得了110分,小明错了几道题【解】(6×25-110)÷(6+4)=4(道) 答:小明错了4道题.8,服装厂共有工人355人,选派5名女工和男工的去参加培训班,剩下的男工人数和女工人数正好相等.这个服装厂的男女工各有多少人【解】①(355-5)÷(1-+1)=200(人) ②355-200=155(人)答:这个服装厂的男工有200人,女工有155人.9,建设小学六年级共有学生90人,其中男生人数的与女生人数的共64人,问男女生各有多少人【解】(90×-64)÷(-)=42(人)……男90-42=48(人)……女答:男生有42人,女生有48人.10,一个分数分子与分母之和是100.如果分子加23,分母加32,新的分数约分后是,原来的分数是多少【解】①(100+23+32)÷(2+3)=31 ②31×2-23=39 ③31×3-32=61 答:原来的分数是61.11,某小学去年的足球兴趣组和篮球兴趣组共有学生85人,今年参加足球兴趣组的学生人数减少,参加篮球兴趣组的学生人数减少,今年两个兴趣组学生的人数相等.去年两个兴趣组各有多少人【解】①[1÷(1-)]:[1÷(1-)]=9:8 ②85÷(9+8)=5(人)③5×9=45(人)……足④5×8=40(人)……篮答:去年足球兴趣组45人,篮球40人.12,甲,乙二人共有人民币若干元,其中甲占.如果乙给甲12元后,由乙余下的钱占总数的,甲,乙原来各有人民币多少元【解】①1-= ②12÷(-)=80(元) ③80×=48(元)……甲④80-48=32(元)……乙答:甲原来有人民币48元,乙原来有人民币32元.13,甲,乙两人共存款100元,如果甲取出,乙取出,两人存款还剩60元.甲,乙二人原来各有存款多少元【解】①1-= ②1-= ③(100×-60)÷(-)=72(元)……甲④90-72=18(元)……乙答:甲原来有存款72元,乙原来有存款18元.14,有两堆棋子,A堆有黑子350个和白子500个,B堆有黑子400个和白子100个.为了使A堆中黑子占50%,B堆中黑子占75%,要从B堆中把多少个黑子和多少个白子放到A堆中【解】①[(350+400)-(500+100)]÷[75%-(1-75%)]=300(个)……B堆总数②300×=225(个)……B堆黑子③300-225=75(个)B堆白子④400-225=175(个)……黑子⑤100-75=25(个)……白子答:要从B堆中把175个黑子和25个白子放到A堆中.15,ED=AD,BF=BC,OD=BD,已知平行四边形的面积是120平方厘米,求阴影部分的面积.【解】设S△ODE=1份.①1÷÷=15(份) ②15×(1-)=6(份)……S△CDF③(15-6)×(1-)=7.2(份)……S△OBF ④120×=60(平方厘米)⑤60×=32.8(平方厘米) 答:阴影部分的面积是32.8平方厘米.16,汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地.求该车的平均速度是多少【解】①[72,48]=144 ②144÷48=3(小时) ③144÷72=2(小时) ④(144×2)÷(2+3)=57.6(千米/时) 答:该车的平均速度是/时.17,小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用24小时,小明去时用了多长时间【解】设小明去时用χ小时. ①5χ=7(24-χ) ②χ=14 答:小明去时用了14小时.18,小华看一本书,第一天看了全书的,第二天看了余下的,两天正好看了121页,全书共多少页【解】①(1-)×= ②121÷()=165(页) 答:全书共165页.19,一种生理盐水重250克,含盐率是10%,现在使含盐率提高到25%,应加入多少克盐【解】①250×(1-10%)=225(克)……水②225÷(1-25%)=300(克)……溶液③300-250=50(克) 答:应加入50克盐.20,甲,乙两堆煤共300吨,甲的比乙的多55吨,两堆煤各多少吨【解】设甲有χ吨,乙有(300-χ)吨①②③……甲④300-200=100(吨)……乙答:甲有200吨,乙有100吨.21,1点至2点间,时针和分针什么时刻成80°角【解】(1×30+80)÷(6-0.5)=20(分)……1点20分[360-(80-30×2)÷(6-0.5)=56分……1点56分答:①1点20分②1点56分时针和分针成80°角.22,有三个面积为38平方厘米的圆,两两相交的面积分别为7,8,9平方厘米,三个圆相交部分的面积为3平方厘米,求总体图形盖住的面积是多少【解】38×3-7-8-9+3=93(平方厘米) 答:总体图形盖住的面积是93平方厘米.23,修一条公路,甲队单独修要40天,乙队单独修要24天,现在两队同时从两端开工,结果在距中点750米和上相遇,这段公路长多少米【解】①1÷(+)=15(天) ②750÷(-×15)=6000(米) 答:这段公路长6000米.24,光明鞋厂甲车间人数是乙车间的125%,现因工作需要,从甲车间调28人到乙车间,这时甲的人数是乙的,现在甲,乙车间各有工人多少人【解】①28÷(-)=180(人) ②180×=72(人)……现甲③180-72=108(人)……现乙答:甲现在有72人,乙现在有108人.25,一项工程,甲队单独做20天完成,乙队单独做30天完成,现在两队一起做,期间甲队休息了3天,乙队休息了若干天,从开始到完工共用了16天,问乙队休息了几天【解】①1-×(16-3)= ②(天) ③16-10=5(天)答:乙队休息了5天.26,一桶油,第一次取40%,第二次取出的油比第一次多12千克,这时桶城剩下的油是第二次的,全桶油重多少千克【解】设全桶油重χ千克. ①40%χ+40%χ+12+(40%χ+12)=χ②③=75(千克) 答:全桶油重75千克.27,一辆车从甲到乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后,再将车速提高30%,那么也比原定时间提前1小时到达.求甲,乙两地的距离.【解】①V原:V现=1:(1+20%)=5:6 ②t原:t现=6:5 ③t原:1÷(6-5)×6=6(小时)④V原:V现=1:(1+30%)=10:13 ⑤T原1÷(13-10)×13= (小时)⑥6-=(小时)⑦100÷×6=360(千米) 答:甲,乙两地的距离360千米.28,亮亮家有一个闹钟,每时比标准时间快2分.星期天上午9点整,亮亮对准闹钟,然后定上铃,想让闹钟11点半闹铃,提醒他帮助妈妈做饭,亮亮应当将闹钟的铃定在几点几分上【解】①60:(60+2)=30:31 ②11.5-9=2.5(时)……标准时间③÷30×31=2(时)=2时35分④9时+2时35分=11时35分答:应当将闹钟的铃定在11点35分上.29,五年级中女生占,六年级中男生占,两个年级的女生一样多,两个年级的男生共有130人,两个年级共有女生多少人【解】①(1-)÷=(女)……五年级男生分率②÷(1-)=(女)……六年级男生分率③130÷(+)=60(人)……每个年级女生人数④60×2=120(人) 答:两个年级共有女生120人.30,某小学五年级和六年级学生人数相差6人,五年级中男生占,六年级中男生占,两个年级的女生一样多.问:两个年级共有多少名男生【解】(一)①(1-):(1-)=27:28 ②6÷(28-27)=6(人)……每份数③6×27×=90(人)……五男④6×28×=96(人)……六男⑤90+96=186(人)(二)①1÷(1-)=……五年级人数的分率②1÷(1-)=……六年级人数的分率③6÷(-)=6÷(-)=6×12=72(人)……女生人数④72××+72××=90+96=186(人) 答:两个年级共有186名男生.31,六年级参加合唱团的人数占全年级人数的,后来又有2人参加了合唱团,这时全年级参加合唱团的人数是未参加合唱团的人数的.问:六年级有多少人【解】①÷(1+)=×=……全班人数为"1"②2÷(-)=2×42=84(人) 答:六年级有84人.32,在平行的火车道和公路上,火车用8秒钟追上并超过同向走的行人,行人每小时行4千米;火车用48秒钟追上并超过同向开出的汽车,汽车每小时行67千米.问:火车每小时行多少千米【解】①4000÷3600×8=(米)……人S ②67000÷3600×48=(米)……汽车S③(-)÷(48-8)×3600=79600(米)= 答:火车每小时行.。
六年级数学思维能力等级测试答案
![六年级数学思维能力等级测试答案](https://img.taocdn.com/s3/m/7c6a68c0a1c7aa00b52acb21.png)
数学思维能力等级测试六年级·答案一.选择题1. 【考点】计算【答案】B【分析】()2.30.08 1.25 2.30.08 1.25 2.30.123÷÷=÷⨯=÷=.2. 【考点】质数【答案】B【分析】其中一个一定为2,有271120++=,2711154⨯⨯=最大.3. 【考点】进位【答案】B【分析】进一次位数字和少9,进三次少3927⨯=.则36252734+-=.4. 【考点】等差数列【答案】D【分析】其实为x ,有()()()()1234600x x x x x ++++++++=,5590x =,118x =.F 次看起始为1185123+=.5. 【考点】周长与面积【答案】C【分析】设边长为a ,则1664a =,4a =.则面积为()24415240cm ⨯⨯=.6. 【考点】容斥【答案】B【分析】总和为121005050+++=…, ()()5050712141112977-⨯+++-⨯++++……505071051145773897=-⨯-⨯+=.7. 【考点】组合计数【答案】D【分析】2102357=⨯⨯⨯.一共有()()()()1111111116+⨯+⨯+⨯+=个因数,共8组因数. 则一共有8种不同的拼法.8. 【考点】中项定理【答案】D【分析】等差数列中,2935020a a +=,则502622131a =÷=(n a 表示这列数中第n 个数)9. 【考点】可能性【答案】D 【分析】甲:1020;乙:1020;丙:632010=;丁:1120.丁最大.10.【考点】周期【答案】A【分析】201565÷-,则第2015个应为S .二.填空题11.【考点】计算【答案】011【分析】99999999999991110991+++=-⨯个个………,末三位为11099=011-.12.【考点】位置【答案】37 【分析】3111337aaa a a a ÷=÷=.13.【考点】余数【答案】51,26【分析】201539a b ÷=……,2015395126÷=……则51a =,26b =,(b 为余数).14.【考点】余数【答案】7【分析】3194÷……,这个数9÷余9247+-=(另可距离即可).15.【考点】平均速度【答案】48【分析】设路程为2400千米,则平均速度为()240012004012006048÷÷+÷=(千米/时)16.【考点】等差数列【答案】500【分析】由于公差是2,则后10个的和为3002010500+⨯=.17.【考点】计算【答案】56【分析】24622014n x ++++-=…,()2122014n x ⨯+++-=…,()12014n n x ⨯+-=,44n =时有44451980⨯=,不满足.45n =时有45462070⨯=,满足.此时2070201456x =-=.18.【考点】面积【答案】12【分析】ABOE PCOF ABE COF S S S S ∆∆-=-1111182242a a a a =⨯⨯⨯-⨯⨯⨯=, 188144a a ⨯=⨯=,12a =.19.【考点】计数【答案】1245【分析】和为100的倍数除以100余1的有5个,余99的5个.除以100余0的有5个.除以100余50的5个. 则有5525⨯=个()()()()1,992,983,9749,51……有25491225⨯=. ()100,200,300,400,500取2个有54102⨯=(种). ()50,150,250,350,450取2个有54102⨯=(种). 一共有1225201245+=(种)20.【考点】数阵图【答案】12,18,3【分析】()123821296906S S S S a a ++++=⨯++++=+……S 最小为()906812+÷=,最大为()9069818+⨯÷=, 若平均数为整数a 可为1,5,9共3种.。
小学六年级数学思维训练题(含答案)
![小学六年级数学思维训练题(含答案)](https://img.taocdn.com/s3/m/98e7b917f12d2af90242e636.png)
一.填空1、有40名羽毛球运动员参加淘汰制的比赛,(即每赛一场选出一位胜者进入下一场),决出最后的冠军,一共要进行的比赛场次是()场。
2.在数列13,12,59,712,35,1118……中,第25个分数是()。
3.一个长方形把平面分成两部分,那么2个长方形最多把平面分成()部分。
4.今年,祖父的年龄是小明的年龄的6倍。
几年后,祖父的年龄将是小明的年龄的5倍。
又过几年以后,祖父的年龄将是小明的年龄的4倍。
求:祖父今年是多少岁?5.已知等式,其中□内是一个最简分数,那么□内的数是_______。
6.一项挖土方工程,如果甲队单独做,16天可以完成,乙队单独做要20天才可以完成。
现在两队同时施工,工作效率提高20%。
当工程完成时,突然遇到地下水,影响施工进度,使得每天少挖了47.25方土,结果共用了10天完成工程,问整个工程要挖多少方土?7.在算式1×2×3×4×...×100中,那么这个乘积的末尾连续的零的个数等于________个。
8.在每个()中填入一个数,使下面的一列数从第3个数开始,每一个数等于前面两个数的和,则第10个数是()。
(),(),( ),( ),8,(),(),(),55,(),……9.高位数字大于低位数字的四位数abcd(a>b>c>d)有()个。
10.下面四个图形都是正方体的展开图,其中每个正方形都标上了颜色。
已知正方体相对的两个面上的颜色相同,那给出的展开图中不正确的是().(填序号)11.春节联欢晚会时,2008盏彩灯(各由一个拉线开关控制)大放光明。
小真把编号是6的倍数的开关各拉一次,小聪把编号是19的倍数的开关各拉一次,小明把编号是29的倍数的开关各拉一次。
这时有()盏彩灯是亮的。
12.甲、乙、丙、丁四人共同购买了一台液晶电视。
已知甲出的钱是其它三人总钱数的13,乙出的钱是其余三人总钱数的14,丙出的钱是其余三人总钱数的15,丁出了2070元,则这台电视的价格是()元。
六年级上册数学思维训练题及答案,开拓思维,提升能力!
![六年级上册数学思维训练题及答案,开拓思维,提升能力!](https://img.taocdn.com/s3/m/8642c03911a6f524ccbff121dd36a32d7375c79b.png)
六年级上册数学思维训练题及答案,开拓思维,提升能力!一、选择题。
25%1、将A组的1/5给B组,两组人数相等,原A组比B组多()A、1/5B、2/5C、2/3D、1/42、将平行四边形一条边上的两个端点和它对边上任意一点连接,连成的三角形的面积是平行四边形面积的()。
A、1/2B、1/3C、1/4D、1/53、甲、乙两人有同样多的钱(不是1元),甲用去2/5元,乙用去2/5,()剩下的钱多一些。
A、甲B、乙C、一样多D、无法确定4、给一个整除的除法算式中被除数乘20%,除数除以20%,商()A、不变B、扩大5倍C、缩小5倍D、缩小25倍。
5、一杯牛奶喝去20%后加满水搅匀,再喝去50%,这时杯中纯牛奶占杯子容量的()A、30%B、40%C、50%D、80%二、填空题。
25%1、给3/7的分子加上9,要使分数大小不变,分母应()。
2、60的20%正好是一个数的75%,这个数是( ) 。
3、饲养厂鸡的只数比鸭的只数多25%,那么,鸭的只数比鸡的只数少( )% 。
4、小红看一本书,已看的页数与未看的页数的比是1:5,如果再看10页这时已看页数占全书总页数的25%,这本书共()页。
5、一张圆形纸片的半径是3厘米,一张正方形纸片上的边长是4厘米。
两张纸片重叠一部分放在桌面上,覆盖桌面的面积为38平方厘米。
问:两张纸片重合部分的面积是()。
三、计算题(能简算简算)。
20%四、求图中阴影部分的周长(单位:厘米)。
10%五、求图中阴影部分的面积(单位:厘米)。
20%参考答案一、选择题1、B2、A3、A4、D5、B二、填空题1、加21或扩大 4 倍2、163、204、1205、6.28三、计算题略四、求图中阴影部分的周长89.12五、求图中阴影部分的面积57.7618.24。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学思维综合能力测试六07.10.
(时间:60分)
姓名:班级:成绩:
1、将下列式子添上小括号,使结果最大,并计算出来:
12 +15 ×14 +8 ÷4 ÷ 2 =()
2、用30米长的篱笆围成一个长方形鸡舍,若长方形一面靠墙,则长=()米,宽=()米时面积最大,最大面积是()。
3、在一个正方形操场的四周插上红旗,4个角上也插上红旗,如果每条边上插15面,那么四周一共插了()面红旗。
4、八月份最后一天是星期三,那么12月31日是星期()。
5、如图,一只电子青蛙在8等分的圆周上有规律地跳跃,开始
跳跃时电子青蛙在A点,以后依次跳到B、C、D点,从A点算起,
跳到E点要跳()次。
6、篮子里有一些苹果,3个3个地数多1个,5个5个地数也多1个,7个7个数不多也不少,那么篮子里最少有()个苹果。
7、一个边防哨所有6名战士,他们轮流派出2名战士站岗放哨,时时刻刻保卫祖国的边疆,从晚上8点到第二天清晨5点,这些战士平均每人能休息()小时。
8、有80名战士要过一座281米长的大桥,每4人排一横行,每行之间相距1米,战士们前进的速度是每秒4米,这支队伍从上桥到下桥,共需要()分钟。
9、王奶奶说:我养的兔的头加鸡的脚正好是14,鸡的头加鹅的脚正好是19,鹅的头加兔的脚正好是23,兔有()只,鹅有()只,鸡有()只。
10、有24个不同的含有数字2,4,5和9的四位数。
(1)当这些数按从小到大的次序排列时,处在第12个位置上的是()。
(2)这24个数的平均数是()。
11、有6个谜语让50人猜,猜对的共有202个,已知每人至少猜对2个,猜对2个的有5人,猜对4个的有9人,猜对3个和猜对5个的人数同样多,6个谜语全猜对的有()人。
12、一群小朋友购买售价是3元和5元的两种商品。
每人购买的数量最少是一件。
他们也可购买相同的商品。
但每人的购买总金额不得超过15元,若小朋友中至少有三人购买的两种商品的数量完全相同,问这群小朋友最少有()人。
20解答:依题意,共有12种购买组合:3元商品一件,5元商品一件,3元商品两件,3元一件5元一件,3元商品三件,5元商品两件,3元两件5元一件,3元商品四件,3元一件5元两件,3元三件5元一件,3元商品五件,5元商品三件。
由抽屉原理可得:至少有2*12+1=25(人)。