分式和分式方程复习ppt课件
合集下载
12.1 分式 - 第1课时课件(共18张PPT)
谈一谈
由上面的问题,我们分别得到下面一些代数式:,;;,
将这些代数式按“分母”含与不含字母来分类,可分成怎样的两类?
分母不含字母
分母含字母
知识点1 分式的概念
定义
一般地,我们把形如 的代数式叫做分式,其中,A,B都是整式,分母必须含有字母.分式也可以看做两个整式相除(除式中含有字母)的商.
12.1 分式第1课时
第十二章 分式和分式方程
学习目标
1.知道分式的概念,发展符号感.2.经历由类比、猜想获得分式基本性质的过程,发展学生的合情推理能力.
学习重难点
掌握分式的概念.
理解并掌握分式的基本性质.
难点
重点
问题导入
1.一项工程,甲施工队5天可以完成。甲施工队每天完成的工程量是多少?3天完成的工程量又是多少?如果乙施工队a天可以完成这项工程,那么乙施工队每天完成的工程量是多少?b(b<a)天完成的工程量又是多少?2.已知甲、乙两地之间的路程为m km。如果A车的速度为n km/h,B车比A车每小时多行20 km,那么从甲地到乙地,A车和B车所用的时间各为多少?
分式的基本性质
同学们再见!
授课老师:
时间:2024年9月15日
知识点2 分式的基本性质
分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变.
做一做
分式
随堂练习
1.下列式子中,哪些是整式?哪些是分式?
(1)
2.当x取何值时,下列分式有意义?
3.
(3)(4)(5)
拓展提升
B
归纳小结
分式
分式的概念
例题解析
例1 指出下列各式中,哪些是整式,哪些是分式.
归纳:
由上面的问题,我们分别得到下面一些代数式:,;;,
将这些代数式按“分母”含与不含字母来分类,可分成怎样的两类?
分母不含字母
分母含字母
知识点1 分式的概念
定义
一般地,我们把形如 的代数式叫做分式,其中,A,B都是整式,分母必须含有字母.分式也可以看做两个整式相除(除式中含有字母)的商.
12.1 分式第1课时
第十二章 分式和分式方程
学习目标
1.知道分式的概念,发展符号感.2.经历由类比、猜想获得分式基本性质的过程,发展学生的合情推理能力.
学习重难点
掌握分式的概念.
理解并掌握分式的基本性质.
难点
重点
问题导入
1.一项工程,甲施工队5天可以完成。甲施工队每天完成的工程量是多少?3天完成的工程量又是多少?如果乙施工队a天可以完成这项工程,那么乙施工队每天完成的工程量是多少?b(b<a)天完成的工程量又是多少?2.已知甲、乙两地之间的路程为m km。如果A车的速度为n km/h,B车比A车每小时多行20 km,那么从甲地到乙地,A车和B车所用的时间各为多少?
分式的基本性质
同学们再见!
授课老师:
时间:2024年9月15日
知识点2 分式的基本性质
分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变.
做一做
分式
随堂练习
1.下列式子中,哪些是整式?哪些是分式?
(1)
2.当x取何值时,下列分式有意义?
3.
(3)(4)(5)
拓展提升
B
归纳小结
分式
分式的概念
例题解析
例1 指出下列各式中,哪些是整式,哪些是分式.
归纳:
第三章整理《分式》(复习)ppt课件
顺水速=静水速+水流速 逆水速=静水速-水流速
设是水流速为xkm/ h
则 水 为 20 + x)km/ h 顺 速 (
逆 速 (20 - x)km/ h 水 为
72 48 = 20 + x 20 − x
A.扩大3倍 B.扩大9倍C.扩大4倍D.不变 扩大3 扩大9 扩大4
3、 填空: x ( x − y ) = ( x − 2
y)
x + xy
x+y
例1:化简求值 :
a−2 a −1 a−4 ( 2 − 2 )÷ a + 2a a + 4a + 4 a + 2 2 其中a满足:a + 2a − 1 = 0
1. 若分式
A、 A、x≠-1 C、x≠2 、
若有意义, 应满足( 若有意义,则x应满足( B ) 应满足
B、 ≠-1且 B、x ≠-1且x ≠2 D、x ≠-1或x ≠2 、 或
x −4 ( x + 1)( x − 2)
若值为0, 应满足( 若值为 ,则x应满足( B ) 应满足
A、x=2 、 C、 、
1km
中点 18km }
xkm / h
甲 A
乙 B
甲走了总共20km 甲走了总共
设 乙的速度 xkm / h 则 甲的速度( x + 0.5)km / h
20 18 = x + 0.5 x
1、一项工程,若甲队单独做,恰好在规定的日期 、一项工程,若甲队单独做, 完成,若乙队单独做要超过规定日期3天完成 天完成; 完成,若乙队单独做要超过规定日期 天完成;现 在先由甲、乙合做2天 在先由甲、乙合做 天,剩下的工程再由乙队单独 也刚好在规定日期完成, 做,也刚好在规定日期完成,问规定的日期是多 少天? 少天? 1 甲每天的工作量 x 设 天 甲x
分式 复习课件 (共34张PPT)
第九章分式
式分
{
概念
{
A 的形式 B
B中含有字母B≠0
{
分式有意义
分式的值为0
分式的加减
{
同分母相加减 异分母相加减 约分
通分
同分母相加减
分式的乘除 解分式方程 分式方程应用 去分母
最简分式 验根
解整式方程
1.分式的定义:
A 形如 ,其中 A ,B 都是整式, B 且 B 中含有字母.
2.分式有意义的条件:
4
(1) 0.000030
3.0 10
5
6x y 例(1) 2 12 xy 2 6x y 解:原式 2 12 xy
2
7、约分 :
m 4m 4 例(2) 2 m 4 x 2 m 2 2 y 解:原式= ( m 2)(m 2)
2
m2 m2
把分子、分母的最大公因式(数)约去。 1.约分:
2.通分: 把分母不相同的几个分式化成分母相
同的分式。
关键是找最简公分母:各分 母所有因式的最高次幂的积 .
1.约分
(1)
-6x2y 27xy2
(2)
-2(a-b)2
-8(b-a)3
关键找出分子和 分母的公因式
(3)
m2+4m+4 m2 - 4
2.通分
3 1 ( 1 ) 3 2x 2 1 x 解:两边同乘 2( x 1) 3 1 2( x 1) 2( x 1) 3 2( x 1) 2( x 1) x 1 3 2 6x 3 6 一化(整式) 6 x 7 7 二解 x 6 7
经检验: x
5、整数指数幂:
a 1
0
式分
{
概念
{
A 的形式 B
B中含有字母B≠0
{
分式有意义
分式的值为0
分式的加减
{
同分母相加减 异分母相加减 约分
通分
同分母相加减
分式的乘除 解分式方程 分式方程应用 去分母
最简分式 验根
解整式方程
1.分式的定义:
A 形如 ,其中 A ,B 都是整式, B 且 B 中含有字母.
2.分式有意义的条件:
4
(1) 0.000030
3.0 10
5
6x y 例(1) 2 12 xy 2 6x y 解:原式 2 12 xy
2
7、约分 :
m 4m 4 例(2) 2 m 4 x 2 m 2 2 y 解:原式= ( m 2)(m 2)
2
m2 m2
把分子、分母的最大公因式(数)约去。 1.约分:
2.通分: 把分母不相同的几个分式化成分母相
同的分式。
关键是找最简公分母:各分 母所有因式的最高次幂的积 .
1.约分
(1)
-6x2y 27xy2
(2)
-2(a-b)2
-8(b-a)3
关键找出分子和 分母的公因式
(3)
m2+4m+4 m2 - 4
2.通分
3 1 ( 1 ) 3 2x 2 1 x 解:两边同乘 2( x 1) 3 1 2( x 1) 2( x 1) 3 2( x 1) 2( x 1) x 1 3 2 6x 3 6 一化(整式) 6 x 7 7 二解 x 6 7
经检验: x
5、整数指数幂:
a 1
0
八年级数学上册第二章分式与分式方程复习课件(30张PPT)
解这个方程得:x=30
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.
经检验:x=30 是原方程的解, 所以 1.5x=45 答:实际有 45 人参加了植树活动。
评注:1、分式方程解应用题应相应地增加检验的过程。 2、要注意灵活设未知数。
列方程解应用题:
例4、甲、乙两人分别从相距36千米的 A、B两地同时相向而行,甲从A地出 发到1千米时发现有一物品遗忘在A地 ,立即返回,取过物品后又立即从A地 向B地行进,这样两人恰好在A、B两 地中点处相遇,又知甲比乙每小时多 走0.5千米,求甲、乙两人的速度。
一、分式的概念:
x2 4 1. 若分式 (x 1)(x 2)
若有意义,则x应满足( B )
A、x≠-1 C、x≠2
B、x ≠-1且x ≠2 D、x ≠-1或x ≠2
若值为0,则x应满足( B )
A、x=2
B、x =-2
C、 x 2 D、x =-1或x =2
二、分式的基本性质
1.若把分式 2x 的yx 和y 都扩大两倍,则分式的值( ) B 3x y
(3)
m2+4m+4
m2 - 4
7.通分
(1) x 与 y
6a2b
9ab2c
a-1
(2) a2+2a+1 与
6 a2-1
计算: 8 9
10
算一算
11、解方程
(1) 2 1 x2 x
(2) x 1 1 3 x2 2x
12、列方程,解应用题: 甲、乙两城间的铁路路程为1600千米,经过技
术改造,列车实施了提速,提速后比提速前速度增 加20千米/时,列车从甲城到乙城行驶时间减少了4 小时,这条铁路在现有条件下安全行驶速度不得超 过140千米/时.请你用学过的数学知识说明在这条 铁路的现有的条件下列车还可以提速.
分式和分式方程复习 ppt课件
ppt课件
14
小结
1.通过本节课你复习了哪些知识? 2.应用分式方程知识解决问题时应注意什么问题?
ppt课件
15
1.分式方程的概念 2.分式方程根的概念 3.分式方程的增根问题 4.分式方程的解法 5.分式方程的应用
ppt课件
16
作业1.复习二元一次方程组的内容,掌握概念, 解法,及应用.
2.搜集典型题目5道以上,并有自己对题目 的见解.
(A)
2 x 1
5 x3
(B)3y 1
2
y5 6
2
(C)2x2
1 2
x3
0
(D)2x
5
8x 1 7
考点2分式方程根的概念
例2、若
(A)
9 5
x 3是分式方程 3ax
(B)
9
5 (C)
5 9
2x
1的解,则a的值为(D
(D)
5 9
)
例3关于x的分式方程 m 3 1的解为正数,则m的取值范 围是__________ x 1 1 x
x2 4 2(x 2)
x=-2是增根,应舍去,原方程无解
3.关于x的方程的
m 1 x2
解是负数,则m的取值范围是_m__<_2_且__m_≠0
4.已知
x
a
2
与
b x2
的和等于
x
4x 2
则
4
a
2
,b
2
.
解:根据题意得
ab
4x
x 2 x 2 x2 4x
a(x 2) b(x 2) 4x
ppt课件
1
教学目标
• 1.熟练掌握分式方程的相关概念,解法以及列分式 方程解应用题.
北师版八年级下册第五章分式和分式方程复习课件(28张PPT)
解分式方程一定要 验根 。
【 例5】2019年中国设计了第一条采用我国自主研发的 北斗卫星导航系统的智能化高速铁路﹣﹣京张高铁, 作为2022年北京冬奥会重要交通保障设施。已知北京 至张家口铁路全长约180千米.按照设计,京张高铁 列车的平均行驶速度是普通快车的1.5倍,用时比普通 快车用时少了20分钟,求高铁列车的平均行驶速度.
1
2 2x x 1
)
x2 x
x
1
x的值从﹣2<x<3的整数值中选取。
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x 1)(x 1) 2 2x x 2 x
x 1
x 1 x 1
x2
1 2 2x x 1
x 1 x2 x
x 2 2x 1 x 1 x 1 x2 x
a b ab . cc c (2)异分母分式的加减法则:先通分,化为同分母的分 式,然后按照同分母分式的加减法法则进行计算。
a c ad bc ad bc . b d bd bd bd
3.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号 的先算括号里面的.
计算结果要化为最简分式或整式.
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x
1)(x x 1
1)
2 2x
x
1
x2 x
x
1
x2
1 2 2x x 1
x x2
1
x
x 2 2x 1 x 1 x 1 x2 x
满足﹣2<x<3的整数有 ﹣1,0,1,2, ∵分母x≠0,x+1≠0,x﹣1≠0
【 例5】2019年中国设计了第一条采用我国自主研发的 北斗卫星导航系统的智能化高速铁路﹣﹣京张高铁, 作为2022年北京冬奥会重要交通保障设施。已知北京 至张家口铁路全长约180千米.按照设计,京张高铁 列车的平均行驶速度是普通快车的1.5倍,用时比普通 快车用时少了20分钟,求高铁列车的平均行驶速度.
1
2 2x x 1
)
x2 x
x
1
x的值从﹣2<x<3的整数值中选取。
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x 1)(x 1) 2 2x x 2 x
x 1
x 1 x 1
x2
1 2 2x x 1
x 1 x2 x
x 2 2x 1 x 1 x 1 x2 x
a b ab . cc c (2)异分母分式的加减法则:先通分,化为同分母的分 式,然后按照同分母分式的加减法法则进行计算。
a c ad bc ad bc . b d bd bd bd
3.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号 的先算括号里面的.
计算结果要化为最简分式或整式.
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x
1)(x x 1
1)
2 2x
x
1
x2 x
x
1
x2
1 2 2x x 1
x x2
1
x
x 2 2x 1 x 1 x 1 x2 x
满足﹣2<x<3的整数有 ﹣1,0,1,2, ∵分母x≠0,x+1≠0,x﹣1≠0
《分式方程复习》课件
详细描述
在金融和经济领域,分式方程可以用来描述和预测市场行为、投资回报和成本效益分析等。在交通领 域,分式方程可以用来解决交通流量和路线规划问题。在工程领域,分式方程可以用来描述机械运动 、热传导和电路等问题。
04 分式方程的解题 技巧
转化思想
总结词
转化思想是将复杂问题转化为简单问 题,将未知问题转化为已知问题的一 种解题策略。
详细描述
分式方程与整式方程的主要区别在于分母中是否含有未知数。分式方程的分母中 含有未知数,而整式方程的分母中不含有未知数。此外,分式方程的解法通常需 要更多的技巧和注意事项,例如需要处理分母为零的情法
01
02
03
04
直接求解法
通过对方程进行化简,直接求 出方程的解。
详细描述
在解分式方程时,通过对方程进行适 当的变形和转化,可以将分式方程转 化为整式方程或更容易解决的形式, 从而简化解题过程。
整体思想
总结词
整体思想是从整体角度出发,将 问题看作一个整体,从而简化问 题的一种解题策略。
详细描述
在解分式方程时,可以将方程中 的某些项看作一个整体,通过对 方程进行整体变形和运算,从而 简化解题过程。
代数方法
总结词
代数方法是利用代数性质和定理,对方 程进行变形和求解的一种解题策略。
VS
详细描述
在解分式方程时,可以利用代数性质和定 理,如乘法分配律、合并同类项等,对方 程进行变形和简化,从而找到方程的解。
05 分式方程的易错 点分析
概念理解不清
总结词
概念理解不清晰
详细描述
分式方程的基本概念和定义是解题的基础,如果对分式方程的概念理解不清晰,会导致 解题思路出现偏差,甚至无法正确列出方程。
在金融和经济领域,分式方程可以用来描述和预测市场行为、投资回报和成本效益分析等。在交通领 域,分式方程可以用来解决交通流量和路线规划问题。在工程领域,分式方程可以用来描述机械运动 、热传导和电路等问题。
04 分式方程的解题 技巧
转化思想
总结词
转化思想是将复杂问题转化为简单问 题,将未知问题转化为已知问题的一 种解题策略。
详细描述
分式方程与整式方程的主要区别在于分母中是否含有未知数。分式方程的分母中 含有未知数,而整式方程的分母中不含有未知数。此外,分式方程的解法通常需 要更多的技巧和注意事项,例如需要处理分母为零的情法
01
02
03
04
直接求解法
通过对方程进行化简,直接求 出方程的解。
详细描述
在解分式方程时,通过对方程进行适 当的变形和转化,可以将分式方程转 化为整式方程或更容易解决的形式, 从而简化解题过程。
整体思想
总结词
整体思想是从整体角度出发,将 问题看作一个整体,从而简化问 题的一种解题策略。
详细描述
在解分式方程时,可以将方程中 的某些项看作一个整体,通过对 方程进行整体变形和运算,从而 简化解题过程。
代数方法
总结词
代数方法是利用代数性质和定理,对方 程进行变形和求解的一种解题策略。
VS
详细描述
在解分式方程时,可以利用代数性质和定 理,如乘法分配律、合并同类项等,对方 程进行变形和简化,从而找到方程的解。
05 分式方程的易错 点分析
概念理解不清
总结词
概念理解不清晰
详细描述
分式方程的基本概念和定义是解题的基础,如果对分式方程的概念理解不清晰,会导致 解题思路出现偏差,甚至无法正确列出方程。
《分式方程》分式与分式方程PPT
产生增根的原因,是我们在方程的两边同乘了一个可能使分
母为零的整式.
因此解分式方程可能产生增根,所以解分式方程 必须检验.
验根的三种方法:
(1)把解直接代入原方程进行检验;
(2)把解代入每个分式的分母,看分母的值是否等于零,若有
等于零的分母,即为增根.
(3)把解代入分式的最简公分母,看最简公分母的值是否等于
3、解一元一次方程的基本步骤:
2x 1 x + 1
+ =
3 2
4
解:去分母得:
移项得:
合并同类项得:
系数化为1得:
8x + 6 = 3x + 3
8x − 3x = 3 − 6
5x = −3
3
x=−
5
合作探究
你能试着解这个分式方程吗?
90
60
=
30 + 30 −
(1)如何把它转化为整式方程呢?
分式与分式方程
5.4 分式方程
- .
学习目标
1、经历探索分式方程解法的过程.
2、会解可化为一元一次方程的分式方程.
3、会检验根的合理性,明确可化为一元一次方程的分式方
程与一元一次方程的联系与区别.
新课导入
1、什么是分式方程?
分母中含有未知数的方程叫做分式方程.
2、分式有意义的条件是什么?
分母不为零
D )
1
2.已知x=1是分式方程
+1
3.如果方程
−3
=
=
1
3
的根,则实数k=__________.
6
3
x=3 .
有增根,那么增根的值为_________
分式和分式方程总结 ppt课件
(2)分母中含未知数. 分式方程与整式方程的根本区别是什么?
17
解分式方程的步骤
解分式方程与解一元一次方程类似, 化——包括去分母(在方程两边都乘最简公分母,化为整式方程); 解——这个整式方程,得出未知数的值; 检验——所得到的值是否是原分式方程的根;写出答案
18
例7:
19
分式方程的增根问题:
求 k 的值.
21
分式方程无解时,求参数的值: 1、分式方程除了增根,没有其它的解时,把增根代 入转化后的整式方程即可求出参数的值; 2、分式方程转化为整式方程,使整式方程无解的参 数的值也是
22
例9:
23
练习:
24
列分式方程解应用题的方法与步骤
1.审:审题,找出相等关系. 2.设:一般求什么设什么——这是直接设,也可间接设. 3.列:根据等量关系列出分式方程. 4.解:解这个分式方程. 5.验:既要检验是否为所列分式方程的根,又要检验是 否符合实际情况. 6.答:完整地写出答案,注意单位. 这六个步骤关键是“列”,难点是“审”.
2 ⑤x2+2x+1;
a2b+ab2 ⑥2;
⑦x
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
后的结果为最简分式
7
分式的乘(除)法法则
两个分式相乘,把分子相乘的积作为积的分子,把分母 相乘的积作为积的分母.
两个分式相除,把除式的分子和分母颠倒位置后再与被 除式相乘.
17
解分式方程的步骤
解分式方程与解一元一次方程类似, 化——包括去分母(在方程两边都乘最简公分母,化为整式方程); 解——这个整式方程,得出未知数的值; 检验——所得到的值是否是原分式方程的根;写出答案
18
例7:
19
分式方程的增根问题:
求 k 的值.
21
分式方程无解时,求参数的值: 1、分式方程除了增根,没有其它的解时,把增根代 入转化后的整式方程即可求出参数的值; 2、分式方程转化为整式方程,使整式方程无解的参 数的值也是
22
例9:
23
练习:
24
列分式方程解应用题的方法与步骤
1.审:审题,找出相等关系. 2.设:一般求什么设什么——这是直接设,也可间接设. 3.列:根据等量关系列出分式方程. 4.解:解这个分式方程. 5.验:既要检验是否为所列分式方程的根,又要检验是 否符合实际情况. 6.答:完整地写出答案,注意单位. 这六个步骤关键是“列”,难点是“审”.
2 ⑤x2+2x+1;
a2b+ab2 ⑥2;
⑦x
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
后的结果为最简分式
7
分式的乘(除)法法则
两个分式相乘,把分子相乘的积作为积的分子,把分母 相乘的积作为积的分母.
两个分式相除,把除式的分子和分母颠倒位置后再与被 除式相乘.
12.4 分式方程课件(共19张PPT)
12.4 分式方程
第十二章 分式和分式方程
学习目标
1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时出现的无解情况及增根.
学习重难点
理解并掌握解分式方程的基本思路和解法.
难点
重点
理解解分式方程时出现的无解情况及增根.
复习回顾
方程含有未知数的等式叫做方程.
一元一次方程只含有一个未知数(也称元),并且未知数的次数是1.
整式方程分母不含有未知数的方程.
情景引入
小红家到学校的路程为38 km.小红从家去学校总是先乘公共汽车,下车后再步行2 km,才能到学校,路途所用时间是1 h.已知公共汽车的速度是小红步行速度的9倍,求小红步行的速度.
一起探究
知识点2 分式方程的增根
总结归纳
解分式方程的一般步骤:
分式方程
整式方程
检验
若最简公分母=0(分式方程无意义)
若最简公分母≠0(分式方程有意义)
经检验,是原分式方程的解(根)
经检验,原分式方程无解,这样的根叫做分式方程的增根
例2 解方程:
解分式方程一定要注意验根.
随堂练习
D
拓展提升
B
归纳小结
上面得到的方程与我们已学过的方程有什么不同?这两个方程有哪些共同特点?
谈一谈
像上面得到的方程那样,分母中含有未知数的方程叫做分式方程.使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根).
例题解析
例1 解方程:
思考
不是.因为当x=1时,x-1=0,即这个分式方程的分母为0,方程中的分式无意义,所以x=1不是这个分式方程的解(根).
探究新知
知识点1 分式方程及其解的概念
第十二章 分式和分式方程
学习目标
1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时出现的无解情况及增根.
学习重难点
理解并掌握解分式方程的基本思路和解法.
难点
重点
理解解分式方程时出现的无解情况及增根.
复习回顾
方程含有未知数的等式叫做方程.
一元一次方程只含有一个未知数(也称元),并且未知数的次数是1.
整式方程分母不含有未知数的方程.
情景引入
小红家到学校的路程为38 km.小红从家去学校总是先乘公共汽车,下车后再步行2 km,才能到学校,路途所用时间是1 h.已知公共汽车的速度是小红步行速度的9倍,求小红步行的速度.
一起探究
知识点2 分式方程的增根
总结归纳
解分式方程的一般步骤:
分式方程
整式方程
检验
若最简公分母=0(分式方程无意义)
若最简公分母≠0(分式方程有意义)
经检验,是原分式方程的解(根)
经检验,原分式方程无解,这样的根叫做分式方程的增根
例2 解方程:
解分式方程一定要注意验根.
随堂练习
D
拓展提升
B
归纳小结
上面得到的方程与我们已学过的方程有什么不同?这两个方程有哪些共同特点?
谈一谈
像上面得到的方程那样,分母中含有未知数的方程叫做分式方程.使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根).
例题解析
例1 解方程:
思考
不是.因为当x=1时,x-1=0,即这个分式方程的分母为0,方程中的分式无意义,所以x=1不是这个分式方程的解(根).
探究新知
知识点1 分式方程及其解的概念
分式和分式方程(复习)课件
2 2 2
最简公分母的确定
如果分母是单项式时,最简公分母是:①系数取最 小公倍数;②字母取所有字母;③字母的次数取所 有字母的最高次幂。 如果分母是多项式时,应该先考虑分解因式,再确 定最简公分母。 1 3 2 例: )通分: 与 (1 、 3 2 ax 2b x 3cx x2 x 1 ( 2)通分:2 与 2 x 2x x 4x 4
解:方程两边都乘以 4得: x
2
(x 2) a ( x 2)
2
2
若方程有增根,只能是 2或x 2 x 将x 2和x 2分别代入整式方程可得 : a 16或a 16
m 1 1、关于x的方程 1 x 1 x 2 1 有增根-1,求m
2、若方程
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 ······ 程的根. ··· 使最简公分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, 而不是分式方程的根.···· ····
x2 a x2 例:若关于x的方程 2 x2 x 4 x2 有增根,求a的值。
ab 1 1 解:由已知可得 3, 即 3(1), ab a b 1 1 1 1 同理得: 4(2), 5 b c c a 1 1 1 6 a b c 1 1 原式 ab bc ac 6 abc
分式 方程
概念:分母中含有未知数的有理方程,叫做 分式方程。 解分式方程的步骤: 将分式方程转化为整式方程(方程两边同时乘 以最简公分母) 解整式方程 检验(验根) 写出方程的解
解分式方程易错点分析
一、去分母时常数漏乘 最简公分母 2 x 1 例1、解方程: 2 x 3 3 x 二、去分母时,分子是 多项式不加括号 5 3 x 例2、解方程: 2 0 x 1 x 1 三、方程两边同时除以 可能为零的整式 3x 2 3x 2 例3、解方程: x4 x3
最简公分母的确定
如果分母是单项式时,最简公分母是:①系数取最 小公倍数;②字母取所有字母;③字母的次数取所 有字母的最高次幂。 如果分母是多项式时,应该先考虑分解因式,再确 定最简公分母。 1 3 2 例: )通分: 与 (1 、 3 2 ax 2b x 3cx x2 x 1 ( 2)通分:2 与 2 x 2x x 4x 4
解:方程两边都乘以 4得: x
2
(x 2) a ( x 2)
2
2
若方程有增根,只能是 2或x 2 x 将x 2和x 2分别代入整式方程可得 : a 16或a 16
m 1 1、关于x的方程 1 x 1 x 2 1 有增根-1,求m
2、若方程
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 ······ 程的根. ··· 使最简公分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, 而不是分式方程的根.···· ····
x2 a x2 例:若关于x的方程 2 x2 x 4 x2 有增根,求a的值。
ab 1 1 解:由已知可得 3, 即 3(1), ab a b 1 1 1 1 同理得: 4(2), 5 b c c a 1 1 1 6 a b c 1 1 原式 ab bc ac 6 abc
分式 方程
概念:分母中含有未知数的有理方程,叫做 分式方程。 解分式方程的步骤: 将分式方程转化为整式方程(方程两边同时乘 以最简公分母) 解整式方程 检验(验根) 写出方程的解
解分式方程易错点分析
一、去分母时常数漏乘 最简公分母 2 x 1 例1、解方程: 2 x 3 3 x 二、去分母时,分子是 多项式不加括号 5 3 x 例2、解方程: 2 0 x 1 x 1 三、方程两边同时除以 可能为零的整式 3x 2 3x 2 例3、解方程: x4 x3
《分式方程》分式PPT课件 (共18张PPT)
X(x―3)
X2-1=0
时,
3 x2 3、分式 2( x 3)与 x 2 3x 的最简公分母 是 2X(x―3) .
解分式方程
例1 解分式方程
x11 x1 2
分式方程
解: 方程的两边同乘以最简公分母2(x+1), 转 ● ● ● ● ● 化 x 1 1 得 2(x+1) · x1 2 · 2(x+1) 整式方程 ① 化简,得整式方程 2(x-1)=x+1
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 · · · · · · 程的根. · · · 使分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, · · · · 而不是分式方程的根. · · · ·
练 x(x 2) 解 : 方程两边同乘以最简公分母 , 一 2+ x -6=0 或x(x+1)-6=0 x 化简 , 得 . 练① ② 解得 x1= -3 , x2= 2 . ③ 检验:把x1= -3,代入最简公分母,
概 念 观察下列方程: 一元一次方程
1、2(x-1)=x+1;
一元二次方程
x2+x-20=0;
x+2y=1…
整式方程: 方程两边都是整式的方程.
1 x 1 1 1 1 x 1 5 x 9 x 0 ; ; 1 ; 2、 y 2 x 1 x 1 2 x 1 x 1 x 1
· · · · · · · · · x(x-2)=-3(-3-2)= 15 ≠0; 把x2= 2 ,代入最简公分母,
x 1 6 0 (填空)1、解方程: x 2 2 x 2 x
7
x(x-2)= 2(2-2) =0
X2-1=0
时,
3 x2 3、分式 2( x 3)与 x 2 3x 的最简公分母 是 2X(x―3) .
解分式方程
例1 解分式方程
x11 x1 2
分式方程
解: 方程的两边同乘以最简公分母2(x+1), 转 ● ● ● ● ● 化 x 1 1 得 2(x+1) · x1 2 · 2(x+1) 整式方程 ① 化简,得整式方程 2(x-1)=x+1
增根的定义
增根:在去分母,将分式方程转化为整 式方程的过程中出现的不适合于原方 · · · · · · 程的根. · · · 使分母值为零的根 产生的原因:分式方程两边同乘以一个 零因式后,所得的根是整式方程的根, · · · · 而不是分式方程的根. · · · ·
练 x(x 2) 解 : 方程两边同乘以最简公分母 , 一 2+ x -6=0 或x(x+1)-6=0 x 化简 , 得 . 练① ② 解得 x1= -3 , x2= 2 . ③ 检验:把x1= -3,代入最简公分母,
概 念 观察下列方程: 一元一次方程
1、2(x-1)=x+1;
一元二次方程
x2+x-20=0;
x+2y=1…
整式方程: 方程两边都是整式的方程.
1 x 1 1 1 1 x 1 5 x 9 x 0 ; ; 1 ; 2、 y 2 x 1 x 1 2 x 1 x 1 x 1
· · · · · · · · · x(x-2)=-3(-3-2)= 15 ≠0; 把x2= 2 ,代入最简公分母,
x 1 6 0 (填空)1、解方程: x 2 2 x 2 x
7
x(x-2)= 2(2-2) =0
《认识分式》分式与分式方程PPT
确定最大公因式的步骤: ①确定系数,取分子与分母系数的最大公因数; ②确定字母(因式),取分子与分母中相同的字母(因式); ③确定字母(因式)的指数,相同字母(因式)的最小指数.
练习1 化简(1) 14mn 2k 4mn
x y
(2)x y3
解: 7nk 2mn 2 2mn
1x y 解: x y2 x y
认识分式
-.
一般地,用A、B表示两个整式, A÷B可以表示成 A 的形式,如
果B中含有字母,那么称
A
为分式
.
B
其中A称为分式的分子,
B
B称为分式的分母,对任意一个分式,分母都不能为零 .
分式
A B
有意义:
B
≠
0
分式
A B
无意义:
B
=
0பைடு நூலகம்
分式
A B
值为零:
A
=
0且B
≠
0
1、经历类比、归纳分式基本性质的过程, 理解并掌握分式的基本性质;(重点)
7nk 2
1
x y2
约分注意事项
(1)依据:分式的基本性质
(2)关键:确定分式分子与分母的最大公因式
(3)结果:最简分式或整式
a 思考 下列两组式子的值与 有什么关系?
b
(1) a , a b b
等于 a b
(2) a , a , a b b b
等于a b
分式的分子、分母和分式本身的符号: (1)改变其中任意一个符号,分式的值变成原分式值的相反数; (2)同时改变其中任意两个符号,分式的值不变.
练习2 化简
(1) 4 x 2 x2 2x
y x
(2) x y3
《分式方程》分式与分式方程PPT课件(第1课时)
解:(2)、(3)是分式方程,(1)、(4)、(5) 是整式方程,(6)不是方程.
注意:判断一个方程是不是分式方程,关键是看分母 中有没有未知数.(4)中π是一确定的数不是未知数.
2.岳阳市某校举行运动会,从商场购买一定数量的 笔袋和笔记本作为奖品.若每个笔袋的价格比每个
笔记本的价格多3元,且用200元购买笔记本的数量 与用350元购买笔袋的数量相同.设每个笔记本的 价格为x元,则可列方程__2_0x_0___x3_5_03_.
等量关系: 列车的速度×行驶时间=1400 乘高铁列车行驶时间=乘特快列车的行驶时间﹣9 高铁列车的平均速度=特快列车平均速度× 2.8
(2)如果设特快列车的平均行驶速度为 x km/h, 那么 x 满足怎样的方程?
1400 1400 9
x
2.8x
(3)如果设小明乘高铁列车从甲地到乙地需 y h, 那么 y 满足怎样的方程?
4 分式方程
第1课时
面对日益严重的土地沙化问题, 某县决定分期分批固沙造林,一期工 程计划在一定期限内固沙造林2400公 顷,实际每月固沙造林的面积比原计 划多30公顷,结果提前4个月完成计 划任务。原计划每月固沙造林多少公 顷?
1、这一问题中有哪些已知量和未知量?
已知量:造林总面积2400公顷;实际每月造林面 积比原计划多30公顷;提前4个月完成原任务 未知量:原计划每月固沙造林多少公顷
1400 2.8 1400
y
y9
为了帮助遭受自然灾害地 区重建家园,某学校号召同学 自愿捐款.已知七年级同学捐 款总额为4800 元,八年级同 学捐款总额为5000元,八年级 捐款人数比七年级多 20人, 而且两个年级人均捐款额恰好 相等.如果设七年级捐款人数 为 x 人,那么 x 满足怎样的 方程?
《分式与分式方程》课件
详细描述
分式的定义中,分母是除数,可以是整数 、多项式或分式。
分式的值随着分子和分母的取值变化而变 化,当分子和分母同号时,分式的值为正 ;当分子和分母异号时,分式的值为负。
分式的性质
总结词
分式的性质
详细描述
分式具有一些重要的性质,如分式的加减法、乘除法、约分和通分等 。
详细描述
分式的加减法性质指出,当分母相同时,可以直接对分子进行加减运 算;当分母不同时,需要先进行通分,再进行加减运算。
详细描述
分式的乘除法性质指出,分式与整数相乘或相除时,可以直接对分子 和分母分别进行乘除运算。
分式的约分与通分
总结词
分式的约分与通分
详细描述
约分是指将一个分式化简为最简形式的过程,通过约简分子和分母的公因式来 实现。通分是指将两个或多个分式化为具有相同分母的过程,以便进行加减运 算。
02
分式方程的解法
总结词
理解同分母分式的加减法规则
详细描述
同分母的分式可以直接进行加减运算,分母不变, 分子进行相应的加减运算。
总结词
掌握异分母分式的加减法规则
详细描述
异分母的分式在加减时,需要先通分,然后按照同分母 分式的加减法规则进行运算。
分式的乘除法
总结词
理解分数乘法的规则
01
详细描述
02 分数乘法时,分子乘分子作为
THANKS
新的分子,分母乘分母作为新 的分母,然后再化简。
总结词
理解分数除法的规则
03
详细描述
04 分数除法时,可以转化为乘法
运算,即被除数乘以除数的倒 数,然后再化简。
总结词
掌分式的一种方法,
通过分子和分母的最大公约数 来约简分式。
分式的定义中,分母是除数,可以是整数 、多项式或分式。
分式的值随着分子和分母的取值变化而变 化,当分子和分母同号时,分式的值为正 ;当分子和分母异号时,分式的值为负。
分式的性质
总结词
分式的性质
详细描述
分式具有一些重要的性质,如分式的加减法、乘除法、约分和通分等 。
详细描述
分式的加减法性质指出,当分母相同时,可以直接对分子进行加减运 算;当分母不同时,需要先进行通分,再进行加减运算。
详细描述
分式的乘除法性质指出,分式与整数相乘或相除时,可以直接对分子 和分母分别进行乘除运算。
分式的约分与通分
总结词
分式的约分与通分
详细描述
约分是指将一个分式化简为最简形式的过程,通过约简分子和分母的公因式来 实现。通分是指将两个或多个分式化为具有相同分母的过程,以便进行加减运 算。
02
分式方程的解法
总结词
理解同分母分式的加减法规则
详细描述
同分母的分式可以直接进行加减运算,分母不变, 分子进行相应的加减运算。
总结词
掌握异分母分式的加减法规则
详细描述
异分母的分式在加减时,需要先通分,然后按照同分母 分式的加减法规则进行运算。
分式的乘除法
总结词
理解分数乘法的规则
01
详细描述
02 分数乘法时,分子乘分子作为
THANKS
新的分子,分母乘分母作为新 的分母,然后再化简。
总结词
理解分数除法的规则
03
详细描述
04 分数除法时,可以转化为乘法
运算,即被除数乘以除数的倒 数,然后再化简。
总结词
掌分式的一种方法,
通过分子和分母的最大公约数 来约简分式。
《分式方程》分式与分式方程PPT教学课件
分式方程
-.
学习目标
1. 掌握分式方程的概念,可以判别分式方程; 2. 可以根据实际问题列分式方程.
情境引入
甲、乙两地相距 1400 km,乘高铁列车 从甲地到乙地比乘特快列车少用 9 h,已知 高铁列车的平均行驶速度是特快列车的2.8倍.
(1)这一问题中有哪些等量关系呢?
等量关系: 列车的速度×行驶时间=1400, 高铁列车行驶时间=特快列车的行驶时间﹣9, 高铁列车的平均速度=特快列车平均速度×2.8.
捐款总额 捐款人数
第一次 4800元 第二次 5000元
x x+20
人均捐款额
4800 x
5000 x 20
4800 5000
x
x 20
探究新知 观察:下列方程有什么共同特点?
1400 1400 9 x 2.8x
1400 2.8 1400
y
y9
4800 5000 x x 20
分母中都含有未知数
3
情境引入
甲、乙两地相距 1400 km,乘高铁列车 从甲地到乙地比乘特快列车少用 9 h,已知 高铁列车的平均行驶速度是特快列车的2.8倍.
(2)如果设特快列车的平均行驶速度为xkm/h, 那么x满足怎样的方程?
高铁列车平均速度:2.8x
特快列车行驶时间: 1400
x
高铁列车行驶时间:1400
2.8 x
等量关系:
第一块试验田的面积 = 第二块试验田的面积
12000 14000 x x 1500
问题解决
2.某运输公司需要装运一批货物,由于机械设备没有及时到位,只好 先用人工装运,6h完成了一半任务;后来机械装运和人工装运同时进 行,1h完成了后一半任务.如果设单独采用机械装运xh可以完成后一 半任务,那么x满足怎样的分式方程?
-.
学习目标
1. 掌握分式方程的概念,可以判别分式方程; 2. 可以根据实际问题列分式方程.
情境引入
甲、乙两地相距 1400 km,乘高铁列车 从甲地到乙地比乘特快列车少用 9 h,已知 高铁列车的平均行驶速度是特快列车的2.8倍.
(1)这一问题中有哪些等量关系呢?
等量关系: 列车的速度×行驶时间=1400, 高铁列车行驶时间=特快列车的行驶时间﹣9, 高铁列车的平均速度=特快列车平均速度×2.8.
捐款总额 捐款人数
第一次 4800元 第二次 5000元
x x+20
人均捐款额
4800 x
5000 x 20
4800 5000
x
x 20
探究新知 观察:下列方程有什么共同特点?
1400 1400 9 x 2.8x
1400 2.8 1400
y
y9
4800 5000 x x 20
分母中都含有未知数
3
情境引入
甲、乙两地相距 1400 km,乘高铁列车 从甲地到乙地比乘特快列车少用 9 h,已知 高铁列车的平均行驶速度是特快列车的2.8倍.
(2)如果设特快列车的平均行驶速度为xkm/h, 那么x满足怎样的方程?
高铁列车平均速度:2.8x
特快列车行驶时间: 1400
x
高铁列车行驶时间:1400
2.8 x
等量关系:
第一块试验田的面积 = 第二块试验田的面积
12000 14000 x x 1500
问题解决
2.某运输公司需要装运一批货物,由于机械设备没有及时到位,只好 先用人工装运,6h完成了一半任务;后来机械装运和人工装运同时进 行,1h完成了后一半任务.如果设单独采用机械装运xh可以完成后一 半任务,那么x满足怎样的分式方程?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
••••(3)(x2 xyy2)2
(xy)2••• yx
.
5、求值
(1) m 3
mn 2m 2n
mn
2
, 其中
m
5,n
7; 2
( 2 ) 1 1 3 , 求 5 x xy 5 y 的值;
xy
x xy y
x (3)
2
y 3
z ,求 4
xy x2
第十二章
.
教学目标
• 1.熟练掌握分式方程的相关概念,解法以及列分式 方程解应用题.
• 2提高对问题的理解能力﹑反思能力和归纳总结
能力. • 3通过小组合作,培养积极参与的习惯,养成主动学
习﹑合作交流的习惯.
.
本章知识归纳
1分式
2分式有(无)意义,分式的值为0的条件
3分式的约分、通分 4.分式方程的概念 注意:分式方程要验根 5.分式方程根的概念 6.分式方程的增根问题 7.分式方程的解法 8.分式方程的应用
a(x 2) b(x 2) 4x
(a b)x 2a 2b 4x
.
5.在某一城市美化工程招标时,有甲.乙两个工程队投标.经 测算:甲队单独完成这项工程需要60天;若由甲队先做20 天,剩下的工程由甲乙合作24天可以完成.
(1)乙队单独完成这项工程需要多少天?
90天
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程 款2万元.若该工程计划在70天内完成,在不超过计划天数的 前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙 两队全程合作完成该工程省钱?
4
x
例4若方程
0 x2 2x x2
有增根,则增根为( c )
A 0或2 B0 C2 D 1
解:方程两边同乘以x(x-2),得
4x2 0 x2
但x=2时分母才为零,所以增根是x=2
反思
增根可能为0,也可能为2,具体是什么, 应化为整式方程解出来最后确定.
.
若方程 3 2 1有增根,则增根
2x4 x2
.
基础盘点
1 .分__母__中__含__有__未__知__数___的方程叫分式方程.例如 1x 1 2
• 2. 解分式方程的一般步骤:
x2 2x
• (1)去分母,在方程的两边都乘以 _各__个__分式的最简公分母 _________约去分母,化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入 最简公_分__母____ ,看结果是不是
.
4.分式方程的解法
(98西安)解方程:
x 12x24 x42 2x1
解:原方程可化为 1 4x 2 1 x2 (x2)(x2) x2
两边都乘以 (x2)(x2) ,并整理得;
x23x20 解得 x11,x22
检验:x=1是原方程的根,x=2是增根
∴原方程的根是x=1
.
5.分式方程的应用
例7 A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙 从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达 A地后停留40分钟,然后骑车按原路原速返回,结果甲乙二人同时到达B 地.请你就”甲从A地到B地步行所用的时间”或”甲步行的速度”提 出一个用分式方程解决的问题,并写出解题过程.
问题:甲从A地到B地步行用多长时间?
A
B
解: 40+20=60(分)=1小时 设甲从A地到B地用x小时,根据题意
A
B
30 15 10
x1 x
解得
1
x1
3,
x2
2
都经是检原验方, 程x1的根3,,x但2 x2 12
1 2
不符合题意应舍去,所以X=3
答:甲从A地去B地步行所用时间为3小时.
或:甲的速度 是5千米
零,使____最__简__公__分__母_____为零的根是原方程的增根,必须舍去.
• (4)得出结论. • 3.增根的本质是适合分式方程所化成的__整__式__方程,却使原分式方程
分母为_0__.
• 4.分式方程的应用:
• 分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验: (1)检验所求的解是否是所列 分式方程的根 _____;
甲完成工程款是60*3.5=210万元
甲乙合作完成所需时间是36天
甲乙合作完成工程款是36*5.5=198万元
.
强化练习典型例题
一、相关概念的考察
1、分a式b的值为零时a, ,b实 应数 a1
满足什么条件?
2、若分x式 1 无意义x, _则 ______ 2x3
••••若
分x式 1有 x21
意
义x, _则 ____._
.
二、分式的运算
3、•(1) 4 3 •••••• (2) x 1 x 1
aa
x1 x1
4x2 1 2x 1 ••••(3) 4 x2 4 x 1 2 x 1
1
1
xy
••••(4)(
x
y
x
) y
x2
y2
.
4、•(1)b(ba22abb2)•••••(2)a
x2 y2 xbxaya
• (2)检验所求的解是否 是符合题意__的__根__.
考点呈现
考点1分式方程的概念
例1、下列方程是分式方程的是( A )
(A)
2 x 1
x
5
3
(B)3y1
2
y52 (C)2x2
6
1 2
x 3 0
(D)2x
5ห้องสมุดไป่ตู้
8x 1 7
考点2分式方程根的概念
例2、若
(A)
9 5
x 3是分式方程 3 a x
(B)
应是 X=-2
解关于x的方程
2 ax 3
x2x2
4 x2
产生增根,则常数a= -4或6 。
.
例5若关于x的方程 x2 m 2 无解,则m的值为_1__ x3 x3
解:去分母,化为整式方程得 x-2=m+2(x-3)
x-2x=m-6+2 -x=m-4 x=-m+4
无解则必定x=3, 即-m+4=3 m=1
.
三跟踪练习
x2 x3
1.解方程:
x1
3
x1
x1 2
x
1
2.解方程:
x2 4 2(x2)
x=-2是增根,应舍去,原方程无解
3.关于x的方程的
m 1 x2
解是负数,则m的取值范围是_m__<_2_且__m_≠0
4.已知 a
x2
与
x
b
2
的和等于
x
4x 2
则
4
a2
,b
2
.
解:根据题意得 a b 4x x 2 x 2 x2 4x
9 5
(C)
5 9
2 x
1 的解,则a的值为(D
(D)
5 9
)
例3关于x的分式方程
m
3
1的解为正数,则m的取值范
围是__________ x1 1x
分析:因为解为正数,所以x的取值范围是 X>0且x≠1
去分母,原方程可化简为x=m-2,所以m-2>0且m-2 ≠1
所以m>2且m≠3
.
3.分式方程的增根和无解问题.