一次函数应用题精选
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数应用题精选
1、某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示:
(1)月通话为100分钟时,应交话费 元;
(2)当100x ≥时,求y 与x 之间的函数关系式; (3)月通话为280分钟时,应交话费多少元?
2、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相
同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:
(1) 分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求
写出自变量t 的取值范围)
(2) 当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;
(3) 在(2)的条件下,设乙同学从A 处继续登山,甲同学到达山顶后休息1小时,沿原路下山,
在点B 处与乙相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?
3、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度
y (cm )与燃烧时间()x h 的关系如图所示.请根据图象所提供的信
息解答下列问题:
(1)甲、乙两根蜡烛燃烧前的高度分别是 , 从点燃到燃尽所用的时间分别是 ;
(2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式; (3)当x 为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?
100 200 (分钟)
时)
4、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本
受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出. (1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y (元)与运往省城直接批发零售商的草莓量x (吨)之间的函数关系式;
(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.
5、某房地产开发公司计划建A 、B 两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表: (1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大? (3)根据市场调查,每套B 型住房的售价不会改变,每套A 型住房的售价将会提高a 万元(a >0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?
7、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A
B ,两种台湾水果各10
有两种配货方案(整箱配货):
方案一:甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱;
方案二:按照甲、乙两店盈利相同配货,其中A 种水果甲店 箱,乙店 箱;B 种水果甲店 箱,乙店 箱.
(1)如果按照方案一配货,请你计算出经销商能盈利多少元; (2
)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?
(3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
9、某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg ;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg (每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元.设每天安排x 名工人进行蔬菜精加工. (1)求每天蔬菜精加工后再出售所得利润y (元)与x (人)的函数关系式;
(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w 元,求w 与x 的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?
10、小张骑车往返于甲、乙两地,距甲地的路程y (千米)与时间x (小时)的函数图象如图所示. (1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时. (2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止
,途中小李与小张共相遇3次.请在图中..画出小李距甲地的路程y (千米)与时间x (小时)的函数的大致图象.
(1) 小王与小张同时出发,按相同路线前往乙地,
距甲地的路程y (千米)与时间x (小时)的函数关系式
为1210y x =+.小王与小张在途中共相遇几次?
请你计算第一次相遇的时间.
12、我市某乡A B ,两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到C D ,两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨;从A 村运往C D ,两处的费用分别为每吨20元和25元,从B 村运往C D ,两处的费用分别为每吨15元和18元.设从A 村运往C 仓库的柑桔重量为x 吨,A B ,两村运往两仓库的柑桔运输费用分别为A y 元和B y 元. (1)请填写下表,并求出A B y y ,与x 之间的函数关系式;
(2)试讨论两村中,哪个村的运费较少; (3)考虑到B 村的经济承受能力,B 村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才
能使两村运费之和最小?求出这个最小值.
y
13、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图是反映所挖河渠长度
()y 米与挖掘时间()x 时之间关系的部分图象.请解答下列问题:
(1)乙队开挖到30米时,用了 小时.开挖6小时时,甲队比乙队多挖了 米; (2)请你求出:
①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;
②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;
③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?
(3)如果甲队施工速度不变,乙队在开挖6小时后,
施工速度增加到12米/时,结果两队同时完成了任务.
问甲队从开挖到完工所挖河渠的长度为多少米?
15、如图,,A B l l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。 (1)B 出发时与A 相距 千米。
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时。(1分) (3)B 出发后 小时与A 相遇。
(4)若B 的自行车不发生故障,保持出发时的速度前进, 小时与A 相遇,相遇点离B 的出发点 千米。在图中表示出这个相遇点C 。 (5)求出A 行走的路程S 与时间t 的函数关系式。
16、2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛
龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.
(1)哪个队先到达终点?乙队何时追上甲队?
(2)在比赛过程中,甲、乙两队何时相距最远?
时间/时
16
40
20