美国环保局 EPA 试验 方法 8318

合集下载

美国EPA快速评价体系

美国EPA快速评价体系

美国EPA快速评价体系
美国EPA快速评价体系:EPA是美国环境保护署(U.SEnvironmentalProtectionAgency)的英文缩写。

美国EPA快速评价体系的主要任务是保护人类健康和自然环境。

EPA总部设在华盛顿, 有 10 个地方办公室和几十个实验室。

在全美国有18000 名雇员。

他们半数以上是工程师 , 科学家和政策分析家。

负责对很多环境项目设立国家标准 , 监控强制性标准的执行和符合情况。

EPA 联合州和地方政府颁发一系列商业以及工业许可证。

EPA认证美国环保总署EPA的主要目的是保护人民健康、保护生态环境--空气、水和土地这些我们赖以生存的环境。

在成立之后的30多年,EPA一直在为给全美人民创造一个整洁的健康环境而努力。

如果符合EPA要求,则EPA会颁发符合证书。

epa毒理参数和筛选值

epa毒理参数和筛选值

epa毒理参数和筛选值一、概述EPA(美国环保署)毒理参数和筛选值是用于评估化学品毒性的重要标准。

这些参数和值是根据大量的科学研究和实践经验得出的,用于指导化学品的安全使用和管理。

本文将介绍EPA毒理参数和筛选值的基本概念、目的和用途。

二、定义与范围EPA毒理参数和筛选值通常涉及化学品的生物累积性、毒性效应、暴露评估等方面。

这些参数和值适用于各种环境介质(如水、空气、土壤等)和生物体,包括人类和其他动物。

这些参数和值的范围广泛,包括急性毒性、慢性毒性、生态毒性、致畸毒性等。

三、评估方法评估化学品毒性通常采用实验方法,包括动物实验和人体研究。

实验过程中,需要确定合适的剂量范围和暴露时间,以模拟实际环境中的暴露情况。

实验结果将用于计算化学品对生物体的毒性效应,并据此得出相应的毒理参数和筛选值。

四、毒理参数与筛选值的差异毒理参数是指化学品对生物体造成危害的综合能力,通常由一组实验结果得出。

而筛选值是指针对特定目标(如特定组织或器官)或特定生物群体的化学品毒性参数的较低阈值,用于初步判断化学品是否可能对生物体造成危害。

五、应用与影响EPA毒理参数和筛选值对于环境保护和公共健康至关重要。

它们为化学品的风险评估和管理提供了依据,有助于制定合理的政策和管理措施,确保公共安全和生态环境不受损害。

此外,这些参数和值也为科研人员提供了研究化学品毒性的基础数据,有助于推动毒理学研究的发展。

六、结论EPA毒理参数和筛选值是评估化学品毒性的重要标准,涵盖了广泛的化学品和环境介质。

通过实验方法和科学研究,这些参数和值被用来评估化学品的综合毒性,并确定较低的阈值用于初步判断化学品是否可能对生物体造成危害。

这些参数和值对于环境保护和公共健康至关重要,为化学品的风险评估和管理提供了依据,有助于制定合理的政策和管理措施,确保公共安全和生态环境不受损害。

七、建议与展望为了更好地应对化学品对环境和人类健康的威胁,建议加强毒理学研究,提高毒理参数和筛选值的准确性和适用性。

美国EPA最新参考方法标准

美国EPA最新参考方法标准

07/25/06
环境 S.A 公司
Graseby Andersen/GMW 公司
MP101M 型 PM10 监测 器
1200 型大容量空气采样 器
自动等价方法: 配置 40CFR 50 附录 L 中特定
EQPM-0404-151 的带通风孔的 PM10 进气口或
其先前平顶式版本及三个可选
联邦公告:卷 69, 温控采样管(RST),操作满量
RFPS-1287-063 1200 型 PM10 特定粒径进口和
标识为 SAUV-10H、SAUV-11H、
联邦公报:卷 52, GMW-IP-10、GMW-IP-10-70、
第 45684 页 , GMW-IP-10-801

12/01/87 及卷 53, GMW-IP-10-8000 中的任何一个
联邦公报:卷 63, 孔的进口,作为 PM10 参考方法 第 69625 页 , 配置,流量为 16.67 升/分钟,24
12/17/98
小时连续采样周期操作。原有固
最 新 修 订 : 件版本为 5.X 和稍低或者新固
PQ100 操作说明书或修订版
06/23/99
/分钟,24 小时连续采样周期操
作。符合 RAAS105-200 操作说
明书,遵循 40 CFR 第 50 部分,
附录 J 或附录 M 中有关要求和
特别规定的样品采集过滤器。
手动参考方法: 配备 RAAS-10 PM10 进口或附
RFPS-0699-132 录 L,40 联邦法规(CFR)50,
第 1062 页 , 大容量采样器,这些采样器含有
01/15/88
以下部件:带有丙烯腈-丁二烯-
苯乙烯塑胶过滤器托架和电机/

EPA方法索引

EPA方法索引

EPA方法索引和相关标准品EPA 是美国国家环境保护局(U.S Environmental Protection Agency) 的英文缩写。

它的主要任务是保护人类健康和自然环境。

EPA 制定了一系列标准分析方法用于环境监测领域。

主要包括:EPA T01~T14 系列标准分析方法——空气中有毒有机物分析方法EPA IP1~IP10 系列标准分析方法——室内空气污染物的分析测定方法EPA 200 系列标准分析方法———金属的分析方法EPA 500 系列标准分析方法——饮用水中有机物的分析方法EPA 600 系列标准分析方法——城市和工业废水中有机化合物的分析方法SW -846 系列标准分析方法——固体废弃物试验分析评价手册1300 系列是毒性试验方法3000 系列是金属元素的提取方法3500 系列是半(非) 挥发性有机物的提取方法3600 系列是净化、分离方法5000 系列是挥发性有机物的提取方法6000 系列是测定金属的新方法7000 系列是原子吸收法测定金属元素8000 系列是有机物分析方法9000 系列是常规项目分析方法其中,500系列,600系列和8000系列是环境种有机物分析最常用的方法。

EPA 600系列方法是美国为贯彻“净水法”(CW A) 、“全国水体污染物排放消除制度”(NPDES) 和“许可证制度”,严格控制点源排放,保护地表水,使其免受城市和工业废水中有机物的污染而制定的。

EPA 500 系列方法是为执行“安全饮用水法”(SDW A) 和“国家一级饮用水法案”(National Primary Drinking Water Regulations) ,确保饮用水及饮用水源的质量而制订的。

EPA 500 系列是针对比较洁净的水样(饮用水、地下水、地表水) 开发的,有些方法仅用试剂水和饮用水验证过SW-846 系列集中贯彻了“资源保护回收法”和“陆地处置限制法规”的精神,包含了固体废弃物采样和分析试验的全部方法, 是在EPA200 ~EPA 600 系列的基础上发展起来的。

美国EPA排放法规

美国EPA排放法规

美国高速公路摩托车排放法规介绍尹涛(天津大学天津摩托车技术中心)Yin Tao (Tianjin University Tianjin Motorcycle Technical center)高速公路摩托车排放法规自1980年生效20多年来未做过修订,2002年7月,美国环保署提出了重新修订高速公路摩托车排放法规的议案,2005年正式推出了法规的修订本,其法规排放试验限值变化如表1所示。

表1 高速公路摩托车排放限值第1阶段(2006年执行)表2 高速公路摩托车排放限值第2阶段(2010年执行)从表中看到,新的排放法规对排量小于50 mL的摩托车提出了限值要求,并规定测试循环与原Ⅰ类摩托车测试循环相同,均为505秒的冷起阶段,864秒的过渡阶段,600秒的热浸阶段及505秒的热起阶段;Ⅰ类摩托车测试循环相对II、III类摩托车而言,最高车速要低,为58.7 km/h(36.5mph),而II、III 类摩托车测试循环最高车速为92 km/h(57.2mph)。

美国环保署在调研中发现,很多排量小于50 mL的摩托车最高车速不能达到58.7 km/h,因此在很多摩托车制造商的要求下,2006年对于排量小于50 mL的摩托车,允许采用修正的Ⅰ类摩托车测试循环,即每个试验点的速度值乘以摩托车最高车速(km/h)与58.7 km/h 的比值,见图1所示。

高速公路摩托车燃油蒸发限值如表3所示。

图1 高速公路摩托车测试循环表3 EPA燃油蒸发标准(2008年执行)以证明高速公路摩托车符合蒸发排放标准,二是通过设计声明40 CFR 1051.245(e)来证明可以达到蒸发排放标准要求。

试验流程图如图2所示,设计声明格式如表4所示。

表4 设计声明符合标准*备注:根据耐久试验情况可以缩短静置时间全部试验流程利用劣化系数的试验流程图2 试验流程(收稿日期200505-09)。

EPA测试方法的检索

EPA测试方法的检索

EPA测试方法的检索EPA(环境保护局)是美国的主要环境保护机构,负责制定和推动环境保护的相关政策和规定。

为了保证环境的质量和可持续性,EPA开发了许多测试方法,用于评估和监测环境中的污染物和污染源。

下面是一些可以帮助您检索EPA测试方法的方法和资源。

2.EPA指南和手册:EPA还发布了大量的指南、手册和技术文件,介绍了各种测试方法,以及如何使用和实施这些方法。

这些指南和手册通常包含了测试方法的具体步骤、仪器和设备的要求、样品采集和处理的指导等信息。

您可以在EPA的官方网站上相关指南和手册,或者浏览EPA的出版物目录以获取相关资源。

3. EPA在线数据库:EPA还提供了一些在线数据库,可以帮助您查找和访问EPA测试方法和相关资料。

其中最著名的是Test Methods for Evaluating Solid Waste - Physical/Chemical Methods (SW-846)。

这本手册收集了用于评估固体废物的物理化学方法的详细信息。

您可以在EPA的官方网站或其他相关资源中找到SW-846手册的最新版本和相关补充材料。

除了上述方法和资源外,还有一些其他途径可以检索EPA测试方法。

您可以参考相关领域的学术期刊和文献,了解最新的环境测试方法和技术。

此外,许多大学和研究机构也在开展与环境测试相关的研究,并且发布相关的文献和方法。

通过参与相关的学术研究项目或参加学术会议,您可以了解到更多的测试方法和新兴的环境监测技术。

需要注意的是,EPA测试方法的选择和使用应根据具体的需求和应用来进行。

不同国家和地区在环境监测和评估方面有不同的要求和标准,因此您还需要根据当地的法规和政策进行相关调查和分析。

在实施测试方法之前,还应了解所需方法的准确性、可靠性和适用性,并确保操作人员具备必要的技术能力和实施经验。

美国EPA 关于空气自动监测系统性能指标的规定和测试方法

美国EPA 关于空气自动监测系统性能指标的规定和测试方法

美国EPA关于大气自动监测系统性能指标的规定和测试方法引言环境空气污染的自动监测方法有多种,一般采用湿法和干法两种。

湿法是基于化学量理论的库仑法和电导法等测量原理,需使用大量试剂,存在试剂调整和废液处理等问题,操作比较繁琐,故障率较高,维护工作量较大;干法是基于物理光谱测量理论,使样品始终保持在气体状态,没有试剂的损耗,维护工作量较小。

比如SO2测量采用紫外荧光法,NOx测量采用化学发光法,O3测量采用紫外光度法,CO测量采用气体过滤相关分析法等,目前我国绝大部分空气自动监测采用的是该方法。

干法测量以欧美为主。

美国开展空气自动监测已有30年的历史,在空气自动监测方面积累了丰富的经验,并制定了详细的规范。

其中物理光谱法作为美国EPA的推荐方法,得到了广泛的应用。

湿法测量以日本为主,但自1996年起日本在法定的测量方法中增加了干式测量法。

利用物质的光谱特性进行污染物的分析已成为自动监测仪器发展的必然趋势。

我国在环境空气质量监测和质量保证方面的规定都参考了美国国家环保署(EPA)的规定。

目前,大气自动监测和空气质量日报工作在我国大部分省市已广泛开展,自动监测仪器监测数据的准确可靠是日报工作中的基础。

为使监测人员了解美国EPA关于空气自动监测的相关规定,特将其有关SO2、NO2、O3、CO自动监测仪器的性能指标规定和测试方法作简要说明,以供参考。

一、美国EPA对性能指标及判定原则的规定1、性能指标B-1自动监测仪器性能指标M/0.02447,M是该气体的摩尔质量。

2、判定原则对于每个性能指标(量程除外),测试程序从开始起要重复7次,得到7组测试结果。

每组结果要和表B-1中的规定指标相比较,高于或超出规定指标的值是一个超标值。

每个参数的7个结果说明如下:(1)0次超标:被测的参数合格;(2)3次或更多次超标:该参数不合格;(3)1次或2次超标:再重复测试该参数 8次,得到共15个测试结果。

将此15个测试结果说明如下:a:1次或2次超标:通过测试;b:3次以上:该参数不合格。

epa测试标准

epa测试标准

epa测试标准
EPA(美国环保局)的测试标准是针对各种污染物和产品制定的,旨在确保产品符合相关法规和标准,以保护环境和人类健康。

以下是一些EPA的测试标准:
污染物排放限制:EPA制定了一系列污染物排放限制,要求企业、工厂和机构遵守。

这些限制涵盖了空气、水和土壤中的污染物,如二氧化硫、氮氧化物、挥发性有机化合物等。

消费品安全标准:EPA负责制定和执行消费品安全标准,以确保消费品不会对人类健康造成危害。

这些标准涵盖了家电、家具、儿童用品、玩具、化妆品等产品。

农药注册与评价:EPA负责评价农药的安全性和有效性,以确保农药的使用不会对人类健康和环境造成危害。

化学物质管理:EPA负责管理和限制化学物质的生产和使用,以确保这些物质不会对环境和人类健康造成危害。

环保设备与系统性能测试:EPA还制定了各种环保设备与系统性能测试标准,以确保这些设备能够有效地降低污染物的排放。

以上是一些EPA的测试标准,具体标准可能因产品、污染物和法规而有所不同。

在进行相关测试时,建议咨询专业的环保机构或实验室,以确保测试结果的准确性和可靠性。

EPA测试方法-目录

EPA测试方法-目录

目录---------------------------第一卷A 部分---------------------------免责声明摘要目录方法索引和换算表前言鸣谢第一部分分析测定方法第一章—质量控制1.0 引言2.0 质量保证计划3.0 室外操作4.0 实验室操作5.0 定义6.0 参考文献第二章—选择正确的步骤2.1 目的2.2 需要的信息2.3 使用指南2.4 特性2.5 地表水2.6 参考文献第三章—无机物分析3.1 采样注意事项3.2 样品准备方法方法3005A 用于火焰原子吸收光谱(FLAA)或电感偶合等离子发射光谱(ICP)进行总可回收或可溶性金属离子检测水样的酸性消化方法。

方法3010A 用于火焰原子吸收光谱(FLAA)或电感偶合等离子体原子发射光谱(ICP)进行全金属分析的水溶液或萃取物的酸性消化方法。

方法3015 水溶液或萃取物的微波辅助酸性消化方法。

方法3020A 用于无火焰原子吸收光谱法(GFAA)进行全金属分析的水溶液或萃取物的酸性消化方法。

方法3031 用于原子吸收光谱(AAS)或电感偶合等离子体原子发射光谱(ICP进行油脂中金属分析的油样的酸性消化方法。

方法3040A 油、脂和石蜡的溶解方法。

方法3050B 沉积物、污泥和土壤的酸性消化方法。

方法3051 沉积物、污泥和土壤的微波辅助酸性消化方法。

方法3052 硅酸盐和有机物质的微波酸性消化方法。

方法3060A 六价铬的碱性消化。

3.3 无机物的测定方法6010B 电感耦合等离子发射光谱(ICP-AES)方法6020 电感耦合等离子体质谱(ICP-MASS)方法7000A 原子吸收法方法7020 铝(原子吸收,直接进样)方法7040 锑(原子吸收,直接进样)方法7041 锑(原子吸收,石墨炉法)方法7060A 砷(原子吸收,石墨炉法)方法7061A 砷(原子吸收,氢火焰法)方法7062 锑和砷(原子吸收,氢硼化钠还原法)方法7063 砷水溶液和萃取物的阳极溶出伏安法(ASV)方法7080A 钡(原子吸收,直接进样)方法7081 钡(原子吸收,石墨炉法)方法7090 铍(原子吸收,直接进样)方法7091 铍(原子吸收,石墨炉法)方法7130 镉(原子吸收,直接进样)方法7131A 镉(原子吸收,石墨炉法)方法7140 钙(原子吸收,直接进样)方法7190 铬(原子吸收,直接进样)方法7191 铬(原子吸收,石墨炉法)方法7195 铬,六价(共沉淀法)方法7196A 铬,六价(比色法)方法7197 铬,六价(螯合/萃取)方法7198 铬,六价(微分脉冲极谱法DPP)方法7199 饮用水、地表水和工业排放废水中六价铬的测定-离子色谱法方法7200 钴(原子吸收,直接进样)方法7201 钴(原子吸收,石墨炉法)方法7210 铜(原子吸收,直接进样)方法7211 铜(原子吸收,石墨炉法)方法7380 铁(原子吸收,直接进样)方法7381 铁(原子吸收,石墨炉法)方法7420 铅(原子吸收,直接进样)方法7421 铅(原子吸收,石墨炉法)方法7430 锂(原子吸收,直接进样)方法7450 镁(原子吸收,直接进样)方法7460 锰(原子吸收,直接进样)方法7461 锰(原子吸收,石墨炉法)方法7470A 废液中的汞(冷蒸汽原子吸收光谱法)方法7471A 固体或半固体废弃物中的汞(冷蒸汽原子吸收光谱法)方法7472 阳极溶出伏安法测定水溶液和萃取物中的汞方法7480 钼(原子吸收,直接进样)方法7481 钼(原子吸收,石墨炉法)方法7520 镍(原子吸收,直接进样)方法7521 镍(原子吸收,石墨炉法)方法7550 锇(原子吸收,直接进样)方法7580 白磷(P4)的溶剂萃取-气相色谱法(GC)方法7610 钾(原子吸收,直接进样)方法7740 硒(原子吸收,石墨炉法)方法7741A 硒(原子吸收,氢火焰法)方法7742 硒(原子吸收,氢硼化钠还原法)方法7760A 硅(原子吸收,直接进样)方法7761 硅(原子吸收,石墨炉法)方法7770 钠(原子吸收,直接进样)方法7780 锶(原子吸收,直接进样)方法7840 铊(原子吸收,直接进样)方法7841 铊(原子吸收,石墨炉法)方法7870 锡(原子吸收,直接进样)方法7910 钒(原子吸收,直接进样)方法7911 钒(原子吸收,石墨炉法)方法7950 锌(原子吸收,直接进样)方法7951 锌(原子吸收,石墨炉法)附件—公司推荐---------------------------第一卷B 部分---------------------------免责声明摘要目录方法索引和换算表前言鸣谢第一章—质量控制1.0 引言2.0 质量保证计划3.0 室外操作4.0 实验室操作5.0 定义6.0 参考文献第四章—有机物分析4.1 采样注意事项4.2 样品准备方法4.2.1 萃取和准备方法3500B 有机物的萃取和样品准备方法3510C 分液漏斗液--液萃取方法3520C 连续液--液萃取方法3535 固相萃取(SPE)方法3540C 索氏萃取方法3541 自动索氏萃取方法3542 使用方法0010(改进后的采样教程方法5)萃取半挥发性有机物方法3545 加压液体萃取(PFE)方法3550B 超声波萃取方法3560 超临界流体萃取总可回收石油烃方法3561 超临界流体萃取多环芳烃方法3580A 固废分解方法3585 挥发性有机物固废样品的分解方法5000 挥发性有机物样品准备方法5021 用顶空法准备土壤中或其他固体物质中的挥发性有机物方法5030B 水溶液样品的吹扫捕集方法5031 共沸蒸馏法提取挥发性、不可吹出、水溶性有机化合物方法5032 挥发性有机物的真空蒸馏方法5035 封闭体系的吹扫捕集和萃取提取土壤和固废样品中的挥发性有机物方法5041A 挥发性有机物采样系统(VOST)吸附柱解吸物的分析4.2.2 净化方法3600C 净化方法3610B 铝氧土净化方法3611B 铝氧土柱的净化以及石油类废物的分离方法3620B Florisil柱的净化方法3630C 硅胶净化方法3640A 凝胶色谱柱净化方法3650B 酸性层析柱的净化方法3660B 硫的净化方法3665A 硫酸/高锰酸钾净化4.3 有机物的测定4.3.1 气相色谱法方法8000B 分析性的色谱分离方法8011 微萃取-气相色谱分析1,2-二溴乙烷和1,2-二溴-3-氯丙烷方法8015B 气相色谱-氢火焰离子检测器(GC-FID)测定非卤代有机物方法8021B 气相色谱法分析芳香族化合物和卤代挥发性有机物—使用光电离检测器(PID)和/或电导检测器(ELCD)方法8031 气相色谱分析丙烯腈方法8032A 气相色谱分析丙烯酰胺方法8033 气相色-氮磷检测器(GC-NPD)分析乙腈方法8041 气相色谱分析酚类方法8061A 气相色谱-电子捕获检测器(GC-ECD)分析邻苯二甲酸酯类方法8070A 气相色谱分析亚硝胺方法8081A 气相色谱分析有机氯杀虫剂方法8082 气相色谱分析多氯联苯方法8091 气相色谱分析硝基芳香烃和环酮方法8100 多核(多环)芳烃方法8111 气相色谱分析卤代醚类方法8121 气相色谱检测氯代烃:毛细管法方法8131 气相色谱法检测苯胺及其衍生物方法8141A 气相色谱分析有机磷化合物:毛细管法方法8151A 甲基化和氟代醇苯甲基化气相色谱法检测氯代除草剂4.3.2 气质联用法(GC-MASS)方法8260B 气质联用法测定挥发性有机物(VOCs)方法8270C 气质联用法测定半挥发性有机物方法8275A 热提取-气质联用法(TE/GC/MS)测定土壤、污泥和固废中的半挥发性有机物(多环芳烃PAHs和多氯联苯PCBs)方法8280A 高分辨率色谱/低分辨率质谱(HRGC/LRMS)法测定多氯二苯并对二英和多氯二苯并呋喃方法8290 高分辨率色谱/高分辨率质谱(HRGC/HRMS)法测定多氯二苯并二恶英(PCDDs)和多氯二苯并呋喃(PCDFs)附件A:实验室进行的擦拭实验的采集、处理、分析和报告步骤4.3.3 高效液相色谱法(HPLC)方法8310 多环芳烃方法8315A 高效液相色谱法测定碳酰(羰基)化合物附录A:2,4-二硝基苯肼的重结晶方法8316 丙烯酰胺、丙烯腈和丙烯醛的测定—高效液相色谱法方法8318 高效液相色谱分析N-氨基甲酸甲酯方法8321A 高效液相色谱/热喷雾/质谱法(HPLC/TS/MS)测定非挥发性有机物的可溶性提取物方法8325 高效液相色谱/粒子束/质谱法(HPLC/PB/MS)测定非挥发性有机物的可溶性提取物方法8330 硝基芳烃和硝胺的测定—高效液相色谱法方法8331 反相高效液相色谱法测定四氮烯方法8332 硝化甘油的测定—高效液相色谱法4.3.4 红外法方法8410 半挥发性有机物的测定—气相色谱/傅立叶变换红外光谱法(GC/FT-IR):毛细管柱方法8430 水溶液直接进样气相色谱/傅立叶变换红外光谱法(GC/FT-IR)分析双氯甲醚及其水解产物方法8440 红外光谱法分析总可回收石油烃4.3.5 多光谱分析法方法8520 环境空气中甲醛的连续免疫测定4.4 免疫测定法方法4000 免疫测定方法4010A 用免疫测定法进行五氯苯酚的筛检方法4015 用免疫测定法进行2,4-二氯苯氧基乙酸的筛检方法4020 用免疫测定法进行多氯联苯的筛检方法4030 用免疫测定法对土壤中石油烃进行筛检方法4035 用免疫测定法对土壤中多环芳烃进行筛检方法4040 用免疫测定法对土壤中毒杀芬进行筛检方法4041 用免疫测定法对土壤中氯丹进行筛检方法4042 用免疫测定法对土壤中DDT进行筛检方法4050 用免疫测定法对土壤中TNT爆炸性物质进行筛检方法4051 用免疫测定法对土壤中黑索今(环三亚甲基三硝胺RDX)进行筛检4.5 多种筛选法方法3810 顶空法方法3820 可清除有机物的十六烷提取和筛检法方法8515 土壤中TNT物质的比色筛检法方法9078 土壤中多氯联苯的筛选法方法9079 变压器油中多氯联苯的筛选法附件—公司推荐---------------------------第一卷C 部分---------------------------免责声明摘要目录方法索引和换算表前言鸣谢第一章—质量控制1.0 引言2.0 质量保证计划3.0 室外操作4.0 实验室操作5.0 定义6.0 参考文献第五章—其它各种测试方法方法5050 固废爆炸的预防方法方法9010C 总可测定氰化物:蒸馏法方法9012B 总可测定氰化物(手动蒸馏,自动比色)方法9013 固废和土壤中氰化物的萃取方法方法9014 滴定和手动分光光度法测定氰化物方法9020B 总有机卤素(TOX)方法9021 挥发性有机卤素(POX)方法9022 中子活法分析法测定总有机卤素(TOX)方法9023 土壤中的可萃取有机卤素(EOX)方法9030B 酸溶性和非酸溶性硫化物:蒸馏法方法9031 可萃取硫化物方法9034 滴定法测定酸溶性和非酸溶性硫化物方法9035 硫酸盐(比色法,自动,氯冉酸盐)方法9036 硫酸盐(比色法,自动,甲基百里酚兰,)方法9038 硫酸盐(浊度计)方法9056 离子色谱法测定无机阴离子方法9057 阴离子色谱法测定HCl/Cl2排放源采集样品中的氯化物方法9060A 总有机碳(TOC)方法9065 酚醛塑料(分光光度法,手动4-氨基安替比林蒸馏)方法9066 酚醛塑料(比色法,自动4-氨基安替比林蒸馏)方法9067 酚醛塑料(分光光度法,酚试剂蒸馏)方法9070A 用于水溶液样品的正己烷可提取物方法9071B 用于污泥、沉积物、土壤样品的正己烷可提取物方法9075 X射线荧光光谱法分析新的或使用过的石油产品中的总氯方法9076 燃烧氧化和微库仑法分析新的或使用过的石油产品中的总氯方法9077 新的或使用过的石油产品中的总氯(现场测试套件)方法A:固定终点套件法方法B:反向滴定终点定量套件法方法C:直接滴定终点定量套件法方法9131 大肠杆菌:多管发酵法方法9132 大肠杆菌:膜过滤法方法9210 离子选择电极点位滴定法测定水溶液样品中的硝酸盐方法9211 离子选择电极点位滴定法测定水溶液样品中的溴化物方法9212 离子选择电极点位滴定法测定水溶液样品中的氯化物方法9213 蒸馏后离子选择电极点位滴定法测定水溶液样品中的氰化物方法9214 离子选择电极点位滴定法测定水溶液样品中的氟化物方法9215 蒸馏后离子选择电极点位滴定法测定水溶液样品中的硫化物方法9250 氯化物(比色法,自动铁氰化物,AAI)方法9251 氯化物(比色法,自动铁氰化物,AAII)方法9253 氯化物(滴定法,硝酸银)方法9320 镭-288第六章—性质分析方法1030 固体的可燃性方法1120 皮肤腐蚀性方法1312 人工凝结浸出方法方法1320 多次萃取法方法1330A 含油废弃物的提取方法9041A pH试纸制作方法方法9045D 土壤和废弃物pH方法9050A 电导率方法9080 土壤的阳离子交换性能(醋酸铵)方法9081 土壤的阳离子交换性能(醋酸钠)方法9090A 废弃物和膜沉淀的兼容性试验方法9095B 滤芯液体试验方法9096 液体泄露试验方法附件A:液体泄露试验预试验方法9100 饱和水溶液电导,饱和滤出液电导以及固有磁导率方法9310 总α、总β放射性水平方法9315 α放射性同位素第二部分性状第七章—性状说明和定义7.1 可燃性7.2 腐蚀性7.3 反应性7.4 毒性物质提取步骤第八章—性状测定方法8.1 可燃性方法1010A 潘-马氏闭杯分析仪测定闪点方法1020B 闪点的标准测定方法Setaflash闭杯分析仪法8.2 腐蚀性方法9040C pH电极测量方法1110A 钢铁腐蚀性测验8.3 毒性方法1310B 提取过程毒性测试方法和结构完整性试验方法1311 毒性物质提取步骤附件—公司推荐---------------------------第二卷---------------------------免责声明摘要目录方法索引和换算表前言鸣谢第一章—质量控制1.0 引言2.0 质量保证计划3.0 室外操作4.0 实验室操作5.0 定义6.0 参考文献第三部分采样第九章—采样计划9.1 规划和设计9.2 执行第十章—采样方法方法0010 改进后的Method 5 Sampling Train附件A:XAD-2吸附树脂的准备附件B:所有可用色谱分析物质的分析方法0011 固定醛酮类排放源的采样方法方法0020 源头评价采样方法方法0023A 固定多氯联苯并二恶英和多氯联苯并呋喃源的采样方法方法0030 挥发性有机物采样教程方法0031 挥发性有机化合物采样方法方法0040 塑料袋燃烧源头主要持久性危险有机物的采样方法方法0050 HCl/Cl2排放源的等动力采样教程方法0051 HCl/Cl2排放源的小型冲击吸收瓶采样教程方法0060 烟囱排放源的金属测定方法0061 固定排放源六价铬的测定方法0100 室内甲醛和其它羰基化合物的采样第四部分监测第十一章—地表水监测11.1 背景和目标11.2 与标准的关系和与其他文件的关系11.3 修订本和附录11.4 可以接受的设计和措施11.5 不可接受的设计和措施第十二章—土地处理(有害废物的)监测12.1 背景12.2 处理区域12.3 定义12.4 监测和采样策略12.5 分析12.6 参考文献和内容提要第十三章—灰化13.1 说明13.2 定义13.3 废物定性策略13.4 烟囱气体排放物定性策略13.5 附加排放物定性策略13.6 采样和分析方法的选择13.7 参考文献附件—公司推荐。

美国EPA最新参考方法标准

美国EPA最新参考方法标准

特别规定的样品采集过滤器。
手动参考方法: 配备 RAAS-10 PM10 进气口或
RFPS-0699-131 40 联邦法规(CFR)第 50 部分,
附录 L, 图 L-2 到 L-19 中特定的
联邦公告:卷 64, 有通气孔的进口,作为 PM10
第 33481 页 , 参考方法配置,流量为 16.67 升
图 L-2 参考方法
第 33481 页 , 配置,流量为 16.67 升/分钟,24
BGI 公司 BGI 公司 DKK-TOA 公司 Ecotech 公司
PQ100 型空气采样器
PQ200 型空气采样器
FPM-222/222C,FPM223 /223C 及 DUB-222(S)型 PM10 监测器 3000 型 PM10 大容量空 气采样器

12/01/87 及卷 53, GMW-IP-10-8000 中的任一型号
第 1062 页 , 大容量采样器,这些采样器含有
01/15/88
以下部件:带有丙烯腈-丁二烯-
苯乙烯塑胶过滤器托架和电机/
鼓风机外壳或不锈钢过滤器托
架和酚醛塑料电机/鼓风机外壳
的阳极氧化处理铝制大容量外
壳;0.6 大功率电机/鼓风机; 压
06/23/99
小时连续采样周期操作。符合
RAAS105-300 操作说明书,遵
循 40 CFR 第 50 部分,附录 J
或附录 M 中有关要求和特别规
定的样品采集过滤器。
手动参考方法: 配备 BGI16.7 进气口装置或附
RFPS-0699-132 录 L,40 联邦法规(CFR)50,
图 L-2 到 L-19 中特定的有通气
7.0 说明书,适当的还带有特制

epa评估方法

epa评估方法

epa评估方法EPA评估方法EPA(美国环境保护署)评估方法是一种用于评估环境影响和风险的科学方法。

它在环境保护领域得到广泛应用,用于评估化学品、污染物、废物和其他环境因素对人类健康和生态系统的潜在影响。

本文将介绍EPA评估方法的基本原理和应用。

一、EPA评估方法的基本原理EPA评估方法基于科学研究和风险评估的原则,通过收集、整理和分析大量的环境和健康数据,评估特定环境因素对人类和生态系统的潜在影响。

其基本原理包括以下几个方面:1. 数据收集和整理:EPA评估方法首先需要收集相关的环境数据和健康数据,包括化学物质的物理化学性质、毒性数据、环境浓度和暴露途径等。

同时,还需要收集人类健康效应和生态效应的相关数据。

2. 风险评估模型:EPA评估方法使用风险评估模型来分析环境因素对人类和生态系统的潜在影响。

这些模型基于流行病学、毒理学和环境科学等学科的知识,通过定量分析和预测来评估风险水平。

3. 不确定性分析:EPA评估方法还包括不确定性分析,用于评估评估结果的可靠性和确定性。

不确定性分析可以通过敏感性分析、模拟和统计方法等来进行。

二、EPA评估方法的应用EPA评估方法广泛应用于环境监测、风险评估和决策支持等领域。

其主要应用包括以下几个方面:1. 环境污染评估:EPA评估方法可以用于评估污染物对环境的潜在影响。

通过收集环境数据和污染物的毒性数据,结合风险评估模型,可以评估污染物的暴露水平和潜在风险。

2. 化学品评估:EPA评估方法可以用于评估化学品对人类健康和环境的潜在影响。

通过收集化学品的物理化学性质、毒性数据和暴露途径等信息,结合风险评估模型,可以评估化学品的致癌、致畸和致突变等潜在风险。

3. 废物管理评估:EPA评估方法可以用于评估废物对环境和人类健康的潜在影响。

通过收集废物的组成、毒性数据和处理方式等信息,结合风险评估模型,可以评估废物的处理风险和环境影响。

4. 环境政策制定:EPA评估方法可以用于支持环境政策的制定和实施。

EPA方法索引

EPA方法索引

EPA方法索引EPA(Environmental Protection Agency,环境保护局)是美国联邦政府机构,负责制定环境保护政策和监督执行,旨在保护人类健康和自然环境。

EPA通过开发和更新一系列的方法和准则来评估和监测环境中的各种污染物。

以下是EPA方法的索引,其中包含了一些常用的方法。

1.水质分析方法:-EPA方法6010:使用电感耦合等离子体质谱仪对水样中的重金属进行测定。

-EPA方法160.2:测定饮用水中总溶解性氟化物的浓度。

-EPA方法200.7:使用火焰原子吸收光谱法测定水样中的金属。

-EPA方法365.2:测定地下水中40种有机化合物的浓度。

2.大气质量监测方法:-EPA方法305:测定大气中颗粒物(PM10)的质量浓度。

-EPA方法1664:对水和底泥中的油脂进行提取和测定。

-EPA方法321.8:通过气浓度梯度法测定大气中的苯系化合物。

-EPA方法327:使用红外光谱法测定大气中的多环芳烃。

3.土壤和底泥分析方法:-EPA方法3540:对土壤和底泥中的有机物进行提取。

-EPA方法8000:使用气相色谱质谱法分析土壤和底泥中的挥发性有机化合物。

-EPA方法3051:测定土壤样品中重金属的浓度。

-EPA方法8240:使用气相色谱质谱法分析土壤和底泥中的半挥发性有机化合物。

4.垃圾和固体废物分析方法:-EPA方法8015:使用气相色谱质谱法分析固体废物中的多环芳烃。

-EPA方法8082:使用气相色谱质谱法分析土壤、底泥和固体废物中的戴奥辛和类似化合物。

-EPA方法8260:使用气相色谱质谱法分析固体废物中的挥发性有机化合物。

-EPA方法8280:使用气相色谱质谱法分析固体废物中的多氯联苯。

5.生物监测方法:-EPA方法1600:测定饮用水和海水中的大肠杆菌和肠球菌数量。

-EPA方法1613:使用液相色谱质谱法测定鱼类组织中的多氯联苯和多溴联苯醚。

-EPA方法2050:测定水和生物体中蓝绿藻的数量和类群组成。

EPA采样方法

EPA采样方法

EPA采样方法烟尘烟气采样器的采样方法各种固定源排放污染物采样设备——根据美国环境保护局美国环保局参考方法的烟尘采样器。

主要方法归纳为等速采样法(等速采样法)或烟气采样法。

在等速采样法(等速采样法)中,采样率与源流量成比例调整,而在烟气采样法中,采样率以恒定的低速率进行。

许多烟气取样方法也可以通过等速采样器(等速采样器)和适当的附件来实现。

以下是一些采样方法的列表:烟尘采样器等速采样方法(等速采样方法)方法4(方法4):烟气湿度方法5(方法5):颗粒物排放(PM)方法5B(方法5B):非硫酸颗粒物方法8(方法8):硫酸雾和二氧化硫法12(方法12):无机铅方法13a和13b(method13a&13b):总氟化物方法17(method17):烟道内过滤的颗粒物方法23(method23):二恶英和呋喃方法26a(method26a):卤化氢和卤素方法29(method29):多种金属方法201a(method201a):pm10排放方法202(method202):可凝结颗粒物方法206(method206):氨方法306:电镀和阳极氧化产生的六价铬方法316:矿棉和玻璃纤维工业产生的甲醛方法0010(method0010):半挥发性有机化合物方法0011(method0011):甲醛,其它醛酮方法0061(method0061):六价铬烟尘烟气采样器之烟气采样方法(以下方法也可通过apex623源取样器或572加适当的UVA连接器和取样器采用。

)方法4a(method4a):烟道气湿度方法6(method6):硫酸雾和二氧化硫方法6A:二氧化硫、湿度和二氧化碳方法6B:二氧化硫和二氧化碳方法11:炼油厂燃料气流中的硫化氢方法15A:总还原硫化物方法18:有机化合物集成袋取样方法26:卤化氢和卤素方法106(method106):为氯乙烯的完整袋采样方法308(method308):甲醇方法0030:挥发性有机化合物(VOC取样装置Vost)方法0031(method0031):挥发性有机化合物(挥发性有机化合物采样方法smvoc或挥发性有机化合物超级采样装置)方法0040:主要有害有机成分(pohc),使用tedra取样袋方法0051:氯化氢和氯化物使用apex采样设备的典型应用:制酸厂、沥青厂、锅炉、水泥厂、化工厂、电炉、焚烧炉、城市垃圾焚烧炉、炼油厂、发电厂、造纸厂、冶炼厂和钢厂apex公司等动力源采样器(等速采样器)使操作员可以监测为维持等动力采样条件下的气体速度、温度、压力和采样流速。

epa试验测试方法及计算方法

epa试验测试方法及计算方法

epa试验测试方法及计算方法English Answer:EPA Test Methods for Emissions.The Environmental Protection Agency (EPA) has developed a series of test methods to measure emissions from various sources, including stationary sources such as power plants and industrial facilities, and mobile sources such as vehicles and aircraft. These test methods are used to determine the levels of pollutants emitted into the atmosphere and to assess the effectiveness of pollution control technologies.Some of the most common EPA test methods include:Method 1: Sample and velocity traverses for stationary sources. This method describes the procedures for measuring the velocity and volumetric flow rate of gas streams in ducts, stacks, and chimneys.Method 2: Determination of stack gas velocity and volumetric flow rate (Type S pitot tube). This method is used to measure the velocity and volumetric flow rate of gas streams in stacks and ducts using a Type S pitot tube.Method 3: Gas analysis for the determination of dry molecular weight. This method is used to determine the dry molecular weight of a gas stream by measuring its density and composition.Method 4: Determination of moisture content in stack gases. This method is used to determine the moisture content of a gas stream by measuring the dew point or absolute humidity of the gas.Method 5: Determination of particulate matter emissions from stationary sources. This method is used to measure the concentration of particulate matter emissions from stationary sources by collecting the particles on a filter paper and measuring their mass.Method 10: Determination of carbon monoxide emissions from stationary sources. This method is used to measure the concentration of carbon monoxide emissions from stationary sources by using a continuous analyzer or a grab sample collection and analysis.Method 18: Measurement of gaseous organic compound emissions by gas chromatography. This method is used to measure the concentration of gaseous organic compound emissions from stationary sources by collecting a sample in a sorbent tube and analyzing it using gas chromatography.Calculation Methods.The EPA provides calculation methods for each test method to determine the concentration of pollutants emitted. The calculation methods typically involve using the measured data from the test method to calculate the mass or volume of the pollutant emitted per unit of time.For example, the calculation method for Method 5involves using the following equation to calculate theparticulate matter emission rate:ER = (C_s Q_sd) / (S t)。

EPA方法索引

EPA方法索引

EPA方法索引根据您的要求,以下是EPA(美国环保局)使用的一些常见的方法索引。

这些方法涵盖了环境监测、风险评估、废物管理、空气质量评估和水质评估等各个领域。

请注意,这只是一个简要的索引,详细的方法描述和操作程序可以在EPA的官方网站上找到。

1.环境监测方法:-EPA方法1:样品获取和保留方法-EPA方法2:采样口和尾气采集系统评估方法-EPA方法3:抽样方法-EPA方法4:大气沉降物的抽样和分析方法-EPA方法5:大气礁石沉积物中颗粒物的采样和分析方法-EPA方法6:大气颗粒物的测定方法-EPA方法7:废气流中氮氧化物的测定方法-EPA方法8:高温、高湿废气流中苯/甲苯浓度的测定方法2.风险评估方法:-EPA方法9:风险评估基础指南-EPA方法10:风险评估的质量保证3.废物管理方法:-EPA方法11:可回收物品处理-EPA方法12:生物治理/垃圾填埋申请-EPA方法13:废物水处理系统操作4.空气质量评估方法:-EPA方法14:大气污染源排放计算-EPA方法15:大气质量模型基础指南-EPA方法16:大气氨浓度的测定方法-EPA方法17:大气细颗粒物的测定方法-EPA方法18:大气湿沉降物的收集和分析方法5.水质评估方法:-EPA方法19:水质评估基础指南-EPA方法20:废水处理工艺-EPA方法21:水样处理和分析方法-EPA方法22:饮用水质量监测这些方法索引只是EPA使用的一小部分方法。

EPA还有其他方法用于地下水监测、土壤污染评估、生物毒性评估和生态风险评估等。

为了确保准确性和合规性,使用这些方法时应仔细阅读相关的方法说明和操作程序,以确保正确的实施和数据采集。

生态环境监测常用epa方法使用指南

生态环境监测常用epa方法使用指南

生态环境监测常用epa方法使用指南生态环境监测是保障人类居住环境健康、促进可持续发展的重要手段。

而美国环境保护局(EPA)提出的监测方法被广泛应用于全球。

本文将详细介绍几种常用的EPA监测方法,帮助读者更好地理解和应用。

首先,我们来介绍EPA方法中最常用的VOCs(挥发性有机物)监测方法。

VOCs是一类对人体健康和环境产生不良影响的化学物质,如苯、甲苯等。

EPA方法中,常用的监测技术包括气相色谱-质谱联用仪(GC-MS)和气相色谱仪(GC)。

在进行VOCs监测时,首先需从空气或水样品中提取目标物质,然后使用GC-MS或GC进行定性定量分析。

这些方法具有高灵敏度和准确度,对于环境中微量VOCs的检测非常有效。

其次,来介绍一种常用的水质监测方法,即EPA的标准方法522(EPA Method 522)。

该方法主要用于分析水中的多环芳烃(PAHs)。

PAHs是一类常见的有害物质,源自燃烧过程和工业排放。

在EPA Method 522中,使用气相色谱-质谱联用仪(GC-MS)进行PAHs的检测。

该方法采用固相萃取技术,从水样中富集PAHs,并通过GC-MS进行定性定量分析。

通过该方法,我们可以快速准确地监测水体中PAHs的含量,为水环境管理和保护提供科学依据。

此外,EPA还提出了许多其他的监测方法,如EPA Method 1600和EPA Method 1623等,这些方法主要用于微生物的监测。

例如,EPAMethod 1600用于检测饮用水和环境水体中的大肠杆菌等肠道致病菌的存在。

该方法采用滤膜法,将水样过滤后,将菌落生长于兔肠上进行检测。

而EPA Method 1623则用于监测水中的肠道病毒,如腺病毒和诺沃克病毒。

这些方法操作简单、结果可靠,对于保障水质安全具有重要意义。

除了上述方法外,EPA还提供了许多其它环境监测方法,如大气颗粒物的监测方法、土壤重金属的监测方法等。

这些方法为环境保护部门、科研机构以及行业监管提供了重要的技术支持。

美国国家环保局EPA方法要点和推荐仪器

美国国家环保局EPA方法要点和推荐仪器

美国国家环保局EPA方法要点和推荐仪器EPA方法218.6离子色谱测定在饮用水、地下水和工业废水中的水溶性铬(1994年修订版3.3)应用范围测定饮用水、地下水和工业废水中的水溶性六价铬(如CrO2-4),这种方法的检测下限为0.4μg/L。

样品中如果含有大量的阴离子物质如硫酸或氯离子可能会引起色谱柱过载。

样品如果含有大量有机物或硫离子可能会引起可溶性的六价铬快速还原为三价铬。

样品贮存在4℃,在24小时内分析。

方法采用离子色谱法分析。

方法要点:水样经0.45μm滤膜过滤后,用浓缓冲溶液调节pH为9-9.5。

样品的测量体积为50-250μL进样到离子色谱。

保护柱去除样品中的有机物,六价铬以CrO2-4形式,在高容量的阴离子交换分离柱上分离,六价铬用双苯基苄巴脲柱后衍生,然后在530nm波长下检测有色络合物。

建议采用的仪器条件保护柱:Dionex IonPac NG1或与之相同的色谱柱分离柱:Dionex IonPac AS7或与之相同的色谱柱阴离子抑制器装置:Dionex Anion MicroMembrane Suppressor,其它抑制器必须有足够低的检测限和足够的基线稳定性。

色谱条件:色谱柱:保护柱-Dionex IonPac NG1, 分离柱-Dionex IonPac AS7淋洗液:250mM (NH4)2SO4, 100mM NH4OH, 流速=1.5 mL/min柱后试剂:2mM双苯基苄巴脲,10% v/v甲醇,1N 硫酸,流速=0.5 mL/min 检测器:可见光530nm保留时间:3.8 分钟离子色谱测定无机阴离子(1993年八月,修订版2.2)应用范围1.可测定的阴离子包括A部分:溴离子,氯离子,氟离子,硝酸根,亚硝酸根,磷酸根,硫酸B部分:溴酸根,亚氯酸根,氯酸根2.基体包括:饮用水,地表水,民用水和工业废水,地下水,试剂用水,固体浸出液方法要点1.小量样品,一般2-3mL注入离子色谱,阴离子采用一个系统含有保护柱,分离柱,抑制器和电导检测器进行分离和检测。

美国环保局 EPA 试验 方法 8330

美国环保局 EPA  试验  方法 8330

METHOD 8330NITROAROMATICS AND NITRAMINES BY HIGHPERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)1.0SCOPE AND APPLICATION1.1Method 8330 is intended for the trace analysis of explosives residues by high performance liquid chromatography using a UV detector. This method is used to determine the concentration of the following compounds in a water, soil, or sediment matrix:Compound Abbreviation CAS No aOctahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine HMX2691-41-0 Hexahydro-1,3,5-trinitro-1,3,5-triazine RDX121-82-4 1,3,5-Trinitrobenzene 1,3,5-TNB99-35-4 1,3-Dinitrobenzene 1,3-DNB99-65-0 Methyl-2,4,6-trinitrophenylnitramine Tetryl479-45-8 Nitrobenzene NB98-95-3 2,4,6-Trinitrotoluene 2,4,6-TNT118-96-7 4-Amino-2,6-dinitrotoluene 4-Am-DNT1946-51-0 2-Amino-4, 6-dinitrotoluene 2-Am-DNT 355-72-78-2 2,4-Dinitrotoluene 2,4-DNT121-14-2 2,6-Dinitrotoluene 2,6-DNT606-20-2 2-Nitrotoluene 2-NT88-72-2 3-Nitrotoluene 3-NT99-08-1 4-Nitrotoluene 4-NT99-99-0a Chemical Abstracts Service Registry number1.2Method 8330 provides a salting-out extraction procedure for low concentration (parts per trillion, or nanograms per liter) of explosives residues in surface or ground water. Direct injection of diluted and filtered water samples can be used for water samples of higher concentration (See Table 1).1.3All of these compounds are either used in the manufacture of explosives or are the degradation products of compounds used for that purpose. When making stock solutions for calibration, treat each explosive compound with caution. See NOTE in Sec. 5.3.1 and Sec. 11 on Safety.1.4The estimated quantitation limits (EQLs) of target analytes determined by Method 8330 in water and soil are presented in Table 1.1.5This method is restricted to use by or under the supervision of analysts experienced in the use of HPLC, skilled in the interpretation of CD-ROM8330 - 1Revision 0September 1994chromatograms, and experienced in handling explosive materials. (See Sec. 11.0 on SAFETY.) Each analyst must demonstrate the ability to generate acceptable results with this method.2.0SUMMARY OF METHOD2.1Method 8330 provides high performance liquid chromatographic (HPLC) conditions for the detection of ppb levels of certain explosives residues in water, soil and sediment matrix. Prior to use of this method, appropriate sample preparation techniques must be used.2.2Low-Level Salting-out Method With No Evaporation: Aqueous samples of low concentration are extracted by a salting-out extraction procedure with acetonitrile and sodium chloride. The small volume of acetonitrile that remains undissolved above the salt water is drawn off and transferred to a smaller volumetric flask. It is back-extracted by vigorous stirring with a specific volume of salt water. After equilibration, the phases are allowed to separate and the small volume of acetonitrile residing in the narrow neck of the volumetric flask is removed using a Pasteur pipet. The concentrated extract is diluted 1:1 with reagent grade water. An aliquot is separated on a C-18 reverse phase column, determined at 254 nm, and confirmed on a CN reverse phase column.2.3High-level Direct Injection Method: Aqueous samples of higher concentration can be diluted 1/1 (v/v) with methanol or acetonitrile, filtered, separated on a C-18 reverse phase column, determine at 254 nm, and confirmed on a CN reverse phase column. If HMX is an important target analyte, methanol is preferred.2.4Soil and sediment samples are extracted using acetonitrile in an ultrasonic bath, filtered and chromatographed as in Sec. 2.3.3.0INTERFERENCES3.1Solvents, reagents, glassware and other sample processing hardware may yield discrete artifacts and/or elevated baselines, causing misinterpretation of the chromatograms. All of these materials must be demonstrated to be free from interferences.3.22,4-DNT and 2,6-DNT elute at similar retention times (retention time difference of 0.2 minutes). A large concentration of one isomer may mask the response of the other isomer. If it is not apparent that both isomers are present (or are not detected), an isomeric mixture should be reported.3.3Tetryl decomposes rapidly in methanol/water solutions, as well as with heat. All aqueous samples expected to contain tetryl should be diluted with acetonitrile prior to filtration and acidified to pH <3. All samples expected to contain tetryl should not be exposed to temperatures above room temperature.3.4Degradation products of tetryl appear as a shoulder on the 2,4,6-TNT peak. Peak heights rather than peak areas should be used when tetryl is present in concentrations that are significant relative to the concentration of 2,4,6-TNT.CD-ROM8330 - 2Revision 0September 19944.0APPARATUS AND MATERIALS4.1HPLC system4.1.1HPLC - equipped with a pump capable of achieving 4000 psi, a100 µl loop injector and a 254 nm UV detector (Perkin Elmer Series 3, or equivalent). For the low concentration option, the detector must be capable of a stable baseline at 0.001 absorbance units full scale.4.1.2Recommended Columns:4.1.2.1Primary column: C-18 Reverse phase HPLC column,25 cm x 4.6 mm (5 µm), (Supelco LC-18, or equivalent).4.1.2.2Secondary column: CN Reverse phase HPLC column,25 cm x 4.6 mm (5 µm), (Supelco LC-CN, or equivalent).4.1.3Strip chart recorder.4.1.4Digital integrator (optional).4.1.5Autosampler (optional).4.2Other Equipment4.2.1Temperature controlled ultrasonic bath.4.2.2Vortex mixer.4.2.3Balance, + 0.0001 g.4.2.4Magnetic stirrer with stirring pellets.4.2.5Water bath - Heated, with concentric ring cover, capable oftemperature control (± 5E C). The bath should be used in a hood.4.2.6Oven - Forced air, without heating.4.3Materials4.3.1High pressure injection syringe - 500 µL, (Hamilton liquidsyringe or equivalent).4.3.2Disposable cartridge filters - 0.45 µm Teflon filter.4.3.3Pipets - Class A, glass, Appropriate sizes.4.3.4Pasteur pipets.4.3.5Scintillation Vials - 20 mL, glass.4.3.6Vials - 15 mL, glass, Teflon-lined cap.CD-ROM8330 - 3Revision 0September 1994CD-ROM 8330 - 4Revision 0September 19944.3.7Vials- 40 mL, glass, Teflon-lined cap.4.3.8Disposable syringes - Plastipak, 3 mL and 10 mL or equivalent.4.3.9Volumetric flasks - Appropriate sizes with ground glassstoppers, Class A.NOTE:The 100 mL and 1 L volumetric flasks used for magnetic stirrerextraction must be round.4.3.10Vacuum desiccator - Glass.4.3.11Mortar and pestle - Steel.4.3.12Sieve - 30 mesh.4.3.13Graduated cylinders - Appropriate sizes.4.4Preparation of Materials4.4.1Prepare all materials to be used as described in Chapter 4 forsemivolatile organics.5.0REAGENTS5.1Reagent grade inorganic chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used,provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lowering the accuracy of the determination.5.1.1Acetonitrile, CH CN - HPLC grade.35.1.2Methanol, CH OH - HPLC grade.35.1.3Calcium chloride, CaCl - Reagent grade. Prepare an aqueous2solution of 5 g/L.5.1.4Sodium chloride, NaCl, shipped in glass bottles - reagentgrade.5.2Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.5.3Stock Standard Solutions5.3.1Dry each solid analyte standard to constant weight in a vacuumdesiccator in the dark. Place about 0.100 g (weighed to 0.0001 g) of a single analyte into a 100 mL volumetric flask and dilute to volume withCD-ROM 8330 - 5Revision 0September 1994acetonitrile. Invert flask several times until dissolved. Store in refrigerator at 4C in the dark. Calculate the concentration of the stock o solution from the actual weight used (nominal concentration = 1,000 mg/L).Stock solutions may be used for up to one year.NOTE:The HMX, RDX, Tetryl, and 2,4,6-TNT are explosives and theneat material should be handled carefully. See SAFETY in Sec.11 for guidance. HMX, RDX, and Tetryl reference materialsare shipped under water. Drying at ambient temperaturerequires several days. DO NOT DRY AT HEATED TEMPERATURES!5.4Intermediate Standards Solutions5.4.1If both 2,4-DNT and 2,6-DNT are to be determined, prepare twoseparate intermediate stock solutions containing (1) HMX, RDX, 1,3,5-TNB,1,3-DNB, NB, 2,4,6-TNT, and 2,4-DNT and (2) Tetryl, 2,6-DNT, 2-NT, 3-NT,and 4-NT. Intermediate stock standard solutions should be prepared at 1,000 µg/L, in acetonitrile when analyzing soil samples, and in methanol when analyzing aqueous samples.5.4.2Dilute the two concentrated intermediate stock solutions, withthe appropriate solvent, to prepare intermediate standard solutions that cover the range of 2.5 - 1,000 µg/L. These solutions should be refrigerated on preparation, and may be used for 30 days.5.4.3For the low-level method, the analyst must conduct a detectionlimit study and devise dilution series appropriate to the desired range.Standards for the low level method must be prepared immediately prior to use.5.5Working standards5.5.1Calibration standards at a minimum of five concentrationlevels should be prepared through dilution of the intermediate standards solutions by 50% (v/v) with 5 g/L calcium chloride solution (Sec. 5.1.3).These solutions must be refrigerated and stored in the dark, and prepared fresh on the day of calibration.5.6Surrogate Spiking Solution5.6.1The analyst should monitor the performance of the extractionand analytical system as well as the effectiveness of the method in dealing with each sample matrix by spiking each sample, standard and reagent water blank with one or two surrogates (e.g., analytes not expected to be present in the sample).5.7Matrix Spiking Solutions5.7.1Prepare matrix spiking solutions in methanol such that theconcentration in the sample is five times the Estimated Quantitation Limit (Table 1). All target analytes should be included.5.8HPLC Mobile Phase5.8.1To prepare 1 liter of mobile phase, add 500 mL of methanol to500 mL of organic-free reagent water.6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLING6.1Follow conventional sampling and sample handling procedures as specified for semivolatile organics in Chapter Four.6.2Samples and sample extracts must be stored in the dark at 4E C. Holding times are the same as for semivolatile organics.7.0PROCEDURE7.1Sample Preparation7.1.1Aqueous Samples: It is highly recommended that process wastesamples be screened with the high-level method to determine if the low level method (1-50 µg/L) is required. Most groundwater samples will fall into the low level method.7.1.1.1Low-Level Method (salting-out extraction)7.1.1.1.1Add 251.3 g of sodium chloride to a 1 Lvolumetric flask (round). Measure out 770 mL of a watersample (using a 1 L graduated cylinder) and transfer it to thevolumetric flask containing the salt. Add a stir bar and mixthe contents at maximum speed on a magnetic stirrer until thesalt is completely dissolved.7.1.1.1.2Add 164 mL of acetonitrile (measured with a250 mL graduated cylinder) while the solution is being stirredand stir for an additional 15 minutes. Turn off the stirrerand allow the phases to separate for 10 minutes.7.1.1.1.3Remove the acetonitrile (upper) layer (about8 mL) with a Pasteur pipet and transfer it to a 100 mLvolumetric flask (round). Add 10 mL of fresh acetonitrile tothe water sample in the 1 L flask. Again stir the contents ofthe flask for 15 minutes followed by 10 minutes for phaseseparation. Combine the second acetonitrile portion with theinitial extract. The inclusion of a few drops of salt waterat this point is unimportant.7.1.1.1.4Add 84 mL of salt water (325 g NaCl per 1000mL of reagent water) to the acetonitrile extract in the 100 mLvolumetric flask. Add a stir bar and stir the contents on amagnetic stirrer for 15 minutes, followed by 10 minutes forphase separation. Carefully transfer the acetonitrile phase CD-ROM8330 - 6Revision 0September 1994CD-ROM 8330 - 7Revision 0September 1994to a 10 mL graduated cylinder using a Pasteur pipet. At this stage, the amount of water transferred with the acetonitrile must be minimized. The water contains a high concentration of NaCl that produces a large peak at the beginning of the chromatogram, where it could interfere with the HMX determination. 7.1.1.1.5Add an additional 1.0 mL of acetonitrile to the 100 mL volumetric flask. Again stir the contents of the flask for 15 minutes, followed by 10 minutes for phase separation. Combine the second acetonitrile portion with the initial extract in the 10 mL graduated cylinder (transfer to a 25 mL graduated cylinder if the volume exceeds 5 mL).Record the total volume of acetonitrile extract to the nearest 0.1 mL. (Use this as the volume of total extract [V ] in the t calculation of concentration after converting to µL). The resulting extract, about 5 - 6 mL, is then diluted 1:1 with organic-free reagent water (with pH <3 if tetryl is a suspected analyte) prior to analysis.7.1.1.1.6If the diluted extract is turbid, filter it through a 0.45 - µm Teflon filter using a disposable syringe.Discard the first 0.5 mL of filtrate, and retain the remainder in a Teflon-capped vial for RP-HPLC analysis as in Sec. 7.4.7.1.1.2High-Level Method 7.1.1.2.1Sample filtration: Place a 5 mL aliquot of each water sample in a scintillation vial, add 5 mL of acetonitrile, shake thoroughly, and filter through a 0.45-µm Teflon filter using a disposable syringe. Discard the first 3 mL of filtrate, and retain the remainder in a Teflon-capped vial for RP-HPLC analysis as in Sec. 7.4. HMX quantitation can be improved with the use of methanol rather than acetonitrile for dilution before filtration.7.1.2Soil and Sediment Samples 7.1.2.1Sample homogenization: Dry soil samples in air at room temperature or colder to a constant weight, being careful not to expose the samples to direct sunlight. Grind and homogenize the dried sample thoroughly in an acetonitrile-rinsed mortar to pass a 30 mesh sieve. NOTE:Soil samples should be screened by Method 8515 prior to grinding in a mortar and pestle (See Safety Sec. 11.2).7.1.2.2Sample extraction 7.1.2.2.1Place a 2.0 g subsample of each soil sample in a 15 mL glass vial. Add 10.0 mL of acetonitrile, cap withTeflon-lined cap, vortex swirl for one minute, and place in acooled ultrasonic bath for 18 hours.7.1.2.2.2After sonication, allow sample to settle for30 minutes. Remove 5.0 mL of supernatant, and combine with5.0 mL of calcium chloride solution (Sec. 5.1.3) in a 20 mLvial. Shake, and let stand for 15 minutes.7.1.2.2.3Place supernatant in a disposable syringeand filter through a 0.45-µm Teflon filter. Discard first 3mL and retain remainder in a Teflon-capped vial for RP-HPLCanalysis as in Sec. 7.4.7.2Chromatographic Conditions (Recommended)Primary Column:C-18 reverse phase HPLC column, 25-cmx 4.6-mm, 5 µm, (Supelco LC-18 or equivalent).Secondary Column:CN reverse phase HPLC column, 25-cm x4.6-mm, 5 µm, (Supelco LC-CN orequivalent).Mobile Phase:50/50 (v/v) methanol/organic-freereagent water.Flow Rate: 1.5 mL/minInjection volume:100-µLUV Detector:254 nm7.3Calibration of HPLC7.3.1All electronic equipment is allowed to warm up for 30 minutes.During this period, at least 15 void volumes of mobile phase are passed through the column (approximately 20 min at 1.5 mL/min) and continued until the baseline is level at the UV detector's greatest sensitivity.7.3.2Initial Calibration. Injections of each calibration standardover the concentration range of interest are made sequentially into the HPLC in random order. Peak heights or peak areas are obtained for each analyte. Experience indicates that a linear calibration curve with zero intercept is appropriate for each analyte. Therefore, a response factor for each analyte can be taken as the slope of the best-fit regression line.7.3.3Daily Calibration. Analyze midpoint calibration standards, ata minimum, at the beginning of the day, singly at the midpoint of the run,and singly after the last sample of the day (assuming a sample group of 10 samples or less). Obtain the response factor for each analyte from the mean peak heights or peak areas and compare it with the response factor obtained for the initial calibration. The mean response factor for the CD-ROM8330 - 8Revision 0September 1994daily calibration must agree within ±15% of the response factor of the initial calibration. The same criteria is required for subsequent standard responses compared to the mean response of the triplicate standards beginning the day. If this criterion is not met, a new initial calibration must be obtained.7.4HPLC Analysis7.4.1Analyze the samples using the chromatographic conditions givenin Sec. 7.2. All positive measurements observed on the C-18 column must be confirmed by injection onto the CN column.7.4.2Follow Sec. 7.0 in Method 8000 for instructions on theanalysis sequence, appropriate dilutions, establishing daily retention time windows, and identification criteria. Include a mid-level standard after each group of 10 samples in the analysis sequence. If column temperature control is not employed, special care must be taken to ensure that temperature shifts do not cause peak misidentification.7.4.3Table 2 summarizes the estimated retention times on both C-18and CN columns for a number of analytes analyzable using this method. An example of the separation achieved by Column 1 is shown in Figure 1.7.4.4Record the resulting peak sizes in peak heights or area units.The use of peak heights is recommended to improve reproducibility of low level samples.7.4.5Calculation of concentration is covered in Sec. 7.0 of Method8000.8.0QUALITY CONTROL8.1Refer to Chapter One for specific quality control procedures. Quality control to validate sample extraction is covered in Method 3500.8.2Quality control required to validate the HPLC system operation is found in Method 8000, Sec. 8.0.8.3Prior to preparation of stock solutions, acetonitrile, methanol, and water blanks should be run to determine possible interferences with analyte peaks. If the acetonitrile, methanol, or water blanks show contamination, a different batch should be used.9.0METHOD PERFORMANCE9.1Table 3 presents the single laboratory precision based on data from the analysis of blind duplicates of four spiked soil samples and four field contaminated samples analyzed by seven laboratories.CD-ROM8330 - 9Revision 0September 19949.2Table 4 presents the multilaboratory error based on data from the analysis of blind duplicates of four spiked soil samples and four field contaminated samples analyzed by seven laboratories.9.3Table 5 presents the multilaboratory variance of the high concentration method for water based on data from nine laboratories.9.4Table 6 presents multilaboratory recovery data from the analysis of spiked soil samples by seven laboratories.9.5Table 7 presents a comparison of method accuracy for soil and aqueous samples (high concentration method).9.6Table 8 contains precision and accuracy data for the salting-out extraction method.10.0REFERENCES1.Bauer, C.F., T.F. Jenkins, S.M. Koza, P.W. Schumacher, P.H. Miyares andM.E. Walsh (1989). Development of an analytical method for the determination of explosive residues in soil. Part 3. Collaborative test results and final performance evaluation. USA Cold Regions Research and Engineering Laboratory, CRREL Report 89-9.2.Grant, C.L., A.D. Hewitt and T.F. Jenkins (1989) Comparison of lowconcentration measurement capability estimates in trace analysis: Method Detection Limits and Certified Reporting Limits. USA Cold Regions Research and Engineering Laboratory, Special Report 89-20.3.Jenkins, T.F., C.F. Bauer, D.C. Leggett and C.L. Grant (1984)Reversed-phased HPLC method for analysis of TNT, RDX, HMX and 2,4-DNT in munitions wastewater. USA Cold Regions Research and Engineering Laboratory, CRREL Report 84-29.4.Jenkins, T.F. and M.E. Walsh (1987) Development of an analytical methodfor explosive residues in soil. USA Cold Regions Research and Engineering Laboratory, CRREL Report 87-7.5.Jenkins, T.F., P.H. Miyares and ME. Walsh (1988a) An improved RP-HPLCmethod for determining nitroaromatics and nitramines in water. USA Cold Regions Research and Engineering Laboratory, Special Report 88-23.6.Jenkins, T.F. and P.H. Miyares (1992) Comparison of Cartridge andMembrane Solid-Phase Extraction with Salting-out Solvent Extraction for Preconcentration of Nitroaromatic and Nitramine Explosives from Water.USA Cold Regions Research and Engineering Laboratory, Draft CRREL Special Report.7.Jenkins, T.F., P.W. Schumacher, M.E. Walsh and C.F. Bauer (1988b)Development of an analytical method for the determination of explosive CD-ROM8330 - 10Revision 0September 1994residues in soil. Part II: Further development and ruggedness testing.USA Cold Regions Research and Engineering Laboratory, CRREL Report 88-8.8.Leggett, D.C., T.F. Jenkins and P.H. Miyares (1990) Salting-out solventextraction for preconcentration of neutral polar organic solutes from water. Analytical Chemistry, 62: 1355-1356.9.Miyares, P.H. and T.F. Jenkins (1990) Salting-out solvent extraction fordetermining low levels of nitroaromatics and nitramines in water. USA Cold Regions Research and Engineering Laboratory, Special Report 90-30.11.0SAFETY11.1Standard precautionary measures used for handling other organic compounds should be sufficient for the safe handling of the analytes targeted by Method 8330. The only extra caution that should be taken is when handling the analytical standard neat material for the explosives themselves and in rare cases where soil or waste samples are highly contaminated with the explosives. Follow the note for drying the neat materials at ambient temperatures.11.2It is advisable to screen soil or waste samples using Method 8515 to determine whether high concentrations of explosives are present. Soil samples as high as 2% 2,4,6-TNT have been safely ground. Samples containing higher concentrations should not be ground in the mortar and pestle. Method 8515 is for 2,4,6-TNT, however, the other nitroaromatics will also cause a color to be developed and provide a rough estimation of their concentrations. 2,4,6-TNT is the analyte most often detected in high concentrations in soil samples. Visual observation of a soil sample is also important when the sample is taken from a site expected to contain explosives. Lumps of material that have a chemical appearance should be suspect and not ground. Explosives are generally a very finely ground grayish-white material.CD-ROM8330 - 11Revision 0September 1994ESTIMATED QUANTITATION LIMITSWater (µg/L) Soil (mg/kg) Compounds Low-Level High-LevelHMX-13.0 2.2 RDX0.8414.0 1.01,3,5-TNB0.26 7.30.251,3-DNB0.11 4.00.25Tetryl- 4.00.65NB- 6.40.262,4,6-TNT0.11 6.90.254-Am-DNT0.060 --2-Am-DNT0.035 --2,6-DNT0.31 9.40.262,4-DNT0.020 5.70.25 2-NT-12.00.254-NT- 8.50.253-NT- 7.90.25 CD-ROM8330 - 12Revision 0September 1994RETENTION TIMES AND CAPACITY FACTORS ON LC-18 AND LC-CN COLUMNSRetention time Capacity factor(min)(k)* Compound LC-18LC-CN LC-18LC-CNHMX 2.448.350.49 2.52RDX 3.73 6.15 1.27 1.59 1,3,5-TNB 5.11 4.05 2.120.71 1,3-DNB 6.16 4.18 2.760.76 Tetryl 6.937.36 3.23 2.11 NB7.23 3.81 3.410.61 2,4,6-TNT8.42 5.00 4.13 1.11 4-Am-DNT8.88 5.10 4.41 1.15 2-Am-DNT9.12 5.65 4.56 1.38 2,6-DNT9.82 4.61 4.990.95 2,4-DNT10.05 4.87 5.13 1.05 2-NT12.26 4.37 6.480.84 4-NT13.26 4.417.090.86 3-NT14.23 4.457.680.88 * Capacity factors are based on an unretained peak for nitrate at 1.71 min on LC-18 and at 2.00 min on LC-CN.CD-ROM8330 - 13Revision 0September 1994SINGLE LABORATORY PRECISION OF METHOD FOR SOIL SAMPLES Spiked Soils Field-Contaminated SoilsMean Conc.Mean Conc.(mg/kg)SD%RSD(mg/kg)SD%RSDHMX46 1.7 3.714 1.812.815321.614.1RDX60 1.4 2.31041211.587729.6 3.41,3,5-TNB8.60.4 4.6 2.80.27.146 1.9 4.172 6.08.31,3-DNB 3.50.14 4.0 1.10.119.8Tetryl17 3.117.9 2.30.4118.02,4,6-TNT40 1.4 3.57.00.619.0669558.22,4-DNT 5.00.17 3.4 1.00.4442.3CD-ROM8330 - 14Revision 0September 1994CD-ROM 8330 - 15Revision 0September 1994MULTILABORATORY ERROR OF METHOD FOR SOIL SAMPLESSpiked SoilsField-Contaminated SoilsMean Conc.Mean Conc.(mg/kg)SD %RSD(mg/kg)SD %RSD HMX462.65.714 3.726.015337.324.0RDX 60 2.6 4.410417.417.087767.37.71,3,5-TNB8.60.617.1 2.80.238.246 2.97 6.5728.812.21,3-DNB 3.50.24 6.9 1.10.1614.5Tetryl 17 5.2230.7 2.30.4921.32,4,6-TNT401.884.77.0 1.2718.066963.49.52,4-DNT 5.00.22 4.41.00.7474.0TABLE 5MULTILABORATORY VARIANCE OF METHOD FOR WATER SAMPLES aMean pounds (µg/L)SD %RSD HMX 20314.87.3RDX 27420.87.62,4-DNT 1077.77.22,4,6-TNT10711.110.4Nine LaboratoriesaCD-ROM 8330 - 16Revision 0September 1994MULTILABORATORY RECOVERY DATA FOR SPIKED SOIL SAMPLESConcentration (µg/g)1,3,5-1,3-2,4,6-2,4-LaboratoryHMX RDX TNB DNB Tetryl TNT DNT 144.9748.7848.9949.9432.4849.7351.05350.2548.5045.8545.9647.9146.2548.37442.4044.0043.4049.5031.6053.5050.90546.5048.4046.9048.8032.1055.8049.60656.2055.0041.6046.3013.2056.8045.70741.5041.5038.0044.50 2.6036.0043.50852.7052.2048.0048.3044.8051.3049.10True Conc 50.3550.2050.1550.0550.3550.6550.05Mean 47.7948.3444.6847.6729.2449.9148.32Std Dev5.464.57 3.91 2.0916.247.11 2.78% RSD 11.429.458.75 4.3955.5314.26 5.76% Diff* 5.08 3.7110.91 4.7641.93 1.46 3.46Mean %95968995589896Recovery* Between true value and mean determined value.COMPARISON OF METHOD ACCURACY FOR SOIL AND AQUEOUS SAMPLES(HIGH CONCENTRATION METHOD)Recovery (%) Analyte Soil Method*Aqueous Method** 2,4-DNT96.098.62,4,6-TNT96.894.4RDX96.899.6HMX95.495.5* Taken from Bauer et al. (1989), Reference 1.** Taken from Jenkins et al. (1984), Reference 3.CD-ROM8330 - 17Revision 0September 1994CD-ROM 8330 - 18Revision 0September 1994PRECISION AND ACCURACY DATA FOR THE SALTING-OUT EXTRACTION METHODPrecision Ave. Recovery Conc. Range Analyte No. of Samples(% RSD) (%) (µg/L)1HMX 20 10.5 106 0-1.14RDX 20 8.7 106 0-1.041,3,5-TNB 20 7.6 119 0-0.821,3-DNB 20 6.6 102 0-1.04Tetryl 20 16.4 93 0-0.932,4,6-TNT 20 7.6 105 0-0.982-Am-DNT 20 9.1 102 0-1.042,4-DNT205.8 101 0-1.011,2-NT 20 9.1 102 0-1.071,4-NT 20 18.1 96 0-1.061,3-NT2012.4970-1.23Reagent water1CD-ROM 8330 - 19Revision 0September 1994FIGURE 1CHROMATOGRAMS FOR COLUMNS DESCRIBED IN Sec. 4.1.2.COURTESY OF U.S. ARMY CORPS OF ENGINEERS, OMAHA, NE.CD-ROM 8330 - 20Revision 0September 1994METHOD 8330NITROAROMATICS AND NITRAMINES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)CD-ROM 8330 - 21Revision 0September 1994METHOD 8330(continued)。

EPA将评估83种化学物质

EPA将评估83种化学物质

EPA将评估83种化学物质
佚名
【期刊名称】《《涂料技术与文摘》》
【年(卷),期】2012(033)004
【摘要】美国环保署(EPA)日前公布,将对有毒物质控制法案中的83种化学物质潜在的风险进行评估,其中,2012年将完成对其中7种化学物质的评估工作。

这些物质包含各种金属化合物,如锑、镉、铬、铅和汞等,此外还包括中链或长链的氯化石蜡、砷化物、氰化物、石棉、木馏油、甲醛、八甲基环四硅氧烷、三氯乙烯、1,4-二氧杂环己烷、
【总页数】1页(P36-36)
【正文语种】中文
【中图分类】TQ324.21
【相关文献】
1.EPA安全化学成分清单增添130种化学物质 [J], 仪器信息网
2.环境保护部公布新化学物质生态测试测试机构考核结果——贵州理化测试分析研究中心(中国化工信息中心化学品风险评估实验基地)等两家机构获得环保部新化学物质生态测试资质 [J],
3.一种定量评估化学物质致癌性的新方法:比值评估法 [J], 徐玲玲
4.17种化学物质进口可能面临美国环保署(EPA)限制 [J],
5.美国EPA高通量暴露建模工具适合化学物质分级 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

METHOD 8318N-METHYLCARBAMATES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)1.0SCOPE AND APPLICATION1.1Method 8318 is used to determine the concentration of N-methylcarbamates in soil, water and waste matrices. The following compounds can be determined by this method:_______________________________________________________________________________Compound Name CAS No.a________________________________________________________________________________Aldicarb (Temik) 116-06-3Aldicarb Sulfone 1646-88-4Carbaryl (Sevin) 63-25-2Carbofuran (Furadan) 1563-66-2Dioxacarb 6988-21-23-Hydroxycarbofuran16655-82-6Methiocarb (Mesurol) 2032-65-7Methomyl (Lannate)16752-77-5Promecarb 2631-37-0Propoxur (Baygon) 114-26-1________________________________________________________________________________aChemical Abstract Services Registry Number.1.2The method detection limits (MDLs) of Method 8318 for determining the target analytes in organic-free reagent water and in soil are listed in Table 1.1.3This method is restricted to use by, or under the supervision of, analysts experienced in the use of high performance liquid chromatography (HPLC) and skilled in the interpretation of chromatograms. Each analyst must demonstrate the ability to generate acceptable results with this method.2.0SUMMARY OF METHOD2.1N-methylcarbamates are extracted from aqueous samples with methylene chloride, and from soils, oily solid waste and oils with acetonitrile. The extract solvent is exchanged to methanol/ethylene glycol, and then the extract is cleaned up on a C-18 cartridge, filtered, and eluted on a C-18 analytical column. After separation, the target analytes are hydrolyzed and derivatized post-column, then quantitated fluorometrically.2.2Due to the specific nature of this analysis, confirmation by a secondary method is not essential. However, fluorescence due to post-column derivatization may be confirmed by substituting the NaOH and o-phthalaldehyde solutions with organic-free reagent water and reanalyzing the sample. Iffluorescence is still detected, then a positive interference is present and care should be taken in the interpretation of the results.2.3The sensitivity of the method usually depends on the level of interferences present, rather than on the instrumental conditions. Waste samples with a high level of extractable fluorescent compounds are expected to yield significantly higher detection limits.3.0INTERFERENCES3.1Fluorescent compounds, primarily alkyl amines and compounds which yield primary alkyl amines on base hydrolysis, are potential sources of interferences.3.2Coeluting compounds that are fluorescence quenchers may result in negative interferences.3.3Impurities in solvents and reagents are additional sources of interferences. Before processing any samples, the analyst must demonstrate daily, through the analysis of solvent blanks, that the entire analytical system is interference free.4.0APPARATUS AND MATERIALS4.1HPLC system4.1.1An HPLC system capable of injecting 20 µL aliquots andperforming multilinear gradients at a constant flow. The system must also be equipped with a data system to measure the peak areas.4.1.2C-18 reverse phase HPLC column, 25 cm x 4.6 mm (5 µm).4.1.3Post Column Reactor with two solvent delivery systems (KratosPCRS 520 with two Kratos Spectroflow 400 Solvent Delivery Systems, or equivalent).4.1.4Fluorescence detector (Kratos Spectroflow 980, or equivalent).4.2Other apparatus4.2.1Centrifuge.4.2.2Analytical balance - + 0.0001 g.4.2.3Top loading balance - + 0.01 g.4.2.4Platform shaker.4.2.5Heating block, or equivalent apparatus, that can accommodate10 mL graduated vials (Sec. 4.3.11).4.3Materials4.3.1HPLC injection syringe - 50 µL.4.3.2Filter paper, (Whatman #113 or #114, or equivalent).4.3.3Volumetric pipettes, Class A, glass, assorted sizes.R4.3.4Reverse phase cartridges, (C-18 Sep-Pak [Waters Associates],or equivalent).4.3.5Glass syringes - 5 mL.4.3.6Volumetric flasks, Class A - Sizes as appropriate.4.3.7Erlenmeyer flasks with teflon-lined screw caps, 250 mL.4.3.8Assorted glass funnels.4.3.9Separatory funnels, with ground glass stoppers and teflonstopcocks - 250 mL.4.3.10Graduated cylinders - 100 mL.4.3.11Graduated glass vials - 10 mL, 20 mL.4.3.12Centrifuge tubes - 250 mL.4.3.13Vials - 25 mL, glass with Teflon lined screw caps orcrimp tops.4.3.14Positive displacement micro-pipettor, 3 to 25 µLdisplacement, (Gilson Microman [Rainin #M-25] with tips, [Rainin #CP-25], or equivalent).4.3.15Nylon filter unit, 25 mm diameter, 0.45 µm pore size,disposable (Alltech Associates, #2047, or equivalent).5.0REAGENTS5.1HPLC grade chemicals shall be used in all tests. It is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lowering the accuracy of the determination.5.2General5.2.1Acetonitrile, CH CN - HPLC grade - minimum UV cutoff at 203 nm3(EM Omnisolv #AX0142-1, or equivalent).5.2.2Methanol, CH OH - HPLC grade - minimum UV cutoff at 230 nm (EM3Omnisolv #MX0488-1, or equivalent).5.2.3Methylene chloride, CH Cl - HPLC grade - minimum UV cutoff at22230 nm (EM Omnisolv #DX0831-1, or equivalent).5.2.4Hexane, C H - pesticide grade - (EM Omnisolv #HX0298-1, or614equivalent).5.2.5Ethylene glycol, HOCH CH OH - Reagent grade - (EM Science, or22equivalent).5.2.6Organic-free reagent water - All references to water in this method refer to organic-free reagent water, as defined in Chapter One.5.2.7Sodium hydroxide, NaOH - reagent grade - 0.05N NaOH solution.5.2.8Phosphoric acid, H PO - reagent grade.345.2.9pH 10 borate buffer (J.T. Baker #5609-1, or equivalent).5.2.10o-Phthalaldehyde, o-C H(CHO) - reagent grade (Fisher642#0-4241, or equivalent).5.2.112-Mercaptoethanol, HSCH CH OH - reagent grade (Fisher22#0-3446, or equivalent).5.2.12N-methylcarbamate neat standards (equivalence to EPA standards must be demonstrated for purchased solutions).5.2.13Chloroacetic acid, ClCH COOH, 0.1 N.25.3Reaction solution5.3.1Dissolve 0.500 g of o-phthalaldehyde in 10 mL of methanol, ina 1 L volumetric flask. To this solution, add 900 mL of organic-free reagent water, followed by 50 mL of the borate buffer (pH 10). After mixing well, add 1 mL of 2-mercaptoethanol, and dilute to the mark with organic-free reagent water. Mix the solution thoroughly. Prepare fresh solutions on a weekly basis, as needed. Protect from light and store under refrigeration.5.4Standard solutions5.4.1Stock standard solutions: prepare individual 1000 mg/L solutions by adding 0.025 g of carbamate to a 25 mL volumetric flask, and diluting to the mark with methanol. Store solutions, under refrigeration, in glass vials with Teflon lined screw caps or crimp tops. Replace every six months.5.4.2Intermediate standard solution: prepare a mixed 50.0 mg/L solution by adding 2.5 mL of each stock solution to a 50 mL volumetric flask, and diluting to the mark with methanol. Store solutions, underrefrigeration, in glass vials with Teflon lined screw caps or crimp tops.Replace every three months.5.4.3Working standard solutions: prepare 0.5, 1.0, 2.0, 3.0 and 5.0mg/L solutions by adding 0.25, 0.5, 1.0, 1.5 and 2.5 mL of the intermediate mixed standard to respective 25 mL volumetric flasks, and diluting each to the mark with methanol. Store solutions, under refrigeration, in glass vials with Teflon lined screw caps or crimp tops.Replace every two months, or sooner if necessary.5.4.4Mixed QC standard solution: prepare a 40.0 mg/L solution fromanother set of stock standard solutions, prepared similarly to those described in Sec. 5.4.1. Add 2.0 mL of each stock solution to a 50 mL volumetric flask and dilute to the mark with methanol. Store the solution, under refrigeration, in a glass vial with a Teflon lined screw cap or crimp top. Replace every three months.6.0SAMPLE COLLECTION, PRESERVATION, AND HANDLING6.1Due to the extreme instability of N-methylcarbamates in alkaline media, water, waste water and leachates should be preserved immediately after collection by acidifying to pH 4-5 with 0.1 N chloroacetic acid.6.2Store samples at 4E C and out of direct sunlight, from the time of collection through analysis. N-methylcarbamates are sensitive to alkaline hydrolysis and heat.6.3All samples must be extracted within seven days of collection, and analyzed within 40 days of extraction.7.0PROCEDURE7.1Extraction7.1.1Water, domestic wastewater, aqueous industrial wastes, andleachates7.1.1.1Measure 100 mL of sample into a 250 mL separatoryfunnel and extract by shaking vigorously for about 2 minutes with 30mL of methylene chloride. Repeat the extraction two more times.Combine all three extracts in a 100 mL volumetric flask and diluteto volume with methylene chloride. If cleanup is required, go toSec. 7.2. If cleanup is not required, proceed directly to Sec.7.3.1.7.1.2Soils, solids, sludges, and heavy aqueous suspensions7.1.2.1Determination of sample % dry weight - In certaincases, sample results are desired based on dry-weight basis. Whensuch data is desired, a portion of sample for this determinationshould be weighed out at the same time as the portion used for analytical determination.WARNING:The drying oven should be contained in a hood orvented. Significant laboratory contamination mayresult from a heavily contaminated hazardouswaste sample.7.1.2.1.1Immediately after weighing the sample forextraction, weigh 5-10 g of the sample into a tared crucible.Determine the % dry weight of the sample by drying overnightoat 105C. Allow to cool in a desiccator before weighing:% dry weight = g of dry sample x 100g of sample7.1.2.2Extraction - Weigh out 20 + 0.1 g of sample intoa 250 mL Erlenmeyer flask with a Teflon-lined screw cap. Add 50 mLof acetonitrile and shake for 2 hours on a platform shaker. Allow the mixture to settle (5-10 min), then decant the extract into a 250 mL centrifuge tube. Repeat the extraction two more times with 20 mL of acetonitrile and 1 hour shaking each time. Decant and combine all three extracts. Centrifuge the combined extract at 200 rpm for10 min. Carefully decant the supernatant into a 100 mL volumetricflask and dilute to volume with acetonitrile. (Dilution factor = 5) Proceed to Sec. 7.3.2.7.1.3Soils heavily contaminated with non-aqueous substances, such as oils7.1.3.1Determination of sample % dry weight - FollowSecs. 7.1.2.1 through 7.1.2.1.1.7.1.3.2Extraction - Weigh out 20 + 0.1 g of sample intoa 250 mL Erlenmeyer flask with a Teflon-lined screw cap. Add 60 mLof hexane and shake for 1 hour on a platform shaker. Add 50 mL of acetonitrile and shake for an additional 3 hours. Allow the mixture to settle (5-10 min), then decant the solvent layers into a 250 mL separatory funnel. Drain the acetonitrile (bottom layer) through filter paper into a 100 mL volumetric flask. Add 60 mL of hexane and50 mL of acetonitrile to the sample extraction flask and shake for1 hour. Allow the mixture to settle, then decant the mixture intothe separatory funnel containing the hexane from the first extraction. Shake the separatory funnel for 2 minutes, allow the phases to separate, drain the acetonitrile layer through filter paper into the volumetric flask, and dilute to volume with acetonitrile. (Dilution factor = 5) Proceed to Sec. 7.3.2.7.1.4Non-aqueous liquids such as oils7.1.4.1Extraction - Weigh out 20 + 0.1 g of sample intoa 125 mL separatory funnel. Add 40 mL of hexane and 25 mL ofacetonitrile and vigorously shake the sample mixture for 2 minutes.Allow the phases to separate, then drain the acetonitrile (bottomlayer) into a 100 mL volumetric flask. Add 25 mL of acetonitrile tothe sample funnel, shake for 2 minutes, allow the phases toRepeat the extraction with another 25 mL portion of acetonitrile,combining the extracts. Dilute to volume with acetonitrile.(Dilution factor = 5). Proceed to Sec. 7.3.2.7.2Cleanup - Pipet 20.0 mL of the extract into a 20 mL glass vial containing 100 µL of ethylene glycol. Place the vial in a heating block set at o50 C, and gently evaporate the extract under a stream of nitrogen (in a fume hood) until only the ethylene glycol keeper remains. Dissolve the ethylene glycol residue in 2 mL of methanol, pass the extract through a pre-washed C-18 reverse phase cartridge, and collect the eluate in a 5 mL volumetric flask. Elute the cartridge with methanol, and collect the eluate until the final volume of 5.0 mL is obtained. (Dilution factor = 0.25) Using a disposable 0.45 µm filter, filter an aliquot of the clean extract directly into a properly labelled autosampler vial. The extract is now ready for analysis. Proceed to Sec. 7.4.7.3Solvent Exchange7.3.1Water, domestic wastewater, aqueous industrial wastes, andleachates:Pipet 10.0 mL of the extract into a 10 mL graduated glass vial containing 100 µL of ethylene glycol. Place the vial in a heating block oset at 50 C, and gently evaporate the extract under a stream of nitrogen (in a fume hood) until only the ethylene glycol keeper remains. Add methanol to the ethylene glycol residue, dropwise, until the total volume is 1.0 mL. (Dilution factor = 0.1). Using a disposable 0.45 µm filter, filter this extract directly into a properly labelled autosampler vial.The extract is now ready for analysis. Proceed to Sec. 7.4.7.3.2Soils, solids, sludges, heavy aqueous suspensions, and non-aqueous liquids:Elute 15 mL of the acetonitrile extract through a C-18 reverse phase cartridge, prewashed with 5 mL of acetonitrile. Discard the first 2 mL of eluate and collect the remainder. Pipet 10.0 mL of the clean extract intoa 10 mL graduated glass vial containing 100 µL of ethylene glycol. Placeothe vial in a heating block set at 50 C, and gently evaporate the extract under a stream of nitrogen (in a fume hood) until only the ethylene glycol keeper remains. Add methanol to the ethylene glycol residue, dropwise, until the total volume is 1.0 mL. (Additional dilution factor = 0.1;overall dilution factor = 0.5). Using a disposable 0.45 µm filter, filter this extract directly into a properly labelled autosampler vial. The extract is now ready for analysis. Proceed to Sec. 7.4.7.4Sample Analysis7.4.1Analyze the samples using the chromatographic conditions,post-column reaction parameters and instrument parameters given in Secs.7.4.1.1, 7.4.1.2, 7.4.1.3 and 7.4.1.4. Table 2 provides the retentiontimes that were obtained under these conditions during method development.A chromatogram of the separation is shown in Figure 1.7.4.1.1Chromatographic Conditions (Recommended)Solvent A:Organic-free reagent water, acidified with0.4 mL of phosphoric acid per liter ofwaterSolvent B:Methanol/acetonitrile (1:1, v/v)Flow rate: 1.0 mL/minInjection Volume:20 µLSolvent delivery system program:Time Duration(min)Function Value(min) File0.00 FR 1.0 00.00 B% 10% 00.02 B% 80% 20 020.02 B%100% 5 025.02 B%100% 5 030.02 B% 10% 3 033.02 B% 10% 7 036.02 ALARM 0.01 07.4.1.2Post-column Hydrolysis Parameters (Recommended)Solution:0.05 N aqueous sodium hydroxideFlow Rate:0.7 mL/minoTemperature 95 CResidence Time:35 seconds (1 mL reaction coil)7.4.1.3Post-column Derivatization Parameters(Recommended)Solution:o-phthalaldehyde/2-mercaptoethanol (Sec.5.3.1)Flow Rate:0.7 mL/minoTemperature 40 CResidence time:25 seconds (1 mL reaction coil)7.4.1.4Fluorometer Parameters (Recommended)Cell:10 µLExcitation wavelength:340 nmEmission waveleng 418 nm cutoff filterSensitivity wavelength:0.5 µAPMT voltage: -800 VTime constant: 2 sec7.4.2If the peak areas of the sample signals exceed the calibration range of the system, dilute the extract as necessary and reanalyze the diluted extract.7.5Calibration:7.5.1Analyze a solvent blank (20 µL of methanol) to ensure that thesystem is clean. Analyze the calibration standards (Sec. 5.4.3), starting with the 0.5 mg/L standards and ending with the 5.0 mg/L standard. If the percent relative standard deviation (%RSD) of the mean response factor (RF) for each analyte does not exceed 20%, the system is calibrated and the analysis of samples may proceed. If the %RSD for any analyte exceeds 20%, recheck the system and/or recalibrate with freshly prepared calibration solutions.7.5.2Using the established calibration mean response factors, checkthe calibration of the instrument at the beginning of each day by analyzing the 2.0 mg/L mixed standard. If the concentration of each analyte falls within the range of 1.70 to 2.30 mg/L (i.e., within + 15% of the true value), the instrument is considered to be calibrated and the analysis of samples may proceed. If the observed value of any analyte exceeds its true value by more than + 15%, the instrument must be recalibrated (Sec. 7.5.1).7.5.3After 10 sample runs, or less, the 2.0 mg/L standards must beanalyzed to ensure that the retention times and response factors are still within acceptable limits. Significant variations (i.e., observed concentrations exceeding the true concentrations by more than + 15%) may require a re-analysis of the samples.7.6Calculations7.6.1Calculate each response factor as follows (mean value based on5 points):concentration of standard RF =area of the signal5(3 RF )i i mean RF = RF =__ 55[(3 RF - RF)] / 4i __21/2i %RSD of RF = X 100%__RF __7.6.2Calculate the concentration of each N-methylcarbamate asfollows:µg/g or mg/L = (RF) (area of signal) (dilution factor)__8.0QUALITY CONTROL8.1Before processing any samples, the analyst must demonstrate, through the analysis of a method blank for each matrix type, that all glassware and reagents are interference free. Each time there is a change of reagents, a method blank must be processed as a safeguard against laboratory contamination.8.2 A QC check solution must be prepared and analyzed with each sample batch that is processed. Prepare this solution, at a concentration of 2.0 mg/L of each analyte, from the 40.0 mg/L mixed QC standard solution (Sec. 5.4.4). The acceptable response range is 1.7 to 2.3 mg/L for each analyte.8.3Negative interference due to quenching may be examined by spiking the extract with the appropriate standard, at an appropriate concentration, and examining the observed response against the expected response.8.4Confirm any detected analytes by substituting the NaOH and OPA reagents in the post column reaction system with deionized water, and reanalyze the suspected extract. Continued fluorescence response will indicate that a positive interference is present (since the fluorescence response is not due to the post column derivatization). Exercise caution in the interpretation of the chromatogram.9.0METHOD PERFORMANCE9.1Table 1 lists the single operator method detection limit (MDL) for each compound in organic-free reagent water and soil. Seven/ten replicate samples were analyzed, as indicated in the table. See reference 7 for more details.9.2Tables 2, 3 and 4 list the single operator average recoveries and standard deviations for organic-free reagent water, wastewater and soil. Ten replicate samples were analyzed at each indicated spike concentration for each matrix type.9.3The method detection limit, accuracy and precision obtained will be determined by the sample matrix.10.0REFERENCES1.California Department of Health Services, Hazardous Materials Laboratory,"N-Methylcarbamates by HPLC", Revision No. 1.0, September 14, 1989.2.Krause, R.T. Journal of Chromatographic Science, 1978, vol. 16, pg 281.3.Klotter, Kevin, and Robert Cunico, "HPLC Post Column Detection ofCarbamate Pesticides", Varian Instrument Group, Walnut Creek, CA 94598.EPA, "Method 531. Measurement of N-Methylcarbomyloximes and N-Methylcarbamates in Drinking Water by Direct Aqueous Injection HPLC withPost Column Derivatization", EPA 600/4-85-054, Environmental Monitoring and Support Laboratory, Cincinnati, OH 45268.EPA, "Method 632. The Determination of Carbamate and Urea Pesticides inIndustrial and Municipal Wastewater", EPA 600/4-21-014, Environmental Monitoring and Support Laboratory, Cincinnati, OH 45268.6.Federal Register, "Appendix B to Part 136 - Definition and Procedure forthe Determination of the Method Detection Limit - Revision 1.11", Friday, October 26, 1984, 49, No. 209, 198-199.7.Okamoto, H.S., D. Wijekoon, C. Esperanza, J. Cheng, S. Park, J. Garcha, S.Gill, K. Perera "Analysis for N-Methylcarbamate Pesticides by HPLC in Environmental Samples", Proceedings of the Fifth Annual USEPA Symposium on Waste Testing and Quality Assurance, July 24-28, 1989, Vol. II, 57-71.aELUTION ORDER, RETENTION TIMES ANDSINGLE OPERATOR METHOD DETECTION LIMITSMethod Detection Limits b Compound Retention Organic-freeTime Reagent Water Soil(min) (µg/L)(µg/kg)_______________________________________________________________________________c cAldicarb Sulfone 9.59 1.944Methomyl (Lannate) 9.59 1.7123-Hydroxycarbofuran12.70 2.610cDioxacarb13.50 2.2 >50cc cAldicarb (Temik)16.05 9.412Propoxur (Baygon)18.06 2.417Carbofuran (Furadan)18.28 2.022Carbaryl (Sevin)19.13 1.731d-Naphthol20.30 - -Methiocarb (Mesurol)22.56 3.132Promecarb23.02 2.517________________________________________________________________________________ aSee Sec. 7.4 for chromatographic conditionsbMDL for organic-free reagent water, sand, soil were determined by analyzing 10 low concentration spike replicate for each matrix type (except where noted). See reference 7 for more details.cMDL determined by analyzing 7 spiked replicates.dBreakdown product of Carbaryl.aPRECISION DATA FOR ORGANIC-FREE REAGENT WATERCompound Recovered% Recovery SD%RSD_____________________________________________________________________________ Aldicarb Sulfone22575.0 7.28 3.24 Methomyl (Lannate)24481.3 8.34 3.423-Hydroxycarbofuran21070.0 7.85 3.74 Dioxacarb24180.3 8.53 3.54 Aldicarb (Temik)22474.7 13.5 6.03 Propoxur (Baygon)23277.3 10.6 4.57 Carbofuran (Furadan)23979.6 9.23 3.86 Carbaryl (Sevin)24280.7 8.56 3.54 Methiocarb (Mesurol)23177.0 8.09 3.50 Promecarb22775.7 9.43 4.1_______________________________________________________________________________ aSpike Concentration = 300 µg/L of each compound, n = 10aPRECISION DATA FOR WASTEWATERCompound Recovered% Recovery SD%RSD______________________________________________________________________________Aldicarb Sulfone23578.317.67.49 Methomyl (Lannate)24782.329.912.10 3-Hydroxycarbofuran25183.725.410.11bDioxacarb - - - Aldicarb (Temik)25886.016.4 6.36 Propoxur (Baygon)26387.716.7 6.47 Carbofuran (Furadan)26287.315.7 5.99 Carbaryl (Sevin)26287.317.2 6.56 Methiocarb (Mesurol)25484.719.97.83 Promecarb26387.715.1 5.74 ________________________________________________________________________________ aSpike Concentration = 300 µg/L of each compound, n = 10bNo recoveryaPRECISION DATA FOR SOILCompound Recovered% Recovery SD%RSD______________________________________________________________________________Aldicarb Sulfone 1.5778.50.069 4.39 Methomyl (Lannate) 1.4874.00.086 5.81 3-Hydroxycarbofuran 1.6080.00.071 4.44 Dioxacarb 1.5175.50.073 4.83 Aldicarb (Temik) 1.2964.50.14211.0 Propoxur (Baygon) 1.3366.50.1269.47 Carbofuran (Furadan) 1.4673.00.092 6.30 Carbaryl (Sevin) 1.5376.50.076 4.90 Methiocarb (Mesurol) 1.4572.50.071 4.90 Promecarb 1.2964.70.1249.61 _______________________________________________________________________________ aSpike Concentration = 2.00 mg/kg of each compound, n = 101.00 µg/mL EACH OF:1.ALDICARB SULFONE 6.PROPOXUR2.METHOMYL7.CARBOFURAN3.3-HYDROXYCARBOFURAN8.CARBARYL4.DIOXACARB9.METHIOCARB5.ALDICARB10.PROMECARB。

相关文档
最新文档