函数的奇偶性公开课优秀教案(比赛课教案)
函数的奇偶性优秀教案
函数的奇偶性优秀教案教案标题:探索函数的奇偶性教学目标:1. 了解函数的奇偶性的概念及其在数学中的应用。
2. 掌握判断函数奇偶性的方法。
3. 能够应用函数奇偶性解决实际问题。
教学内容:1. 函数的奇偶性的定义和性质。
2. 判断函数奇偶性的方法和步骤。
3. 利用函数奇偶性解决实际问题的应用。
教学步骤:引入:1. 引入函数的奇偶性的概念,通过举例说明奇函数和偶函数的特点。
2. 提出问题:如何判断一个函数是奇函数还是偶函数?探究:3. 分组讨论:学生分成小组,每个小组选择一个函数,通过观察函数的图像和代数表达式,讨论该函数的奇偶性,并给出理由。
4. 小组展示:每个小组派代表展示他们的讨论结果,并解释他们的判断依据。
5. 整合总结:教师引导学生总结判断奇偶性的方法和规律。
拓展:6. 练习:提供一些函数的图像或代数表达式,让学生判断其奇偶性,并解释判断依据。
7. 教师解答学生的问题,并给出相应的指导。
应用:8. 实际问题解决:给出一些实际问题,要求学生利用函数的奇偶性进行解答。
例如:某商店的销售额与时间的关系可以用函数表示,如何通过函数的奇偶性来判断该商店的销售额是否存在周期性变化?总结:9. 教师对本节课的内容进行总结,并强调函数奇偶性在数学中的应用。
教学资源:1. 函数图像和代数表达式的素材。
2. 实际问题解决的案例。
评估方式:1. 学生小组讨论和展示的表现评价。
2. 练习题的完成情况和解答正确性。
3. 实际问题解决的应用能力评估。
教学延伸:1. 引导学生进一步探究函数的奇偶性的性质和应用。
2. 提供更多的实际问题,让学生应用函数的奇偶性解决。
注意事项:1. 教师要关注学生的思维过程,引导他们思考和解决问题。
2. 鼓励学生合作讨论和展示,培养他们的团队合作能力。
3. 根据学生的实际情况和学习进度,适当调整教学内容和难度。
函数的奇偶性省赛一等奖公开课教学设计x
函数的奇偶性省赛一等奖公开课教学设计x一、教学内容本节课的教学内容选自人教版小学数学五年级下册第97页至99页,第四章第一节“函数的奇偶性”。
这部分内容主要让学生理解函数的奇偶性概念,掌握判断函数奇偶性的方法,并能够运用奇偶性解决实际问题。
二、教学目标1. 学生能够理解函数的奇偶性概念,掌握判断函数奇偶性的方法。
2. 学生能够运用函数的奇偶性解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神,提高学生的数学素养。
三、教学难点与重点重点:函数的奇偶性概念的理解和判断方法。
难点:如何运用函数的奇偶性解决实际问题。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:笔记本、尺子、圆规、直尺。
五、教学过程1. 实践情景引入:教师展示一个实际问题:某商店举行打折活动,商品原价分别为100元、150元和200元,打折后的价格分别为80元、120元和180元,请问哪种商品打折力度更大?2. 自主学习:学生自主探究,尝试解决上述问题。
教师巡回指导,帮助学生理解函数的奇偶性概念。
3. 课堂讲解:教师讲解函数的奇偶性概念,通过示例讲解如何判断函数的奇偶性。
4. 例题讲解:教师出示例题,讲解如何运用函数的奇偶性解决实际问题。
例题1:判断函数f(x)=x^3的奇偶性。
例题2:已知函数f(x)=2x1,求函数的奇偶性。
5. 随堂练习:学生独立完成随堂练习,教师巡回指导。
练习1:判断函数f(x)=x^2的奇偶性。
练习2:已知函数f(x)=3x^2+2,求函数的奇偶性。
6. 课堂小结:7. 作业布置:布置作业1:判断函数f(x)=x^32的奇偶性。
布置作业2:已知函数f(x)=2x1,求函数的奇偶性。
六、板书设计板书内容:函数的奇偶性奇偶性的定义:若对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称f(x)为奇函数。
若对于函数f(x)的定义域内任意一个x,都有f(x)=f(x),则称f(x)为偶函数。
函数的奇偶性教案2篇
函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。
2. 判断函数的奇偶性。
3. 通过练习题加深对函数的奇偶性的理解。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。
步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。
奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。
步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。
一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。
方法1:使用函数的定义式。
对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。
方法2:使用函数的图象。
对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。
步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。
例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。
2. 判断函数g(x)=2x^2-4是否为偶函数。
3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。
步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。
第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。
2. 进一步加深对函数的奇偶性的理解。
3. 练习函数的奇偶性的判断和应用。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。
函数的奇偶性公开课优秀教案(比赛课教案)
函数的奇偶性公开课优秀教案(⽐赛课教案)《函数的奇偶性》教案⼀、教材分析“奇偶性”是⼈教版必修1中第⼀章“集合与函数概念”的第3节“函数的基本性质”的第2⼩节。
函数的奇偶性是函数的⼀条重要性质,教材从学⽣熟悉的初中学过的的⼀些轴对称图形⼊⼿,体会到数形结合思想,初步学会⽤数学的眼光看待事物,感受数学的对称美。
尝试画出和的图像,从特殊到⼀般,从具体到抽象,⽐较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深⼊,⼜是为以后学习基本初等函数奠定了基础。
因此,本节课起着承上启下的重要作⽤。
⼆、学情分析从学⽣的认知基础看,学⽣在初中已经学习了轴对称图形和中⼼对称图形,并且有了⼀定数量的简单函数的储备。
同时,上节课学习了函数单调性,积累了研究函数的基本⽅法与初步经验。
三、教学⽬标【知识与技能】1.理解奇函数、偶函数的概念及其⼏何意义;2.能从定义、图像特征、性质等多种⾓度判断函数的奇偶性,学会函数的应⽤。
【过程与⽅法】通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学⽣经历函数奇偶性概念建⽴的全过程,体验数学概念学习的⽅法,积累数学学习的经验。
【情感、态度与价值观】1.在经历概念形成的过程中,培养学⽣内容、归纳、抽象、概括的能⼒;2.通过⾃主探索,体会数形结合的思想,感受数学的对称美。
四、教学重点和难点重点:函数奇偶性的概念和函数图像的特征。
难点:利⽤函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。
五、教学⽅法引导发现法为主,直观演⽰法、类⽐法为辅。
六、教学⼿段PPT课件。
七、教学过程(⼀)情境导⼊、观察图像出⽰⼀组轴对称和中⼼对称的图⽚。
设计意图:通过图⽚引起学⽣的兴趣,培养学⽣的审美观,激发学习兴趣。
师:“同学们,这是我们⽣活中常见的⼀些具有对称性的物体,你能说出它们有什么特点吗?”⽣:“它们的共同点都是关于某⼀地⽅是对称的。
”师:“是的,⽽我们今天要学习的函数图像也有类似的对称图像,⾸先我们来尝试画⼀下和的图像,并⼀起探究⼏个问题。
函数的奇偶性(优质课)教案
函数的奇偶性(优质课)教案教学目标:1、 、理解函数的奇偶性及其图像特征;2、 能够简单应用函数的奇偶性及其图像特征; 教学过程;一、函数奇偶性定义 1、图形描述: 函数()f x 的图像关于y 轴对称⇔()f x 为偶函数;函数()f x 的图像关于原点轴对称⇔()f x 为奇函数 定量描述一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x −=,则称()f x 为偶函数;如果都有()()--f x f x =,则称()f x 为奇函数;如果()()f x f x −=与()()--f x f x =同时成立,那么函数()f x 既是奇函数又是偶函数;如果()()f x f x −=与()()--f x f x =都不能成立,那么函数()f x 既不是奇函数又不是偶函数,称为非奇非偶函数。
如果函数()f x 是奇函数或偶函数,则称函数()y f x =具有奇偶性。
特别提醒: 1、函数具有奇偶性的必要条件是:函数的定义域在数轴上所表示的区间关于原点对称。
换言之,若所给函数的定义域不关于原点对称,则这个函数一定不具备奇偶性。
2、用函数奇偶性的定义判断函数是否具有奇偶性的一般步骤:(1)考察函数的定义域是否关于原点对称。
若不对称,可直接判定该函数不具有奇偶性;若对称,则进入第二步;(2)判断()()f x f x −=与()()f x f x −=−这两个等式的成立情况,根据定义来判定该函数的奇偶性。
二、函数具有奇偶性的几个结论1、()y f x =是偶函数⇔()y f x =的图像关于y 轴对称;()y f x =是奇函数⇔()y f x =的图像关于原点对称。
2、奇函数()f x 在0x =有定义,必有()00f =。
3、偶函数在定义域内关于原点对称的两个区间上单调性相反;奇函数在定义域内关于原点对称的两个区间上单调性相同。
4、()(),f x g x 是定义域为12,D D 且12D D 要关于原点对称,那么就有以下结论:奇±奇=奇 偶±偶=偶 奇⨯奇=偶 偶⨯偶=偶 奇⨯偶=奇5、复合函数的奇偶性特点是:“内偶则偶,内奇同外”。
1.4 函数的奇偶性》一等奖创新教学设计
1.4 函数的奇偶性》一等奖创新教学设计2.1.4《函数的奇偶性》教学设计一.教材分析:“函数的奇偶性”是普通高中课程标准试验教科书(必修)数学1的第二章第2.1.4节的内容。
函数的奇偶性是函数的一个重要性质,常伴随着函数的其他性质出现。
函数奇偶性揭示的是函数自变量与函数值之间的一种特殊的数量规律,直观反映的是函数图象的轴对称性和点对称性。
利用数形结合的数学思想来研究此类函数的问题常为我们展示一个新的思考视角。
函数的奇偶性也是学生今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活地应用函数的奇偶性常使复杂的不等问题、方程问题、作图问题等变得简单明了。
二.学情分析:这节课是函数奇偶性质学习的第一课时,因此通过学生先对实物图的观察、分析、理解来获得函数的奇偶性再结合理论推导来理解函数的奇偶性就显得比较流畅。
这样一方面与学生的认知结构相吻合,另一方面也可以增强学生的阅读理解能力。
另外根据我班学生的情况,本教案在例题的选择及处理方式方面也可作适当调整。
三.教学目标1、知识与技能目标:使学生理解奇函数、偶函数的概念,学会用定义判断函数的奇偶性。
2、过程与方法目标:在奇偶性概念形成过程中,培养学生的观察,归纳能力同时渗透数形结合和特殊到一般的数学思想方法.3、情感、态度、价值观目标:在学生感受数学美的同时激发学习的兴趣,培养学生乐于求索的精神。
四.教学重点、难点教学重点:函数奇偶性概念。
教学难点:对函数奇偶性的概念的理解及判断。
五.教学方法本节课采用观察、探索、启发、讨论、归纳等多种教学手段和方法,采用媒体辅助教学,通过数形结合,增强直观性,通过函数奇偶性的图象对称性演示,使学生享受到数学的美感。
六.教学用具:多媒体。
七.教学过程:(一)导入新课设计:提出问题“我们生活在美的世界中,有过许多对美的感受,请大家观察下列事物给你的感觉体现了什么样的美感呢?”在屏幕上给出一组图片设计理由:联系生活实际,激发学生的学习兴趣,使学生对函数的奇偶性反应在图像上的特点有一个初步的认识。
函数的奇偶性省赛一等奖公开课教学设计
小组合作,分享探究成果
06
CHAPTER
课堂小结与作业布置
奇函数
$f(-x) = -f(x)$
偶函数
$f(-x) = f(x)$
课堂小结
奇偶性的图像特征
奇函数图像关于原点对称
偶函数图像关于y轴对称
课堂小结
判断函数奇偶性的方法
定义法
图像法
课堂小结
典型例题的解析与讨论
通过具体例子加深对奇偶性的理解
对于所有$x$,都有$f(-x) = -f(x)$,则称$f(x)$为奇函数。
对于所有$x$,都有$f(-x) = f(x)$,则称$f(x)$为偶函数。
奇函数和偶函数的定义
偶函数定义
奇函数定义
01
奇函数的性质
02
奇函数的图像关于原点对称。
03
如果$f(x)$在$x=0$处有定义,则$f(0)=0$。
判定方法2
利用特殊值判断。选取一些特殊点,如$x=0$,$x=1$,$-1$等,计算$f(-x)$和$f(x)$的值,看是否满足奇偶函数的定义。
判定方法3
奇偶性的判定方法
03
CHAPTER
函数奇偶性的应用
图形绘制
根据函数的奇偶性,可以简化图形绘制的复杂度,例如只绘制一半图形然后通过对称性得到完整图形。
2. 引导学生观察、分析、归纳、总结判断函数奇偶性的方法。
3. 设计有针对性的练习题,让学生在实践中掌握判断函数奇偶性的方法。Βιβλιοθήκη 教学重点与难点01
02
教学重点与难点
5. 通过小组合作和讨论,培养学生的合作精神和探究能力。
4. 鼓励学生提出问题和疑惑,及时给予解答和指导。
02
函数奇偶性的应用市公开课获奖教案省名师优质课赛课一等奖教案
函数奇偶性的应用教案一、教学目标:1. 理解函数奇偶性的概念和特征;2. 能够判断给定函数的奇偶性;3. 能够利用函数奇偶性解决实际问题。
二、教学内容:1. 函数奇偶性的定义和判断方法;2. 函数奇偶性的性质和特点;3. 函数奇偶性在实际问题中的应用。
三、教学重点:1. 函数奇偶性的定义和判断方法;2. 函数奇偶性在实际问题中的应用。
四、教学难点:1. 函数奇偶性的性质和特点的掌握;2. 函数奇偶性在实际问题中的应用。
五、教学方法:1. 讲授结合示例分析法;2. 问题引导法;3. 归纳总结法。
六、教学过程:1. 引入:通过一个问题导入函数奇偶性的概念。
例如:小明花费3元买了一副筷子,他想知道如果买n副筷子一共需要多少钱。
请同学们思考这个问题,然后讨论。
2. 知识讲解:a. 函数奇偶性的定义和判断方法:(1) 定义:对于任意实数x,若有f(-x)=f(x),则函数f(x)是偶函数;若有f(-x)=-f(x),则函数f(x)是奇函数。
(2) 判断方法:若函数表达式中只含有偶次幂的项,则为偶函数;若函数表达式中只含有奇次幂的项,则为奇函数;若同时含有偶次幂和奇次幂的项,则既不是偶函数也不是奇函数。
b. 函数奇偶性的性质和特点:(1) 偶函数的图象关于y轴对称;(2) 奇函数的图象关于原点对称;(3) 任意两个奇函数的和是偶函数;(4) 任意两个偶函数的和是偶函数,任意两个奇函数的差是奇函数。
3. 案例分析:a. 案例一:已知函数f(x)为偶函数,且f(2)=4,求f(-2)的值。
解析:由偶函数的定义可知,f(2)=f(-2)。
所以,f(-2)=4。
b. 案例二:已知函数g(x)为奇函数,且g(3)=5,求g(-3)的值。
解析:由奇函数的定义可知,g(-3)=-g(3)。
所以,g(-3)=-5。
4. 实际问题应用:a. 问题一:小明以每小时60公里的速度从A地出发,经过3小时到达B地。
小红以每小时80公里的速度从B地出发,经过多长时间能追上小明?解析:设小红追上小明的时间为t,小明行驶的距离为60×3=180公里,小红行驶的距离为80×t公里。
函数的奇偶性公开课优秀教案
《函数的奇偶性》教案授课教师授课班级:授课时间:(广东高等教育出教材:广东省中等职业技术学校文化基础课课程改革实验教材《数学》版社出版)这本教材注意与初中有关知识紧密衔接,注重基础,增加弹性,使用教材教材主要特点:两档,适应分、B可以根据有关专业的特点,选用相关的章节,教学要求和练习内容分A的题,供全体学生学习,也是最低的要求;练习BA的题目主要是基础练习层教学。
练习拓展延伸的练习,供学有余力并且准备进一步深造的学生学习。
目为教师在授课时主要是探究用奇、偶函数的定义判断函数的奇、偶性,奇、偶函教学要求:数的性质(课本不要求证明)是作为拓展延伸的内容,以学生自学为主,教师适当给予辅导。
教材已经分层编写,有利于实施分层教学时可以不分班教学。
人。
学生数学平均入学成56人,男生6人,女生任教班级特点:会计072班共有学生62分,上课纪律良好,学生上课注意力比较集中,使用了这本教材后,绝大多数58.3绩为学生喜【教学过程】:一、创设情境,引入新课[设计意图:从生活中的实例出发,从感性认识入手,为学生认识奇偶函数的图像特征做好准备]对称性在自然界中的存在是一个普遍的现象.如美丽的蝴蝶是左右对称的(轴对称)。
1 / 7现实生活中有许多以对称形式呈现的事物,如汽车的车前灯、音响中的音箱,汉字中也有诸如“双”、“林”等对称形式的字体,这些都给以对称的感觉。
函数里也有这样的现象。
提出问题让学生回答:1、中心对称图形的概念(提醒学生:中心对称——图形绕点旋转180度);2、轴对称图形的概念(提醒学生:轴对称——图形沿轴翻折180度)。
数学中,对称也是函数图象的一个重要特征,下面展示的是五个函数的图像,请你说出下面的图像是中心对称图形还是轴对称图形或者两者都不是?2的图像,说出图像的特征。
:让学生画出函数 1活动x)?xf(解:(1)列表 2 / 7)连线(学生完成)即得3(学生完成)(2)描点( x -2 -1 0 1 2 ??4-12 P98书到本的图 y 4 1 0 1 4 ??3:活动2的图像,说出图像让学生画出函数x ?(x)f 的特征。
函数的奇偶性公开课优秀教案比赛课教案
函数的奇偶性公开课优秀教案比赛课教案一、教学背景和目标函数的奇偶性是高中数学中的重要概念,理解和掌握函数的奇偶性对于解题和深入学习函数的性质具有重要意义。
本节课旨在通过比较和讨论,培养学生分析和判断函数奇偶性的能力,提高学生的数学思维能力和解题技巧。
二、教学内容和重点本节课的教学内容主要包括:1. 函数的奇偶性的定义和性质;2. 如何通过函数的表达式判断其奇偶性;3. 利用奇偶性求函数图像关于坐标轴的对称性。
本节课的重点是:1. 理解和掌握函数的奇偶性的定义和性质;2. 掌握根据函数表达式判断其奇偶性的方法;3. 利用奇偶性求函数图像关于坐标轴的对称性。
三、教学过程1. 导入新知识(约5分钟)通过回顾与函数奇偶性相关的基本概念,如奇数、偶数等,引导学生思考函数的奇偶性与数学中其他概念的联系,并激发学生对于学习函数奇偶性的兴趣。
2. 引入新概念(约10分钟)通过举一些简单的例子,引导学生发现函数的奇偶性的规律,如对于奇函数,当自变量取相反数时,函数值也取相反数;对于偶函数,当自变量取相反数时,函数值保持不变。
3. 学习奇函数和偶函数的定义(约10分钟)讲解奇函数和偶函数的数学定义,即奇函数的特点是f(-x)=-f(x),偶函数的特点是f(-x)=f(x)。
通过一些具体的例子,帮助学生理解奇偶函数的定义,并引导学生归纳总结奇函数和偶函数的性质。
4. 规律归纳(约10分钟)组织学生分组,进行讨论并归纳总结关于奇函数和偶函数的常见规律和性质。
每个小组选取一个具体的函数形式进行分析,并将归纳的结果进行汇报和讨论。
5. 练习和巩固(约15分钟)通过一些练习题,巩固学生对于函数奇偶性的理解和判断能力。
练习题应涵盖不同难度和复杂度的情况,让学生能够灵活运用奇偶性的知识解题,并对不同情况进行分析和判断。
6. 拓展与应用(约15分钟)引导学生拓展奇函数和偶函数的应用场景,如在几何中判断图形的对称性,或在物理中研究一些对称的物理现象。
函数奇偶性的教案
函数奇偶性的教案【篇一:《函数的奇偶性》教案】1.3.2《函数的奇偶性》一、教材分析1.教材所处的地位和作用“奇偶性”是人教a版第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的及数、三角函数的基础。
因此,本节课起着承上启下的重要作用。
2.学情分析从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题.3.教学目标基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:【知识与技能】1.能判断一些简单函数的奇偶性。
2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
【情感、态度与价值观】通过自主探索,体会数形结合的思想,感受数学的对称美。
从课堂反应看,基本上达到了预期效果。
4、教学重点和难点重点:函数奇偶性的概念和几何意义。
几年的教学实践证明,虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。
他们往往流于表面形式,只根据奇偶性的定义检验f(-x)=-f(x)或f(-x)=f(x)成立即可,而忽视了考虑函数定义域的问题。
因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。
因此,我把“函数的奇偶性概念”设计为本节课的重点。
在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。
因此我把“奇偶性概念的数学化提炼过程”设计为本节课的难点。
函数的奇偶性公开课优秀教案(比赛课教案)x
课程背景及意义函数的奇偶性是数学中的重要概念,对于理解函数的性质和应用具有重要意义。
通过对函数奇偶性的学习,可以培养学生的逻辑思维能力和数学分析能力。
函数的奇偶性在数学、物理、工程等领域都有广泛的应用,因此掌握这一概念对于学生未来的学习和职业发展都具有重要意义。
知识目标能力目标情感目标030201教学目标与要求教学内容与方法教学内容教学方法奇函数与偶函数定义奇函数偶函数奇偶性判断方法图像法奇偶性定义法通过观察函数图像是否关于原点或$y$轴对称来判断函数的奇偶性。
代数法常见奇偶函数举例奇函数举例偶函数举例非奇非偶函数举例奇偶性与对称性关系奇函数图像关于原点对称01偶函数图像关于y轴对称02既是奇函数又是偶函数的函数03周期性对奇偶性影响周期函数可能具有奇偶性周期函数不具有奇偶性的情况复合函数奇偶性判断两个奇函数的复合函数是偶函数两个偶函数的复合函数是偶函数奇函数和偶函数的复合函数不具有确定的奇偶性图形绘制根据函数的奇偶性,可以简化图形绘制过程,例如只绘制一半图形然后通过对称性得到另一半。
对称性判断利用函数的奇偶性,可以判断图形是否关于原点或y 轴对称。
面积计算在某些情况下,可以利用函数的奇偶性简化面积计算过程。
在几何图形中应用在实际问题中应用数据分析在处理具有周期性或对称性的数据时,可以利用函数的奇偶性进行分析和预测。
物理建模在描述某些物理现象时,例如波动、振动等,可以利用函数的奇偶性建立数学模型。
工程设计在涉及对称性或平衡性的工程设计中,可以利用函数的奇偶性进行优化设计。
在其他领域应用数学研究计算机科学经济学分组讨论与展示成果分组讨论学生分成若干小组,每组4-6人,围绕“函数的奇偶性定义、性质、判断方法”等主题展开讨论。
教师巡视各组,倾听学生的讨论,给予必要的指导和建议。
展示成果每个小组选派一名代表,向全班展示本组的讨论成果。
可以通过举例、讲解、演示等方式,展示对函数奇偶性的理解和应用。
其他小组可以提出问题和建议,进行互动交流。
《函数奇偶性》优秀的教学设计模板(精选5篇)
Everyone has inertia and negative emotions. Successful people know how to manage their own emotions and overcome their inertia, and illuminate and inspire those around them like the sun.悉心整理助您一臂(页眉可删)《函数奇偶性》优秀的教学设计模板(精选5篇)《函数奇偶性》优秀的教学设计1课题:1、3、2函数的奇偶性一、三维目标:知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操、通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。
对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识1、复习在初中学习的轴对称图形和中心对称图形的定义:2、分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。
五、学习过程:函数的奇偶性:(1)对于函数,其定义域关于原点对称:如果______________________________________,那么函数为奇函数;如果______________________________________,那么函数为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。
函数奇偶性性优质教案
函数奇偶性性优质教案教案标题:函数奇偶性性优质教案教案目标:1. 理解函数奇偶性的概念及其在函数图像中的表现。
2. 能够判断给定函数的奇偶性。
3. 掌握函数奇偶性的性质和运算规律。
4. 能够应用函数奇偶性解决实际问题。
教学准备:1. 教师准备:黑板、白板、彩色粉笔/白板笔、教学PPT、练习题、答案解析。
2. 学生准备:课本、笔记本、铅笔、直尺、计算器。
教学过程:一、导入(5分钟)1. 利用一道数学问题或例题引入函数奇偶性的概念,激发学生的学习兴趣。
二、知识讲解(15分钟)1. 通过教学PPT或黑板,简明扼要地介绍函数奇偶性的概念及其在函数图像中的表现。
2. 引导学生观察奇函数和偶函数的特点,并给出几个简单的例子进行说明。
三、示范演示(15分钟)1. 通过几个典型的函数例子,演示如何判断函数的奇偶性。
2. 强调判断函数奇偶性的关键是观察函数的定义域和函数表达式中的幂次。
四、练习与讨论(20分钟)1. 分发练习题,让学生自主完成。
2. 引导学生互相讨论解题思路和方法,及时纠正错误。
五、总结归纳(10分钟)1. 整理学生的讨论成果,总结函数奇偶性的性质和运算规律。
2. 强调函数奇偶性在解决实际问题中的应用。
六、拓展延伸(10分钟)1. 提供一些拓展题目,让学生进一步巩固和应用函数奇偶性的知识。
2. 鼓励学生思考函数奇偶性与其他数学概念之间的联系。
七、作业布置(5分钟)1. 布置适量的作业,要求学生运用函数奇偶性解决实际问题。
2. 强调作业的重要性,并提供答案解析供学生参考。
教学反思:通过本节课的教学,学生能够全面了解函数奇偶性的概念和性质,并能够熟练判断函数的奇偶性。
通过练习和讨论,学生的问题解决能力和合作意识得到了提高。
在拓展延伸环节,学生也有机会将函数奇偶性与其他数学概念进行联系,培养了他们的综合思考能力。
同时,通过作业的布置和答案解析,学生可以进一步巩固和应用所学知识。
整体而言,本节课的教学效果较好。
《函数奇偶性》优秀的教学设计
《函数奇偶性》优秀的教学设计《函数奇偶性》优秀的教学设计「篇一」教学分析本节讨论函数的奇偶性是描述函数整体性质的、教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念、因此教学时,充分利用信息技术创设教学情境,会使数与形的结合更加自然、值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念、教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x—1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明、三维目标1、理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力、2、学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想、重点难点教学重点:函数的奇偶性及其几何意义、教学难点:判断函数的奇偶性的方法与格式、课时安排:1课时教学过程导入新课思路1、同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立平面直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究、思路2、结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性、推进新课新知探究提出问题(1)如图1所示,观察下列函数的图象,总结各函数之间的共性、图1(2)如何利用函数的解析式描述函数的、图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?表1x—3—2—10123f(x)=x2表2x—3—2—10123f(x)=|x|(3)请给出偶函数的定义、(4)偶函数的图象有什么特征?(5)函数f(x)=x2,x∈[—1,2]是偶函数吗?(6)偶函数的定义域有什么特征?(7)观察函数f(x)=x和f(x)=1x的图象,类比偶函数的推导过程,给出奇函数的定义和性质?活动:教师从以下几点引导学生:(1)观察图象的对称性、(2)学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数、(3)利用函数的解析式来描述、(4)偶函数的性质:图象关于y轴对称、(5)函数f(x)=x2,x∈[—1,2]的图象关于y轴不对称;对定义域[—1,2]内x=2,f(—2)不存在,即其函数的定义域中任意一个x的相反数—x不一定也在定义域内,即f(—x)=f(x)不恒成立、(6)偶函数的定义域中任意一个x的相反数—x一定也在定义域内,此时称函数的定义域关于原点对称、(7)先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质、给出偶函数和奇函数的定义后,要指明:①函数是奇函数或是偶函数称为函数的`奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称);③具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称,奇函数的图象关于原点对称;④可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;⑤函数的奇偶性是函数在定义域上的性质,是“整体”性质,而函数的单调性是函数在定义域的子集上的性质,是“局部”性质、讨论结果:(1)这两个函数之间的图象都关于y轴对称。
函数奇偶性公开课教案
(1)完成课本P36-2
(2)设 为奇函数,且在 上为减函数,则 的图象【 】
A.关于y轴对称,且在 上为增函数B. 关于原点对称,且在 上为增函
C. 关于y轴对称,且在 上为减函数D. 关于原点对称,且在 上为减函数
3、情感态度与价值观:
在函数奇偶性的学习过程中,体验数学的科学价值和应用价值,培养善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重难点:
教学重点:函数奇偶性概念及其判断方法。
教学难点:对函数奇偶性的概念的理解及如何判定函数奇偶性
三.学法
学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.
则 _______
例2设函数 为奇函数,则
变式练习1:若 是偶函数,则
变式练习2:已知函数 是奇函数,且 ,则 _________; __________;
§1.1.1函数奇偶性------ 第二课时
知识点三:利用函数奇偶性求函数解析式
例1.
变式练习1.已知函数 是定义在 上的偶函数.当 时, ,则当 时,
四.学习过程
(一)自主探究
一、阅读教材34、35两页,完成下列各题。
(1) 与
共同点:
两个函数的图象都关于对称,并且有 , 。可推得
,我们把这样的函数叫做偶函数。
(2) 与
共同点:两个函数的图象都关于对称,并且有 , 。可推得 ,我们把这样的函数叫做奇函数。
二、讲授新课
知识点一:奇偶函数定义
1、偶函数:如果对于函数 的定义域内一个x,都有,那么,函数 就叫做偶函数,图象关于对称。
函数奇偶的市公开课获奖教案省名师优质课赛课一等奖教案
函数奇偶的教案一、教学目标:1. 了解什么是奇函数和偶函数;2. 能够判断一个函数的奇偶性;3. 熟练掌握奇偶函数的性质及其图像的特点。
二、教学重点:1. 奇函数的定义和性质;2. 偶函数的定义和性质;3. 奇偶函数的图像特点。
三、教学内容:1. 什么是奇函数和偶函数奇函数和偶函数是一类特殊的数学函数,具有一些特定的性质。
在数学中,奇函数和偶函数可以通过函数的定义域和函数值的变化规律来判断。
2. 奇函数的定义和性质(1) 奇函数的定义:如果对于定义域内的任意一个自变量x,函数f(x)满足f(-x) = -f(x),则该函数为奇函数。
(2) 奇函数的性质:a. 函数图像关于原点对称;b. 奇函数的函数值在定义域内关于原点对称。
3. 偶函数的定义和性质(1) 偶函数的定义:如果对于定义域内的任意一个自变量x,函数f(x)满足f(-x) = f(x),则该函数为偶函数。
(2) 偶函数的性质:a. 函数图像关于y轴对称;b. 偶函数的函数值在定义域内关于y轴对称。
4. 奇偶函数的图像特点(1) 奇函数的图像特点:a. 奇函数的图像关于原点对称;b. 奇函数在定义域内关于原点对称的点具有相同的函数值。
(2) 偶函数的图像特点:a. 偶函数的图像关于y轴对称;b. 偶函数在定义域内关于y轴对称的点具有相同的函数值。
四、教学步骤:1. 导入新知:引导学生思考奇偶函数的概念,并分析奇偶函数的定义。
2. 讲解奇函数的定义和性质:通过示例和图形展示,给学生一个直观的认识。
3. 讲解偶函数的定义和性质:同样通过示例和图形展示,帮助学生理解偶函数的概念。
4. 深化理解:引导学生思考奇偶函数的图像特点,并呈现更多的示例进行讲解。
5. 练习与巩固:提供一些练习题,让学生通过判断给定函数的奇偶性来巩固所学知识。
6. 拓展探究:引导学生进一步思考奇偶函数的应用,如对称性等。
五、教学评价:1. 在整堂课教学过程中,及时观察学生的理解情况,鼓励他们提出问题并进行解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《函数的奇偶性》教案
一、教材分析
“奇偶性”是人教版必修1中第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。
函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。
尝试画出f(x)=x2和f(x)=|x|的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深入,又是为以后学习基本初等函数奠定了基础。
因此,本节课起着承上启下的重要作用。
二、学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,上节课学习了函数单调性,积累了研究函数的基本方法与初步经验。
三、教学目标
【知识与技能】
1.理解奇函数、偶函数的概念及其几何意义;
2.能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。
【过程与方法】
通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。
【情感、态度与价值观】
1.在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力;
2.通过自主探索,体会数形结合的思想,感受数学的对称美。
四、教学重点和难点
重点:函数奇偶性的概念和函数图像的特征。
难点:利用函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。
五、教学方法
引导发现法为主,直观演示法、类比法为辅。
六、教学手段
PPT课件。
七、教学过程
(一)情境导入、观察图像
出示一组轴对称和中心对称的图片。
设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。
师:“同学们,这是我们生活中常见的一些具有对称性的物体,你能说出它们有什么特点吗?”
生:“它们的共同点都是关于某一地方是对称的。
”
师:“是的,而我们今天要学习的函数图像也有类似的对称图像,首先我们来尝试画一下f(x)=x2和f(x)=|x|的图像,并一起探究几个问题。
”
(二)探究新知、形成概念
探究1.观察下列两个函数f(x)=x2和f(x)=|x|的图象,它们有什么共同特征吗?
设计意图:从学生熟悉的f(x)=x2和f(x)=|x|的图像入手,顺应了同学们的认知规律。
2.填函数对应值表,找出f(x)与f(−x)有什么关系?
0123
0123
设计意图:从“形”过渡到“数”,为形成概念做好铺垫。
3.通过填表,你发现了什么?
设计意图:通过填表,学生自己得出当自变量x取一对相反数时,相应的函数值相等一关系。
4.我们能否用函数解析式来描述函数图像的特征呢?
设计意图:引导学生从函数解析式入手,通过证明,形成概念,板书偶函数的定义:
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(−x),那么函数f(x)就叫做偶函数。
探究2.观察下列两个函数图象,它们有什么共同特征吗?
2.填函数对应值表,找f(x)与f(−x)有什么关系?
教师引导学生回答:“当自变量x取一对相反数时,相应的两个函数值也互为相反数,即f(-x)=-f(x)。
板书奇函数的定义:
一般地,如果对于函数f(x)的定义域内任意一个x,都有f(−x)=−f(x),那么函数f(x)就叫做奇函数。
设计意图:培养学生的自学能力和探索精神。
(三)学生探索、领会定义
探究3.奇函数、偶函数的图象具有什么特征?
设计意图:通过观察图像,让学生体会数形结合思想。
探究4:下列函数图像具有奇偶性吗?
设计意图:深化对奇偶性概念的理解,强调:函数具有奇偶性的前提条件是——定义域关于原点对称。
探究5:已知函数f(x)是奇函数,在(-∞,0]上的图象如图,你能试作出 [0,∞)内的图象吗?
设计意图:让学生利用奇偶函数的相关性质进行解题。
(四)知识应用、巩固提高 例1:判断下列函数的奇偶性:
学生活动:尝试独立解答部分习题。
教师活动:打开PPT ,出示问题,强调解题格式,板演部分解题过程,带领学生归纳解题步骤:
首先,确定函数的定义域,并判断其定义域是否关于原点对称;
2
5
41
)( )4( 1)( )3()( )2( )( )1(x
x f x x x f x x f x x f =+===
其次,确定f(x)与f(−x)的关系;
最后,得出相应的结论。
设计意图:及时巩固所学的新知,通过例题,使学生在学习新知识的同时能加以应用,使学生体验到学习数学过程中的成就感。
例2:判断下列函数的奇偶性
1.函数 f(x)=x+1是奇函数还是偶函数? (既不是奇函数也不是偶函数)
2. 函数f(x)=0是奇函数还是偶函数?(既是偶函数也是奇函数)
例3:判断函数f(x)=√1−x2
的奇偶性。
|x+2|+2
(1)求函数的定义域
(2)化简函数表达式
(3)判断函数的奇偶性
例4:(1)判断函数f(x)=x+x3的奇偶性;
(2)如图是函数f(x)=x+x3的一部分,你能根据f(x)的奇偶性画出它在y轴左边的图象吗?
设计意图:考察学生综合运用奇函数的代数特征和几何意义解决问题,培养学生的应用意识和动手操作能力。
(五)总结反馈
通过本堂课的探究:
(1)你学到了哪些知识?
(2)你最深刻的体验是什么?
设计意图:培养学生的归纳概括能力和语言表达能力。
(六)分层作业、学以致用
必做题:课本第36页练习第1-2题。
思考题:课本第39页习题1.3B组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。