均值不等式的证明方法

合集下载

均值不等式的证明精选多的篇

均值不等式的证明精选多的篇

均值不等式的证明篇一:均值不等式(AM-GM不等式)是数学中常用的一种不等式关系,它说明了算术平均数和几何平均数之间的关系。

具体表达式为:对于任意非负实数集合{a1,a2,an},有(a1+a2+.+an)/n ≥ (a1 a2 .*an)^(1/n)其中,等号成立当且仅当所有的非负数都相等。

下面,我们将给出AM-GM不等式的证明。

证明:首先,我们可以假设所有的a1,a2,an都是正实数。

因为AM-GM不等式对于非负实数也是成立的,所以我们可以通过限制条件来放缩实数集合。

考虑对数变换。

定义函数f(x) = ln(x),其中x>0。

因为ln(x)在整个定义域都是凸函数,所以根据对数函数的性质,我们有:f((a1+a2+.+an)/n) ≥ (1/n)(f(a1)+f(a2)+.+f(an))即,ln((a1+a2+.+an)/n) ≥ (1/n)(ln(a1)+ln(a2)+.+ln(an))这是因为凸函数的定义是在一条直线上任取两个点,它总是在两点的连线上方。

继续推导,根据ln的性质,我们有:ln(a1 a2 .*an) = ln(a1) + ln(a2) + . + ln(an)将上述不等式代入这个等式中,得到ln((a1+a2+.+an)/n) ≥ ln(a1 a2 .*an)^(1/n)移项化简得到(a1+a2+.+an)/n ≥ (a1 a2 .*an)^(1/n)即AM-GM不等式得证。

最后,我们来说明等号成立的条件。

根据对数函数的性质,等号成立当且仅当所有的非负数的对数都相等,即a1 = a2 = . = an。

至此,我们完成了AM-GM不等式的证明。

总结: AM-GM不等式是数学中常用的一种不等式关系。

它表明算术平均数大于等于几何平均数,并且等号成立的条件是所有的非负数相等。

该不等式的证明可以通过对数变换和凸函数的性质进行推导得到。

篇二:在数学中,均值不等式是一类用于比较多个数的重要不等式。

均值不等式的几种证法

均值不等式的几种证法

均值不等式的几种证法如果n个正数a1,a2,…,an的算术平均和几何平均分别是An=和Gn=a1a2…an,那么Gn≤An。

其中等号成立的充要条件是a1=a2=…=an。

证法1:数学归纳法n=1时,a1=a1,不等式成立。

n=2时,由=+a1a2≥a1a2即≥a1a2,不等式显然成立。

假设n=k(k≥2,k∈N)时不等式成立,则当n=k+1时,从而Ak+1≥a1a2…ak·ak+1·Ak+1,化简,得Ak+1≥a1a2…akak+1。

当且仅当a1=a2=…=ak=ak+1=Ak+1时,不等式取等号。

证法2:逐步调整法对于n个正数a1,a2,…,an有A(a)≥G(a)①其中A(a)=,G(a)=a1a2…an。

证明:不妨设a1≤a2≤…≤an,若a1=a2=…=an,则①取等号。

若ai(i=1,2,…,n)不全相等,则a1<an。

令bj=aj(j=2,3,…,n-1), b1=A(a),bn=(a1+an)-A(a)。

a1<b1<an,a1<bn<an,那么b1bn>a1an。

事实上,若有A+B=A`+B`,A<B,|A`-B`|<|A-B|,A`>A,B`>A,总有A`B`-AB=A`B`-A[(A`+B`)-A]=(A`-A) (B`-A)>0。

于是,A(b)=A(a),G(b)>G(a),且bi(i=1,2,…,n)中至少有一个b=A(a)。

若b2,b3,…,bn这(n-1)个数都相等,显然命题成立。

否则仍不妨设b2≤b3≤…≤bn,b2<bn。

再令C1=b1 =A(a)=A(b),C2=A(b),Cn=(b2+bn)-A(b),Ck=bk(k=3,4,…,n-1)。

又可得A(c)=A(b),G(c)>G(b),且Ci(i=1,2,…,n)中至少有二个A(b)。

这样的调整至多重复(n-1)次,最终必将出现新数组中各正数均相等。

假定第s次时新数组中各数相等,那么A(a)=A(b) =A(c)=…=A(s),G(a)<G(b)<G(c)…<G(s)。

均值不等式证明

均值不等式证明

均值不等式证明均值不等式是一个非常重要的数学定理,它被广泛应用于数学、物理、经济等学科中。

均值不等式的证明是数学证明中的一种非常重要的方法,通过均值不等式的证明,我们可以体会到数学证明的思路和方法。

本文将详细介绍均值不等式的证明,让读者更深入地了解这个重要的数学定理。

首先,我们来介绍一下均值不等式的概念。

均值不等式是指对于n个实数a1,a2,……,an,它们的算术平均数和它们的几何平均数之间有如下关系:(a1+a2+……+an)/n ≥ (a1×a2×……×an)^(1/n)其中“≥”表示大于等于的关系。

这个不等式告诉我们,对于一组实数,它们的算术平均数一定大于等于它们的几何平均数。

并且,当这组实数中每个数都相同时,这个不等式取等。

这就是均值不等式,它是一个非常重要的不等式。

接下来,我们将介绍均值不等式的证明方法。

首先,我们来证明一个简单的均值不等式,即两个数的均值不小于它们中的较小值。

假设a和b是两个实数,不妨假设a≥b,那么它们的算术平均数是(a+b)/2,它们的几何平均数是(a×b)^(1/2)。

我们需要证明(a+b)/2 ≥ (a×b)^(1/2)。

我们先把等式两边平方,得到:(a+b)^2/4 ≥ a×b化简后得到:a^2+b^2+2ab/4 ≥ a×b即:a^2+b^2 ≥ 2ab这个不等式显然成立,因为它等价于(a-b)^2 ≥ 0。

因此,我们证明了两个数的均值不小于它们中的较小值。

接下来,我们来证明n个数的均值不等式。

我们先不妨假设这n个数是正实数,否则我们可以通过取绝对值来获得正实数的情况。

假设a1,a2,……,an是n个正实数,它们的算术平均数是A,几何平均数是G。

则有:A = (a1+a2+……+an)/nG = (a1×a2×……×an)^(1/n)接下来,我们需要证明A≥G。

均值不等式证明的推导方法

均值不等式证明的推导方法

均值不等式证明的推导方法均值不等式证明的推导方法均值不等式是数学的公式,这类的公式是怎么证明的呢?证明的过程是的呢?下面就是店铺给大家整理的均值不等式证明内容,希望大家喜欢。

均值不等式证明方法一已知x,y为正实数,且x+y=1 求证xy+1/xy≥17/41=x+y≥2√(xy)得xy≤1/4而xy+1/xy≥2当且仅当xy=1/xy时取等也就是xy=1时画出xy+1/xy图像得01时,单调增而xy≤1/4∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4得证继续追问:拜托,用单调性谁不会,让你用均值定理来证补充回答:我真不明白我上面的`方法为不是用均值不等式证的均值不等式证明方法二证xy+1/xy≥17/4即证4(xy)²-17xy+4≥0即证(4xy-1)(xy-4)≥0即证xy≥4,xy≤1/4而x,y∈R+,x+y=1显然xy≥4不可能成立∵1=x+y≥2√(xy)∴xy≤1/4,得证∵同理0xy+1/xy-17/4=(4x²y²-4-17xy)/4xy=(1-4xy)(4-xy)/4xy≥0∴xy+1/xy≥17/4均值不等式证明方法三已知a>b>c,求证:1/(a-b)+1/(b-c)+1/(c-a)>0a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)于是c-a≤-2√(a-b)*(b-c)<0即:1/(c-a)≥-1/【2√(a-b)*(b-c)】那么1/(a-b)+1/(b-c)+1/(c-a)≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】≥2/【√(a-b)*(b-c)】-1/【2√(a-b)*(b-c)】=(3/2)/【2√(a-b)*(b-c)】>0三、1、调和平均数:Hn=n/(1/a1+1/a2+...+1/an)2、几何平均数:Gn=(a1a2...an)^(1/n)3、算术平均数:An=(a1+a2+...+an)/n4、平方平均数:Qn=√ (a1^2+a2^2+...+an^2)/n 这四种平均数满足Hn≤Gn≤An≤Qn 的式子即为均值不等式。

均值不等式

均值不等式

函数y x(10 x)(0 x 10)的 最大值为 __5___ .
设a 0,b 0, a2 b2 1, 2
求a 1 b2的最大值。
题1 (1)用篱笆围一个面积为100m2的矩形菜园, 问 这个矩形的长、宽各为多少时, 所用篱笆最短. 最短的篱 笆是多少?
(2)一段长为36m的篱笆围成一个矩形菜园, 问这个 矩形的长、宽各为多少时, 菜园的面积最大. 最大面积是 多少?
于AB的弦DE,连接AD、BD.
A
易证Rt△ACD∽Rt△DCB,则
D
a
Cb B
BC DC
E
DC AC

DC ab
而这个圆的半径为 a b , 显然会大于或等于CD, 即 2
a b ab 2
其中当且仅当点C与圆心重合,即a=b时, 等号成立.
例 已知x,y都是正数, 求证: (1)如果积 xy 是定值P,那么当x =y时,和 x+y有最小值 (2)如果和 x+y是定值S,那么当x =y时,积 xy 有最大值
B
a2+b2=2ab
定理 如果a,b是正数, 那么 a b ab 2
(当且仅当a b时取“”号)
其中 a b称为正数a,b的算术平均数 2
ab 称为正数a,b的几何平均数
所以基本不等式也称为均值不等式
(3)数形结合
如图, AB是圆的直径, 点C是AB
上一点, AC=a, BC=b. 过点C作垂直
已知x 0, y 0,且 1 9 1, xy
求x y的最小值。
下列函数中,最小值为4的是C
A. f (x) x 4 x
B. f (x) x 4 , (x (0,1]) x

均值不等式

均值不等式

均值不等式一.均值不等式一个重要的不等式:ab b a 222≥+(当且仅当b a =时,等号成立),用作差法可以证明。

均值不等式:如果+∈R b a ,,那么ab b a ≥+2。

当且仅当b a =时,等号成立。

二.最值定理1. 已知+∈R y x ,,则 (1) 如果积xy 是定值p ,那么当y x =时,y x +有最小值p 2;(2) 如果和y x +是定值S ,那么当y x =时,xy 有最大值42S 。

. 2. 利用此公式求最值时,必须同时满足以下三个条件:(1)各项均为正数;(2)其和或积为常数;(3)等号必须成立。

“一正二定三相等”3. 应用此公式求最值时,还应该注意配凑和一定或积一定,进而用公式求解。

三.常用不等式:211a b +≥≥≥+(0,0>>b a ) 例题1. 不等式2≥+ba ab 成立的条件是( ) A. R b R a ∈∈, B. b a ,非负 C. 0≠ab D. 0>ab2. 下列结论正确的是( )A. 当0>x 且1≠x 时,2lg 1lg ≥+x xB. 当0>x 时,21≥+xx C. 当2≥x 时,x x 1+的最小值为2 D. 当20≤<x 时,xx 1-无最大值 3. 若1>>b a ,b a P lg lg ⋅=,)2lg(),lg (lg 21b a R b a Q +=+=,则( ) A. Q P R << B. R Q P << C. R P Q << D. Q R P <<4. 若实数b a ,满足2=+b a ,则b a 33+的最小值是( ) A. 18 B. 6 C. 32 D. 4325. 已知点),(b a 在直线023=-+y x 上,则3273++=b a u 的最小值为( ) A. 311 B. 323+ C. 6 D. 96. 已知2>x ,则当=x ( )时,24-+x x 的最小值为( )。

均值不等式八种技巧

均值不等式八种技巧

运用均值不等式的八类拼凑技巧一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2求函数)01y x x =<<的最大值。

解:y ==。

因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x=-,即3x =时,上式取“=”。

故max 9y =。

评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。

例3 已知02x <<,求函数()264y x x =-的最大值。

解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。

当且仅当()2224x x=-,即x ==”。

故max3218827y ⨯=,又max 0,3y y >=。

二、 拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例4 设1x >-,求函数()()521x x y x ++=+的最小值。

解:()())14114415159111x x y x x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦==+++≥+=+++。

均值不等式的多种证明方法许兴华数学

均值不等式的多种证明方法许兴华数学

均值不等式是数学中常见的一类不等式,它指出了一组数的平均值和它们的其他性质之间的关系。

在本文中,我们将介绍均值不等式的多种证明方法,并以许兴华数学中的相关内容为例加以说明。

1. 均值不等式的定义均值不等式是数学中一类具有广泛应用的不等式定理,它描述了数列的平均值与其他性质之间的关系。

一个常见的均值不等式是算术平均数与几何平均数之间的关系,即对于任意非负实数集合,它们的算术平均数大于等于几何平均数。

2. 均值不等式的证明方法均值不等式的证明方法有多种,其中比较常见的方法包括数学归纳法、几何法、代数法等。

下面我们将分别对这些方法进行介绍,并结合许兴华数学中的相关例题进行说明。

2.1 数学归纳法证明数学归纳法是一种常用的数学证明方法,它通常用于证明对于一切自然数n成立的命题。

在均值不等式的证明中,数学归纳法可以用于证明一些形如An≤Bn的不等式,其中n为自然数。

对于n个非负实数的情况,可以使用数学归纳法证明它们的算术平均数不小于几何平均数。

许兴华数学中的例题:证明n个非负实数的算术平均数不小于几何平均数。

解:首先证明n=2的情况成立,即对于两个非负实数a和b,有(a+b)/2≥√(ab)。

然后假设对于n=k的情况成立,即对于k个非负实数成立均值不等式,即(k个非负实数的算术平均数不小于几何平均数)。

那么对于n=k+1的情况,我们可以通过考虑第k+1个数与前面k个数的平均值的大小关系,来证明均值不等式对于n=k+1的情况也成立。

2.2 几何法证明几何法是另一种常用的证明方法,它通常通过在平面几何图形上进行推理,来证明一些数学定理。

在均值不等式的证明中,几何法可以用于证明一些形如a²+b²≥2ab的不等式。

在许兴华数学中,可以通过在平面上绘制平行四边形、三角形等几何图形,来证明一些均值不等式。

3. 结语以上,我们介绍了均值不等式的多种证明方法,并结合许兴华数学中的相关内容进行了说明。

均值不等式作为数学中的重要概念,在不同的数学领域都有着重要的应用,它的证明方法也有很多种。

数学均值不等式的证明方法

数学均值不等式的证明方法

数学均值不等式的证明方法一、凸函数的性质法:凸函数是指曲线所在区间上的任意两点连线的部分都位于曲线的上方。

我们可以证明,如果函数f(x)在区间[a,b]上是凸函数,则有如下均值不等式成立:f((a+b)/2) ≤ (1/(b-a)) ∫[a,b] f(x) dx ≤ (f(a) + f(b))/2通过利用凸函数的性质,我们可以推广到更一般的形式:f((a₁x₁+a₂x₂+...+aₙxₙ)/(a₁+a₂+...+aₙ))≤(a₁f(x₁)+a₂f(x₂)+...+aₙf(xₙ))/(a₁+a₂+...+aₙ)其中,a₁,a₂,...,aₙ是非负实数,且满足a₁+a₂+...+aₙ≠0,x₁,x₂,...,xₙ是函数f(x)的定义域上的任意n个值。

二、Cauchy-Schwarz不等式的证明法:Cauchy-Schwarz不等式是数学中最常用的不等式之一,它的一般形式可以写为:(a₁b₁+a₂b₂+...+aₙbₙ),≤√((a₁²+a₂²+...+aₙ²)(b₁²+b₂²+...+bₙ²))其中,a₁,a₂,...,aₙ和b₁,b₂,...,bₙ是任意实数。

利用这个不等式,我们可以证明数学均值不等式中的特例。

例如,我们可以通过Cauchy-Schwarz不等式来证明算术平均数大于等于几何平均数的不等式:(a₁+a₂+...+aₙ)/n≥√(a₁a₂...aₙ)三、归纳法和递推法:在证明数学均值不等式时,可以利用归纳法和递推法构造一些递推关系式,从而推导出不等式的成立。

例如,在证明幂平均不等式时,我们可以先证明对于n=2的情况成立,即:(a²+b²)/2≥(√(a²)+√(b²))/2然后,通过递推关系式:(a₁^n+a₂^n)/2≥(√(a₁^n)+√(a₂^n))/2(a₁^(n+1)+a₂^(n+1))/2≥(√(a₁^(n+1))+√(a₂^(n+1)))/2不断迭代,可以得到幂平均不等式在任意正整数n下成立。

算术_几何平均值不等式的证明

算术_几何平均值不等式的证明

平均值不等式是数学分析中解决许多极限问题以及其他应用问题的一个重要依据,特别是算术平均值-几何平均值不等式(以下简称算几不等式)的应用更是尤为广泛,许多极限问题的证明都要应用到这一不等式,而关于这一不等式的证明方法,常见的有利用数学归纳法及詹生不等式的证明,下面介绍几种另外的证明方法。

1利用二项式定理证明:首先,对于a,b>0由二项式定理,得(a+b)n>an+nan-1b由数学归纳法,若n-1时为真,对于n,假设an≥an-1≥…≥a2≥a1≥0.又设a=1n-1n-1i=1"xi,b=1n(xn-a),故有a,b≥0及1nn-1i=1"xi#$n=(a+b)n>an+nan-1b=xn1n-1n-1i=1"xi%&n-1≥xn(x1x2…xn-1)即x1+x2+…+xnn≥x1x2…xnn’(xi≥0,i=1,2,…,n).2利用不等式ex≥1+x(x≥-1)证明:设An=x1+x2+…+xnn,Gn=x1x2…xnn’(xi>0,i=1,2,…,n)由不等式ex≥1+x(x≥-1)可知,对于每一i,有expxiAn-%&1≥xiAn求乘积,得1=ni=1(expxiAn-%$1=expni=1"xiAn-%$1%$≥ni=1(xiAn=GnAn%$n算术-几何平均值不等式的证明故An≥Gn,即x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).3利用泰勒公式证明:设f(x)=logax(0<a<1,x>0),则f″(x)=1x21na>0,将f(x)在点x0处展开,有f(x)=f(x0)+f′(x0)(x-x0)+f″(x)2(x-x0)2,!=x0+"(x-x0)(0<"<1)因此有f(x)≥f(x0)+f′(x0)(x-x0),取x0=1nni=1#xi(xi∈(a,b),(i=1,2,…,n),则有f(xi)≥f1nni=1%xi&’+f′1nni=1%xi&(xi-ni=1%xi&((i=1,2,…,n)故ni=1%f(xi)≥nf1nni=1%xi&(+f′1nni=1%xi&(+ni=1%xi-ni=1%xi&(=nf1nni=1%xi&(即f1nni=1%xi&(≤1nni=1%f(xi).因此有loga1n(x1+x2+…+xn)≤1n(logax1+logax2+…logaxn)即1nloga(x1x2…xn)≥loga1n(x1+x2+…+xn)亦即loga(x1x2…xn)1n≥1nloga(x1+x2+…+xn)(0<a<1)故有x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).4利用函数凹凸性证明:设f(x)=logax(a>1,x>0),则f″(x)=-1x21na<0,故f(x)是上凸函数,因此有ni=1%aif(xi)≤fni=1%aixi&(,取ak=1n(k=1,2,…,n),有1n(logax1+logax2+…logaxn)≤loga1n(x1+x2+…+xn)即1nloga(x1x2…xn)≤loga1n(x1+x2+…+xn)亦即loga(x1x2…xn)1n≤loga1n(x1+x2+…+xn)故有x1+x2+…+xnn≥x1x2…xnn"(xi>0,i=1,2,…,n).。

均值不等式求最值的十种方法

均值不等式求最值的十种方法

均值不等式求最值的十种方法用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a ba ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立;②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c ba 当且仅当a =b =c 时,“=”号成立;④)(3333+∈⎪⎭⎫⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba112+2a b ab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值。

(2) 已知01x <<,求函数321y xx x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max3227y=。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2 求函数)2101y xx x =-<<的最大值。

解:()()2242214122x x y x x x =-=•••-因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭,当且仅当()2212x x =-,即6x =时,上式取“=”。

均值不等式公式四个及证明

均值不等式公式四个及证明

均值不等式公式四个及证明1.算术均值-几何均值不等式(AM-GM不等式):对于非负实数 a1, a2, ..., an,有以下不等式成立:(a1+a2+...+an)/n ≥ √(a1*a2*...*an)证明:当n=2时,不等式成立。

因为(a1+a2)/2≥√(a1*a2),即a1+a2≥2√(a1*a2)。

假设当 n=k 时,不等式成立,即(a1+a2+...+ak)/k ≥√(a1*a2*...*ak)。

现在考虑 n=k+1 的情况,即要证明(a1+a2+...+ak+ak+1)/(k+1) ≥ √(a1*a2*...*ak*ak+1)。

根据已知条件,我们有:(a1+a2+...+ak+ak+1)/(k+1) = [(a1+a2+...+ak)/k]*(k/(k+1)) + ak+1/(k+1)由归纳假设,(a1+a2+...+ak)/k ≥ √(a1*a2*...*ak)。

因此,上式可以表示为:(a1+a2+...+ak+ak+1)/(k+1) ≥ (√(a1*a2*...*ak))*(k/(k+1)) + ak+1/(k+1)根据加权平均不等式,我们有:(√(a1*a2*...*ak))*(k/(k+1)) + ak+1/(k+1) ≥√(a1*a2*...*ak*ak+1)因此,不等式成立。

2. 广义均值不等式(Cauchy不等式):对于非负实数 a1, a2, ..., an 和 b1, b2, ..., bn,有以下不等式成立:(a1^p+a2^p+...+an^p)^(1/p) * (b1^q+b2^q+...+bn^q)^(1/q) ≥ a1*b1+a2*b2+...+an*bn其中,p和q是正实数,满足1/p+1/q=1证明:当n=2时,不等式成立。

因为(a1^p+a2^p)^(1/p)*(b1^q+b2^q)^(1/q)≥a1*b1+a2*b2假设当 n=k 时,不等式成立,即 (a1^p+a2^p+...+ak^p)^(1/p) * (b1^q+b2^q+...+bk^q)^(1/q) ≥ a1*b1+a2*b2+...+ak*bk。

均值不等式的证明方法及应用

均值不等式的证明方法及应用

均值不等式的证明方法及应用1.均值不等式的证明方法:(1)严格证明法:通过构造具体的数学推理过程,使用数学定理、运算性质和逻辑推理方法,进行步步推导,最终得出结论。

例如,证明算术均值大于等于几何均值(对于任意非负实数a,b)时,可以先证明两者的平方之差大于等于0,然后进行变形运算、化简等步骤,直至得到最终结论。

(2)几何方法:通过对图形的分析和变换,运用几何性质和数学定理,从而得出结论。

例如,证明算术均值大于等于几何均值时,可以通过构造一个几何图形,使两个均值分别对应到该图形上的一些量,然后通过比较图形的各个部分,从而得到结论。

(3)代数方法:通过运用代数运算性质和数学定理,以及构造恰当的函数和不等式,从而得到结论。

例如,证明算术均值大于等于几何均值时,可以构造一个函数f(x)=ln(x),然后运用函数的性质和不等式知识,通过对不等式的变形和运算,得到结论。

2.均值不等式的应用:(1)最优化问题:均值不等式广泛应用于数学中的最优化问题中。

通过运用均值不等式,可以简化复杂的优化问题,找到最优解。

例如,在求函数的最大值和最小值时,可以通过构造适当的均值不等式,将原问题转化为寻找等号成立的条件,从而求得最优解。

(2)证明其他不等式:均值不等式是不等式学中的一个基本方法,常常用来证明其他不等式。

通过将其他不等式进行变形、运算、配方等操作,可以将其转化为均值不等式的形式,从而得到结论。

例如,证明柯西-施瓦茨不等式、夹逼准则等,常常可以使用均值不等式进行证明。

(3)函数单调性:均值不等式常常用于研究函数的单调性。

通过将函数的表达形式进行变形和运算,得到函数值的不等式关系,从而推导出函数的单调性。

例如,通过均值不等式可以得到极限存在的条件,从而得到函数的单调性。

(4)数列极限:均值不等式也常用于研究数列的极限问题。

通过将数列的表达式进行变形和运算,可以得到数列值之间的不等式关系,从而研究数列的极限性质。

例如,通过均值不等式可以得到数列的单调性、有界性等,从而推导出数列的极限。

平均值不等式公式四个

平均值不等式公式四个

平均值不等式公式四个
均值不等式是在中学时期是一个值得大家去深入学习的知识点,因为它经常出现在各大考试中,而且会与方程、函数等其它知识点一起考察,一般的题型有:解不等式、证明不等式、求最大最小值。

特别是在解决极值问题时,直接利用均值不等的推论比其它方法要方便许多。

我们所说的均值
此外关于均值不等式的证明方法有很多,例如数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式,在这里简要介绍数学归纳法的证明方法:
(注:在此证明的,是对n维形式的均值不等式的证明方法。


用数学归纳法证明,需要一个辅助结论。

引理:设A≥0,B≥0,则不等式公式四个具体如下:
,且仅当B=0时取等号。

注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)(或用二项展开公式更为简便)。

原题等价于:均值不等式公式四个该怎么用?均值不等式的证明方法时取等号。

值得一提的是利用琴生不等式法也可以很简单地证明均值不等式,同时还有柯西归纳法等等方法。

建议感兴趣的小伙伴们可要深入学习,
多多咨询老师,让自己掌握更多的解题方法与思路。

均值不等式公式四个该怎么用?均值不等式的证明方法时取等号。

当n=2时易证;
假设当n=k时命题成立。

数学均值不等式的证明方法

数学均值不等式的证明方法

数学均值不等式的证明方法数学均值不等式的证明方法均值不等式是数学的公式,经常拿来证明一些题目的。

下面就是店铺给大家整理的均值不等式的证明内容,希望大家喜欢。

均值不等式的证明方法一设a1,a2,a3...an是n个正实数,求证(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要简单的详细过程,谢谢你会用到均值不等式推广的证明,估计是搞竞赛的把对n做反向数学归纳法首先归纳n=2^k的情况k=1 。

k成立 k+1 。

这些都很简单的用a+b>=√(ab) 可以证明得到关键是下面的反向数学归纳法如果n成立对n-1,你令an=(n-1)次√(a1a2...a(n-1)然后代到已经成立的n的式子里,整理下就可以得到n-1也成立。

所以得证均值不等式的证明方法二=2^k中k是范围k是正整数第一步先去归纳2,4,8,16,32 ... 这种2的k次方的数一般的.数学归纳法是知道n成立时,去证明比n大的时候也成立。

而反向数学归纳法是在知道n成立的前提下,对比n小的数进行归纳,指“平方平均”大于“算术平均”大于“几何平均”大于“调和平均”我记得好像有两种几何证法,一种三角证法,一种代数证法。

请赐教!sqrt{[(a1)^2+(a2)^2+..(an)^2/n]}≥(a1+a2+..an)/n≥n次根号(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)证明:1.sqrt(((a1)^2+(a2)^2+..(an)^2)/n)≥(a1+a2+..an)/n两边平方,即证((a1)^2+(a2)^2+..(an)^2)≥(a1+a2+..an)^2/n 均值不等式的证明方法三(1) 如果你知道柯西不等式的一个变式,直接代入就可以了:柯西不等式变式:a1^2/b1 + a2^2/b2 +...an^2/bn ≥(a1+a2+...an)^2/(b1+b2...+bn)当且仅当a1/b1=a2/b2=...=an/bn是等号成立只要令b1=b2=...=bn=1,代入即可(2)柯西不等式(a1^2 + a2^2 +...an^2)*(b1+b2...+bn)≥(a1b1+a2b2+...anbn)^2[竞赛书上都有证明:空间向量法;二次函数法;是赫尔德不等式的特例]2.(a1+a2+..an)/n≥n次根号(a1a2a3..an)(1)琴生不等式: 若f(x)在定义域内是凸函数,则nf((x1+x2+...xn)/n)≥f(x1)+f(x2)+...f(xn)令f(x)=lgx 显然,lgx在定义域内是凸函数[判断凸函数的方法是二阶导数<0,或从图象上直接观察]nf((x1+x2+...xn)/n)=nlg[(a1+a2+..an)/n]≥f(x1)+f(x2)+...f(xn)=lga1+lga2+lga3...lgan=lga1*a2..an也即lg[(a1+a2+..an)/n]≥1/n(lga1a2a3...an)=lg(a1a2a...an)^(1/n)=lgn 次根号(a1a2..an)f(x)在定义域内单调递增,所以(a1+a2+..an)/n≥n次根号(a1a2..an)(2)原不等式即证:a1^n+a2^n+...an^n≥na1a2a3...an先证明a^n+b^n≥a^(n-1)b+b^(n-1)a 做差(a-b)(a^(n-1)-b^(n-1))[同号]≥02*(a1^n+a2^n+...an^n)≥a1^(n-1)a2+a2^(n-1)a1+a2^(n-1)a3+a3^(n-1)a2...an^(n-1)a1+a1^a(n-1)an=a2(a1^(n-1)+a3^(n-1))+a3(a2^(n-1)+a4^(n-1))...≥a2a1^(n-2)a3+a2a3^(n-2)a1+...[重复操作n 次]≥...≥2na1a2...an即a1^n+a2^n+...an^n≥na1a2a3...an(3)数学归纳法:但要用到 (1+x)^n>1+nx这个不等式,不予介绍3.n次根号(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)原不等式即证:n次根号(a1a2a3..an)*(1/a1+1/a2+..+1/an)≥n 左边=n次根号[a2a3..an/a1^(n-1)]+n次根号+[a1a3a4..an/a2(n-1)]+n次根号[a1a2a4...an/a3^(n-1)]+...n次根号[a1a2a3...a(n-1)/an^(n-1)]由2得和≥n*n次根号(它们的积) 所以左边≥n*n次根号(1)=n所以(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)证毕【数学均值不等式的证明方法】。

均值不等式万能k法_概述及解释说明

均值不等式万能k法_概述及解释说明

均值不等式万能k法概述及解释说明1. 引言1.1 概述本文将介绍并说明均值不等式万能k法的基本原理、应用和优缺点。

均值不等式是数学中一类重要的不等式关系,它在许多领域有着广泛的应用。

而万能k法则是一种解决各种问题的通用方法,可以简化问题的求解过程,并提高解题效率。

本文旨在帮助读者了解并掌握均值不等式万能k法,并通过实例分析来进一步说明其应用。

1.2 文章结构本文将按照以下结构进行阐述:引言部分概述文章内容;接下来介绍均值不等式的基本概念和原理,包括其定义、常见形式以及证明方法;然后详细介绍万能k 法的原理和思想,以及在问题解决中的实际应用;随后通过实例分析与说明三个具体问题,展示均值不等式万能k法的运用;最后对该方法进行总结评价,并展望未来研究方向。

1.3 目的本文旨在帮助读者全面了解均值不等式万能k法,并掌握其应用技巧。

通过详细介绍补充实例和分析,读者可以深入理解该方法的工作原理,并在解决具体问题时灵活运用。

通过本文的阅读,读者可以提升自己在数学推理和问题求解方面的能力,并拓宽自己的数学思维。

2. 均值不等式的基本概念和原理:均值不等式是数学中一类重要的不等式,它描述了一组数值的平均值与其他某个函数的关系。

在研究不等式时,我们经常会遇到需要对多个变量进行比较和推导的情况,而均值不等式提供了一种简洁而强大的工具。

2.1 均值不等式的定义:均值是一组数值的加总除以数量得到的结果。

常见的均值有算术平均数、几何平均数和谐波平均数。

- 算术平均数是将一组数字相加后除以数字个数。

- 几何平均数是将一组数字相乘后开n次方(n为数字个数)。

- 谐波平均数是先对每个数字取倒数,然后将倒数相加后再取倒数。

对于任意给定正实数a、b,它们之间有着以下不等式关系:- 算术平均不等式:(a + b) / 2 ≥√ab- 几何平均不等式:(a + b) / 2 ≥(2ab)^0.5 = √ab- 谐波平均不等式:(a + b) / 2 ≥(2ab) / (a + b)2.2 常见的均值不等式:除了上述提到的算术平均不等式、几何平均不等式和谐波平均不等式外,还存在一些常见的均值不等式。

均值不等式的证明方法

均值不等式的证明方法

均值不等式的证明方法一、几何证明方法:对于非负实数a和b,我们可以将其表示在坐标平面上的点A(a,0)和B(b,0)上。

那么,两点之间的距离AB可以表示为:AB=√[(a-b)²+0²]=√[(a-b)²]=,a-b接下来,我们要证明的是:当a ≠ b 时,有 AM > GM。

M 是 AB 线段上的一点,对应着实数 m。

设 M 的坐标为 (m,0),则 AM 和 GM 分别为,a - m,和√(am)。

根据几何直观,我们可以发现 AM > GM 可以转化为AM² > GM²,即,a - m,² > am 或者 (a - m)² > am。

我们将不等式 (a - m)² > am 展开,得到a² - 2am + m² > am。

化简得到a² - am + m² > 0,再进一步得到 a(a - m) + m² > 0。

由于 a > 0(即a ≠ 0),所以 a(a - m) > 0。

结合m² > 0(任何实数的平方都大于 0),我们可以得到 a(a - m) + m² > 0。

综上所述,当 a ≠ b 时,有,a - m,² > am,即 AM > GM。

因此,我们证明了均值不等式在几何意义下的正确性。

二、代数证明方法:我们可以使用代数证明方法来推导均值不等式的一般形式。

首先,我们定义两个非负实数a和b的算术平均数(AM)为:AM=(a+b)/2定义它们的几何平均数(GM)为:GM = √(ab)我们要证明的是AM≥GM。

我们可以对AM和GM进行平方,得到:AM²=(a+b)²/4GM² = ab接下来,我们使用等价变形和代数运算,来证明AM²≥GM²:AM² - GM² = (a + b)² / 4 - ab= (a² + 2ab + b²) / 4 - ab= (a² + ab + ab + b²) / 4 - ab= (a² + 2ab + b²) / 4 - 2ab / 4= (a + b)² / 4 - 2ab / 4= (a + b)² - 2ab / 4= a² + 2ab + b² - 2ab / 4= a² + ab + ab + b² - 2ab / 4= (a² + ab + ab + b² - 2ab) / 4= (a² - ab - ab + b²) / 4= (a² - 2ab + b²) / 4=(a-b)²/4根据等价变形,我们可以推出AM²-GM²=(a-b)²/4≥0。

均值不等式的证明

均值不等式的证明

均值不等式的证明首先,我们来说明均值不等式的基本形式。

设有n个实数a1,a2,...,an。

根据算术平均数的定义,它们的算术平均数为:M1 = (a1 + a2 + ... + an) / n。

根据几何平均数的定义,这n个实数的几何平均数为:M2 = (a1 × a2 × ... × an)^(1/n)。

M1≥M2下面,我们来证明这一不等式。

首先,我们要证明一个引理:对于任意的正实数x1,x2,...,xn,有:(x1 + x2 + ... + xn) / n ≥ (x1 × x2 × ... × xn)^(1/n)。

这个引理可以通过应用一些基本的数学原理得到:首先,我们设一个函数f(t) = ln(t),其中t是一个正实数。

由于f’(t) = 1/t > 0,所以f(t)在(0,+ ∞)区间上是单调递增的。

根据数学分析中的中值定理,对于任意的t1,t2(t1 < t2),有f(t2) - f(t1) = f’(c)(t2 - t1),其中c介于t1和t2之间。

将t1设为a1 × a2 × ... × an,t2设为a1 + a2 + ... + an,则有:ln(a1 × a2 × ... × an) - ln(a1 + a2 + ... + an) ≥ 0。

根据ln的性质,这个不等式可以变形为:ln(a1 × a2 × ... × an) ≥ ln(a1 + a2 + ... + an)。

再将上述不等式两边取指数,得到:a1 × a2 × ... × an ≥ a1 + a2 + ... + an。

这就证明了引理。

接下来,我们来证明均值不等式。

假设a1,a2,...,an是n个实数。

由引理可知:(a1 + a2 + ... + an) / n ≥ (a1 × a2× ... × an)^(1/n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柯西证明均值不等式的方法 by zhangyuong (数学之家)
本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。

一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了
n
n n x x x n
x x x ......2121≥+++
我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出:
8444844)()(:
4422)()(abcdefgh
efgh abcd h g f e d c b a abcd
abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时:
这样的步骤重复n 次之后将会得到
n n n
x x x x x x n
2221221 (2)
...≥+++
令A n
x x x x x x x x x x n
n n n n n =+++======++......;,...,2122111
由这个不等式有
n n n n n
n n n n
n A x x x A x x x A n nA A 2
121212221)..(..2
)2(--=≥-+=即得到 n
n n x x x n
x x x ......2121≥+++
这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子:
例1:
1
1121
01(1,2,...,)11(...)n
i i i
n
n n a i n a a a a =<<=≥--∑若证明
例2:
11
1211(1,2,...,)1
1(...)
n
i i i n
n n
r i n r r r r =≥=≥++∑
若证明
这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法:
给出例1的证明:
12121221221234211(1)2(1)(1)11,(1)(2)2(1)
22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+≥⇔---≥----=+=⇔--≥-+⇔-+≥⇔+≥+⇔≥+++≥+----≥
当时
设,而这是元均值不等式因此因21
12
1221
1212221
12
2
11211(...)...(...)11
22(2)1111()111n
n
n n n n
n
n
i i
n
n n n n
n n
n n
i i n
n i i
a a a a a a a a a a G n a G G
G G
n
a G =++-==≥
--=====+-≥
=
----≥
--∑∑∑此令有即
例3:
1115,,,,1(1),,111,,11()()11n n
i i i i i i i
i i
n n n
i i i i i i n
n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v RSTUV r s t u v RSTUV =>≤≤=====++≥--∑∑∑∑∑∏已知个实数都记,求证下述不等式成立:
要证明这题,其实看样子很像上面柯西的归纳使用的形式
其实由均值不等式,以及函数1
()ln 1
x x e f x e +=-是在R 上单调递减
因此
1(
)1
n
RSTUV RSTUV RSTUV ≥
=
+≤
-
我们要证明:
1
1
(
)1
n
i i i i i i i i i i i r s t u v r s t u v =+≥
-∏证明以下引理:
1
1
(
)1
n
n i i i x x =+≥-∏
2
12
12
2
12121212
2
121212121212
1212
2
1212
2
11
2()()
11
(1)(1)
2(1)(1)(1)
2(1)
(1)(1)2(1)
11
()()
11
i
i
x x
n
x x
A A x x x x x x x x
A x x x x A x x x x x x x x
A x x x x
A x x A x x
x G
x G
++
=⇔≥
--
=⇔+++++++
-+++≥+--++--
++--
⇔++≥+
++

--
时,

显然成立
因此
2
2
2
2
1
2
2
1
1
()
1
1
()
1
1
()
1
n
n
n n
n
n
n
n
n
n
n
n
i n
n
n
i
i i
G G
G
G G
G
G
x
x
-
-
-
=
=
+
≥=
-
+
=
-
+

-



因此
所以原题目也证毕了
这种归纳法威力十分强大,用同样方法可以证明Jensen:
)
2
(
2
)
(
)
(
2
1
2
1
x
x
f
x
f
x
f+

+,则四维:
)
4
(
4
)
2
(
2
)
2
(
2
)
(
)
(
)
(
)
(4
3
2
1
4
3
2
1
4
3
2
1
x
x
x
x
f
x
x
f
x
x
f
x
f
x
f
x
f
x
f
+
+
+

+
+
+

+
+
+
一直进行n次有
)
2
...
(
2
)
(
...
)
(
)
(
2
2
1
2
2
1
n
n
n
n x
x
x
f
x
f
x
f
x
f+
+
+

+
+
+
,
令A
n
x
x
x
x
x
x
x
x
x
x n
n
n
n
n n
=
+
+
+
=
=
=
=
=
=
+
+
...
...
;
,...,2
1
2
2
1
1
1
有)
(
)
2
)
2(
(
2
)
(
)
2(
)
(
...
)
(
1A
f
A
n
nA
f
A
f
n
x
f
x
f
n
n
n
n
n=
-
+

-
+
+
+
所以得到
)
...
(
)
(
...
)
(
)
(
2
1
2
1
n
x
x
x
f
n
x
f
x
f
x
f
n
n
+
+
+

+
+
+
所以基本上用Jensen证明的题目都可以用柯西的这个方法来证明
而且有些时候这种归纳法比Jensen的限制更少
其实从上面的看到,对于形式相同的不等式,都可以运用归纳法证明这也是一般来说能够运用归纳法的最基本条件。

相关文档
最新文档