电子顺磁共振波谱
合集下载
JYT 0579-2020 电子顺磁共振波谱分析方法通则
犑犢/犜0579—2020
( )
#$…………………………………………………………………………………………………………… Ⅲ 1 %& ………………………………………………………………………………………………………… 1 2 '()*+ ………………………………………………………………………………………………… 1 3 ,-./01 ……………………………………………………………………………………………… 2 4 234567 ……………………………………………………………………………………………… 2 5 389:; ………………………………………………………………………………………………… 2 6 <= ………………………………………………………………………………………………………… 3 7 >? ………………………………………………………………………………………………………… 3 8 ,-23 …………………………………………………………………………………………………… 4 9 @ABC …………………………………………………………………………………………………… 7 10 DEFGHI …………………………………………………………………………………………… 8 JK A (L%MJK) NOPQRSTU23BC ……………………………………………………… 9
2.8 [\]L 狊狆犻狀犮狅狀犮犲狀狋狉犪狋犻狅狀
。 ª $ û 9 ª % & À Ö × Í N O ] ì Ï
2.9 ^_ 犾犻狀犲狑犻犱狋犺
— 。 'Âá,Uï]( )*ç]ð×ÍNO)45 +9 cþâs,é-./À0]1ç
β ———TNQO,ªÈGH/OP(J/T);
第八章 电子顺磁共振波谱 (EPR)
Eb = h -Ee -E振
由于光源能量较低,线宽较窄(约为0.01eV),只能使原子的外层价电 子、价带电子电离,并可分辨出分子的振动能级,因此被广泛地用来 研究气体样品的价电子和精细结构以及固体样品表面的原子、电子结 构。
2021/10/10
17
现代分析测试技术—电子能谱
紫外光电子能谱的特征
在紫外光电子能谱的能 量分辨率下,分子转动能 (Er)太小,不必考虑。而分 子振动能(Ev)可达数百毫电 子伏特(约0.05-0.5eV),且 分 子 振动周 期 约为 10-13s , 而 光 电 离 过 程 发 生 在 1016s的时间内,故分子的(高 分辨率)紫外光电子能谱可 以显示振动状态的精细结构。
显然,紫外光电子能谱法不适于进行元素定性分析工作。 由于谱峰强度的影响因素太多,因而紫外光电子能谱法尚
难于准确进行元素定量分析工作。
2021/10/10
20
现代分析测试技术—电子能谱
X射线光电子能谱
由于各种原子轨道中电子的结合能是一定的,因此 XPS 可用来测定固体表面的化学成分,一般又称为化学分析光电子 能谱法。
2021/10/10
6
现代分析测试技术—电子顺磁共振波谱
2)、一组等价磁性核的超精细耦合作用
当未成对电子同时受到几个相同的磁性核作用时,谱线的裂分数为: 2nI+1, 其强度比符合二项式展开。
例如,甲基自由基H3C,因受到3个等价氢的作用而呈现4条裂分谱线。 苯自由基阴离子则为7条谱线。
2021/10/10
试管不用旋转 溶液需除氧
2021/10/10
9
现代分析测试技术—电子顺磁共振波谱
电子顺磁共振波谱的应用
EPR 主要应用于鉴定含有未成对电子的物质,自由基是EPR的主要研究对象。 例如,用EPR证实在氢醌氧化还原体系有半醌自由基的存在。
由于光源能量较低,线宽较窄(约为0.01eV),只能使原子的外层价电 子、价带电子电离,并可分辨出分子的振动能级,因此被广泛地用来 研究气体样品的价电子和精细结构以及固体样品表面的原子、电子结 构。
2021/10/10
17
现代分析测试技术—电子能谱
紫外光电子能谱的特征
在紫外光电子能谱的能 量分辨率下,分子转动能 (Er)太小,不必考虑。而分 子振动能(Ev)可达数百毫电 子伏特(约0.05-0.5eV),且 分 子 振动周 期 约为 10-13s , 而 光 电 离 过 程 发 生 在 1016s的时间内,故分子的(高 分辨率)紫外光电子能谱可 以显示振动状态的精细结构。
显然,紫外光电子能谱法不适于进行元素定性分析工作。 由于谱峰强度的影响因素太多,因而紫外光电子能谱法尚
难于准确进行元素定量分析工作。
2021/10/10
20
现代分析测试技术—电子能谱
X射线光电子能谱
由于各种原子轨道中电子的结合能是一定的,因此 XPS 可用来测定固体表面的化学成分,一般又称为化学分析光电子 能谱法。
2021/10/10
6
现代分析测试技术—电子顺磁共振波谱
2)、一组等价磁性核的超精细耦合作用
当未成对电子同时受到几个相同的磁性核作用时,谱线的裂分数为: 2nI+1, 其强度比符合二项式展开。
例如,甲基自由基H3C,因受到3个等价氢的作用而呈现4条裂分谱线。 苯自由基阴离子则为7条谱线。
2021/10/10
试管不用旋转 溶液需除氧
2021/10/10
9
现代分析测试技术—电子顺磁共振波谱
电子顺磁共振波谱的应用
EPR 主要应用于鉴定含有未成对电子的物质,自由基是EPR的主要研究对象。 例如,用EPR证实在氢醌氧化还原体系有半醌自由基的存在。
波谱能谱-电子顺磁共振概论-2020-3
1、微波系统
微波系统主要由: 微波桥和谐振腔等构成。
微波桥是由产生、控制和检测微波辐射的器件组 成,如:环形器、波导、可调节微波功率的微波衰 减器、晶体检波器及可以稳定微波频率将其自动锁 定在谐振频率的自动频率控制器 (AFC)等。
微波源:速调管(klystron)或耿氏(Gunn)二级管振 荡器;产生微波频率稳定、噪声低。
EPR—共振波谱仪
不管是矩形腔还是圆柱腔,都需要满足样品所处位置 的电场分布最弱,而磁场分布最强。 因此室温下,需要特别注意EPR管中水溶液的厚度。
水溶液厚度 L: ~几cm? X: <1 mm W: <0.1mm
矩形腔
flat cell
圆柱腔
EPR—共振波谱仪
微波共振:Resonance means that the cavity stores the
微波的产生、放大、发射、接收、传输、控制和测 量等一系列技术都不同于其他波段。
EPR—共振波谱仪
“微波”也称超高频,通常是指波
长为1m到1mm范围内的电磁波,
对 应 的 频 率 范 围 为 300MHz 到
300GHz,它介于普通无线电波与
红外线之间,在使用中为了方便
将它分为分米波,厘米波和毫米
波。如10cm波段 (S波段),5cm波
microwave energy; therefore, at the resonance frequency of the cavity, no microwaves will be reflected back, but will remain inside the cavity.
Cavities are characterized by their Q or quality factor, which indicates how efficiently the cavity stores microwave energy. As Q increases, the sensitivity of the spectrometer increases.
微波系统主要由: 微波桥和谐振腔等构成。
微波桥是由产生、控制和检测微波辐射的器件组 成,如:环形器、波导、可调节微波功率的微波衰 减器、晶体检波器及可以稳定微波频率将其自动锁 定在谐振频率的自动频率控制器 (AFC)等。
微波源:速调管(klystron)或耿氏(Gunn)二级管振 荡器;产生微波频率稳定、噪声低。
EPR—共振波谱仪
不管是矩形腔还是圆柱腔,都需要满足样品所处位置 的电场分布最弱,而磁场分布最强。 因此室温下,需要特别注意EPR管中水溶液的厚度。
水溶液厚度 L: ~几cm? X: <1 mm W: <0.1mm
矩形腔
flat cell
圆柱腔
EPR—共振波谱仪
微波共振:Resonance means that the cavity stores the
微波的产生、放大、发射、接收、传输、控制和测 量等一系列技术都不同于其他波段。
EPR—共振波谱仪
“微波”也称超高频,通常是指波
长为1m到1mm范围内的电磁波,
对 应 的 频 率 范 围 为 300MHz 到
300GHz,它介于普通无线电波与
红外线之间,在使用中为了方便
将它分为分米波,厘米波和毫米
波。如10cm波段 (S波段),5cm波
microwave energy; therefore, at the resonance frequency of the cavity, no microwaves will be reflected back, but will remain inside the cavity.
Cavities are characterized by their Q or quality factor, which indicates how efficiently the cavity stores microwave energy. As Q increases, the sensitivity of the spectrometer increases.
核磁共振与电子顺磁共振波谱法ppt课件
.
3.2 1H-核磁共振波谱
• 3.2.2 谱图表示方法
横坐标表示的是化学位移和耦合常数,而纵坐 标表示的是吸收峰的强度。
由于屏蔽效应而引起质子共振频率的变化量极 小,很难分辨,因此,采用相对变化量来表示化 学位移的大小。一般选用四甲基硅烷(TMS)为标准 物,因为:
CH 3
H 3 C Si CH 3 CH 3
.
3.2 1H-核磁共振波谱
• 3.2.2 谱图表示方法
a) 由于四个甲基中12 个H 核所处的化学环境完全相 同,因此在核磁共振图上只出现一个尖锐的吸收峰;
b) 屏蔽常数 较大,因而其吸收峰远离待研究的峰的
高磁场(低频)区; c) TMS—化学惰性、溶于有机物、易被挥发除去;
此外,也可根据情况选择其它标准物。 含水介质:三甲基丙烷磺酸钠。 高温环境:六甲基二硅醚。
.
3.2 1H-核磁共振波谱
• 3.2.1 化学位移及自旋-自旋分裂
.
3.2 1H-核磁共振波谱
• 3.2.1 化学位移及自旋-自旋分裂
分子内部相邻碳原子 上氢核自旋也会相互干 扰,通过成键电子之间 的传递,形成相邻质子 之间的自旋-自旋耦合, 而导致谱峰发生分裂, 即自旋-自旋分裂。
.
3.2 1H-核磁共振波谱
H=H0 - H0=(1- )H0 :屏蔽常数。
0=2μβH /h= 2μβ(1-)H0/h H0=0h/2μβ(1-) 当0固定,氢核的电子密度越大↑→ 屏蔽效应↑→ ↑→ H0 ↑
.
化学位移:
chemical shift
H0=0h/2μβ(1-)
由于屏蔽作用的存在,氢核产生 共振需要更大的外磁场强度(相对 于裸露的氢核),来抵消屏蔽影响。
3.2 1H-核磁共振波谱
• 3.2.2 谱图表示方法
横坐标表示的是化学位移和耦合常数,而纵坐 标表示的是吸收峰的强度。
由于屏蔽效应而引起质子共振频率的变化量极 小,很难分辨,因此,采用相对变化量来表示化 学位移的大小。一般选用四甲基硅烷(TMS)为标准 物,因为:
CH 3
H 3 C Si CH 3 CH 3
.
3.2 1H-核磁共振波谱
• 3.2.2 谱图表示方法
a) 由于四个甲基中12 个H 核所处的化学环境完全相 同,因此在核磁共振图上只出现一个尖锐的吸收峰;
b) 屏蔽常数 较大,因而其吸收峰远离待研究的峰的
高磁场(低频)区; c) TMS—化学惰性、溶于有机物、易被挥发除去;
此外,也可根据情况选择其它标准物。 含水介质:三甲基丙烷磺酸钠。 高温环境:六甲基二硅醚。
.
3.2 1H-核磁共振波谱
• 3.2.1 化学位移及自旋-自旋分裂
.
3.2 1H-核磁共振波谱
• 3.2.1 化学位移及自旋-自旋分裂
分子内部相邻碳原子 上氢核自旋也会相互干 扰,通过成键电子之间 的传递,形成相邻质子 之间的自旋-自旋耦合, 而导致谱峰发生分裂, 即自旋-自旋分裂。
.
3.2 1H-核磁共振波谱
H=H0 - H0=(1- )H0 :屏蔽常数。
0=2μβH /h= 2μβ(1-)H0/h H0=0h/2μβ(1-) 当0固定,氢核的电子密度越大↑→ 屏蔽效应↑→ ↑→ H0 ↑
.
化学位移:
chemical shift
H0=0h/2μβ(1-)
由于屏蔽作用的存在,氢核产生 共振需要更大的外磁场强度(相对 于裸露的氢核),来抵消屏蔽影响。
电子顺磁共振波谱总结ESR
E4 = E-1/2,-1 = <-1/2,-1│gHŜz + AŜzÎz│-1/2,-1> = -(1/2)gH +(1/2)A
E5= E-1/2,0 = <-1/2,0│gHŜz + AŜzÎz│-1/2,0> = -(1/2)gH
E6 = E-1/2,1 = <-1/2,1│gHŜz + AŜzÎz│-1/2,1> = -(1/2)gH - (1/2)A
│ms, MI1 MI2……MIn > 可以求出Ei,∆E = h ,
有N条谱线,N = 2nI+1
EPR—共振波谱
1、一组等性核 若有n个I = 1/2 的等性核与未成对电子相互作用, 则产生n+1条等间距的谱线,其强度正比于(1 + x)n 的二项式展开系数。
EPR—共振波谱
n
(1 + x)n 展开系数
EPR—共振波谱
EPR—共振波谱
Ĥ = g HŜz + AŜzÎz - gN NHÎz
顺磁项 超精细项
电子Zeeman项
核磁项
核的Zeeman项
0
∵ N << ∴ 核磁项可以忽略不计。
EPR—共振波谱
因此,体系的哈密顿算符可以简化成:
Ĥ = g HŜz + AŜzÎz
能级分裂为:
Ems mI = < ms,mI│Ĥ│ms,mI >
E2 = E1/2,-1/2 = <1/2,-1/2│gHŜz + AŜzÎz│1/2,-1/2> = (1/2)gH - (1/4)A
E3 = E-1/2,-1/2 = <-1/2,-1/2│gHŜz + AŜzÎz│-1/2,-1/2> = - (1/2)gH + (1/4)A
E5= E-1/2,0 = <-1/2,0│gHŜz + AŜzÎz│-1/2,0> = -(1/2)gH
E6 = E-1/2,1 = <-1/2,1│gHŜz + AŜzÎz│-1/2,1> = -(1/2)gH - (1/2)A
│ms, MI1 MI2……MIn > 可以求出Ei,∆E = h ,
有N条谱线,N = 2nI+1
EPR—共振波谱
1、一组等性核 若有n个I = 1/2 的等性核与未成对电子相互作用, 则产生n+1条等间距的谱线,其强度正比于(1 + x)n 的二项式展开系数。
EPR—共振波谱
n
(1 + x)n 展开系数
EPR—共振波谱
EPR—共振波谱
Ĥ = g HŜz + AŜzÎz - gN NHÎz
顺磁项 超精细项
电子Zeeman项
核磁项
核的Zeeman项
0
∵ N << ∴ 核磁项可以忽略不计。
EPR—共振波谱
因此,体系的哈密顿算符可以简化成:
Ĥ = g HŜz + AŜzÎz
能级分裂为:
Ems mI = < ms,mI│Ĥ│ms,mI >
E2 = E1/2,-1/2 = <1/2,-1/2│gHŜz + AŜzÎz│1/2,-1/2> = (1/2)gH - (1/4)A
E3 = E-1/2,-1/2 = <-1/2,-1/2│gHŜz + AŜzÎz│-1/2,-1/2> = - (1/2)gH + (1/4)A
电子顺磁共振波谱解析
Lorentz 线型
Y
a 1 bX
2
Gauss 线型 Y aebX 2
1.3.6 g 因子 3400
(1)g因子的概念
但:
9500 2.0023
另外:对于大多数分子,激发态的掺入与取向有关,即 表现为各向异性,从而使 g 因子也是各向异性,则 g 因 子的大小与自旋体系相对于外磁场的方向有关。g 因子 的各向异性通常用一个二级张量形式来描述。
磁矩与磁场相互作用能:
E ˆ Hˆ H cos z H
1.3.3 电子自旋磁矩
❖ 电子自旋磁矩与自旋角动量的关系:
ge 2.0023
e 波尔磁子
2mc
z gM S
其中:M S
1 2
❖ 电子自旋磁矩在外磁场中的能量:
E z H (gM S )H
能级差: E gH
1.3.4 共振条件
第二个氮核进一步发生分裂,
由于作用的强弱与第一个氮核相相同,
所以有部分能级发生重合。
最终产生 5 条谱线,强度比例为: 1:2:3:2:1
如含有:n1 个核自旋为 I1, n2 个核自旋为 I2, : nk 个核自旋为 Ik。
则产生最多(2n1*I1+1) (2n2*I2+1)…(2nk*Ik+1) 条谱线
❖ 久期增宽(Secular Broadening)
Hr H H'
影响H‘的因素:
自旋--自旋相互作用
1. 动态因素 热起伏
2. 空间因素
两个顺磁粒子间的相互作用
~
1 r3
(1
3 c os2
)
增大 r的方法:固体 同晶形 逆磁性 ZnSO4 顺磁性 CuSO4
电子顺磁共振波谱
E4 = E-1/2,-1 = <-1/2,-1│gbHŜz + AŜzÎz│-1/2,-1> = -(1/2)gbH +(1/2)A
δH = δE/g β = (ћ/g β) ·1/δt
自旋—晶格作用越强,δt越小, 则δH 越大,即谱线越宽。
对过度金属离子而言,其自旋—轨道偶合作用一般 很强,t很短(小),从而导致谱线线宽很宽。 因此,要尽可能减少自旋—晶格作用,如:使用降 温方法。
b、久期增宽 (Secular broadening) (自旋—自旋,S—S相互作用)
理论上,n → n0,达动态热平衡时间为无穷大, 而 实 际 上 , 我 们 定 义 : 电 子 数 从 n 到 (1-1/e)n0= 0.63 n0 的时间为自旋-晶格驰豫时间。
4、g因子
EPR共振条件: h = geβH0 仅仅适合自由电 子。对于实际体系,分子中的分子磁矩除了电子
自旋磁矩外,同时还要考虑轨道磁矩的贡献。
2、如果谱线的线形相同,而线宽不同,则其相对 强度I与谱线峰—峰幅度Y和线宽∆Hpp的关系如下:
I ∝Y(∆Hpp)2
样品中含未成对电子的量是用自旋浓度表示, 即单位质量或单位体积中未成对电子的数目(自 旋数),如自旋数/克,自旋数/毫升。
3、驰豫 (Relaxation)
驰豫 — 磁共振的能量转移过程 (由不平衡恢复到平衡的过程)。
而实际上,我们所观察到的谱线往往不止一 条,而是若干条分裂谱线,这是为什么呢?
原因是:由于超精细相互作用的结果。
(hyperfine interactions)
5、超精细结构
把未成对电子自旋磁矩与核自旋磁矩间的相互作
用称为超精细相互作用(或超精细耦合hfc)。 由超精细相互作用可以产生许多谱线,就称为超
δH = δE/g β = (ћ/g β) ·1/δt
自旋—晶格作用越强,δt越小, 则δH 越大,即谱线越宽。
对过度金属离子而言,其自旋—轨道偶合作用一般 很强,t很短(小),从而导致谱线线宽很宽。 因此,要尽可能减少自旋—晶格作用,如:使用降 温方法。
b、久期增宽 (Secular broadening) (自旋—自旋,S—S相互作用)
理论上,n → n0,达动态热平衡时间为无穷大, 而 实 际 上 , 我 们 定 义 : 电 子 数 从 n 到 (1-1/e)n0= 0.63 n0 的时间为自旋-晶格驰豫时间。
4、g因子
EPR共振条件: h = geβH0 仅仅适合自由电 子。对于实际体系,分子中的分子磁矩除了电子
自旋磁矩外,同时还要考虑轨道磁矩的贡献。
2、如果谱线的线形相同,而线宽不同,则其相对 强度I与谱线峰—峰幅度Y和线宽∆Hpp的关系如下:
I ∝Y(∆Hpp)2
样品中含未成对电子的量是用自旋浓度表示, 即单位质量或单位体积中未成对电子的数目(自 旋数),如自旋数/克,自旋数/毫升。
3、驰豫 (Relaxation)
驰豫 — 磁共振的能量转移过程 (由不平衡恢复到平衡的过程)。
而实际上,我们所观察到的谱线往往不止一 条,而是若干条分裂谱线,这是为什么呢?
原因是:由于超精细相互作用的结果。
(hyperfine interactions)
5、超精细结构
把未成对电子自旋磁矩与核自旋磁矩间的相互作
用称为超精细相互作用(或超精细耦合hfc)。 由超精细相互作用可以产生许多谱线,就称为超
第八章 电子顺磁共振波谱 (EPR)ppt课件
基本原理
电子和原子核一样是带电粒子,自旋的电子 因而产生磁场,具有磁矩 s
s= -gS g 因子(值为2.0023) 为玻尔磁子,S为 自旋角动量。 对单电子 S = 1/2;电子自旋状态有2S+1个 即:Ms =1/2
第八章 电子顺磁共振波谱 (EPR)
3
现代分析测试技术—电子顺磁共振波谱
在外磁场H中,能量E为:
第八章 电子顺磁共振波谱 (EPR)
5
现代分析测试技术—电子顺磁共振波谱
2. 超精细耦合
未成对电子的自旋除受到自身轨道运动影响外,还受到临近核的 磁矩作用的影响,其结果类似于NMR中自旋分裂,使电子顺磁共 振谱发生分裂成两条或更多。这种作用称为超精细耦合。
1)、一个磁性核的超精细耦合作用
E= g H Ms +AMsMl A为超精细耦合常数,Ml是核磁矩的量 子数。即在一个磁性核耦合作用下,可 分裂四个能级:
E1= 1/2 g H +1/4A E2= 1/2 g H -1/4A E3= -1/2 g H +1/4A E4= -1/2 g H -1/4A 根据选律定则,只有Ml=0; Ms= 1才有能级跃迁,即E1 -E4 和E2 -E3有 能级跃迁。
第八章 电子顺磁共振波谱 (EPR)
6
现代分析测试技术—电子顺磁共振波谱
第八章 电子顺磁共振波谱 (EPR)
14
现代分析测试技术—电子能谱
X射线与物质作用,会获得一系列 的信息,这包括自由电子(光电子)、
二次电子(俄歇电子)、次级X射线 (荧光X射线)等。
X光的能量较大,它不仅可使结 合能小的价电子电离,也可使结合 能大的内层电子电离。因此,对于 大多数元素XPS都会有几个不同轨 道的能谱峰。
光电子能谱 俄歇电子能谱(AES, Auger Electron Spectrometer) 光电子能谱又分为 X光电子能谱 (XPS,X-ray Power Spectroscopy) 紫外光电子能谱 (UPS, Ultraviolet Power Spectroscopy)
电子和原子核一样是带电粒子,自旋的电子 因而产生磁场,具有磁矩 s
s= -gS g 因子(值为2.0023) 为玻尔磁子,S为 自旋角动量。 对单电子 S = 1/2;电子自旋状态有2S+1个 即:Ms =1/2
第八章 电子顺磁共振波谱 (EPR)
3
现代分析测试技术—电子顺磁共振波谱
在外磁场H中,能量E为:
第八章 电子顺磁共振波谱 (EPR)
5
现代分析测试技术—电子顺磁共振波谱
2. 超精细耦合
未成对电子的自旋除受到自身轨道运动影响外,还受到临近核的 磁矩作用的影响,其结果类似于NMR中自旋分裂,使电子顺磁共 振谱发生分裂成两条或更多。这种作用称为超精细耦合。
1)、一个磁性核的超精细耦合作用
E= g H Ms +AMsMl A为超精细耦合常数,Ml是核磁矩的量 子数。即在一个磁性核耦合作用下,可 分裂四个能级:
E1= 1/2 g H +1/4A E2= 1/2 g H -1/4A E3= -1/2 g H +1/4A E4= -1/2 g H -1/4A 根据选律定则,只有Ml=0; Ms= 1才有能级跃迁,即E1 -E4 和E2 -E3有 能级跃迁。
第八章 电子顺磁共振波谱 (EPR)
6
现代分析测试技术—电子顺磁共振波谱
第八章 电子顺磁共振波谱 (EPR)
14
现代分析测试技术—电子能谱
X射线与物质作用,会获得一系列 的信息,这包括自由电子(光电子)、
二次电子(俄歇电子)、次级X射线 (荧光X射线)等。
X光的能量较大,它不仅可使结 合能小的价电子电离,也可使结合 能大的内层电子电离。因此,对于 大多数元素XPS都会有几个不同轨 道的能谱峰。
光电子能谱 俄歇电子能谱(AES, Auger Electron Spectrometer) 光电子能谱又分为 X光电子能谱 (XPS,X-ray Power Spectroscopy) 紫外光电子能谱 (UPS, Ultraviolet Power Spectroscopy)
电子顺磁共振波谱学概论-2
EPR—研究对象
自然辐照年剂量D 的确定是个比较 复杂的过程,一 般用热释光剂量 片,或放射性同 位 素 如 : U-Th, 14C 半 衰 期 等 来 确 定。
EPR在剂量学上的应用:
EPR—研究对象
Paramagnetization Method
EPR—研究对象
Ion Implantation
SOD v.s. Potential Lifetime
EPR—研究对象
SOD in Liver (Unit/ml)
Lemur catta
1.6
Macaca silenus
1.2
Cercopithecus sabaeus
Macaca mulatta
Hamadryas Baboon
Chimpanzee
主量子数n:依照原子中电子的能量由低到高,n = 1, 2, 3, … 角量子数l:轨道量子数,又电子云形状。对于同一个n值下的 不同l的状态,电子的能量也有差别。在n值一定的情况下,l 可取n个可能的数值,即l = 0, 1, 2, …, n -1(s,p,d,f…);
EPR—研究对象
磁量子数m:反映了电子轨道角动量在空间的取向,或轨道 角动量在某特定方向(如磁场方向)的分量。对于给定的l值, m可取2l+1个可能的数值,即m = 0, ±1, ±2, …, ± l; 自旋磁量子数ms:表示电子自旋角动量在空间的取向,或自 旋角动量在磁场方向的分量,自旋角动量向上,ms 取1/2, 自旋角动量向下,ms 取-1/2。
—— 顺磁性分子 (含有未成对电子的分子)
如:NO,NO2,O2等分子,本身就具有未 成对电子,是顺磁性的。
EPR—研究对象
Stable Free Radicals in Gas Phase
电子顺磁共振波谱仪
四、电子顺磁共振波谱仪
仪器的主要结构框图:
控制台 Console
数据采集 JEOL JES-FA200
微波系统
磁铁系统 信号处理系统
I=1/2, 可以看成多个 等性H原子对单电子 作用体系。
左图为计算机拟合图, 当n=1, 2, 3…8时H的 超精细分裂谱线。
I=1, 可以看成多个等性N原子对单电子作用体系。
Time constants filter out noise by slowing down the response time of the spectrometer.
Signal distortion and shift due to excessive time constants If we choose a time constant which is too long for the rate at which we scan the magnetic field, we can distort or even filter out the very signal which we are trying to extract from the noise.
微波共振:Resonance means that the cavity stores the
microwave energy; therefore, at the resonance frequency of the cavity, no microwaves will be reflected back, but will remain inside the cavity.
Q = 2π (energy stored)/(energy dissipated per cycle)
仪器的主要结构框图:
控制台 Console
数据采集 JEOL JES-FA200
微波系统
磁铁系统 信号处理系统
I=1/2, 可以看成多个 等性H原子对单电子 作用体系。
左图为计算机拟合图, 当n=1, 2, 3…8时H的 超精细分裂谱线。
I=1, 可以看成多个等性N原子对单电子作用体系。
Time constants filter out noise by slowing down the response time of the spectrometer.
Signal distortion and shift due to excessive time constants If we choose a time constant which is too long for the rate at which we scan the magnetic field, we can distort or even filter out the very signal which we are trying to extract from the noise.
微波共振:Resonance means that the cavity stores the
microwave energy; therefore, at the resonance frequency of the cavity, no microwaves will be reflected back, but will remain inside the cavity.
Q = 2π (energy stored)/(energy dissipated per cycle)
材料物理实验方法-电子顺磁共振-2013-3
过渡金属和稀土元素的EPR谱线特点: 谱线复杂且谱线大多很宽,理论处理也较困难。 原因:
1、电子处在离子的d壳层中,它们的自旋运动 和轨运动间有很强的“自旋—轨道偶合作用”; 2、离子并非以自由形式存在,处在由配位体 组成的晶场中。
EPR—研究对象
—— 半导体中的空穴或电子
可用EPR来作定量研究。
EPR—研究对象
丙二酸
EPR—研究对象
EPR—研究对象
再如:萘分子它本身是逆磁性分子
A + K (真空无水条件) A + H2SO4 (98%)
A- + K +
(用dimethoxyethane作溶剂)
A+
EPR—研究对象
EPR—研究对象
二萘嵌苯阳离子 Perylene cation radical 共125条线
TEMPO
EPR—研究对象
Black line: Zn+ Red line:
O2
Green line: intermediate state
EPR—研究对象
② ① ①
②
EPR—研究对象
“Surface Facet of Palladium Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen for Organic Catalysis and Cancer Treatment”
EPR—共振波谱
对过度金属离子而言,其自旋—轨道偶合作用一般
很强,t很短(小),从而导致谱线线宽很宽。 因此,要尽可能减少自旋—晶格作用,如:使用降
温方法。
EPR—共振波谱
b、久期增宽 (Secular broadening)
电子顺磁共振波谱仪EPR的基本原理和基本应用
电子顺磁共振波谱仪(EPR) 的基本原理和基本应用
姚加 2016.3.10
内容
原理 仪器 应用
EPR/ESR/EMR概念上的差异
EPR: Electron paramagnetic resonance ESR: Electron spin resonance EMR: Electron magnetic resonance
电子自旋磁矩的塞曼效应
电子自旋磁矩 μS=−geμBS, 与外磁场B0(或H0)的相互作用能是 E = geμBB0MS (MS= -S, -S+1, …, S)。
塞曼能和共振现象
EPR谱仪构成
根据微波辐照方式:连续波和分 脉冲 根据微波传播方向:垂直和平行 于磁场两种模式。 谱仪主要构件: 辐照波源:微波速调管或Gunn 二极管 微波输送:波导管、循环管等 磁铁:电磁铁或者超导磁铁 检测系统:二极管正交检测 调制系统:连续波检测 样品腔或者谐振腔 低温系统
波谱学的基本原理
净信号强度∝ΔN=Nβ –Nα, Nα/Nβ = exp(‒ΔE/kT)
本生灯
塞曼效应(Zeeman effect) 磁场对谱线的裂分
磁性现象
• 宏观物质的磁性是由构成原子的电子、质子、中子 所携带的内禀自旋所导致的:
电子
电子的轨道磁矩 电子的自旋磁矩(本征磁矩)
原子核的磁性
质子 中子
谐振腔
矩形腔
圆柱腔
样品管
普通玻璃毛细管的背景信号 杂质Fe3+, 3d5
水溶液厚度 L: ~几cm X: <1 mm W: <0.1mm
flat cell
低温系统
检测系统
高频小振幅调制信号示意图
姚加 2016.3.10
内容
原理 仪器 应用
EPR/ESR/EMR概念上的差异
EPR: Electron paramagnetic resonance ESR: Electron spin resonance EMR: Electron magnetic resonance
电子自旋磁矩的塞曼效应
电子自旋磁矩 μS=−geμBS, 与外磁场B0(或H0)的相互作用能是 E = geμBB0MS (MS= -S, -S+1, …, S)。
塞曼能和共振现象
EPR谱仪构成
根据微波辐照方式:连续波和分 脉冲 根据微波传播方向:垂直和平行 于磁场两种模式。 谱仪主要构件: 辐照波源:微波速调管或Gunn 二极管 微波输送:波导管、循环管等 磁铁:电磁铁或者超导磁铁 检测系统:二极管正交检测 调制系统:连续波检测 样品腔或者谐振腔 低温系统
波谱学的基本原理
净信号强度∝ΔN=Nβ –Nα, Nα/Nβ = exp(‒ΔE/kT)
本生灯
塞曼效应(Zeeman effect) 磁场对谱线的裂分
磁性现象
• 宏观物质的磁性是由构成原子的电子、质子、中子 所携带的内禀自旋所导致的:
电子
电子的轨道磁矩 电子的自旋磁矩(本征磁矩)
原子核的磁性
质子 中子
谐振腔
矩形腔
圆柱腔
样品管
普通玻璃毛细管的背景信号 杂质Fe3+, 3d5
水溶液厚度 L: ~几cm X: <1 mm W: <0.1mm
flat cell
低温系统
检测系统
高频小振幅调制信号示意图
电子顺磁共振(ESR)
—— 半导体中的空穴或电子
可用EPR来作定量研究。
—— 晶格缺陷 如:V心:The positive-ion vacancy (V center)
V - center (earlier called V1) (tetragonal symmetry )
F心 :an electron in a negative-ion vacancy (F center)
= much higher techniqual requirements, but unique sensitivity to molecular motion
Sensitivity : Factor 1 000 000 better than in NMR !! (1nM instead of 1mM )
直接检测和研究含有未成对电子的顺磁性物质
电子的磁共振
电子自旋磁矩的磁共振 电子轨道磁矩的磁共振
二.电子顺磁共振基本原理
物质的顺磁性是由分子的永久磁矩引起的 保里原理:
每个分子轨道上不能存在两个自旋态相同的电子, 因而各个轨道上已成对的电子自旋运动产生的磁矩 是相互抵消的,只有存在未成对电子的物质才具有 永久磁矩,它在外磁场中呈现顺磁性。
Frequency: Factor 1000 larger in EPR ! (GHz instead of MHz) Coupling strength: Factor 1 000 000 larger in EPR ! (MHz instead of Hz) Relaxation Times: Factor 1000 000 smaller in EPR ! (ns instead of ms)
二苯基苦基肼基(DPPH) Diphenyl Picryl Hydrazyl
电子顺磁共振波谱EPRESR概论
一、 电子顺磁共振的基本原理
1、概述
电子自旋的磁特性
Joseph John Thomson (英国)
The Nobel Prize in Physics 1906
• In 1891, the Irish physicist, George Stoney, believed that electricity should have a fundamental unit. He called this unit the electron.
• The electron was discovered by J.J. Thomson in 1897. • The electron was the first sub-atomic particle ever found. It
was also the first fundamental particle discovered. • The concept of electron spin was discovered by S.A.
电子的磁矩主要来自自旋磁矩(> 99%)的贡献。
若轨道中所有的电子都已成对,则它们 的自旋磁矩就完全抵消,导致分子无顺磁性;
若至少有一个电子未成对,其自旋就会产生 自旋磁矩。
因此,EPR研究的对象必须具有未偶电子。
H =0时,每个自旋磁矩的方向是随机的,并处于同一个平均能态。
H≠0时,自旋磁矩 就有规则 地排列起 来 (平行 外磁场 — 对 应能级的能量较低,或反平行于外磁场—对应能级 的能量较高)。
• 顺磁性 (B’>0,即B’与B0同向) • 铁磁性 (B’>0,即B’与B0同向, B’随B0增大而急
剧增加, 但当B0 消失而本身磁性并不消失) • 反磁性(B’<0,即B’与B0反向) (逆、抗)
第八章 电子顺磁共振波谱 (EPR)ppt课件
s= -gS g 因子(值为2.0023) 为玻尔磁子,S为
自旋角动量。 对单电子 S = 1/2;电子自旋状态有2S+1个 即:Ms =1/2
现代分析测试技术—电子顺磁共振波谱
在外磁场H中,能量E为:
E= - s H =gMs H
Ms =+1/2 E= 1/2 g H Ms =-1/2 E = - 1/2 g H E = E - E = g H E = g H = h 一般在微波区(9.5-35千兆)
现代分析测试技术—电子顺磁共振波谱 2)、一组等价磁性核的超精细耦合作用
当未成对电子同时受到几个相同的磁性核作用时,谱线的裂分数为: 2nI+1, 其强度比符合二项式展开。 例如,甲基自由基H3C,因受到3个等价氢的作用而呈现4条裂分谱线。 苯自由基阴离子则为7条谱线。
现代分析测试技术—电子顺磁共振波谱
现代分析测试技术—电子能谱
X 射线与物质作用,会获得一系列 的信息,这包括自由电子(光电子)、 二次电子( 俄歇电子)、次级 X 射线
(荧光X射线)等。 X光的能量较大,它不仅可使结 合能小的价电子电离,也可使结合 能大的内层电子电离。因此,对于 大多数元素 XPS 都会有几个不同轨 道的能谱峰。 一般入射光的能量与电子的结合 能越接近,其电离的概率越大,谱 峰越强。
只有未成对的电子才有电子顺磁共振。 同样电子也存在自旋-晶格 弛豫和自旋-自旋弛豫现象
现代分析测试技术—电子顺磁共振波谱
波谱特性
对于分子中的未成对电子, 除自旋运动外,还有轨道运动。 因此,在外磁场作用下,轨道运动也会产生一个内磁场H’,这样 未成对电子所处的磁场应为: Hr = H + H’
第八章 电子顺磁共振波谱 (EPR)
电子顺磁共振波谱总结ESR
Magnetic Field (Gs)
Inorg. Chem., 2005, 44 (26), pp 9795–9806
3d9中心:Cu2+
EPR—共振波谱
g因子的测量:
1、绝对法
H, g
EPR—共振波谱
2、相对法
H3
H
H4
(H-H3) / (H4-H) = a / b
(H = h/g)
EPR—共振波谱
谱线 反映
大 小 灵敏度
线宽 分辩率
g 张量 分子结 构
线型 相互作用 类型
按照共振条件Hr = h /g β知,从每一条谱线 所获得的信息也只有g因子、线型、线宽等方面
的不同。
EPR—共振波谱
实际上,我们所观察到的谱线往往不止一条, 而是若干条分裂谱线,由此给出更多微结构信 息,这是为什么呢?
│ms , mI > 有四个本征态,四种波函数, 即: │1/2, 1/2 > , │1/2, -1/2 >,
│-1/2, -1/2 >,
│-1/2, 1/2 >。
EPR—共振波谱
E1 = E1/2,1/2 = <1/2,1/2│gHŜz + AŜzÎ z│1/2,1/2> = (1/2)gH + (1/4)A E2 = E1/2,-1/2 = <1/2,-1/2│gHŜz + AŜzÎ z│1/2,-1/2> = (1/2)gH - (1/4)A E3 = E-1/2,-1/2 = <-1/2,-1/2│gHŜz + AŜzÎ z│-1/2,-1/2> = - (1/2)gH + (1/4)A
Electron Spin Resonance
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子顺磁共振波谱
学科:岩矿分析与鉴定
词目:电子顺磁共振波谱
英文:electron spin resonance spectroscopy(ESR)
释文:简称顺磁共振谱。
属共振波谱的一种。
在有机地球化学研究中,可以借其对自由基浓度进行检测:因为有机质(如,石油、沥青、分散有机质、煤…)中都存在自由基,只是由于所处热演化程度不同,其自由基浓度有所变化。
自由基通常指一个分子或分子的一部分,由于正常的化学键被破坏而产生了一个不配对的电子——自由基,物质就具有顺磁性。
顺磁共振波谱仪就是基于这一原理设计的,将样品放入一个强度固定的磁场,在磁场中通过一个临界的固定频率微波,测得自由基的数目,因自由基可以共振,它们交替地吸收并发射电磁能,当磁场发生微小变化时,都将改变微波的频率,以顺磁共振吸收谱线的峰形展示其强度(共振峰面积),据此可计算出自由基的浓度,常以10^-18/克样(每克样品中自由电子的数目)为单位表示。
[1]
参考资料
1.地球科学辞典-甘肃省地矿局。