6假设检验相关例题
第六章假设检验
假设检验的流程:第二步
2、设计检验统计量 设计要求: • 所设计的检验统计量应与原假设相关,与待检 验参数的估计量相关,但不能包含待检验的未 知参数 • 当H0为真时,该统计量的真实分布已知
z
x
x
x n
~ N 0,1
7-16
yuanlibo@
假设检验的流程:第三步和第四步 3 给定显著性水平和相应的临界值
= 0 ≠0
0 < 0
0 > 0
双侧检验
(显著性水平与拒绝域 )
抽样分布
拒绝域 /2 1-
置信水平 拒绝域 /2
临界值
H0值
临界值
样本统计量
单侧检验:左侧检验
(显著性水平与拒绝域)
抽样分布
拒绝域ห้องสมุดไป่ตู้
置信水平
1-
临界值
H0值
样本统计量
H0:μ≥μ0 , H1:μ<μ0
判断错误(II)
判断正确
专题:假设检验中的两类错 误
H0为真 H0非真 第I类错误(α) 正确 正确 第II类错误(β)
第I类错误——弃真错误, 发生的概率为α 第II类错误——取伪错误,发生的概率为β
7-18
yuanlibo@
接受H0 :μ=μ0
拒绝H0
真实情况:样本来 自μ=μ0的总体
判断正确
判断错误(I)
真实情况:样本来 自μ=μ1的总体
7-8
yuanlibo@
假设的表达形式
1. 2. 3. 4. 原假设(null hypothesis) 待检验的假设,又称“0假设” 研究者想收集证据予以证实的假设 总是有等号 , 或 表示为 H0,如:
6 假设检验
常用的α 值为0.01, 0.05, 0.1
由研究者事先确定。
拒绝域 1/2 1 - 接受域
拒绝域 1/2
临界值
H0
临界值
假设检验的步骤
根据问题要求提出 原假设(H0 )和备择假设(H1); 确定适当的检验统计量及相应的抽样分布;
计算检验统计量的值;
选取显著性水平,确定原假设的接受域和拒绝域; 作出统计决策。
举例2
某品牌洗发水在产品说明书中称:平均净含 量不少于500ml。相关机构要通过抽检其中 一批产品来验证是否属实。试陈述用于检验
的原假设和备择假设。
设该品牌洗发水的平均净含量真值是μ。 如果μ<500,表明说明书的内容不属实。
H0 :μ ≥ 500 (净含量符合说明书)
H1 :μ < 500 (净含量不符合说明书)
举例3
一家研究机构估计,某城市中家庭拥有汽车 的比率超过30%。为验证这一估计是否正确, 该机构随机抽取了一个样本进行检验。试陈
述用于检验的原假设和备择假设。
设该城市家庭拥有汽车的比率真值是 p。 研究者想收集证据予以证明:比率不超过30% H0 :p ≤ 30% (比率不超过30%)
H1 :p > 30% (比率超过30%)
例题
一种罐装饮料每罐的容量是255ml,标准差是
5ml。为检验每罐容量是否符合要求,质检人员
在某天的产品中随机抽取40罐进行检验,测得平 均容量为255.8ml。取显著性水平 =0.05,检 验该天生产的饮料容量是否符合标准要求。
设饮料的平均容量为μ。 H0 :μ = 255 (容量符合要求) H1 :μ≠255 (容量不符合要求)
假设检验例题 (3)
假设检验例题引言假设检验是统计学中常用的一种方法,用于通过对样本数据进行推断来判断某个假设是否成立。
在实际应用中,假设检验可以用于验证某个新的产品是否与现有产品相同、进行医学研究是否有显著的治疗效果等。
本文将通过一个例题来介绍假设检验的基本概念和步骤,并以Markdown文本格式输出。
例题描述假设某个公司改变了产品包装的设计,认为新的包装可以提高产品的销售量。
为了验证这个假设,该公司进行了一项实验,在两个不同的市场中随机选择了一部分店铺,其中一部分店铺使用新的包装,另一部分店铺继续使用旧的包装。
经过一段时间的实验,记录下两组店铺的销售量。
以下是两组店铺的销售量数据:新包装店铺销售量:50, 52, 55, 48, 57, 55, 54, 53, 51, 56旧包装店铺销售量:45, 46, 44, 46, 42, 48, 43, 41, 47, 44现在的问题是,是否可以通过这些数据来判断新的包装是否显著地提高了产品的销售量?假设检验步骤进行假设检验的步骤如下:步骤1:建立零假设和备择假设在这个例题中,零假设表示新的包装不会显著地提高产品的销售量,备择假设表示新的包装显著地提高了产品的销售量。
假设检验的目标是通过样本数据来决定是拒绝零假设还是接受备择假设。
零假设 (H0):新的包装不会显著地提高产品的销售量。
备择假设 (H1):新的包装显著地提高了产品的销售量。
步骤2:选择显著性水平显著性水平是假设检验中的一个重要概念,用于决定拒绝或接受零假设的标准。
通常情况下,我们会选择一个合适的显著性水平,常见的显著性水平有0.05和0.01。
在这个例题中,我们选择显著性水平为0.05,表示要求95%的置信水平。
步骤3:计算检验统计量假设检验的目标是通过样本数据来计算一个统计量,并与一个期望的分布进行比较。
在这个例题中,我们可以使用两组店铺的平均销售量作为检验统计量。
步骤4:计算p值p值是一个概率值,表示当零假设为真时,观察到比检验统计量更极端结果的概率。
6、回归模型的假设检验(附)
第6章 回归模型的假设检验1,区间估计—基本概念假设对消费函数回u Y C ++=21ββ归分析之后,得出边际消费倾向2β的估计值为0.509。
这是对未知的总体MPC 2β的一个单一的点估计。
这个点估计可不可靠?虽然在重复抽样中估计值的均值可能会等于真值))ˆ((22ββ=E ,但由于抽样波动,单一估计值很可能不同于真值。
在统计学中,一个点估计量的可靠性有它的标准误差来衡量。
因此,我们不能完全依赖一个点估计值,而是围绕点估计量构造一个区间。
比方说,在点估计量的两旁各划出宽为2或3个标准误差的一个区间,使得它有95%的概率包含着真实的参数值。
这就是取件估计的粗略概念。
假定我们想知道宽竟,比方说,2ˆβ离2β有多“近”。
为了这个目的,试求两个正数δ和a ,10<<a ,使得随机区间)ˆ,ˆ(22δβδβ+-包含2β的概率为a -1。
a -=+≤≤-1)ˆˆPr(222δββδβ (1) 如果存在这个区间,就称之为置信区间,)1(a -称置信系数或置信度,a 称为显著水平。
置信区间的端点称临界值。
上限和下限。
0.05,0.01。
比方说05.0=a ,(1)式就可读为:试中的区间包含真实的2β的概率为95%。
2,回归系数的置信区间一元回归时,在i u 的正态性假定下,OLS 估计量21ˆ,ˆββ本身就是正态分布的,其均值和方差已随之列出。
以2ˆβ为例 2ˆ22ˆβββS Z -=--(2) 2ˆβ的方差∑-=22)(X X σ这是一个标准化正态变量。
因此,如果知道真实的总体方差2σ已知,就可以利用正态分布对2β作概率性表达。
当2σ已知时,以μ为均值,2σ为方差的正态变量有一个重要性质,就是σμ±之间的面积约占68%,95%,99%。
但是2σ很少能知道,在现实中用无偏估计量2σ来确定。
用σˆ代替σ,(2)可以改写为 )ˆ(ˆ222βββS t -= (3)这样定义的t 变量遵循自由度为n-2的t 分布。
假设检验的习题及详解包括典型考研真题
§假设检验基本题型Ⅰ 有关检验统计量和两类错误的题型【例8.1】u 检验、t 检验都是关于 的假设检验.当 已知时,用u 检验;当 未知时,用t 检验.【分析】 由u 检验、t 检验的概念可知,u 检验、t 检验都是关于均值的假设检验,当方差2σ为已知时,用u 检验;当方差2σ为未知时,用t 检验. 【例8.2】设总体2(,)XN u σ,2,u σ未知,12,,,n x x x 是来自该总体的样本,记11ni i x x n ==∑,21()ni i Q x x ==-∑,则对假设检验0010::H u u H u u =↔≠使用的t 统计量t = (用,x Q 表示);其拒绝域w = . 【分析】2σ未知,对u 的检验使用t 检验,检验统计量为(1)x t t n ==-对双边检验0010::H u u H u u =↔≠,其拒绝域为2{||(1)}w t t n α=>-.【例8.3】设总体211(,)XN u σ,总体222(,)Y N u σ,其中2212,σσ未知,设112,,,n x x x 是来自总体X 的样本,212,,,n y y y 是来自总体Y 的样本,两样本独立,则对于假设检验012112::H u u H u u =↔≠,使用的统计量为 ,它服从的分布为 .【分析】记1111n i i x x n ==∑,2121n i i y y n ==∑,因两样本独立,故,x y 相互独立,从而在0H 成立下,()0E x y -=,221212()()()D x y D x D y n n σσ+=+=+,故构造检验统计量(0,1)x yu N =.【例8.4】设总体2(,)XN u σ,u 未知,12,,,n x x x 是来自该总体的样本,样本方差为2S ,对2201:16:16H H σσ≥↔<,其检验统计量为 ,拒绝域为 .【分析】u 未知,对2σ的检验使用2χ检验,又由题设知,假设为单边检验,故统计量为222(1)(1)16n S n χχ-=-,从而拒绝域为221{(1)}n αχχ-<-.【例8.5】某青工以往的记录是:平均每加工100个零件,由60个是一等品,今年考核他,在他加工零件中随机抽取100件,发现有70个是一等品,这个成绩是否说明该青工的技术水平有了显著性的提高(取0.05α=)?对此问题,假设检验问题应设为 【 】()A 01:0.6:0.6H p H p ≥↔<. ()B 01:0.6:0.6H p H p ≤↔>. ()C 01:0.6:0.6H p H p =↔≠. ()D 01:0.6:0.6H p H p ≠↔=.【分析】一般地,选取问题的对立事件为原假设.在本题中,需考察青工的技术水平是否有了显著性的提高,故选取原假设为0:0.6H p ≤,相应的,对立假设为1:0.6H p >,故选()B .【例8.6】某厂生产一种螺钉,标准要求长度是68mm ,实际生产的产品,其长度服从2(,3.6)N u ,考察假设检验问题01:68:68H u H u =↔≠.设x 为样本均值,按下列方式进行假设检验:当|68|1x ->时,拒绝原假设0H ;当|68|1x -≤时,接受原假设0H . (1)当样本容量36n =时,求犯第一类错误的概率α; (2)当样本容量64n =时,求犯第一类错误的概率α;(3)当0H 不成立时(设70u =),又64n =时,按上述检验法,求犯第二类错误的概率β. 【解】(1)当36n =时,223.6(,)(,0.6)36xN u N u =,000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]( 1.67)[1(1.67)]0.60.6--=Φ+-Φ=Φ-+-Φ 2[1(1.67)]2[10.99575]0.095=-Φ=-=.(2)当64n =时,223.6(,)(,0.45)64xN u N u =000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]0.450.45--=Φ+-Φ 2[1(2.22)]2[10.9868]0.0264=-Φ=-=.(3)当64n =,又70u =时,2(70,0.45)xN ,这时犯第二类错误的概率(70){|68|1|70}{6769|70}P x u P x u β=-≤==≤≤=69706770()()( 2.22)( 6.67)0.450.45--=Φ-Φ=Φ--Φ- (6.67)(2.22)10.98680.0132=Φ-Φ=-=.【评注】01(1)(2)的计算结果表明:当n 增大时,可减小犯第一类错误的概率α;02 当64n =,66u =时,同样可计算得到(66)0.0132β=.03 当64n =,68.5u =时,2(68.5,0.45)xN ,则(68.5){6769|68.5}P x u β=≤≤= 6968.56768.5()()(1.11)( 3.33)0.450.45--=Φ-Φ=Φ-Φ-0.8665[10.9995]0.8660=--=.这表明:当原假设0H 不成立时,参数真值越接近于原假设下的值时,β的值就越大. 【例8.7】设总体2(,)XN u σ,12,,,n x x x 是来自该总体的样本,对于检验01:0:0H u H u ≤↔>,取显著性水平α,拒绝域为:{}w u u α=>,其中u =,求:(1)当0H 成立时,求犯第一类错误的概率()u α; (2)当0H 不成立时,求犯第二类错误的概率()u β. 【解】(1)当0H 成立时,0u ≤,则(){|0}|0}u P u u u P u u ααα=>≤=>≤()|0}1()(0)P x u u u u u αα=->≤=-Φ≤因0u ≤,故()()1u u αααΦ≥Φ=-,从而()1()1(1)u u αααα≤-Φ=--=,即犯第一类错误的概率不大于α.(2)(){|0}()|0}u P u u u P x u u u ααβ=≤>=-≤>()(0)u u α=Φ>因0u >,故当u →+∞时,()0u β→,即u 与假设0H 偏离越大,犯第二类错误的概率越小;而当0u +→时,()1u βα→-,即当u 为正值且接近0时,犯第二类错误的概率接近1α-.基本题型Ⅱ 单个正态总体的假设检验【例8.8】某天开工时,需检验自动包装机工作是否正常,根据以往的经验,其包装的质量在正常情况下服从正态分布2(100,1.5)N (单位:kg ),先抽测了9包,其质量为: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5 问这天包装机工作是否正常?【分析】 关键是将这一问题转化为假设检验问题.因检验包装机工作是否正常,化为数学问题应为双边检验01:100:100H u H u =↔≠.【解】由题意,提出假设检验问题:01:100:100H u H u =↔≠, 选取检验统计量(0,1)x u N =当0.05α=时,0.02521.96u u α==,又20.04 1.96u u α==<=,即接受原假设0H ,认为包装机工作正常.【例8.9】已知某种元件的寿命服从正态分布,要求该元件的平均寿命不低于1000h ,现从这批元件中随机抽取25知,测得平均寿命980X h =,标准差65S h =,试在水平0.05α=下,确定这批元件是否合格.【解】由题意,2σ未知,在水平0.05α=下检验假设0010:1000:1000H u u H u u ==↔<=属于单边(左边)t 检验.构造检验统计量 (1)x t t n =-,其中25,65,980n S X h ===,查t 分布表可得:0.05(1)(251) 1.7109t n t α-=-=,又0.05|| 1.538(24) 1.7109x t t ===<=.即接受原假设0H ,认为这批元件是合格的.【例8.10】某厂生产的一中电池,其寿命长期以来服从方差225000()σ=小时的正态分布,现有一批这种电池,从生产的情况来看,寿命的波动性有所改变,现随机地抽取26只电池,测得寿命的样本方差229200()S =小时,问根据这一数据能否推断这批电池寿命的波动性较以往有显著性的变化(取0.02α=).【解】 检验假设2201:5000:5000H H σσ=↔≠,选取统计量2222(1)(1)n S n χχσ-=-,由0.02α=,26n =,查2χ分布表可得220.012(1)(25)44.314n αχχ-==,220.0912(1)(25)11.524n αχχ--==, 又统计量2220.012(1)46(25)44.314n S χχσ-==>=,故拒绝原假设0H ,即认为这批电池寿命的波动性较以往有显著性的变化.【例8.11】 某种导线,要求其电阻的标准不得超过0.005(欧姆),今在生产的一批导线中取样品9根,测得0.007S =(欧姆),设总体为正态分布,问在水平0.05α=下,能否认为这批导线的标准差显著性地偏大?【解】本题属于总体均值未知,正态总体方差的单边检验问题0010:0.005:0.005H H σσσσ==↔>=选取统计量2222(1)(1)n S n χχσ-=-当0.05α=,9n =时,查2χ分布表可得:220.05(1)(8)15.507n αχχ-==,又题设0.007S =,则统计量22220.0522(1)80.00715.68(8)15.5070.005n S χχσ-⨯===>=. 故拒绝原假设0H ,认为这批导线的标准差显著性地偏大.【例8.12】 机器自动包装食盐,设每袋盐的净重服从正态分布,规定每袋盐的标准重量为500克,标准差不超过10克.某天开工以后,为了检查机器工作是否正常,从已包装好的食盐中随机抽取9袋,测得其重量(克)为:497,507,510,475,484,488,524,491,515问这天自动包装机工作是否正常(显著性水平0.05α=)? 【解】 设每袋盐重量为随机变量X ,则2(,)XN u σ,为了检查机器是否工作正常,需检验假设:01:500H u =及202:100H σ≤.下面现检验假设0111:500:500H u H u =↔≠ 由于2σ未知,故构造统计量(1)x t t n =-由于0.05α=,查t 分布表可得0.0252(1)(8) 2.306t n t α-==,又由题设计算可得499,16.03X S ==,故统计量取值0.025||0.187(8) 2.306x t t ===<=即接受原假设01H ,认为机器包装食盐的均值为500克,没产生系统误差.下面在检验假设220212:100:100H H σσ≤↔>选取统计量2222(1)(1)n S n χχσ-=-,由于0.05α=,查2χ分布表可得220.05(1)(8)15.5n αχχ-==,而统计量2220.052(1)20.56(8)15.5n S χχσ-==>=,故拒绝原假设02H ,接受12H ,即认为其标准差超过了10克.由上可知,这天机器自动包装食盐,虽没有产生系统误差,但生产不够稳定(方差偏大),从而认为这天自动包装机工作不正常.基本题型Ⅲ 两个正态总体的假设检验【例8.13】 下表给出了两个文学家马克·吐温(Mark Twain )的8偏小品文以及斯诺·特格拉斯(Snodgrass )的10偏小品文中由3格字母组成的词比例.马克·吐温: 0.225,0.262,0.217,0.240,0.230,0.229,0.235,0.217斯诺·特格拉斯:0.209,0.205,0.196,0.210,0.202,0.207,0.224,0.223,0.220,0.201 设两组数据分别来自正态分布,且两总体方差相等,两样本相互独立,问两个作家所写的小品文中包含由3格字母组成的词的比例是否有显著性的差异(0.05α=)?【分析】首先应注意题中的“比例”即“均值”的含义,因而本题应属于未知方差,却知其相等的两正态母体,考虑它们的均值是否相等的问题.【解】设题中两正态母体分别记为,X Y ,其均值分别为12,u u ,因而检验问题如下:012112::H u u H u u =↔≠选取统计量(2)X Y T t n m =+-,其中8,10n m ==,()()22122112wn S m S Sn m -+-=+-,在0.05α=时,查t 分布表可得()()/20.025216 2.1199t n m t α+-==由题设样本数据计算可得22120.2319,0.2097,0.00021,0.00009X Y S S ====,0.119w S ===.从而t统计量值为()0.025|| 3.964316 2.1199X Y T t ===>=,因而拒绝原假设0H ,认为两个作家所写的小品文中包含由3格字母组成的词的比例有显著性的差异.【例8.14】据专家推测:矮个子的人比高个子的人的寿命要长一些,下面给出了美国31个自然死亡的总统的寿命.矮个子(身高小于5英尺8英寸)总统 Modison Van Buren B.Harrison J.Adams J.Q.Adams 身高 5’4” 5’6” 5’6” 5’7” 5’7” 寿命 85 79 67 90 80高个子(身高大于5英尺8英寸)总统 W.Harrison Plok Tayler Crant Hayes Truman Fillmore Pierce A.Johson 身高 5’8” 5’8” 5’8”5’8.5” 5’8.5” 5’9” 5’9” 5’10” 5’10” 寿命 68 53 65 63 70 88 74 64 66 总统 T.Roosevelt Coolidge Eisenhower Cleveland Wilson Hoover Monroe Tyler 身高 5’10” 5’10” 5’10” 5’11” 5’11” 5’11” 6’ 6’ 寿命 60 60 78 71 67 90 73 71 总统 Buchanan Taft Harding Jaskon Washington Arthur F.Roosevelt 身高 6’ 6’ 6’ 6’1” 6’2” 6’2” 6’2” 寿命77 72 57 78 67 56 63设两个寿命总体均为正态分布且方差相等,试问以上数据是否符合上述推测(0.05α=)? 【解】设矮个子总统寿命为X ,高个子总统寿命为Y ,需检验012112::H u u H u u =↔>.由于22212σσσ==未知,故选用统计量(2)X Y T t n m =+-,其中5,26n m ==,()()22122112wn S m S Sn m -+-=+-.由题设样本数据可得80.2,69.15,X Y ==22124294.8,252183.215S S ==,故()()221221185.4492wn S m S Sn m -+-==+-,从而统计量|| 2.448X Y T ==,又当0.05α=时,查t 分布表可得()()0.05229 1.6991t n m t α+-==,即()0.05|| 2.44829 1.6991T t =>=,故拒绝原假设0H ,即推测是正确的,认为矮个子的人比高个子的人的寿命要长一些 【例8.15】总体21(,)XN u σ,22(,)Y N u σ,112,,,n x x x 与212,,,n y y y 分别时来自总体,X Y 的样本,试讨论检验问题012112::H u u H u u δδ-≤↔->.【解】取统计量12(2)X Y T t n n =+-,其中()()221122212112wn S n S S n n -+-=+-, 则检验统计量为X Y T =,当1H 成立时,t 有偏大的趋势,故取拒绝域为12{(2)}w t t n n α=>+-.【例8.16】甲乙相邻地段各取了50块和25块岩心进行磁化率测定,算出两样本标准差分别是210.0139S =,220.0053S =,问甲乙两段的标准差是否有显著性差异(0.05α=)?【解】作假设001:H σσ=,由题设有250211501500.0139()0.01425014949i i S X X =⨯⨯-===-∑, 252221521520.0053()0.00545215151ii S Y Y =⨯⨯-===-∑ 从而统计量21112222(1)0.01422.630.0054(1)n S n F n S n -===-,当0.05α=,查F 分布表可得0.0252(501,521)(501,521) 1.7494F F α--=--=,0.97512(501,521)(501,521)0.5698FF α---=--=,因为0.0252.63(49,51) 1.7494F F =>=,故拒绝原假设0H ,即认为甲乙两段的标准差有显著性差异.【例8.17】在集中教育开课前对学员进行了测试,过来一段时间后,又对学员进行了与前一次同样程度的考查,目的是了解上次的学员与这次学员的考试分类是否有显著性差别(0.05α=),从上次与这次学员的考试中随机抽取12份考试成绩,如下表考试次数 考分 合计平均分 (1) 80.5,91.0,81.0,85.0,70.0,86.0,69.5,74.0,72.5,83.0,69.0,78.5940 78.5 (2)76.0,90.0,91.5,73.0,64.5,77.5,81.0,83.5,86.0,78.5,85.0,96080.073.5【解】此为双正态总体的假设检验,两总体均值未知,先检验假设2222012112::H H σσσσ=↔≠.选取统计量211222(1,1)S F F n n S =--,由题设可计算得221253.15,60.23S S ==,则统计量212253.150.882560.23S F S ===,取0.05α=,查F 分布表可得0.0252(11,11)(11,11) 3.43F F α==,0.97510.02521(11,11)(11,11)0.2915(11,11)FF F α-===.由于122(11,11)0.8825(11,11) 3.43FF F αα-<=<=,故在0.05α=下,接受0H ,即认为两次考试中学员的成绩的方差相等. 再假设012112::H u u H u u =↔≠.构造统计量12(2)X YT t n n =+-,其中()()221122212112wn S n S S n n -+-=+-,1212,12n n ==.由样本数据可得78.5,80.0,X Y ==221253.1515,60.2273S S ==,故()()2211222121156.68942wn S n S Sn n -+-==+-,从而统计量||0.488X Y T ==,在0.05α=下,查t 分布表可得()()120.0252222 2.0739t n n t α+-==.由于()0.025||0.48822 2.0739T t =<=,即认为两次考试中学员的平均成绩相等,从而认为两次考试中学员的成绩无显著性差异.基本题型Ⅳ 非正态总体参数假设检验【例8.18】某产品的次品率为0.17,现对此产品进行了新工艺试验,从中抽取400件检查,发现次品56间,能否认为这项新工艺显著性地影响产品质量(0.05α=)? 【解】检验问题01:0.17:0.17H p H p =↔≠由题设可知56ˆ0.14400m pn ===,构造统计量 1.597u ===-,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为新工艺显著性地影响产品质量.【评注】本题的理论依据时中心极限定理:当n 充分大时,在0H 成立时,u =(0,1)N 分布.【例8.19】 已知某种电子元件的使用寿命X 服从指数分布()E λ,现抽查100个元件,得样本均值950()x h =,能否认为参数0.01λ=(0.05α=)? 【解】由题设()XE λ,故211,EX DX λλ==,当n 充分大时,1((0,1)1x u x N λλ-==-,现在检验问题01:0.001:0.001H H λλ=↔≠,则((0.0019501)0.5u x λ=-=⨯-=,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为参数0.01λ=.【评注】总体()X F x ,2,EX u DX σ==,则当n充分大时,u =从(0,1)N 分布.【例8.20】对某干洗公司去除污点的比例做下列假设检验01:0.7:0.9H p H p =↔=,选出100个污点,设其中去除的污点数为x ,拒绝域为{82}w x =>. (1)当0.7p =时,求犯第一类错误的概率α; (2)当0.9p =时,求犯第二类错误的概率β. 【解】(1)由题设有{82|0.7}1P x p α=>==-Φ1(2.62)10.99560.0044=-Φ=-=.(2){82|0.9}P x p β=≤==Φ( 2.67)1(2.67)10.99620.0038=Φ-=-Φ=-=.【评注】从计算分析,这一检验法的α,β皆很小,是较好的检验.§历年考研真题评析1、【98.1.4】设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,计算得到平均成绩为66.5,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生平均成绩为70分?并给出检验过程.【解】设该次考试的考生成绩为X ,则2(,)XN ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,根据题意建立假设001:70;:70H H .选取统计量 07036X X TnSS在70时,2(70,),(35)X T t .选取拒绝域{||}R T ,其中满足{||}0.05P T ,即{||}0.95P T .即0.975(35) 2.0301t . 由036,66.5,70,15n xs 可以计算得统计量T 的值|66.570|||361.42.030115T .因此不能拒绝0H ,即在显著性水平0.05下可以认为全体考生的平均成绩为70分.§习题全解1、在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)XN σ.一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化. 【解】设铁水含碳量作为总体X ,则2(4.55,)XN σ,从中选取容量为5的样本,测得24.444,0.0011X S ==.由题意,设原假设为0: 4.55H u = 构造检验统计量 ||(4)X u t t S -=,则7.051t ==在显著性水平0.05α=下,查表可得0.97512(4)(4) 2.77647.051tt α-==<,拒绝原假设0H ,即认为有显著性变化.2、根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm.该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x .经计算得15148ii x==∑, 1521156.26i i x ==∑.试判断该厂是否符合环保法的规定.(该有毒化学物质含量X 服从正态分布)【解】设有毒化学物质含量作为总体X ,则2(,)XN u σ,从中选取容量为15的样本,测得1511 3.215i i X x ===∑,22221111()()0.1911n ni i i i S x x x nx n n ===-=-=--∑∑.由题意,设原假设为0:3H u <,备择假设为1:3H u >.构造检验统计量(14)X t t =,则 1.777t ==,在显著性水平0.05α=下,查表可得10.95(14)(14) 1.7613 1.777t t α-==<,即拒绝原假设0H ,接受备择假设1H ,认为该厂不符合环保的规定.3、某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不应低于65.已知该指标服从正态分布2(,)N μσ, 5.5σ=.从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸? 【解】设玻璃纸的横向延伸率为总体X ,则2(,5.5)XN u ,从中选取容量为100的样本,测得55.06x =.由题意,设原假设为0:65H u >,备择假设为1:65H u <.构造检验统计量||(0,1)X u U N σ-=,则|55.0665|18.07275.5U -==在显著性水平0.05α=下,查表可得10.95 1.644918.0727U U α-==<,即拒绝原假设0H ,接受备择假设1H ,不能接受该批玻璃纸..4、某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根.现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)?【解】设经纱断头率为总体X ,则9.73u EX ==, 1.6σ==,从中选取容量为200的样本,测得9.89x =.由题意,设原假设为0:9.73H u =,备择假设为1:9.73H u ≠. 构造检验统计量(0,1)X U N =,则 1.4142U ==在显著性水平0.05α=下,查表可得0.975121.96 1.4142UU α-==>,即接受原假设0H ,认为断头率没有受到显著影响.5、某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布2(100,)N σ.某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9.问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(显著性水平α=0.05) 【解】设每箱重量为总体X ,则2(100,)XN σ,从中选取容量为10的样本,测得99.9x =,20.34S =.由题意,设原假设为0:100H u =,备择假设为1:100H u ≠.构造检验统计量||(9)X u t t S -=,则0.5423t ==,在显著性水平0.05α=下,查表可得0.97512(9)(9) 2.26220.5423tt α-==>,即接受原假设0H ,认为每箱重量无显著差异.6、某自动机床加工套筒的直径X 服从正态分布.现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124ii x==∑, 5213139i i x ==∑.试问这批套筒直径的方差与规定的27σ=有无显著差别?(显著性水平0.01α=) 【解】设这批套筒直径为总体X ,则2(,)XN u σ,从中选取容量为5的样本,测得151124.815i i X x ===∑,22221111()()15.9511n ni i i i S x x x nx n n ===-=-=--∑∑. 由题意,设原假设为20:7H σ=,备择假设为21:7H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2415.959.11437χ⨯==,在显著性水平0.01α=下,查表可得220.99512(4)(4)14.86αχχ-==,220.0052(4)(4)0.2070αχχ==,从而222122(4)(4)ααχχχ-<<. 即接受原假设0H ,认为这批套筒直径的方差与规定的27σ=无显著差别.7、甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布211(,)N μσ、222(,)N μσ(12,μμ未知).今从甲机床加工的轴中随机地任取6根,测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的直径为19,,y y ,经计算得知:61204.6ii x==∑, 6216978.9i i x ==∑,91370.8i i y ==∑,92115280.2i i y ==∑.问在显著性水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异? 【解】设两台机床加工的轴的直径分别为总体,X Y ,则211(,)XN μσ、222(,)YN μσ,从总体X 中选取容量为6的样本,测得61134.16i i X x ===∑222211111()()0.40811n ni i i i S x x x nx n n ===-=-=--∑∑. 从总体Y 中选取容量为9的样本,测得91141.29i i Y y ===∑222221111()()0.40511n ni i i i S y y y ny n n ===-=-=--∑∑ 由题意,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,8)S F F S =,则0.4081.0070.405F ==,在显著性水平0.05α=下,查表可得0.97512(5,8)(5,8) 6.76FF α-==,0.0252(5,8)(5,8)0.1479F F α==,从而122(5,8)(5,8)F F Fαα-<<.即接受原假设0H ,认为两台机床加工的轴的直径方差无显著差异.8、某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048.某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44.问该日所生产得维尼龙纤度的均方差是否有显著变化(显著性水平α=0.1)? 【解】设维尼龙纤度为总体X ,则2(,0.048)XN u ,从中选取容量为5的样本,测得511 1.4145i i X x ===∑,2211()0.00781n i i S x x n ==-=-∑.由题意,设原假设为0:0.048H σ=,备择假设为1:0.048H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2240.007813.542(0.048)χ⨯==在显著性水平0.1α=下,查表可得220.9512(4)(4)9.487713.542αχχ-==<.即拒绝原假设0H ,认为维尼龙纤度的均方差有显著变化.9、某项考试要求成绩的标准差为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符合要求(显著性水平α=0.05)? 【解】 设考试成绩为总体X ,则2(,12)XN u ,从中选取容量为15的样本,测得16S =.由题意,设原假设为0:12H σ=,备择假设为1:12H σ≠. 构造检验统计量2222(1)(14)n S χχσ-=,则222141619.055612χ⨯==.在显著性水平0.05α=下,查表可得220.97512(14)(14)26.1189αχχ-==,220.0252(14)(14) 5.6287αχχ==,从而222122(14)(14)ααχχχ-<<.即接受原假设0H ,认为此次考试的标准差符合要求.10、某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:甲:25,28,23,26,29,22; 乙:28,23,30,25,21,27.假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著性水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著性水平α=0.1)?【解】设这两种烟的尼古丁含量分别为总体,X Y ,则211(,)X N μσ、222(,)Y N μσ,从中均选取容量为6的样本,测得61125.56i i X x ===∑,22111()7.51n i i S x x n ==-=-∑, 61125.66676i i Y y ===∑,22211()11.06671n i i S y y n ==-=-∑, 由题意,在方差相等时,设原假设为012:H u u =,备择假设为112:H u u ≠.构造检验统计量12(2)X Y t t n n =+-,其中222112212(1)(1)9.2834(2)wn S n S S n n -+-==+-.则0.0948t ==,在显著性水平0.05α=下,查表可得120.97512(2)(10) 2.22810.0948tn n t α-+-==>.即接受原假设0H ,认为这两种香烟的尼古丁平均含量无显著差异.由题意,在方差待定时,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,5)S F F S =,则7.50.677711.0667F ==,在显著性水平0.1α=下,查表可得0.9512(5,8)(5,5) 5.0503FF α-==,0.052(5,8)(5,5)0.1980F F α==,由122(5,5)(5,5)F F Fαα-<<.即接受原假设0H ,认为它们的方差无显著差异.§同步自测题及参考答案一、选择题1、关于检验水平α的设定,下列叙述错误的是 【 】()A α的选取本质上是个实际问题,而非数学问题. ()B 在检验实施之前, α应是事先给定的,不可擅自改动.()C α即为检验结果犯第一类错误的最大概率. ()D 为了得到所希望的结论,可随时对α的值进行修正.2、关于检验的拒绝域W,置信水平a ,及所谓的“小概率事件”,下列叙述错误的是 【 】()A a 的值即是对究竟多大概率才算“小”概率的量化描述. ()B 事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件.()C 设W 是样本空间的某个子集,指事件}|),,,{(021为真H W X X X n ∈ . ()D 确定恰当的W 是任何检验的本质问题.3、设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题拒绝域形式为 【 】()A }C >. ()B }/100{C n S X <-. ()C }10/100{C S X >- . ()D }{C X >.4、设n X X X ,,,21 为来自总体2(,)N μσ的样本,若μ未知, 100:20≤σH ,21:100,H 0.05a ,关于此检验问题,下列不正确的是 【 】()A 检验统计量为100)(12∑=-ni iX X. ()B 在0H 成立时,)1(~100)1(22--n x S n . ()C 拒绝域不是双边的. ()D 拒绝域可以形如})({12∑=>-ni i k X X .5、设总体服从正态分布2(,3)XN μ,12,,,n x x x 是X 的一组样本,在显著性水平0.05α=下,假设“总体均值等于75”拒绝域为12{,,,:74.0275.98}n w x x x x x =<⋃>,则样本容量n = 【 】()A 36. ()B 64. ()C 25. ()D 81.二、填空题1、为了校正试用的普通天平,把在该天平上称量为100克的10个试样在计量标准天平上进行称量,得如下结果:99.3, 98.7, 100.5, 101,2, 98.399.7 99.5 102.1 100.5, 99.2 假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H为 .2、设样本2521,,,X X X 来自总体μμ),9,(N 未知,对于检验0010::H H μμμμ=↔= 取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .3、设12,,,n x x x 是正态总体2(,)XN μσ的一组样本.现在需要在显著性水平0.05α=下检验假设2200:H σσ=.如果已知常数u ,则0H 的拒绝域1w =______________;如果未知常数u ,则0H 的拒绝域2w =______________.4、在一个假设检验问题中令0H 是原假设,1H 时备择假设,则犯第一类错误的概率{______________}P ,犯第二类错误的概率{______________}P .三、解答题1、某批矿砂的5个样本中的镍含量,经测定为(%)3.25,3.27,3.24,3.26,3.24设测定值总体服从正态分布,问在0.01α=下,能否接受假设:这批矿砂的含量的均值为3.25.2、已知精料养鸡时,经若干天鸡的平均重量为4公斤.今对一批鸡改用粗料饲养,同时改善饲养方法,经同样长的饲养期后随机抽取10只,的其数据如下:3.7,3.8,4.1,3.9,4.6,4.7,5.0,4.5,4.3,3.8已知同一批鸡的重量X 服从正态分布,试推断:这一批鸡的平均重量是否显著性提高.试就0.01α=和0.05α=分别推断.3、测定某种溶液中的水份,它的10个测定值给出0.037%S =,设测定值总体为正态分布,2σ为总体方差,试在水平0.05α=下检验假设01:0.04%:0.04%H H σσ=↔<.4、在70年代后期,人们发现在酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA ).到了80年代初期开发了一种新的麦芽干燥过程,下面给出了在新老两种干燥过程中形成的NDMA 的含量(以10亿份中的份数计)老过程 6,4,5,5,6,5,5,6,4,6,7,4 新过程2,1,2,2,1,0,3,2,1,0,1,3设两样本分别来自正态总体,且两总体的方差相等,两样本独立,分别以12,u u 记对应于老、新过程的总体均值,试检验假设(0.05α=)0111:2:2H u u H u u -=↔->.5、检验了26匹马,测得每100毫升的血清中,所含的无机磷平均为3.29毫升,标准差为0.27毫升;又检验了18头羊,每100毫升血清中汗无机磷平均值为3.96毫升,标准差为0.40毫升.设马和羊的血清中含无机磷的量均服从正态分布,试问在显著性水平0.05α=条件下,马和羊的血清中无机磷的含量有无显著性差异?6、某种产品的次品率原为0.1,对这种产品进行新工艺试验,抽取200件发现了13件次品,能否认为这项新工艺显著性地降低了产品的次品率(0.05α=)?7、设n X X X ,,,21 为总体(,4)XN a 的样本,已知对假设01:1: 2.5H a H a =↔=,0H 的拒绝域为{2}w X =>.(1)当9u =时,求犯两类错误的概率α和β; (2)证明:当n →∞时,0α→,0β→.同步自测题参考答案 一、选择题1.()D .2. ()C .3. ()C .4. ()B .5. ()A . 二、填空题1.100=μ.2. 1.176.3. 222210.0250.97522110011{()()()()}nniii i w x u n x u n χχσσ===->⋃-<∑∑;222220.0250.975220(1)(1){(1)(1)}n S n S w n n χχσσ--=>-⋃<- .4.10{|}P H H 接受成立,01{|}P H H 接受成立.三、解答题 1、接受0H .2、0.01α=时,显著性提高;0.05α=时,没有显著性提高 .3、 接受0H .4、拒绝0H ,接受1H .5、方差无显著性差异,均值有显著性差异,故有显著性差异.6、 拒绝0H .7、(1)0.0668α=,0.2266β=,(2)102α=-Φ→,(04β=Φ-→()n →∞.。
最新第六章 假设检验习题及答案
假设检验习题及答案填空题1.原假设与备择假设是一个__________,也就是说在假设检验中原假设与备择假设只有一个成立,且必有一个成立。
(完备事件组)2.我们在检验某项研究成功与否时,一般以研究目标作为__________,如在研究新管理方法是否对销售业绩(周销售量)产生影响时,设原周销售量为A 元,欲对新管理方法效果进行检验,备择假设为__________。
(备择假设H1:μ>A)单选题从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断的过程称为( )A.参数估计B.统计推断C.区间估计D.假设检验答案:d2.假设检验的概率依据是( )。
A.小概率原理B.最大似然原理C.大数定理D.中心极限定理答案:a多选题1.统计推断包括以下几个方面的内容( )。
A.通过构造统计量,运用样本信息,实施对总体参数的估计B.从统计量出发,对总体某些特性的“假设”作出拒绝或接受的判断C.相关分析D.时间序列分析E.回归分析答案:a, b2.假设检验的基本思想是( )。
A.先对总体的参数或分布函数的表达式做出某种假设,然后找出一个在假设成立条件下出现可能性甚小的(条件)小概率事件。
B.如果试验或抽样的结果使该小概率事件出现了,这与小概率原理相违背,表明原来的假设有问题,应予以否定,即拒绝这个假设。
C.若该小概率事件在一次试验或抽样中并未出现,就没有理由否定这个假设,表明试验或抽样结果支持这个假设,这时称假设也实验结果是相容的,或者说可以接受原来的假设。
D.如果试验或抽样的结果使该小概率事件出现了,则不能否认这个假设。
E.若该小概率事件在一次试验或抽样中并未出现,则否定这个假设。
答案:a, b, c3.假设检验的具体步骤包括( )。
A.根据实际问题的要求,提出原假设及备择假设;B.确定检验统计量,并找出在假设成立条件下,该统计量所服从的概率分布;C.根据所要求的显著性水平和所选取的统计量,查概率分布临界值表,确定临界值与否定域;D.将样本观察值代入所构造的检验统计量中,计算出该统计量的值。
假设检验例题和习题
超过1cm3。如果达到设计要求 -0.6 0.7 -1.5 -0.2 -1.9
,表明机器的稳定性非常好。 -0.5 1 -0.2 -0.6 1.1
现从该机器装完的产品中随机
抽取25瓶,分别进行测定(用样
本减1000cm3),得到如下结果
。检验该机器的性能是否达到
设计要求 (=0.05)
8 - 30
双侧检验
备择假设的方向为“<”(废品率降低) 建立的原假设与备择假设应为
H0: 2% H1: < 2%
8 -7
统计学
(第二版)
单侧检验
(原假设与备择假设的确定)
某灯泡制造商声称,该企业所生产的灯泡 的平均使用寿命在1000小时以上。如果 你准备进一批货,怎样进行检验
▪ 检验权在销售商一方
▪ 作为销售商,你总是想收集证据证明生产商 的说法(寿命在1000小时以上)是不是正确的
决策:
在 = 0.05的水平上拒绝H0
结论:
有证据表明新机床加工的零件 的椭圆度与以前有显著差异
统计学
(第二版)
2 已知均值的检验
(P 值的计算与应用)
第1步:进入Excel表格界面,选择“插入”下拉菜 单
第2步:选择“函数”点击
第3步:在函数分类中点击“统计”,在函数名的 菜
单下选择字符“NORMSDIST”然后确定
?( = 0.05)
统计学
(第二版)
均值的单尾 t 检验
(计算结果)
H0: 40000 H1: < 40000 = 0.05 df = 20 - 1 = 19 临界值(s):
拒绝域
.05
-1.7291 0
t
8 - 23
假设检验习题
第6章 假设检验练习题一. 选择题1. 对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程称为( )A.参数估计 B 。
双侧检验 C.单侧检验 D 。
假设检验2.研究者想收集证据予以支持的假设通常称为( )A.原假设 B 。
备择假设 C.合理假设 D 。
正常假设3. 在假设检验中,原假设和备择假设( )A 。
都有可能成立B 。
都有可能不成立C 。
只有一个成立而且必有一个成立D 。
原假设一定成立,备择假设不一定成立4。
在假设检验中,第Ⅰ类错误是指( )A.当原假设正确时拒绝原假设 B 。
当原假设错误时拒绝原假设C.当备择假设正确时未拒绝备择假设 D 。
当备择假设不正确时拒绝备择假设5. 当备择假设为: ,此时的假设检验称为( )A.双侧检验 B 。
右侧检验 C 。
左侧检验 D 。
显著性检验6。
某厂生产的化纤纤度服从正态分布,纤维纤度的标准均值为1.40.某天测得25根纤维的纤度的均值为x =1.39,检验与原来设计的标准均值相比是否有所下降,要求的显著性水平为α=0。
05,则下列正确的假设形式是( )A. H 0: μ=1。
40, H 1: μ≠1。
40B. H 0: μ≤1.40, H 1: μ>1.40C. H 0: μ<1。
40, H 1: μ≥1.40D. H 0: μ≥1.40, H 1: μ<1。
407一项研究表明,司机驾车时因接打手机而发生事故的比例超过20%,用来检验这一结论的原假设和备择假设应为A 。
H 0:μ≤20%, H 1: μ>20%B 。
H 0:π=20% H 1: π≠20%C. H 0:π≤20% H 1: π>20% D 。
H 0:π≥20% H 1: π<20%8。
在假设检验中,不拒绝原假设意味着( )。
A.原假设肯定是正确的 B 。
原假设肯定是错误的C.没有证据证明原假设是正确的D.没有证据证明原假设是错误的9. 若检验的假设为H 0: μ≥μ0, H 1: μ<μ0 ,则拒绝域为( ) A 。
假设检验例题与习题
8-3
统计学
(第二版)
双侧检验
(原假设与备择假设的确定)
1. 属于决策中的假设检验
2. 不论是拒绝 H0还是不拒绝 H0,都必需采取 相应的行动措施
3. 例如,某种零件的尺寸,要求其平均长度为 10cm,大于或小于10cm均属于不合格
? 我们想要证明 (检验)大于或小于这两种可能性 中的任何一种是否成立
8 - 15
单侧检验
统计学
(第二版)
H0: ? ? 1020 H1: ? > 1020 ? = 0.05 n = 16 临界值 (s):
拒绝域
0.05
8 - 16
0 1.645 Z
检验统计量 :
z = x ? ? 0 = 1080? 1020 = 2.4 ? n 100 14
决策:
在 ? = 0.05的水平上拒绝H0
统计学
(第二版)
第 7章
假设检验例题与习题
8-1
统计学 假设检验在统计方法中的地位
(第二版)
统计方法
描述统计
推断统计
参数估计
假设检验
8-2
统计学
(第二版)
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 对实际问题作假设检验 4. 利用置信区间进行假设检验 5. 利用P - 值进行假设检验
单下选择字符“ NORMSDIST ”然后确定
第4步:将Z的绝对值 2.83 录入,得到的函数值为
0.997672537
P 值=2(1-0.997672537)=0.004654
8 - 14
P 值远远小于??2,故拒绝H0
统计学
(第二版)
【例】 根据过去大量资料,
假设检验习题及答案
第8章 假设检验一、填空题1、 对正态总体的数学期望μ进行假设检验,如果在显著性水平0.05下,接受假设00:μμ=H ,那么在显著性水平0.01下,必然接受0H 。
2、在对总体参数的假设检验中,若给定显著性水平为α,则犯第一类错误的概率是α。
3、设总体),(N ~X 2σμ,样本n 21X ,X ,X Λ,2σ未知,则00:H μ=μ,01:H μ<μ的拒绝域为 )}1(/{0--<-n t nS X αμ,其中显著性水平为α。
4、设n 21X ,X ,X Λ是来自正态总体),(N 2σμ的简单随机样本,其中2,σμ未知,记∑==n 1i i X n 1X ,则假设0:H 0=μ的t 检验使用统计量=T Q n n X )1(- .二、计算题1、某食品厂用自动装罐机装罐头食品,规定标准重量为250克,标准差不超过3克时机器工作 为正常,每天定时检验机器情况,现抽取16罐,测得平均重量252=X 克,样本标准差4=S 克,假定罐头重量服从正态分布,试问该机器工作是否正常?解:设重量),(~2σμN X 05.016==αn 4252==S X(1)检验假设250:0=μH 250:1≠μH ,因为2σ未知,在0H 成立下,)15(~/250t n S X T -=拒绝域为)}15(|{|025.0t T >,查表得1315.2)5(025.0=≠t由样本值算得1315.22<=T ,故接受0H(2)检验假设9:20=σH 9:201>σH 因为μ未知,选统计量2022)1(σS n x -= 在0H 成立条件下,2x 服从)15(2x 分布,拒绝域为)}15({205.02x x >,查表得996.24)15(205.0=x , 现算得966.24667.26916152>=⨯=x ?拒绝0H , 综合(1)和(2)得,以为机器工作不正常2、一种电子元件,要求其使用寿命不得低于1000小时,现在从一批这种元件中随机抽取25 件,测得其寿命平均值为950小时,已知该种元件寿命服从标准差100=σ小时正态分布, 试在显著性水平0.05下确定这批产品是否合格.解:设元件寿命),(~2σμN X ,2σ已知10002=σ,05.0,950,25===αX n检验假设1000:0=μH 1000:1<μH在2σ已知条件下,设统计量)1,0(~/1000N n X σμ-=拒绝域为}{05.0μμ<,查表得645.195.005.0-=-=μμ 而645.15.2205025/1001000950-<-=-=-=μ 拒绝假设0H 选择备择假设1H ,所以以为这批产品不合格.3. 对 显 著 水 平 a , 检 验假 设 H 0 ; m = m 0, H 1 ; m ≠ m 0, 问当 m 0, m , a一 定 时 ,增大样本量 n 必 能 使 犯 第 二 类 错 误 概 率 b 减 少 对 吗 ?并 说 明 理由 。
第六章-假设检验(Hypothesis-test)
二、接受域和拒绝域
假设设定之后,我们需要一个判别标准,判断拒绝或 接受H0。利用“小概率原理”,指发生概率很小的随机 事件,在一次试验中几乎是不可能发生的。如果发生 了,就可以拒绝提出的原假设。
例如:有一个厂商声称其产品的合格品率很高,可以达到 99%,则从一批产品(100件)中随机抽取1件,该件是次品 的概率就非常小,只有1%。
➢ 根据α值和抽样分布,确定临界值。 ➢ 将检验统计量的数值与临界值相比较,做出
是否拒绝H0的判断。 ➢ 或以检验统计量计算p值,确定是否拒绝H0 。
Back
五、p值(p-value)
p值:H0为真时,由样本数据给出的犯第Ⅰ类错误 的概率的精确数值(观察到的显著性水平)。
统计软件给出检验统计量的数值时,一般都给出该
Back
四、假设检验的步骤
Step1:提出原假设 H0 和备择假设 H1
例如:H0:μ=μ0;H1:μ≠μ0
Step2:确定显著性水平α
➢ 是决策中的风险。主观确定。 ➢ α一般取0.05或0.01。
四、假设检验的步骤
Step3:选择检验统计量(Test Statistic)
➢ 假设检验也是从抽样分布出发,借由样本数据 计算检验统计量的数值进行推断。
检验统计量数值的p值。
以Zobs表示Z统计量的观测值: 双侧检验時p值=P(|Z|≥ Zobs)
右侧检验时p值=P(Z≥ Zobs)
p值/2
p值/2
以p值进行假设检验:
α/2
1 -α
α/2
p值>α,接受H0
-1.96
1.96(临界值)
计算的检验统计量数值
p值<α ,拒绝H0
Back
统计学例题及作业
第四章统计分析的基本指标例4.1:某公司2008年计划实现净利润2500万元,实际完成3100万元。
计算利润计划完成程度。
例4.2:某公司2008年劳动生产率计划比上年增长10%,实际增长了21%,计算劳动生产率计划完成程度。
例4.3:某公司2008年单位成本计划比上年降低10%,实际降低了19%,计算单位成本计划完成程度。
例4.4:某企业2007年某产品的单位成本为520元,2008年计划在上年基础上降低5%,实际降低了40元,计算2008年单位成本计划完成程度。
例4.5:某企业2002年产品销售量计划达到上年的108%,2002年销售量实际比上年增长了15%,试计算2002年销售计划完成程度。
例46:某企业“十五”计划规定,最后一年的钢产量要达到200万吨,各年实际产量如下表例4.8:三种苹果每公斤的单价分别为4元、6元、9元。
(1)如果三种苹果各买2公斤,计算平均价格。
(2)如果三种苹果分别购买2公斤、3公斤、5公斤,计算平均价格。
(3)如果三种苹果各买5元,计算平均价格。
(4)如果三种苹果各买5元、6元、18元,计算平均价格。
(5)根据以上四种情况下计算的平均价格,归纳出算术平均数、调和平均数的运用条件。
例4.10:2007年某主管部门所属企业的利润计划完成程度如下表:例4.11:某企业有铸锻、初加工、精加工和装配四个连续作业车间,加工1000件产品,经过四个车间加工后的合格品数量分别为980件、970件、950件、945件。
试计算四个车间的平均合格率。
例4.12:某企业从银行取得一笔1000万元的10年期贷款,按复利计算利息:第1年的利率为6%,第2—3年的利率为7%,第4—6年的利率为8%,第7—10年的利率为10%。
试计算该笔贷款的平均年利率。
如果按单利计算利息,平均年利率又是多少?例4.13:A、B两个农贸市场的交易资料如下表:例4.14:某企业2000第四章统计指标作业2.3.某一家三口,父母工作,女儿上小学。
假设检验案例集
案例一:假设检验设备判断中的应用[1]例如:某公司想从国外引进一种自动加工装置。
这种装置的工作温度X服从正态分布(μ,52),厂方说它的平均工作温度是80度。
从该装置试运转中随机测试16次,得到的平均工作温度是83度。
该公司考虑,样本结果与厂方所说的是否有显著差异?厂方的说法是否可以接受?类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题,就是假设检验的问题。
我们把任一关于单体分布的假设,统称为统计假设,简称假设。
上例中,可以提出两个假设:一个称为原假设或零假设,记为H0:μ=80(度);另一个称为备择假设或对立假设,记为H1 :μ≠80(度)这样,上述假设检验问题可以表示为:H0:μ=80H1:μ≠80原假设与备择假设相互对立,两者有且只有一个正确,备择假设的含义是,一旦否定原假设H0,备择假设H1备你选择。
所谓假设检验问题就是要判断原假设H0是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设。
应该如何作出判断呢?如果样本测定的结果是100度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的,而现在竟然出现了,当然要拒绝原假设H0。
现在的问题是样本平均工作温度为83度,结果虽然与厂方说的80度有差异,但样本具有随机性,80度与83度之间的差异很可能是样本的随机性造成的。
在这种情况下,要对原假设作出接受还是拒绝的抉择,就必须根据研究的问题和决策条件,对样本值与原假设的差异进行分析。
若有充分理由认为这种差异并非是由偶然的随机因素造成的,也即认为差异是显著的,才能拒绝原假设,否则就不能拒绝原假设。
假设检验实质上是对原假设是否正确进行检验,因此,检验过程中要使原假设得到维护,使之不轻易被否定,否定原假设必须有充分的理由;同时,当原假设被接受时,也只能认为否定它的根据不充分,而不是认为它绝对正确。
假设检验练习题 -答案
假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设(通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。
根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1:W为双边H1:W为单边H1:W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。
例如:对于=0.05有的双边W为的右单边W为的右单边W为第五步根据样本观测值,计算和判断计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值227页p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量Z 、t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值227页p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验-----比较目标均值双样本t检验-----比较两个均值方差分析-----比较两个以上均值等方差检验-----比较多个方差离散型(区分或数的数据):卡方检验-----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。
第六章 假设检验习题答案ppt课件
解:
H0 :σ2 ≤ 0.75, H1 : σ2 > 0.75
2 ( n 1 ) s 2 2 29 2 7 7 .3 3 0 .7 5
一个假设检验,能够帮助判定
电视的使用寿命的方差是否显 著大于视频录像设备的使用寿
7 7 . 3 3 4 2 . 5 5 7 0 ( 2 9 )
2 2 0 . 0 5
命的方差。并在 0.05的显著性
水平下做出结论。
样本提供的证据表明:在显著 性水平为 0.05 时下电视的使用 寿命的方差显著大于视频录像 设备的使用寿命的方差
第六章 假设检验
第六章 假设检验
样本提供的证据表明:在显著性水平= 0.05时能认为该厂生产的工艺品框架宽 与长的平均比率为0.618
0
2.0930
t
第六章 假设检验
•
一个著名的医生声称75%的女 性所穿过的鞋子过小,一个研 究组织对 356 名女性进行了研 究,发现其中有 313 名女性所 穿的鞋子号码至少小一号。取
解:
0 z 0 (1 0 ) n
样本提供的证据表明:每个家庭每 天收看电视的平均时间增加了
第六章 假设检验
•
经验表明,一个矩形的宽与长之 比等于 0.618 的时候会给人们比 较良好的感觉。某工艺品工厂生 产的矩形工艺品框架的宽与长要 求也按这一比率设计,假定其总
0.672 0.615 0.606 0.690 0.628
0.699 0.749 0.654 0.670 0.612
拒绝 H0
0.025
拒绝 H0
0.025
-2.0930
检验统计量: x 0 t (19) s n 0.6583 0.618 1.9323 0.09327 20
假设检验的例子及解析
假设检验的例子及解析以下是 9 条关于假设检验的例子及解析:1. 咱就说,你觉得每天喝一杯牛奶能长高,这是不是一个假设呀,就像你觉得学习一门新语言能让你更聪明一样。
那咱们怎么检验呢?那就得观察长期喝牛奶的人是不是真的普遍比不喝的高呀!要是真这样,那这假设可能就有点靠谱呢!2. 比如说你假设经常锻炼的人身体更好,这可不是凭空说的吧!就好像你说经常笑的人运气不会差一样。
那怎么知道对不对呢?那就去看看那些健身达人,他们是不是真的很少生病,身体倍儿棒!3. 你说多吃水果皮肤会变好,这咋检验呀?好比你说早睡早起精神好一样。
那就找一群人,一部分多吃水果,一部分不多吃,过段时间看看他们皮肤状态的差别不就行了嘛!4. 假设下雨天心情会不好,哎呀,这可真太常见了!就像你说考试前会紧张一样。
那咱们去问问周围的人,下雨天的时候是不是大多都有点小情绪低落呀!5. 要是说努力工作就会升职加薪,这是真理吗?这就如同说长得帅就一定有女朋友一样。
那得看看那些努力了很久的同事,是不是真的得到了相应的回报呀!6. 有人假设听音乐能提高工作效率,哇,这有点意思哦!好比说吃巧克力能让人开心一样。
那咱们自己试试呗,边工作边听听音乐,看看效率是高了还是低了!7. 假设玩游戏能锻炼思维能力,这能是真的吗?就像有人说逛街能减肥一样。
那找些爱玩游戏的人,看看他们的思维是不是真的很敏捷呀!8. 你觉得看小说能增长知识,这到底对不对呢?这就好比说发呆能放松身心一样。
拿自己做个实验呗,看看看完一本小说后知识量有没有增加呀!9. 说吃辣能让人性格开朗,这可太神奇了吧!就仿佛说跑步能让人更有毅力一样。
那到底是不是这样呢?去观察那些无辣不欢的人呀!我的观点结论就是:假设检验真是个有意思的事儿,能让我们知道好多事情到底是不是真的像我们想的那样,通过观察和对比来验证,真的很有趣!。
统计学习题——假设检验
第六章 假设检验例1从死于汽车碰撞事故的司机中抽取2000名司机的随机样本,根据他们的血液中是否含有酒精以及他们是否对事故负有责任,将数据整理如下表所示。
在整个总体中,血液中含有酒精和不含酒精的司机之间在对事故负有责任方面有差异吗?为了回答这一问题:1) 叙述0H 并计算概值;2) 计算适当的置信区间(95%)来说明差异有多大;3) 从这一数据如何说明“酒精增加了事故的发生率”。
解:设1p 为含酒精中有责任的概率,2p 无酒精中有责任的概率。
提出假设0H :血液中含酒精和不含酒精的司机之间对事故富有的责任无差异。
即1p =2p 1H :1p ≠2p 。
依据样本数据:1p =650/(650+150)=13/16 2p =700/(700+500)=7/12构造统计量:P=1p -2p 又因为1p ~N (1p ,111n )p 1p -(),2p ~N (2p ,222n )p 1p -() 所以1p -2p ~ N (1p -2p ,111n )p 1p -(+222n )p 1p -() 记111n )p 1p -(+222n )p 1p -(为2s 1p -2p 的95%的置信区间为(1p -2p -2/z a *s ,1p -2p +2/z a *s )=(0.19,0.27)。
不包括0 ,所以拒绝零假设。
可见含酒精的对事故负责任的概率远大于不含酒精的。
即酒精增加了事故的而发生率。
(数值计算过程不再列出)例2、1974年,美国盖洛普公司的一次调查表明,在750名美国男子的样本中,有45%抽烟;在另一个相互独立的750名女子的样本中,36%抽烟,1) 构造男性总体和女性总体中抽烟比例之差的95%单侧置信区间;2) 计算没有差异这一原假设的概值;3) 在错误水平α=0.05下,45%与36%之差在统计上是可以分辨的吗?(或是显著的吗?)即,能拒绝0H 吗?用两种方式回答,并说明两种答案是一致的:1) 0H 是否没有落入95%的置信区间之内?2) 对0H 的概值是否小于0.05?解:设男性抽烟比例为1p ,女性抽烟比例为2p 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n=10 π=0.3 n=30 π=0.3
可卡因瘾(毒瘾)
•在一个研究毒瘾的随机试验中,48名试验对象被随机地分配吃新药去郁敏和一种已经存在的药Lithium,看谁会复发
•感兴趣的问题: 去郁敏是否在治疗毒瘾方面比Lithium更有效?
假设
•零假设, H0: 没有效果或差别的陈述
•备择假设, H a:为有效果寻求证据的陈述•假设总是以总体参数的形式给出
•可卡因瘾:
H0: 两种药物引起的复发比例相同(p1=p2)
H a : 去郁敏引起的复发比例小于Lithium (p1<p2)
随机化分布
•一个随机化分布是在原假设成立时,我们在随机情形下将要观察到的样本统计量的分布
•假设H0成立,模拟很多随机化情形,计算每次的样本统计量,把它们收集起来形成一个分布。
/statkey
p 值
与观察到的统计量一样
极端的比例
观察统计量
p值
•基于随机化分布,p值是比观察到的统计量更极端的统计量比例
•在随机化分布中,对应于超出观察到的统计量的尾部面积
•包含哪个尾部取决于备择假设
备择假设
•单边备择假设包含> 或<
•双边备择假设包含≠
•备择假设取决于感兴趣的研究问题
•对于单边备择假设,p值是由H a确定的尾部比例•对于双边备择假设,p值是两倍的在最小尾部的比例
证据的强度
•p值是在原假设为真时,得到与观测量一样极端结果的概率
•p值衡量了拒绝原假设的证据强度
p值
统计显著性
•显著性水平α是在p值被认为足够小能够拒绝原假设之下的临界值
•如果p值小于α,结果是统计显著的,此时我们拒绝原假设,支持备择假设
统计结论拒绝H0证据的强度:
假设检验的正式决策,基于α= 0.05 :
总结
•随机化分布展示了如果H0正确时,将会观测到的统计量的分布
•p值是在H0为真时,得到一个与观测到的结果一样极端的统计量的概率
•p值衡量了拒绝原假设的证据强度
•在做正式决策时,如果p值小于α,拒绝H0,否则不能拒绝H。