九年级数学圆综合训练2

合集下载

初三数学二模试题分类汇编——圆的综合综合及答案

初三数学二模试题分类汇编——圆的综合综合及答案

初三数学二模试题分类汇编——圆的综合综合及答案一、圆的综合1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD 是直径,∴∠DBC=90°,∵CD=4,B 为弧CD 中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB ,∵∠DBE=∠DBA ,∴△DBE ∽△ABD , ∴,∴BE•AB=BD•BD=. 考点:1.切线的判定;2.相似三角形的判定与性质.2.在⊙O 中,点C 是AB u u u r上的一个动点(不与点A ,B 重合),∠ACB=120°,点I 是∠ABC 的内心,CI 的延长线交⊙O 于点D ,连结AD,BD .(1)求证:AD=BD .(2)猜想线段AB 与DI 的数量关系,并说明理由.(3)若⊙O 的半径为2,点E ,F 是»AB 的三等分点,当点C 从点E 运动到点F 时,求点I 随之运动形成的路径长.【答案】(1)证明见解析;(2)AB=DI ,理由见解析(323 【解析】分析:(1)根据内心的定义可得CI 平分∠ACB ,可得出角相等,再根据圆周角定理,可证得结论;(2)根据∠ACB=120°,∠ACD=∠BCD,可求出∠BAD的度数,再根据AD=BD,可证得△ABD是等边三角形,再根据内心的定义及三角形的外角性质,证明∠BID=∠IBD,得出ID=BD,再根据AB=BD,即可证得结论;(3)连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧,根据已知及圆周角定理、解直角三角形,可求出AD的长,再根据点E,F是弧AB ⌢的三等分点,△ABD是等边三角形,可证得∠DAI1=∠AI1D,然后利用弧长的公式可求出点I 随之运动形成的路径长.详解:(1)证明:∵点I是∠ABC的内心∴CI平分∠ACB∴∠ACD=∠BCD∴弧AD=弧BD∴AD=BD(2)AB=DI理由:∵∠ACB=120°,∠ACD=∠BCD∴∠BCD=×120°=60°∵弧BD=弧BD∴∠DAB=∠BCD=60°∵AD=BD∴△ABD是等边三角形,∴AB=BD,∠ABD=∠C∵I是△ABC的内心∴BI平分∠ABC∴∠CBI=∠ABI∵∠BID=∠C+∠CBI,∠IBD=∠ABI+∠ABD∴∠BID=∠IBD∴ID=BD∵AB=BD∴AB=DI(3)解:如图,连接DO,延长DO根据题意可知点I随之运动形成的图形式以D为圆心,DI1为半径的弧∵∠ACB=120°,弧AD=弧BD∴∠AED=∠ACB=×120°=60°∵圆的半径为2,DE 是直径∴DE=4,∠EAD=90°∴AD=sin ∠AED×DE=×4=2∵点E ,F 是 弧AB ⌢的三等分点,△ABD 是等边三角形,∴∠ADB=60°∴弧AB 的度数为120°,∴弧AM 、弧BF 的度数都为为40°∴∠ADM=20°=∠FAB∴∠DAI 1=∠FAB+∠DAB=80°∴∠AI 1D=180°-∠ADM-∠DAI 1=180°-20°-80°=80°∴∠DAI 1=∠AI 1D∴AD=I 1D=2∴弧I 1I 2的长为:点睛:此题是一道圆的综合题,有一定的难度,熟记圆的相关性质与定理,并对圆中的弦、弧、圆心角、圆周角等进行灵活转化是解题关键,注意数形结合思想的渗透.3.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212 【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;(2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO .∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB .∴122OF BD ==. ∴212EF OE OF =-=4.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,BC=6cm,AC=8cm,∠BAD=45°.点E 在⊙O 外,做直线AE ,且∠EAC=∠D .(1)求证:直线AE 是⊙O 的切线.(2)求图中阴影部分的面积.【答案】(1)见解析;(2) 25-504π. 【解析】 分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE 是⊙O 的切线; (2)连接OD ,用扇形ODA 的面积减去△AOD 的面积即可.详解:证明:(1) ∵AB 是⊙O 的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵∠EAC=∠ADC ,∠ADC=∠ABC ,∴∠EAC=∠ABC∴∠BAC+∠EAC =90°,即∠BAE= 90°∴直线AE 是⊙O 的切线;(2)连接OD∵ BC=6 AC=8∴ 226810AB =+=∴ OA = 5又∵ OD = OA∴∠ADO =∠BAD = 45°∴∠AOD = 90°∴AOD ODA S S S ∆-阴影扇形==90155553602π⨯⨯-⨯⨯ 25504π-= (2cm )点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.5.如图,在以点O 为圆心的两个同心圆中,小圆直径AE 的延长线与大圆交于点B ,点D 在大圆上,BD 与小圆相切于点F ,AF 的延长线与大圆相交于点C ,且CE ⊥BD .找出图中相等的线段并证明.【答案】见解析【解析】试题分析:由AE是小⊙O的直径,可得OA=OE,连接OF,根据切线的性质,可得OF⊥BD,然后由垂径定理,可证得DF=BF,易证得OF∥CE,根据平行线分线段成比例定理,可证得AF=CF,继而可得四边形ABCD是平行四边形,则可得AD=BC,AB=CD.然后连接OD、OC,可证得△AOD≌△EOC,则可得BC=AD=CE=AE.试题解析:图中相等的线段有:OA=OE,DF=BF,AF=CF,AB=CD,BC=AD=CE=AE.证明如下:∵AE是小⊙O的直径,∴OA=OE.连接OF,∵BD与小⊙O相切于点F,∴OF⊥BD.∵BD是大圆O的弦,∴DF=BF.∵CE⊥BD,∴CE∥OF,∴AF=CF.∴四边形ABCD是平行四边形.∴AD=BC,AB=CD.∵CE:AE=OF:AO,OF=AO,∴AE=EC.连接OD、OC,∵OD=OC,∴∠ODC=∠OCD.∵∠AOD=∠ODC,∠EOC=∠OEC,∴∠AOC=∠EOC,∴△AOD≌△EOC,∴AD=CE.∴BC=AD=CE=AE.【点睛】考查了切线的性质,垂径定理,平行线分线段成比例定理,平行四边形的判定与性质以及全等三角形的判定与性质等知识.此题综合性很强解题的关键是注意数形结合思想的应用,注意辅助线的作法,小心不要漏解.6.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。

九年级数学圆 几何综合单元测试卷(解析版)

九年级数学圆 几何综合单元测试卷(解析版)

九年级数学圆 几何综合单元测试卷(解析版)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ; (2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or【解析】 【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值. (2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解. 【详解】(1)如图1:连接OB 、OC. ∵BC=AO ∴OB=OC=BC∴△OBC 是等边三角形 ∴∠BOC=60° ∵点D 是BC 的中点 ∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α ∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+-解得:331x 4+=∴AE=3312AF +=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:3D 的半径为1 ∴31 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=- 解得:331x 4-=∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.3.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分题甲:已知矩形两邻边的长、是方程的两根.(1)求的取值范围;(2)当矩形的对角线长为时,求的值;(3)当为何值时,矩形变为正方形?题乙:如图,是直径,于点,交于点,且.(1)判断直线和的位置关系,并给出证明;(2)当,时,求的面积.【答案】题甲(1)(2)(3)题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=【解析】试题分析:题甲:(1)、是方程的两根,则其;由得(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方程的两根,则;因为,所以;解得由得(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,;因为,所以;于点,,所以,,在三角形OBD中,所以OB⊥BD;BD是切线(2),AB是圆的直径,所以OB=5;于点,交于点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得OF=;根据题意,,则,所以,从而,解得DF=,的面积=考点:直线与圆相切,相似三角形点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似4.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x=-+(2)d=5t (3)故当 t=85,或815,时,QR=EF,N(-6,6)或(2,2).【解析】试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a,在Rt△BOD中,由勾股定理可得方程:(8-a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解; 试题解析:(1)∵C (0,8),D (-4,0), ∴OC=8,OD=4, 设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a , 在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2, 则(8-a )2=a 2+42, 解得:a=3, 则OB=3, 则B (0,3), tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6, 则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k b b +== ,解得:1{23k b =-= , 故直线AB 的解析式为:y=-12x +3; (2)如图所示:在Rt △AOB 中,∠AOB=90°,OB=3,OA=6, 则22135,tan 2OB OB OA BAO OA +=∠== ,255OAcos BAO AB∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=, 则AQ=10cos APt BAO=∠ ,∵PR ∥AC , ∴∠APR=∠CAB ,由折叠的性质得:∠BAO=∠CAB , ∴∠BAO=∠APR , ∴PR=AR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°, ∴∠PQA=∠QPR , ∴RP=RQ , ∴RQ=AR ,∴QR=12 AQ=5t, 即d=5t;(3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S , ∵EF=QR , ∴NS=NT ,∴四边形NTOS 是正方形,则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ;若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2,即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。

北师版九年级数学下册第二章圆综合练习题

北师版九年级数学下册第二章圆综合练习题

( 2)AC+AD=BC. 理由如下:
如图,连接 OD . ∵ AC 切小圆 O 于点 A , BC 切小圆 O 于点 E , ∴ CE CA .
∵ 在 Rt△OAD 与 Rt△OEB 中, OA OE, OD OB, OAD ∴ Rt△OAD ≌ Rt△OEB ,∴ EB AD . ∵ BC CE EB ,∴ BC AC AD . ( 3)∵ BAC 90o, AB=8 cm, BC=10 cm, ∴ AC 6 cm.
∵ ∠ ACD= 25o , ∴ ∠ AOD= 50o, ∴ ∠ BOD=50o.
第 4 题答图
解析:如图,连接 OB, ∵ AB与⊙ O相切,∴ OB⊥ AB,∴ ∠ ABO=90°. ∵ ∠ A=30°,∴ ∠ AOB=60°,∴ ∠ C= 1 ∠ DOB=30°.
2 6. D 解析:由题意得,扇形 DAB的弧长等于正方形 ABCD中边 BC与 CD的和,所以扇形
又∵为直径,∴ ∠ = ,∴∠
∵ ,∴ ,∴
23. 解:( 1) BC 所在直线与小圆相切
如图,过圆心 O 作 OE BC ,垂足为点 E . ∵ AC 是小圆的切线, AB 经过圆心 O ,∴ OA AC .
又∵ CO 平分 ACB, OE BC , ∴ OE OA . ∴ BC 所在直线是小圆的切线 .
C,如果∠ ABO=20°,则∠ C的度数是 ( )
°
°
°
°
3. 在一个圆中,给出下列命题,其中正确的是(

A . 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直 B . 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C . 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点 D . 若两条弦平行,则这两条弦之间的距离一定小于圆的半径

九年级数学二模试题分类汇编——圆的综合综合

九年级数学二模试题分类汇编——圆的综合综合

九年级数学二模试题分类汇编——圆的综合综合一、圆的综合1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的长为;(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.【答案】(1)4;(2)35;(3)点E的坐标为(1,2)、(53,103)、(4,2).【解析】分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH=BHHA=1,∴BH=HA=4,∴OC=BH=4.故答案为4.(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).由(1)得:OH =2,BH =4.∵OC 与⊙M 相切于N ,∴MN ⊥OC .设圆的半径为r ,则MN =MB =MD =r .∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .∵BM =DM ,∴CN =ON ,∴MN =12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12BD =2,∴OF =4,∴OG同理可得:OB AB ,∴BG =12AB .设OR =x ,则RG x .∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,∴(2﹣x 2=()2﹣(x )2.解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5.在Rt △ORB 中,sin ∠BOR =BR OB35. 故答案为35. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.解得:t =1.则OP =CD =DB =1.∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =12,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).②当∠BED =90°时,如图3.∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,∴BEBC =2DB BE OB ∴,∴BE =5t . ∵PE ∥OC ,∴∠OEP =∠BOC .∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,∴OEOB =25OPBC∴,=2t,∴OE=5t.∵OE+BE=OB=255,∴t+5t=25.解得:t=53,∴OP=53,OE=55,∴PE=22OE OP-=103,∴点E的坐标为(51033,).③当∠DBE=90°时,如图4.此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.则有OD=PE,EA=22PE PA+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.在Rt△DBE中,cos∠BED=BEDE=2,∴DE=2BE,∴t=22(t﹣22)=2t﹣4.解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、(51033,)、(4,2).点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.2.如图,AB 为O e 的直径,弦//CD AB ,E 是AB 延长线上一点,CDB ADE ∠=∠. ()1DE 是O e 的切线吗?请说明理由;()2求证:2AC CD BE =⋅.【答案】(1)结论:DE 是O e 的切线,理由见解析;(2)证明见解析.【解析】【分析】(1)连接OD ,只要证明OD DE ⊥即可;(2)只要证明:AC BD =,CDB DBE V V ∽即可解决问题.【详解】()1解:结论:DE 是O e 的切线.理由:连接OD .CDB ADE ∠=∠Q ,ADC EDB ∴∠=∠,//CD AB Q ,CDA DAB ∴∠=∠,OA OD =Q ,OAD ODA ∴∠=∠,ADO EDB ∴∠=∠,AB Q 是直径,90ADB ∴∠=o ,90ADB ODE ∴∠=∠=o ,DE OD ∴⊥,DE ∴是O e 的切线.()2//Q,CD AB∠=∠,∴∠=∠,CDB DBEADC DABn n,AC BD∴=∴=,AC BDQ,EDB DAB∠=∠DCB DAB∠=∠,∴∠=∠,EDB DCB∴V∽DBECDBV,CD DB∴=,BD BE2∴=⋅,BD CD BE2∴=⋅.AC CD BE【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的判定等知识,解题的关键是学会添加常用辅助线,准确寻找相似三角形解决问题,属于中考常考题型.3.如图AB是△ABC的外接圆⊙O的直径,过点C作⊙O的切线CM,延长BC到点D,使CD=BC,连接AD交CM于点E,若⊙OD半径为3,AE=5,(1)求证:CM⊥AD;(2)求线段CE的长.【答案】(1)见解析;(2)5【解析】分析:(1)连接OC,根据切线的性质和圆周角定理证得AC垂直平分BD,然后根据平行线的判定与性质证得结论;(2)根据相似三角形的判定与性质证明求解即可.详解:证明:(1)连接OC∵CM切⊙O于点C,∴∠OCE=90°,∵AB是⊙O的直径,∴∠ACB=90°,∵CD=BC,∴AC垂直平分BD,∴AB=AD,∴∠B=∠D∵∠B=∠OCB∴∠D=∠OCB∴OC∥AD∴∠CED=∠OCE=90°∴CM⊥AD.(2)∵OA=OB,BC=CD∴OC=12AD∴AD=6∴DE=AD-AE=1易证△CDE~△ACE∴CE DEAE CE∴CE2=AE×DE∴点睛:此题主要考查了切线的性质和相似三角形的判定与性质的应用,灵活判断边角之间的关系是解题关键,是中档题.4.如图,已知AB是⊙O的直径,点C为圆上一点,点D在OC的延长线上,连接DA,交BC的延长线于点E,使得∠DAC=∠B.(1)求证:DA是⊙O切线;(2)求证:△CED∽△ACD;(3)若OA=1,sinD=13,求AE的长.【答案】(1)证明见解析;(22【解析】分析:(1)由圆周角定理和已知条件求出AD⊥AB即可证明DA是⊙O切线;(2)由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA;(3)由题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=2,故此可得到DC2=DE•AD,故此可求得DE的长,于是可求得AE的长.详解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB+∠B=90°.∵∠DAC=∠B,∴∠CAB+∠DAC=90°,∴AD⊥AB.∵OA是⊙O半径,∴DA为⊙O的切线;(2)∵OB=OC,∴∠OCB=∠B.∵∠DCE=∠OCB,∴∠DCE=∠B.∵∠DAC=∠B,∴∠DAC=∠DCE.∵∠D=∠D,∴△CED∽△ACD;(3)在Rt△AOD中,OA=1,sin D=13,∴OD=OAsinD=3,∴CD=OD﹣OC=2.∵AD22OD OA-2又∵△CED∽△ACD,∴AD CDCD DE=,∴DE=2CDAD2,∴AE=AD﹣DE222.点睛:本题主要考查的是切线的性质、圆周角定理、勾股定理的应用、相似三角形的性质和判定,证得△DEC∽△DCA是解题的关键.5.如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于D,连结DC、DA、OA、OC,四边形OADC为平行四边形.(1)求证:△BOC≌△CDA.(2)若AB=2,求阴影部分的面积.【答案】(1)证明见解析;(2)433π-.【解析】分析: (1)根据内心性质得∠1=∠2,∠3=∠4,则AD=CD,于是可判断四边形OADC为菱形,则BD垂直平分AC,∠4=∠5=∠6,易得OA=OC,∠2=∠3,所以OB=OC,可判断点O 为△ABC的外心,则可判断△ABC为等边三角形,所以∠AOB=∠BOC=∠AOC=120°,BC=AC,再根据平行四边形的性质得∠ADC=∠AOC=120°,AD=OC,CD=OA=OB,则根据“SAS”证明△BOC≌△CDA;(2)作OH⊥AB于H,如图,根据等腰三角形的性质和三角形内角和定理得到∠BOH=30°,根据垂径定理得到BH=AH=12AB=1,再利用含30度的直角三角形三边的关系得到OH=3BH=3,OB=2OH=23,然后根据三角形面积公式和扇形面积公式,利用S阴影部分=S扇形AOB-S△AOB进行计算即可.详解:(1)证明:∵O是△ABC的内心,∴∠2=∠3,∠5=∠6,∵∠1=∠2,∴∠1=∠3,由AD∥CO,AD=CO,∴∠4=∠6,∴△BOC≌△CDA(AAS)(2)由(1)得,BC=AC,∠3=∠4=∠6,∴∠ABC=∠ACB∴AB=AC∴△ABC是等边三角形∴O是△ABC的内心也是外心∴OA =OB =OC设E 为BD 与AC 的交点,BE 垂直平分AC .在Rt △OCE 中,CE=12AC=12AB=1,∠OCE=30°, ∴OA=OB=OC=233∵∠AOC=120°,∴=AOB AOB S S S -V 阴影扇 =21202313()23602π-⨯⨯ =4339π- 点睛: 本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了等边三角形的判定与性质和扇形面积的计算.6.矩形ABCD 中,点C (3,8),E 、F 为AB 、CD 边上的中点,如图1,点A 在原点处,点B 在y 轴正半轴上,点C 在第一象限,若点A 从原点出发,沿x 轴向右以每秒1个单位长度的速度运动,点B 随之沿y 轴下滑,并带动矩形ABCD 在平面内滑动,如图2,设运动时间表示为t 秒,当点B 到达原点时停止运动.(1)当t =0时,点F 的坐标为 ;(2)当t =4时,求OE 的长及点B 下滑的距离;(3)求运动过程中,点F 到点O 的最大距离;(4)当以点F 为圆心,FA 为半径的圆与坐标轴相切时,求t 的值.【答案】(1)F (3,4);(2)8-33)7;(4)t 的值为245或325. 【解析】试题分析:(1)先确定出DF ,进而得出点F 的坐标;(2)利用直角三角形的性质得出∠ABO =30°,即可得出结论;(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,即可得出结论;(4)分两种情况,利用相似三角形的性质建立方程求解即可.试题解析:解:(1)当t =0时.∵AB =CD =8,F 为CD 中点,∴DF =4,∴F (3,4); (2)当t =4时,OA =4.在Rt △ABO 中,AB =8,∠AOB =90°,∴∠ABO =30°,点E 是AB 的中点,OE =12AB =4,BO =43,∴点B 下滑的距离为843-.(3)当O 、E 、F 三点共线时,点F 到点O 的距离最大,∴FO=OE+EF=7.(4)在Rt △ADF 中,FD 2+AD 2=AF 2,∴AF 22FD AD +,①设AO =t 1时,⊙F 与x 轴相切,点A 为切点,∴FA ⊥OA ,∴∠OAB +∠FAB =90°.∵∠FAD +∠FAB =90°,∴∠BAO =∠FAD .∵∠BOA =∠D =90°,∴Rt △FAE ∽Rt △ABO ,∴AB AO FA FE =,∴1853t =,∴t 1=245,②设AO =t 2时,⊙F 与y 轴相切,B 为切点,同理可得,t 2=325. 综上所述:当以点F 为圆心,FA 为半径的圆与坐标轴相切时,t 的值为245或325. 点睛:本题是圆的综合题,主要考查了矩形的性质,直角三角形的性质,中点的意义,勾股定理,相似三角形的判定和性质,切线的性质,解(2)的关键是得出∠ABO =30°,解(3)的关键是判断出当O 、E 、F 三点共线时,点F 到点O 的距离最大,解(4)的关键是判断出Rt △FAE ∽Rt △ABD ,是一道中等难度的中考常考题.7.如图,AB 是半圆O 的直径,半径OC ⊥AB ,OB =4,D 是OB 的中点,点E 是弧BC 上的动点,连接AE ,DE .(1)当点E 是弧BC 的中点时,求△ADE 的面积;(2)若3tan 2AED ∠= ,求AE 的长; (3)点F 是半径OC 上一动点,设点E 到直线OC 的距离为m ,当△DEF 是等腰直角三角形时,求m 的值.【答案】(1)62ADE S =;(2)1655AE =;(3)23m = ,22m =,71m =-.【解析】 【分析】(1)作EH ⊥AB ,连接OE ,EB ,设DH =a ,则HB =2﹣a ,OH =2+a ,则EH =OH =2+a ,根据Rt △AEB 中,EH 2=AH•BH ,即可求出a 的值,即可求出S △ADE 的值;(2)作DF ⊥AE ,垂足为F ,连接BE ,设EF =2x ,DF =3x ,根据DF ∥BE 故AF ADEF BD=,得出AF =6x ,再利用Rt △AFD 中,AF 2+DF 2=AD 2,即可求出x ,进而求出AE 的长; (3)根据等腰直角三角形的不同顶点进行分类讨论,分别求出m 的值. 【详解】解:(1)如图,作EH ⊥AB ,连接OE ,EB , 设DH =a ,则HB =2﹣a ,OH =2+a , ∵点E 是弧BC 中点, ∴∠COE =∠EOH =45°, ∴EH =OH =2+a ,在Rt △AEB 中,EH 2=AH•BH , (2+a )2=(6+a )(2﹣a ),解得a =222±-, ∴a =222-, EH=22,S △ADE =1622AD EH =n n ;(2)如图,作DF ⊥AE ,垂足为F ,连接BE设EF =2x ,DF =3x ∵DF ∥BE∴AF ADEF BD = ∴622AF x ==3 ∴AF =6x在Rt △AFD 中,AF 2+DF 2=AD 2 (6x )2+(3x )2=(6)2 解得x =255 AE =8x =1655(3)当点D 为等腰直角三角形直角顶点时,如图设DH =a由DF=DE,∠DOF=∠EHD=90°,∠FDO+∠DFO=∠FDO+∠EDH , ∴∠DFO=∠EDH ∴△ODF ≌△HED ∴OD =EH =2在Rt △ABE 中,EH 2=AH•BH (2)2=(6+a )•(2﹣a ) 解得a =±232- m =23当点E 为等腰直角三角形直角顶点时,如图同理得△EFG ≌△DEH设DH=a,则GE=a,EH=FG=2+a在Rt△ABE中,EH2=AH•BH(2+a)2=(6+a)(2﹣a)解得a=222±-∴m=22当点F为等腰直角三角形直角顶点时,如图同理得△EFM≌△FDO设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4﹣a)解得a=71m71【点睛】此题主要考查圆内综合问题,解题的关键是熟知全等三角形、等腰三角形、相似三角形的判定与性质.8.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作¶AC、¶CB、¶BA,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为(请用含n的式子表示)【答案】(1)3π;(2)27π;(3)23nπ. 【解析】试题分析:(1)先求出¶AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,¶¶¶AC BC AB ==,∴¶¶AC BCl l ==¶AB l =603180π⨯=π,∴线段MN 的长为¶¶¶AC BC ABl l l ++=3π.故答案为3π; (2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出¶AC的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.9.在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为﹣2.【解析】【分析】(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A =(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【详解】解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,∵OA =2,OB=2,∠AOB=90°,∴∠ABO=30°,∠BAO=60°,由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°,∵OB=OB'=2,∠COB'=90°﹣60°=30°,∴B'C=OB’=,∴OC=3,∴B'(3,),(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为-2.理由是:如图,作AB的中点M(1,),连接MP,∵∠APB =90°,∴点P 的轨迹为以点M 为圆心,以MP =AB =2为半径的圆,除去点(2,2),∴当PM ⊥x 轴时,点P 纵坐标的最小值为﹣2.【点睛】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P 的轨迹为以点M 为圆心,以MP 为半径的圆.10.如图,过⊙O 外一点P 作⊙O 的切线PA 切⊙O 于点A ,连接PO 并延长,与⊙O 交于C 、D 两点,M 是半圆CD 的中点,连接AM 交CD 于点N ,连接AC 、CM . (1)求证:CM 2=MN.MA ;(2)若∠P=30°,PC=2,求CM 的长.【答案】(1)见解析;(2)2 【解析】 【分析】(1)由··CMDM =知CAM DCM ∠=∠,根∠CMA=∠NMC 据证ΔAMC ∽ΔCMN 即可得;(2)连接OA 、DM ,由直角三角形PAO 中∠P=30°知()1122OA PO PC CO ==+,据此求得OA=OC=2,再证三角形CMD 是等腰直角三角形得CM 的长. 【详解】(1)O Q e 中,M 点是半圆CD 的中点,∴ ··CMDM =, CAM DCM ∴∠=∠, 又CMA NMC ∠=∠Q , AMC CMN ∽∴∆∆, ∴ CM AM MN CM=,即2·CM MN MA =; (2)连接OA 、DM ,PA Q 是O e 的切线,90PAO ∴∠=︒, 又30P ∠=︒Q ,()1122OA PO PC CO ∴==+,设O e 的半径为r ,2PC =Q ,()122r r ∴=+,解得:2r =, 又CD Q 是直径, 90CMD ∴∠=︒, CM DM =Q ,CMD ∴∆是等腰直角三角形,∴在Rt CMD ∆中,由勾股定理得222CM DM CD +=,即()222216CM r ==,则28CM =,22CM ∴=.【点睛】本题主要考查切线的判定和性质,解题的关键是掌握切线的性质、圆周角定理、相似三角形的判定和性质等知识点11.在中,,,,分别是边,的中点,若等腰绕点逆时针旋转,得到等腰,设旋转角为,记直线与的交点为.(1)问题发现如图1,当时,线段的长等于_________,线段的长等于_________.(2)探究证明如图2,当时,求证:,且.(3)问题解决求点到所在直线的距离的最大值.(直接写出结果)【答案】(1);;(2)详见解析;(3)【解析】【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【详解】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1=;故答案为:;;(2)证明:由题意可知,,,∵是由绕点逆时针旋转得到,∴,,在和中,,∴,∴,.∵,∴,∴,∴,且.(3)点的运动轨迹是在的上半圆周,点的运动轨迹是在的弧段.即当与相切时,有最大值.点到所在直线的距离的最大值为.【点睛】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.12.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,过⊙O上一点C作⊙O的切线交DF于点E,CE⊥DF.(1)求证:AC平分∠FAB;(2)若AE=1,CE=2,求⊙O的半径.【答案】(1)证明见解析;(2)5 2【解析】试题分析:(1)连接OC,根据切线的性质和圆周角定理,得出∠OCA=∠OAC与∠CAE=∠OCA,然后根据角平分线的定义可证明;(2)由圆周角定理得到∠BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ACB∽△AEC,再根据相似三角形的对应边成比例求得AB的长,从而得到圆的半径.试题解析:(1)证明:连接OC.∵CE是⊙O的切线,∴∠OCE =90°∵CE⊥DF,∴∠CEA=90°,∴∠ACE+∠CAE=∠ACE+∠OCA=90°,∴∠CAE=∠OCA ∵OC=OA,∴∠OCA=∠OAC.∴∠CAE=∠OAC,即AC平分∠FAB(2)连接BC.∵AB是⊙O的直径,∴∠ACB =∠AEC =90°.又∵∠CAE=∠OAC,∴△ACB∽△AEC,∴AB AC AC AE=.∵AE=1,CE=2,∠AEC =90°,∴2222125AC AE CE=+=+=∴()22551ACABAE===,∴⊙O的半径为52.13.如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=12∠P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C 为顶点的三角形与△BFM相似,求DH的长度.【答案】(1)证明见解析;(2)PM=32;(3)满足条件的DH的值为632-或12311+【解析】【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,DH CD FM BF=.②当△CDH∽△MFB时,DH CDFB MF=,分别构建方程即可解决问题;【详解】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=12∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CMD=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD33,∴OD=OC﹣CD=43,∴AD=OA+OD=8+43=123,在Rt△ADP中,DP=AD•tan30°=(123)3=3﹣1,∴PM=PD﹣DM=3﹣2.(3)如图2中,由(2)可知:BF =12BC =4,FM =3BF =43 ,CM =2DM =2,CD =3 , ∴FM =FC ﹣CM =43﹣2,①当△CDH ∽△BFM 时,DH CD FM BF = , ∴ 34432=- ,∴DH =632- ②当△CDH ∽△MFB 时,DH CD FB MF =, ∴34432DH =- ,∴DH =1223+ , ∵DN =()22443833--=- ,∴DH <DN ,符合题意,综上所述,满足条件的DH 的值为63- 或1223+. 【点睛】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题.14.如图1,⊙O 的直径AB =12,P 是弦BC 上一动点(与点B ,C 不重合),∠ABC =30°,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当PD ∥AB 时,求PD 的长;(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=12AB,连接DE.①求证:DE是⊙O的切线;②求PC的长.【答案】(1)26;(2)①证明见解析;②33﹣3.【解析】试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.试题解析:(1)如图2,连接OD,∵OP⊥PD,PD∥AB,∴∠POB=90°,∵⊙O的直径AB=12,∴OB=OD=6,在Rt△POB中,∠ABC=30°,∴OP=OB•tan30°=6×=2,在Rt△POD中,PD===;(2)①如图3,连接OD,交CB于点F,连接BD,∵,∴∠DBC=∠ABC=30°,∴∠ABD=60°,∵OB=OD,∴△OBD是等边三角形,∴OD⊥FB,∵BE=AB,∴OB=BE,∴BF∥ED,∴∠ODE=∠OFB=90°,∴DE是⊙O的切线;②由①知,OD⊥BC,∴CF=FB=OB•cos30°=6×=3,在Rt△POD中,OF=DF,∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴CP=CF﹣PF=3﹣3.考点:圆的综合题15.如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG.(1)求证:DF是⊙O的切线;(2)若AD=DP,OB=3,求»BD的长度;(3)若DE=4,AE=8,求线段EG的长.【答案】(1)证明见解析(2)π(3)13【解析】试题分析:(1)连接OD,由等腰三角形的性质得出∠DAB=∠ADO,再由已知条件得出∠ADO=∠DAF,证出OD∥AF,由已知DF⊥AF,得出DF⊥OD,即可得出结论;(2)易得∠BOD=60°,再由弧长公式求解即可;(3)连接DG,由垂径定理得出DE=CE=4,得出CD=8,由勾股定理求出DG,再由勾股定理求出EG即可.试题解析:(1)证明:连接OD,如图1所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切线;(2)∵AD=DP∴∠P=∠DAF=∠DAB =x0∴∠P+∠DAF+∠DAB =3x o=90O∴x0=300∴∠BOD=60°,∴»BD的长度=π(3)解:连接DG,如图2所示:∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,设OD=OA=x,则OE=8﹣x,在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,即(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直径,∴∠CDG=90°,∴DG=2222-=-=6,108CG CD∴EG=2222+=+=213.64DG DE。

2020年九年级中考数学复习专题训练:《圆的综合 》(含答案)

2020年九年级中考数学复习专题训练:《圆的综合 》(含答案)

2020年九年级中考数学复习专题训练:《圆的综合》1.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O,交AB于点D.(1)若AB=8,∠ABC=30°,求⊙O的半径;(2)若点E是边BC的中点,连结DE,求证:直线DE是⊙O的切线;(3)在(1)的条件下,保持Rt△ACB不动,将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,当⊙O′与直线AB相切时,m=.2.如图,矩形ABCD中,AB=13,AD=6.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G.(1)当E是CD的中点时:tan∠EAB的值为;(2)在(1)的条件下,证明:FG是⊙O的切线;(3)试探究:BE能否与⊙O相切?若能,求出此时BE的长;若不能,请说明理由.3.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G 在BC 上,点O 在线段AB 上,且AO ≥BO .以OF 为半径的⊙O 与直线AB 交于点M ,N . (1)如图1,若点O 为AB 中点,且点D ,点C 都在⊙O 上,求正方形BEFG 的边长. (2)如图2,若点C 在⊙O 上,求证:以线段OE 和EF 为邻边的矩形的面积为定值,并求出这个定值.(3)如图3,若点D 在⊙O 上,求证:DO ⊥FO .4.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC . (1)求∠ADB 的度数;(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO 于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 的半径.5.定义:当点P在射线OA上时,把的的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA 上的射影值均为=.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形.其中真命题有.A.①②B.①③C.②③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以〇为圆心,OA为半径画圆,点B是⊙O 上任意点.①如图2,若点B在射线OA上的射影值为.求证:直线BC是⊙O的切线;②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式为.6.问题发现:(1)如图1,△ABC内接于半径为4的⊙O,若∠C=60°,则AB=;问题探究:(2)如图2,四边形ABCD内接于半径为6的⊙O,若∠B=120°,求四边形ABCD的面积最大值;解决问题:(3)如图3,一块空地由三条直路(线段AD、AB、BC)和一条弧形道路围成,点M 是AB道路上的一个地铁站口,已知AD=BM=1千米,AM=BC=2千米,∠A=∠B=60°,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M处,另外三个入口分别在点C、D、P处,其中点P在上,并在公园中修四条慢跑道,即图中的线段DM、MC、CP、PD,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.7.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)求证:直线PQ为⊙O的切线;(2)若直径AB的长为4.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.8.已知AB是⊙O的直径,DA为⊙O的切线,切点为A,过⊙O上的点C作CD∥AB交AD于点D,连接BC、AC.(1)如图①,若DC为⊙O的切线,切点为C,求∠ACD和∠DAC的大小.(2)如图②,当CD为⊙O的割线且与⊙O交于点E时,连接AE,若∠EAD=30°,求∠ACD和∠DAC的大小.9.已知AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线一点,连接AC.(Ⅰ)如图①,OB=BD,若DC与⊙O相切,求∠D和∠A的大小;(Ⅱ)如图②,CD与⊙O交于点E,AF⊥CD于点F连接AE,若∠EAB=18°,求∠FAC的大小.10.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC,BD,垂足分别为C,D,连接AM.(1)求证:AM平分∠CAB;(2)若AB=4,∠APE=30°,求的长.11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F,交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=,求CF的长.12.已知,点A为⊙O外一点,过A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=∠DPA.(1)求证:PO=PD;(2)若AC=,求⊙O的半径.13.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=.14.如图,在∠DAM内部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点N 为BC的中点,动点E由A点出发,沿AB运动,速度为每秒5个单位,动点F由A点出发,沿AM运动,速度为每秒8个单位,当点E到达点B时,两点同时停止运动,过A、E、F作⊙O.(1)判断△AEF的形状为,并判断AD与⊙O的位置关系为;(2)求t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为;(注:当A、E、F重合时,内心就是A点)(4)直接写出线段EN与⊙O有两个公共点时,t的取值范围为.(参考数据:sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)15.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM的值.16.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.17.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC 边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tan B=,tan C=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.18.如图,在等腰三角形ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,过点C作⊙O的切线交AB的延长线于点P.(1)求证:∠CAB=2∠BCP;(2)若⊙O的直径为5,sin∠BCP=,求△ABC内切圆的半径;(3)在(2)的条件下,求△ACP的周长.19.已知四边形ABCD为⊙O的内接四边形,直径AC与对角线BD相交于点E,作CH⊥BD于H,CH与过A点的直线相交于点F,∠FAD=∠ABD.(1)求证:AF为⊙O的切线;(2)若BD平分∠ABC,求证:DA=DC;(3)在(2)的条件下,N为AF的中点,连接EN,若∠AED+∠AEN=135°,⊙O的半径为2,求EN的长.20.如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.(1)求证:AO是△CAB的角平分线;(2)若tan∠D=,求的值;(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.参考答案1.解:(1)在Rt△ABC中,∵AB=8,∠ABC=30°,∴AC=AB sin∠ABC=8sin30°=4,∴⊙O的半径为2;(2)证明:连接OD,CD,∵AC为⊙O的直径,∴CD⊥AB,∴∠CDB=90°,∵点E是边BC的中点,∴DE=CE=CB,∴∠DCE=∠CDE,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ACD+∠DCE=90°,∴∠ODE=∠ODC+∠CDE=90°,∴OD⊥DE,∴直线DE是⊙O的切线;(3)连接OO′交AB于F,设⊙O′与AB相切于G,连接O′G,则∠O′GF=90°,∵将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,∴OO′∥BC,AO=O′G,∴∠AOF=∠ACB=90°,∵∠AFO=∠O′FG,∴△AOF≌△O′GF(AAS),∴O′F=AF,∵在Rt△AOF中,∵∠A=60°,AO=2,∴AF=4,OF=2,∴O′F=AF=4,∴OO′=4+2,∴m=4+2.故答案为:4+2.2.(1)解:∵四边形ABCD是矩形,∴∠D=90°,CD∥AB,CD=AB=13,∴∠EAB=∠DEA,∵E是CD的中点,∴DE=CD=,∴tan∠DEA===.故答案为:.(2)证明:连接OF,在矩形ABCD中,AD=BC,∠ADE=∠BCE=90°,又CE=DE,∴△ADE≌△BCE(SAS),∴AE=BE,∴∠EAB=∠EBA.∵OF=OA,∴∠OAF=∠OFA,∴∠OFA=∠EBA.∴OF∥EB.∵FG⊥BE,∴FG⊥OF,∴FG是⊙O的切线.(3)解:若BE能与⊙O相切,由AE是⊙O的直径,则AE⊥BE,∠AEB=90°.设DE=x,则EC=13﹣x.由勾股定理得:AE2+EB2=AB2,即(36+x2)+[(13﹣x)2+36]=132,整理得x2﹣13x+36=0,解得:x1=4,x2=9,∴DE=4或9,当DE=4时,CE=9,BE===3,当DE=9时,CE=4,BE===2,∴BE能与⊙O相切,此时BE=2或3.3.解:(1)如图1,连接OC,∵四边形ABCD和四边形BEFG为正方形,∴AB=BC=1,BE=EF,∠OEF=∠ABC=90°,∵点O为AB中点,∴OB=AB=,设BE=EF=x,则OE=x+,在Rt△OEF中,∵OE2+EF2=OF2,∴,在Rt△OBC中,∵OB2+BC2=OC2,∴=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴,解得:x=,∴正方形BEFG的边长为;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=,即x(x+y)=,∴EF×OE=,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1﹣a,则OE=1﹣a+b,∵∠DAO=∠OEF=90°,∴DA2+OA2=OD2,OE2+EF2=OF2,∴12+a2=OD2,(1﹣a+b)2+b2=OF2,∵OD=OF,∴12+a2=(1﹣a+b)2+b2,∴(b+1)(a﹣b)=0,∵b+1≠0,∴a﹣b=0,∴a=b,∴OA=EF,在Rt△AOD和Rt△EFO中,,∴Rt△AOD≌Rt△EFO(HL),∴∠FOE=∠ODA,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO⊥FO.4.解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA 2+CF 2=EF 2, ∴EA 2+CF 2=EF 2,∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH , ∴S △ABC =S 矩形BGKH ,∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =3, ∴CF =(k +3),EF =(8k ﹣3),∵EA 2+CF 2=EF 2, ∴+=,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣(舍去),k 2=1.∴AB =12,∴AO =AB =6,∴⊙O的半径为6.5.解:(1)①错误.点B在射线OA上的射影值小于1时,∠OBA可以是钝角,故△OAB 不一定是锐角三角形;②正确.点B在射线OA上的射影值等于1时,AB⊥OA,∠OAB=90°,△OAB是直角三角形;③正确.点B在射线OA上的射影值大于1时,∠OAB是钝角,故△OAB是钝角三角形;故答案为:B.(2)①如图2,作BH⊥OC于点H,∵点B在射线OA上的射影值为,∴=,=,CA=OA=OB=1,∴=,又∵∠BOH=∠COB,∴△BOH∽△COB,∴∠BHO=∠CBO=90°,∴BC⊥OB,∴直线BC是⊙O的切线;②图形是上下对称的,只考虑B在直线OC上及OC上方部分的情形.过点D作DM⊥OC,作DN⊥OB,当∠DOB<90°时,设DM=h,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DN=OC×DM,∴DN=2h,∵在Rt△DON和Rt△DOM中,OD2=DN2+ON2=DM2+OM2,∴4h2+y2=h2+x2,∴3h2=x2﹣y2①,∵BD2=CD2,∴4h2+(1﹣y)2=h2+(2﹣x)2②,①②消去h得:y=2x﹣.如图,当∠BOD=90°时,过点D作DM⊥OC于点M,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DO=OC×DM,∵CA=OA=OB=1,∴OD=2DM,∴sin∠DOM=,∴∠DOM=30°,设DM=h,则OD=2h,OM=h,∴h2+=1+4h2,∴h=,∴OM=,当点B在OC上时,OD=,综上所述,当≤x≤时,y=0;当<x≤时,y=2x﹣.故答案为:y=0(≤x≤)或y=2x﹣(<x≤).6.解:(1)如图1,连接OA、OB,过点O作OH⊥AB于点H,∵∠C=60°,∴∠AOB=120°,∵OA=OB,∴△OAB为等腰三角形,∵OH⊥AB,∴∠AOH=∠BOH=60°,∴AH=OA sin∠AOH=4×=2,则AB=2AH=4;故答案为4;(2)如图2,连接AC,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F,∵四边形ABCD的面积S=AC×DE AC×BF=AC×(DE+BF),∴当D、E、F、B四点共线且为直径时,四边形ABCD的面积S最大;∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=120°,在△AOC中,由(1)知,AC=2×OA sin60°=2×6×=6,∴四边形ABCD的面积S的最大值为:×AC×BD=6×12=36,故四边形ABCD的面积的最大值为36;(3)如图3,过点D作DK⊥AB于点K,连接CD,在△ADM中,DK=AD•sin A=1×=,同理AK=,则KM=AM﹣AK=2﹣=,则tan∠DMK==∴∠DMK=30°,故△ADM为直角三角形,同理△CMB为直角三角形,在Rt△ADM中,DM===,∴∠DMC=180°﹣∠DMA﹣∠CMB=60°∵AD=BM,AM=BC,∠A=∠B=60°,∴Rt△ADM≌Rt△BMC(SAS),∴DM=CM,∴△CDM为等边三角形;设所在的圆的圆心为R,连接DR、CR、MR,∵DM=CM,RM=RM,DR=CR,∴△DRM≌△CRM(SSS),∴∠DMR=∠CMR=∠DMC=30°,在△DMR中,DR=1,∠DMR=30°,DM==CM,过点R作RH⊥DM于点H,则RM===1=RD,故D、P、C、M四点共圆,∴∠DPC=120°,如图4,连接MP,在PM上取PP′=PC,∵△CDM为等边三角形,∴∠CDM=60°=∠CPM,∴△P′PC为等边三角形,则PP′=P′C=PC,∵∠PMC=∠PDC,∠CP′M=180°﹣∠PP′C=120°=∠DPC,CD=CM,∴△PDC≌△P′MC(AAS),∴PD=P′M,∴PD+PC=PP′+PD=PP′+P′M=PM,故当PM是直径时,PD+PC最大值为2;∵四边形DMCP的周长=DM+CM+PC+PD=2+PD+PC,而PD+PC最大值为2;故四边形DMCP的周长的最大值为:2+2,即四条慢跑道总长度(即四边形DMCP的周长)最大为2+2.7.(1)证明:∵OQ∥AP,∴∠EOC=∠OAP,∠POQ=∠APO,又∵OP=OA,∴∠APO=∠OAP,又∵∠BOQ=∠EOA=∠OAP,∴∠POQ=∠BOQ,在△BOQ与△POQ中,,∴△POQ≌△BOQ(SAS),∴∠OPQ=∠OBQ=90°,∵点P在⊙O上,∴PQ是⊙O的切线;(2)解:①∵△POQ≌△BOQ,∴∠OBQ=∠OPQ=90°,当∠BOP=90°,四边形OPQB为矩形,而OB=OP,则四边形OPQB为正方形,此时点C、点E与点O重合,PE=PO=AB=2;②∵PE⊥AB,∴当OC=AC,PC=EC,四边形AEOP为菱形,∵OC=OA=1,∴PC===,∴PE=2PC=2.故答案为:2;2.8.解:(1)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∵DC为⊙O的切线,切点为C,∴DC=DA,∵CD∥AB,∴∠D+∠DAB=180°,∴∠D=90°,∴∠ACD=∠DAC=45°;(2)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∠DEA=∠EAB,∴∠ADC=90°,∵∠EAD=30°,∴∠DEA=60°,∴∠EAB=60°,∴∠BCE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠ACD=30°,∴∠DAC=60°.9.解:(Ⅰ)如图①,连接OC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∵DC与⊙O相切,∴∠OCD=90°,∵OB=BD,∴BC=OD=OB=BD,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=∠OCB=∠COB=60°,∴∠BCD=∠OCA=30°,∴∠D=∠A=30°;(Ⅱ)如图②,连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵AF⊥CD,∴∠AFC=90°,∵∠ACF是圆内接四边形ACEB的外角,∴∠ACF=∠ABE,∴∠FAC=∠EAB=18°,答:∠FAC的大小为18°.10.解:(1)连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为=.11.(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵OC⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BED=,∴tan∠C=,∴tan∠C==,且OA=AB=6,∴,解得AC=8,∴=10,∵OC•AF=OA•AC,∴.∴==.12.(1)证明:∵PA与⊙O相切于点P,∴BP⊥AP∴∠OPD+∠DPA=90°,∠OAP+∠AOP=90°∵∠OAP=∠DPA.∴∠OPD=∠AOP∴OD=PD∵PO=OD∴PO=PD.(2)连接PC,∵PB为⊙O的直径∴∠BCP=90°∵PO=PD=OD∴∠AOP=60°设⊙O的半径为x,则PB=2x,=tan60°∴PA=x∴AB==x∵∠BPA=∠BCP=90°,∠B=∠B∴△BAP∽△BPC∴=∵AC=∴=∴7x﹣=4x∴x=∴⊙O的半径为.13.证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,∴S△OBE由勾股定理得OP===9.故答案为:9.14.解:(1)过点E作EH⊥AF于H,连接OA、OE、OH,如图1所示:∵∠ACB=90°,AB=10,AC=8,∴BC===6,设运动时间为t,则AE=5t,AF=8t,∵∠AHE=∠ACB=90°,∠EAH=∠BAC,∴△EAH∽△BAC,∴=,即:=,∴AH=4t,∴FH=AF﹣AH=8t﹣4t=4t,∴AH=FH,∵EH⊥AF,∴△AEF是等腰三角形,∴E为的中点,∠EAF=∠EFA,∵AH=FH,∴OH⊥AC,∴E、H、O三点共线,∴∠OAF+∠AOE=90°,∵AB平分∠DAM,∴∠DAE=∠EAF=∠EFA,∵∠AOE=2∠EFA,∴∠AOE=∠DAE+∠EAF=∠DAF,∴∠DAF+∠OAF=90°=∠DAO,即OA⊥AD,∵OA为⊙O的半径,∴AD与⊙O相切;故答案为:等腰三角形,相切;(2)连接OA、OF、OE,OE于AC交于H,如图2所示:由(1)知:EH⊥AC,∵EN与⊙O相切,∴∠OEN=90°,∵∠ACB=90°,∴四边形EHCN为矩形,∴EH=NC,在Rt△AHE中,EH===3t,∴NC=3t,∵点N为BC的中点,∴BC=2NC=6t,∵BC=6,∴6t=6,∴t=1,∴AH=4,EH=3,设⊙O的半径为x,则OH=x﹣3,在Rt△AOH中,由勾股定理得:OA2=OH2+AH2,即x2=(x﹣3)2+42,解得:x=,∴⊙O的半径为,∴OH=,∴tan∠AOH==,∴∠AOH=74°,∵∠AOH=60°时,△AOE是等边三角形,AE=OA,74°>60°,∴AE>OA,∴劣弧长度的大于半径;(3)当点E运动到B点时,t=10÷5=2,∴AF=2×8=16,AE=EF=AB=10,此时△AEF的内心记为G,当A、E、F重合时,内心为A点,∴△AEF的内心运动的路径长为AG,作GP⊥AE于P,GQ⊥EF于Q,连接AG、GF,则CG=PG=NQ,如图3所示:S△AEF=AF•BC=×16×6=48,设CG=PG=NQ=a,则S△AEF =S△AGF+S△AEB+S△FEG=AF•CG+AE•PG+EF•NQ=×(16+10+10)a=48,解得:a=,在Rt△AGC中,AC2+CG2=AG2,即82+()2=AG,∴AG=,故答案为:;(4)分别讨论两种极限位置,①当EN与⊙O相切时,由(2)知,t=1;②当N在⊙O上,即ON为⊙O的半径,连接OA、ON、OE,OE交AC于H,过点O作OK⊥BC于K,如图4所示:则四边形OKCH为矩形,OA=OE=ON,∴OH=CK,AH=4t,EH=3t,设⊙O的半径为x,则在Rt△AOH中,AH2+OH2=OA2,即(4t)2+(x﹣3t)2=x2,解得:x=t,∴OH=CK=t﹣3t=t,在Rt△OKN中,OK2+KN2=ON2,即(8﹣4t)2+(3+t)2=(t)2,解得:t=,∴线段EN与⊙O有两个公共点时,t的取值范围为:1<t≤,故答案为:1<t≤.15.解:(1)连接OE,则∠OCE=∠OEC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.16.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.17.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a=﹣2(舍去),2∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,=2,(舍去)解得a1∴BD=3+a=3+2=5.∴或5.(5)①∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,连接AD,BD,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.18.解:(1)如图,连接AN,∵AC为直径,∴AN⊥BC,∵AB=AC,∴AN平分∠BAC,∵PC是圆的切线,∴∠ACP=90°,∵∠NAC+∠ACB=∠PCB+∠ACB=90°,∴∠NAC=∠BCP,即∠BAC=2∠BCP;(2)由(1)知,AN平分∠BAC,则∠NAC=∠BCP,故sin∠NAC=sin∠BCP=,则tan∠NAC=,在Rt△NAC中,AC=5,NC=AC•sin∠NAC=5×=,同理AN=2,则BC=2NC=2;S=×BC•AN=2×2=10,△ABC设△ABC内切圆的半径为r,则S=(AB+AC+BC)•r=×(5+5+2)=10,△ABC解得:r=;故△ABC内切圆的半径为;(3)在△ABC中,设AC边长的高为h,则S=AC•h=×5×h=10,解得:h=4,△ABCsin∠BAC==,在Rt△ACP中,∵sin∠BAC==,设PC=4m,则AP=5m,则AC=3m=5,解得m=,△ACP的周长=3m+4m+5m=12m=20.19.(1)证明:如图1,∵AC为⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵=,∴∠ABD=∠DCA,∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DCA=90°,∴CA⊥AF,∴AF为⊙O的切线.(2)证明:如图2,连接OD,∵=,∴∠ABD=∠AOD,∵=,∴∠DBC=∠DOC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)如图3,连接OD交CF于M,作EP⊥AD于P,∵AC为⊙O的直径,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,∴AF∥OM,∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°.∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴∴△ODE≌△OCM,∴OE=OM,设OM=m,∴AE=2﹣m,AP=PE=2﹣m,DP=2+m,∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE,∵∠EAN=∠DPE,∴△EAN∽△DPE,∴=,∴=,∴m=,∴AN=,AE=,∴勾股定理得NE=.20.(1)证明:连接OF,∵AB与⊙O相切于点F,∴OF⊥AB,∵∠ACB=90°,OC=OF,∴∠OAF=∠OAC,即AO是△ABC的角平分线;(2)如图2,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴,∴;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,∴AO=AE+OE=2+3=5,如图3,连接CF交AD于点G,∵AC,AF是⊙O的切线,∴AC=AF,∠CAO=∠OAF,∴CF⊥AO,∴∠ACO=∠CGO=90°,∵∠COG=∠AOC,∴△CGO∽△ACO,∴,∴OC2=OG•OA,∴OG=,∴CG===,∴CF=2CG=.。

九年级数学二模试题分类汇编——圆的综合综合含详细答案

九年级数学二模试题分类汇编——圆的综合综合含详细答案

九年级数学二模试题分类汇编——圆的综合综合含详细答案一、圆的综合1.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.2.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).3831343n 【解析】分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1.∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h =32a 2,∴1=32-1)2+14a 22,解得a 283. (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2,即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭.∵h =32 a n ,∴1=14a n 2+231n na ⎛⎫- ⎪ ⎪⎝⎭, 解得a n =24331nn + .3.如图,在RtΔABC 中,∠ABC=90°,AB=CB ,以AB 为直径的⊙O 交AC 于点D ,点E 是AB 边上一点(点E 不与点A 、B 重合),DE 的延长线交⊙O 于点G ,DF ⊥DG ,且交BC 于点F.(1)求证:AE=BF ;(2)连接EF ,求证:∠FEB=∠GDA ; (3)连接GF,若AE=2,EB=4,求ΔGFD 的面积.【答案】(1)(2)见解析;(3)9 【解析】分析:(1)连接BD ,由三角形ABC 为等腰直角三角形,求出∠A 与∠C 的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB 为直角,即BD 垂直于AC ,利用直角三角形斜边上的中线等于斜边的一半,得到AD =DC =BD =12AC ,进而确定出∠A =∠FBD ,再利用同角的余角相等得到一对角相等,利用ASA 得到三角形AED 与三角形BFD 全等,利用全等三角形对应边相等即可得证;(2)连接EF ,BG ,由三角形AED 与三角形BFD 全等,得到ED =FD ,进而得到三角形DEF 为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE =BF =1,在直角三角形BEF 中,利用勾股定理求出EF 的长,利用锐角三角形函数定义求出DE 的长,利用两对角相等的三角形相似得到三角形AED 与三角形GEB 相似,由相似得比例,求出GE 的长,由GE +ED 求出GD 的长,根据三角形的面积公式计算即可.详解:(1)连接BD .在Rt △ABC 中,∠ABC =90°,AB =BC ,∴∠A =∠C =45°. ∵AB 为圆O 的直径,∴∠ADB =90°,即BD ⊥AC ,∴AD =DC =BD =12AC ,∠CBD =∠C =45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED≌△BFD(ASA),∴AE=BF;(2)连接EF,BG.∵△AED≌△BFD,∴DE=DF.∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.∵∠GBA=∠GDA,∴∠FEB=∠GDA;(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2.∵EB=4,BF=2,∴EF=2242+=25.∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=DEEF.∵EF=25,∴DE=25×2=10.∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE=EBED,即GE•ED=AE•EB,∴10•GE=8,即GE=410,则GD=GE+ED=910.∴1191011092252S GD DF GD DE=⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.4.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连结AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若AC =24,AF =15,求sin B .【答案】(1) AF 与⊙O 相切 理由见解析;(2)35【解析】试题分析:(1)连接OC ,先证∠OCF =90°,再证明△OAF ≌△OCF ,得出∠OAF =∠OCF =90°即可;(2)先求出AE 、EF ,再证明△OAE ∽△AFE ,得出比例式OA AEAF EF=,可求出半径,进而求出直径,由三角函数的定义即可得出结论. 试题解析:解:(1)AF 与⊙O 相切.理由如下:连接OC .如图所示.∵PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCF =90°.∵OF ∥BC ,∴∠B =∠AOF ,∠OCB =∠COF .∵OB =OC ,∴∠B =∠OCB ,∴∠AOF =∠COF .在△OAF 和△OCF 中,∵OA =OC ,∠AOF =∠COF ,OF =OF ,∴△OAF ≌△OCF (SAS ),∴∠OAF =∠OCF =90°,∴AF 与⊙O 相切;(2)∵△OAF ≌△OCF ,∴∠OAE =∠COE ,∴OE ⊥AC ,AE =12AC =12,∴EF =2215129-=.∵∠OAF =90°,∴△OAE ∽△AFE ,∴OA AE AF EF =,即12159OA =,∴OA =20,∴AB =40,sin B =243405AC AB ==.点睛:本题考查了切线的性质与判定和全等三角形的判定与性质以及相似三角形的判定与性质;熟练掌握切线的证法和三角形相似是解题的关键.5.阅读下列材料:如图1,⊙O 1和⊙O 2外切于点C ,AB 是⊙O 1和⊙O 2外公切线,A 、B 为切点, 求证:AC ⊥BC证明:过点C 作⊙O 1和⊙O 2的内公切线交AB 于D , ∵DA 、DC 是⊙O 1的切线 ∴DA=DC . ∴∠DAC=∠DCA .同理∠DCB=∠DBC .又∵∠DAC+∠DCA+∠DCB+∠DBC=180°, ∴∠DCA+∠DCB=90°. 即AC ⊥BC .根据上述材料,解答下列问题:(1)在以上的证明过程中使用了哪些定理?请写出两个定理的名称或内容; (2)以AB 所在直线为x 轴,过点C 且垂直于AB 的直线为y 轴建立直角坐标系(如图2),已知A 、B 两点的坐标为(﹣4,0),(1,0),求经过A 、B 、C 三点的抛物线y=ax 2+bx+c 的函数解析式;(3)根据(2)中所确定的抛物线,试判断这条抛物线的顶点是否落在两圆的连心O 1O 2上,并说明理由.【答案】(1)见解析;(2)213222y x x =+- ;(3)见解析 【解析】试题分析:(1)由切线长相等可知用了切线长定理;由三角形的内角和是180°,可知用了三角形内角和定理;(2)先根据勾股定理求出C 点坐标,再用待定系数法即可求出经过、、A B C 三点的抛物线的函数解析式;(3)过C 作两圆的公切线,交AB 于点D ,由切线长定理可求出D 点坐标,根据,C D 两点的坐标可求出过,C D 两点直线的解析式,根据过一点且互相垂直的两条直线解析式的关系可求出过两圆圆心的直线解析式,再把抛物线的顶点坐标代入直线的解析式看是否适合即可.试题解析:(1)DA 、DC 是1O e 的切线, ∴DA =DC .应用的是切线长定理;180DAC DCA DCB DBC ∠+∠+∠+∠=o ,应用的是三角形内角和定理.(2)设C 点坐标为(0,y ),则222AB AC BC =+, 即()()222224141y y --=-+++,即225172y =+,解得y =2(舍去)或y =−2.故C 点坐标为(0,−2),设经过、、A B C 三点的抛物线的函数解析式为2y ax bx c ,=++则16402,a b ca b cc-+=⎧⎪++=⎨⎪=-⎩解得12322abc⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,故所求二次函数的解析式为2132.22y x x=+-(3)过C作两圆的公切线CD交AB于D,则AD=BD=CD,由A(−4,0),B(1,0)可知3(,0)2D-,设过CD两点的直线为y=kx+b,则322k bb⎧-+=⎪⎨⎪=-⎩,解得432kb⎧=-⎪⎨⎪=-⎩,故此一次函数的解析式为423y x=--,∵过12,O O的直线必过C点且与直线423y x=--垂直,故过12,O O的直线的解析式为324y x=-,由(2)中所求抛物线的解析式可知抛物线的顶点坐标为325(,)28--,代入直线解析式得33252,428⎛⎫⨯--=-⎪⎝⎭故这条抛物线的顶点落在两圆的连心12O O上.6.如图,正三角形ABC内接于⊙O,P是BC上的一点,且PB<PC,PA交BC于E,点F 是PC延长线上的点,CF=PB,13PA=4.(1)求证:△ABP≌△ACF;(2)求证:AC2=PA•AE;(3)求PB和PC的长.【答案】(1)证明见解析;(2)证明见解析;(3)PB=1,PC=3.【解析】试题分析:(1)先根据等边三角形的性质得到AB=AC ,再利用圆的内接四边形的性质得∠ACF=∠ABP ,于是可根据“SAS”判断△ABP ≌△ACF ;(2)先根据等边三角形的性质得到∠ABC=∠ACB=60°,再根据圆周角定理得∠APC=∠ABB=60°,加上∠CAE=∠PAC ,于是可判断△ACE ∽△APC ,然后利用相似比即可得到结论;(3)先利用AC 2=PA•AE 计算出AE=134 ,则PE=AP-AE=34,再证△APF 为等边三角形,得到PF=PA=4,则有PC+PB=4,接着证明△ABP ∽△CEP ,得到PB•PC=PE•A=3,然后根据根与系数的关系,可把PB 和PC 看作方程x 2-4x+3=0的两实数解,再解此方程即可得到PB 和PC 的长. 试题解析:(1)∵∠ACP+∠ABP=180°, 又∠ACP+∠ACF=180°, ∴∠ABP=∠ACF 在ABP ∆和ACF ∆中,∵AB=AC ,∠ABP=∠ACF , CF PB = ∴ABP ∆≌ACF ∆. (2)在AEC ∆和ACP ∆中, ∵∠APC=∠ABC ,而ABC ∆是等边三角形,故∠ACB=∠ABC=60º, ∴∠ACE =∠APC . 又∠CAE =∠PAC , ∴AEC ∆∽ACP ∆ ∴AC AEAP AC=,即2AC PA AE =⋅. 由(1)知ABP ∆≌ACF ∆, ∴∠BAP=∠CAF , CF PB = ∴∠BAP+∠PAC=∠CAF+∠PAC∴∠PAF=∠BAC=60°,又∠APC =∠ABC =60°. ∴APF ∆是等边三角形 ∴AP=PF∴4PB PC PC CF PF PA +=+=== 在PAB ∆与CEP ∆中,又∠APB=∠EPC=60°, ∴PAB ∆∽CEP ∆ ∴PB PAPE PC=,即PB PC PA PE ⋅=⋅ 由(2)2AC PA AE =⋅,∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+= ∴()22AC PB PC PA AE PA PE PA AE PE PA +⋅=⋅+⋅=+=∴()2222224133PB PC PA AC PA AB ⋅=-=-=-=因此PB 和PC 的长是方程2430x x --=的解. 解这个方程,得11x =, 23x =. ∵PB<PB ,∴PB=11x =,PC=23x =, ∴PB 和PC 的长分别是1和3。

九年级数学上册 圆 几何综合综合测试卷(word含答案)

九年级数学上册 圆 几何综合综合测试卷(word含答案)

九年级数学上册 圆 几何综合综合测试卷(word 含答案)一、初三数学 圆易错题压轴题(难)1.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC . (1)求证:CD 是⊙M 的切线;(2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标;(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】解:(1)证明:连接CM ,∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°. ∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC . ∵MO=MC ,∴∠MCO=∠MOC . ∴.又∵点C 在⊙M 上,∴DC 是⊙M 的切线. (2)∵A 点坐标(5,0),AC=3 ∴在Rt △ACO 中,.∴545(x )x 5)12152-=--(,∴,解得10OD 3=. 又∵D 为OB 中点,∴15524+∴D 点坐标为(0,154).连接AD ,设直线AD 的解析式为y=kx+b ,则有解得.∴直线AD 为.∵二次函数的图象过M (56,0)、A(5,0), ∴抛物线对称轴x=154. ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=154交于点P , ∴PD+PM 为最小.又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=154的交点. 当x=154时,45y (x )x 5)152=--(. ∴P 点的坐标为(154,56). (3)存在. ∵,5y a(x )x 5)2=--(又由(2)知D (0,154),P (154,56), ∴由,得,解得y Q =±103.∵二次函数的图像过M(0,56)、A(5,0), ∴设二次函数解析式为,又∵该图象过点D (0,154),∴,解得a=512. ∴二次函数解析式为.又∵Q 点在抛物线上,且y Q =±103. ∴当y Q =103时,,解得x=1552-或x=1552+;当y Q =512-时,,解得x=154.∴点Q 的坐标为(15524-,103),或(15524+,103),或(154,512-).【解析】试题分析:(1)连接CM ,可以得出CM=OM ,就有∠MOC=∠MCO ,由OA 为直径,就有∠ACO=90°,D 为OB 的中点,就有CD=OD ,∠DOC=∠DCO ,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论.(2)根据条件可以得出2222OC OA AC 534=-=-=和OC OBtan OAC AC OA∠==,从而求出OB 的值,根据D 是OB 的中点就可以求出D 的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD 交对称轴于P ,先求出AD 的解析式就可以求出P 的坐标. (3)根据PDM DAM PAM S S S ∆∆∆=-,求出Q 的纵坐标,求出二次函数解析式即可求得横坐标.2.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C .(1)分别求点E 、C 的坐标;(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由.【答案】(1)点C 的坐标为(-3,0)(2)2343333y x x =++3)⊙M 与⊙A 外切 【解析】试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标;(2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式;(3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切.试题解析:(1)在Rt△EOB 中,3cot60232EO OB =⋅︒=⨯=, ∴点E 的坐标为(-2,0).在Rt△COA 中,tan tan60333OC OA CAO OA =⋅∠=⋅︒=⨯=, ∴点C 的坐标为(-3,0).(2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用()03A ,代入得()()30103a =++,∴33a =. ∴()()313y x x =++,即 2343333y x x =++. (3)⊙M 与⊙A 外切,证明如下: ∵ME ∥y 轴,∴MED B ∠=∠.∵B BDA MDE ∠=∠=∠, ∴MED MDE ∠=∠. ∴ME MD =.∵MA MD AD ME AD =+=+, ∴⊙M 与⊙A 外切.3.如图,已知直线AB 经过⊙O 上的点C ,并且OA =OB ,CA =CB , (1)求证:直线AB 是⊙O 的切线;(2)OA ,OB 分别交⊙O 于点D ,E ,AO 的延长线交⊙O 于点F ,若AB =4AD ,求sin ∠CFE 的值.【答案】(1)见解析;(25 【解析】 【分析】(1)根据等腰三角形性质得出OC⊥AB,根据切线的判定得出即可;(2)连接OC、DC,证△ADC∽△ACF,求出AF=4x,CF=2DC,根据勾股定理求出DC=355x,DF=3x,解直角三角形求出sin∠AFC,即可求出答案.【详解】(1)证明:连接OC,如图1,∵OA=OB,AC=BC,∴OC⊥AB,∵OC过O,∴直线AB是⊙O的切线;(2)解:连接OC、DC,如图2,∵AB=4AD,∴设AD=x,则AB=4x,AC=BC=2x,∵DF为直径,∴∠DCF=90°,∵OC⊥AB,∴∠ACO=∠DCF=90°,∴∠OCF=∠ACD=90°﹣∠DCO,∵OF=OC,∴∠AFC=∠OCF,∴∠ACD=∠AFC,∵∠A=∠A,∴△ADC∽△ACF,∴122 AC AD DC xAF AC CF x====,∴AF=2AC=4x,FC=2DC,∵AD=x,∴DF =4x ﹣x=3x ,在Rt △DCF 中,(3x )2=DC 2+(2DC )2, 解得:DC =355x , ∵OA =OB ,AC =BC , ∴∠AOC =∠BOC , ∴DC EC =, ∴∠CFE =∠AFC ,∴sin ∠CFE =sin ∠AFC =DC DF=355535x x =.【点睛】本题考查了等腰三角形的性质,切线的判定,解直角三角形,圆心角、弧、弦之间的关系,相似三角形的性质和判定的应用,能综合运用知识点进行推理和计算是解此题的关键,难度偏大.4.如图,在△ABC 中,∠C=90°,∠CAB=30°,AB=10,点D 在线段AB 上,AD=2.点P ,Q 以相同的速度从D 点同时出发,点P 沿DB 方向运动,点Q 沿DA 方向到点A 后立刻以原速返回向点B 运动.以PQ 为直径构造⊙O ,过点P 作⊙O 的切线交折线AC ﹣CB 于点E ,将线段EP 绕点E 顺时针旋转60°得到EF ,过F 作FG ⊥EP 于G ,当P 运动到点B 时,Q 也停止运动,设DP=m .(1)当2<m≤8时,AP=,AQ=.(用m 的代数式表示) (2)当线段FG 长度达到最大时,求m 的值; (3)在点P ,Q 整个运动过程中,①当m 为何值时,⊙O 与△ABC 的一边相切? ②直接写出点F 所经过的路径长是.(结果保留根号)【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10433与△ABC 的边相切.②点F 1136572【解析】试题分析:(1)根据题意可得AP =2+m ,AQ =m −2.(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,推出3cos30cos302FG EF PE EP =⋅=⋅=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4,如图3中,设O 切AC 于H .连接OH .如图4中,设O 切BC 于N ,连接ON .分别求解即可.②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m −2. 故答案为2+m ,m −2. (2)如图1中,在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,3cos30cos302FG EF PE EP ∴=⋅=⋅=, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553AC BC EP AB ⨯⨯=== 3tan30(2)EP AP m =⋅=+ 533(2)23m ∴=+⋅ ∴m =5.5(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .则有AD =2DH =2, ∴DH =DQ =1,即m =1.当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )−(m −2)=4, 如图3中,设O 切AC 于H .连接OH .则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设O 切BC 于N ,连接ON .在Rt △OBN 中, 43sin60OB ON ==4310AO ∴=- 4312AP ∴=-432123m ∴+=-, 4310m ∴=-, 综上所述,当m =1或4或4310-时,O 与△ABC 的边相切。

2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合题1.如图,在⊙ O中,弦AC,BD相交于点M,且∠OAC=∠OBD.(1)求证:AC=BD;(2)若OA=4,∠OAC=30°,当AC⊥BD时,求:①图中阴影部分面积.②弧CD的长.2.已知⊙O中,弦AB=AC,⊙BAC=120°(1)如图①,若AB=3,求⊙O的半径.(2)如图②,点P是⊙BAC所对弧上一动点,连接PB、PA、PC,试请判断PA、PB、PC之间的数量关系并说明理由.3.如图(1),已知矩形ABCD中,AB=6cm,BC=2√3cm,点E为对角线AC 上的动点.连接BE,过E作EB的垂线交CD于点F.(1)探索BE与EF的数量关系,并说明理由.(2)如图(2),过F作AC垂线交AC于点G,交EB于点H,连接CH.若点E从A出发沿AC方向以2√3cm/s的速度向终点C运动,设E的运动时间为ts.①是否存在t,使得H与B重合?若存在,求出t的值;若不存在,说明理由;②t为何值时,△CFH是等腰三角形;③当CG=GH时,求△CGH的面积.4.如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD是⊙O的切线;(2)求证:⊙C=2⊙DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)5.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,⊙ABC中,点D 是BC边上一点,连结AD,若AD2=BD⋅CD,则称点D是⊙ABC中BC边上的“好点”.(1)如图2,⊙ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)⊙ABC中,BC=9,tanB=43,tanC=23,点D是BC边上的“好点”,求线段BD的长.(3)如图3,⊙ABC是⊙O的内接三角形,OH⊙AB于点H,连结CH并延长交⊙O于点D.①求证:点H是⊙BCD中CD边上的“好点”.②若⊙O的半径为9,⊙ABD=90°,OH=6,请直接写出CHDH的值.6.如图,⊙O为等边⊙ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B 重合),连接DA,DB,DC.(1)求证:DC是⊙ADB的平分线;(2)设四边形ADBC的面积为S,线段DC的长为x,试用含x的代数式表示S;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,⊙DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.7.在⊙ABC中,D,E分别是⊙ABC两边的中点,如果弧DE(可以是劣弧、优弧或半圆)上的所有点都在⊙ABC的内部或边上,则称弧DE为⊙ABC的中内弧.例如,图1中弧DE是⊙ABC其中的某一条中内弧.(1)如图2,在边长为4 √3的等边⊙ABC中,D,E分别是AB,AC的中点.画出⊙ABC的最长的中内弧DE,并直接写出此时弧DE的长;(2)在平面直角坐标系中,已知点A(2 √3,6),B(0,0),C(t,0),在⊙ABC中,D,E分别是AB,AC的中点.①若t=2 √3,求⊙ABC的中内弧DE所在圆的圆心P的纵坐标的取值范围;②请写出一个t的值,使得⊙ABC的中内弧DE所在圆的圆心P的纵坐标可以取全体实数值.8.如图,⊙O是⊙ABC的外接圆,AC是直径,过点O作OD⊙AB于点D,延长DO 交⊙O于点P,过点P作PE⊙AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若⊙POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.9.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=32CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ=,DF=.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)当点P在点A右侧时,作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长.10.如图,⊙ABC中,⊙ACB=90°,D是边AB上一点,且⊙A=2⊙DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.11.已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM 在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持⊙ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:ABPB=OMBM;(3)若AO=2 √6,且当MO=2PO时,请直接写出AB和PB的长.12.(问题情境)如图①,小区A、B位于一条笔直的道路l的同侧,为了方便A,B两个小区居民投放垃圾,现在l上建一个垃圾分类站C,使得C与A,B的距离之比为2:1.(1)(初步研究)在线段AB上作出点C,使CACB=2.如图,做法如下:第一步:过点A作射线AM,以A为圆心,任意长为半径画弧,交AM于点P1;以P1为圆心,AP1长为半径画弧,交AM于点P2;以P2为圆心,AP1长为半径画弧,交AM于点P3.第二步:连接BP3,作∠AP2C=∠AP3B,交AB于点C.则点C即为所求.请证明所作的点C满足CACB=2.(2)(深入思考)如图,点C在线段AB上,点D在直线AB外,且DADB=CACB=2.求证:DC是∠ADB的平分线.(3)(问题解决)如图,已知点A,B和直线l,点C在线段AB上,且CACB=2.用直尺和圆规完成下列作图.(保留作图痕迹,不写作法)(⊙)在直线AB上作出点E(异于点C),使EAEB=2;(⊙)在直线l上作出点F,使FAFB=2.13.在矩形ABCD中,BC=2AB,点E是对角线AC上任意一点,过点E作AD的垂线分别交AD,BC于点F,G,作FH平行AC交CD于点H.(1)证明:EF=CH.(2)连结GH交AC于点K,若AE:CK=3,求AE:EK的值.(3)作⊙FGH的外接圆⊙O,且AB=1.①若⊙O与矩形的边相切时,求CH的长.②作点E关于GH的对称点E',当E'落在⊙O上时,直接写出⊙FGH的面积。

北师大版九年级下册数学第三章《圆》章末提升训练(二)

北师大版九年级下册数学第三章《圆》章末提升训练(二)

第三章《圆》章末提升训练(二)一.选择题1.在圆内接四边形ABCD中,若∠A=50°,则∠C=()°A.40 B.50 C.130 D.1502.若⊙O的半径为4cm,点A到圆心O的距离为5cm,那么点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定3.边长为6的正三角形的外接圆的周长为()A.πB.2πC.3πD.4π4.如图,A,B,C是⊙O上的三个点,∠AOC=63°,∠BCA=25°,则∠BOC的度数为()A.100°B.110°C.113°D.120°5.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为10cm,AB=16cm,则CD的长是()A.2cm B.3cm C.4cm D.5cm6.如图,AB为半圆O的直径,C是的中点,D是的中点,在上取一点M,上取一点N,使得∠AMN=110°,则下列说法正确的是()A.点N在上,且NC>ND B.点N在上,且NC<NDC.点N在上,且ND>NB D.点N在上,且ND<NB7.如图,点C是以AB为直径的圆上一个动点(不与点A、B重合),且AC+BC=12.若AB=m(m为整数),则整数m的值的个数为()A.0个B.2个C.3个D.4个8.如图,PA,PB分别切⊙O与点A,B,MN切⊙O于点C,分别交PA,PB于点M,N,若PA=7.5cm,则△PMN的周长是()A.7.5cm B.10cm C.12.5cm D.15cm9.如图,AB=AC=AD,若∠DAC是∠CAB的k倍(k为正数),那么∠DBC是∠BDC 的()A.k倍B.2k倍C.3k倍D.k倍10.如图,四边形ABCD为⊙O的内接四边形,∠AOD+∠BOC=180°.若AD=2,BC=6,则△BOC的面积为()A.3 B.6 C.9 D.1211.如图,AB是⊙O的直径,点C、D在⊙O上,且∠BDC=20°,则∠ABC的度数是()A.20°B.50°C.70°D.80°12.如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.4+4 B.4 C.4+8 D.6二.填空题13.正四边形的边长为4,则它的边心距是.14.如图,⊙P与y轴相切于点C(0,3),与x轴相交于点A(1,0),B(7,0),直线y=kx﹣1恰好平分⊙P的面积,那么k的值是.15.如图,BC是⊙O的弦,以BC为边作等边三角形ABC,圆心O在△ABC的内部,若BC=6,OA=,则⊙O的半径为.16.把光盘、含60°角的三角板和直尺如图摆放,AB=2,则光盘的直径是.17.如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥AC;②∠B=∠C;③2OA=AC;④DE是⊙O 的切线;⑤∠EDA=∠B,正确的序号是.三.解答题18.如图,四边形ABDC内接于⊙O,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB,OC,BD,CD.(1)求证:四边形OBDC是菱形;(2)若∠ABO=15°,OB=2,求弦AC长.19.如图,已知AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O 上,连接OA、DE、BE.(1)若∠AOD=60°,求∠DEB的度数;(2)若CD=2,弦AB=8,求⊙O的半径长.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC平分∠DAB,AC与BD相交于点F,延长AC到点E,使CE=CF.(1)求证:BE是半圆O所在圆的切线;(2)若BC=AD=6,求⊙O的半径.21.如图,△ABC内接于以AB为直径的⊙O中,且点E是△ABC的内心,AE的延长线与BC交于点F,与⊙O交于点D,⊙O的切线PD交AB的延长线于点P.(1)试判断△BDE的形状,并给予证明;(2)若∠APD=30°,BE=2,求AE的长.参考答案一.选择题1.解:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴∠C=180°﹣50°=130°,故选:C.2.解:∵⊙O的半径为4cm,点A到圆心O的距离为5cm,5cm>4cm,∴点A在圆外.故选:A.3.解:如图,⊙O为等边△ABC的外接圆,作OD⊥BC于D,连接OB、OC,∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=120°,∴∠OBD=30°,∵OD⊥BC,∴BD=CD=3,在Rt△OBD中,OD=BD=,∴OB=2OD=2,∴⊙O的周长=2π×2=4π.故选:D.4.解:由圆周角定理得,∠AOB=2∠BCA=50°,∴∠BOC=∠AOC+∠BOA=113°,故选:C.5.解:连接OA,则OA=10cm,∵OC⊥AB,OC过O,AB=16cm,∴∠ODA=90°,AD=BD=8cm,在Rt△ODA中,由勾股定理得:OD===6(cm),∵OC=10cm,∴CD=OC﹣OD=4cm,故选:C.6.解:连接MD,OD、ON、BD,如图,∵C是的中点,D是的中点,∴∠BOD=×90°=45°,∵OB=OD,∴∠OBD=∠ODB=(180°﹣45°)=67.5°,∴∠AMD=180°﹣∠ABD=180°﹣67.5°=112.5°,∵∠AMN=110°,∴点N在上,∵∠DMN=∠AMD﹣∠AMN=2.5°,∴∠DON=2∠DMN=2×2.5°=5°,∴∠BON=40°,∴>,∴BN>DN.故选:D.7.解:设AC=x,则BC=12﹣x,∵点C是以AB为直径的半圆上一个动点(不与点A、B重合),∴∠ACB=90°,∴AB2=AC2+BC2,∴m2=x2+(12﹣x)2,∴m2=2[(x﹣6)2+36]∵点C是以AB为直径的半圆上一个动点(不与点A、B重合),∴0<x<12,∴0≤(x﹣6)2<36,∴72≤2[(x﹣6)2+36]<144,又∵m为整数,∴当2[(x﹣6)2+36]=81或2[(x﹣4)2+16]=100或2[(x﹣4)2+16]=121时,m为整数9或10或11,则整数m的值的个数为3个,故选:C.8.解:∵直线PA、PB、MN分别与⊙O相切于点A、B、C,∴MA=MC,NC=NB,∴△PMN的周长=PM+PN+MC+NC=PM+MA+PN+NB=PA+PB=7.5+7.5=15(cm).故选:D.9.解:∵AB=AC=AD,∴点B、C、D在以A为圆心的圆上,∴∠BDC=∠CAB,∠DBC=∠DAC,∵∠DAC=k∠CAB,∴∠DBC=k∠CAB=k×2∠BDC=k∠BDC,故选:A.10.解:延长BO交⊙O于E,连接CE,则∠COE+∠BOC=180°,∠BCE=90°,即CE⊥BC,∵∠AOD+∠BOC=180°,∴∠AOD=∠COE,∴=,∴AD=CE=2,∵BC=6,∴△BEC的面积为BC•CE=×6×2=6,∵OB=OE,∴△BOC的面积=△BEC的面积=×6=3,故选:A.11.解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠A=∠BDC=20°,∴∠ABC=90°﹣∠A=90°﹣20°=70°,故选:C.12.解:以BC为边作等边△BCM,连接DM.∵∠DCA=∠MCB=60°,∴∠DCM=∠ACB,∵DC=AC,MC=BC∴△DCM≌△CAB(SAS),∴DM=AB=2为定值,即点D在以M为圆心,半径为2的圆上运动,当点D运动至BC的中垂线与圆的交点时,CB 边上的高取最大值为2+2,此时面积为4+4.故选:A.二.填空题(共5小题)13.解:连接OA,OB,作OE⊥AB于E,如图所示:∵四边形ABCD是正四边形,∴∠AOB=360°÷4=90°,∵OA=OB,∴△AOB是等腰直角三角形,且OE⊥AB,∴OE=AB=2,故答案为:2.14.解:连接PC,PA,过点P作PD⊥AB于点D,∵⊙P与y轴相切于点C(0,3),∴PC⊥y轴,∴四边形PDOC是矩形,∴PD=OC=3,∵A(1,0),B(7,0),∴AB=7﹣1=6,∴AD=AB=×6=3,∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx﹣1恰好平分⊙P的面积,∴3=4k﹣1,解得k=1.故答案为:1.15.解:过O作OD⊥BC于D,连接OB,∵BC是⊙O的一条弦,且BC=6,∴BD=CD=BC=×6=3,∴OD垂直平分BC,又AB=AC,∴点A在BC的垂直平分线上,即A,O及D三点共线,∵△ABC是等边三角形,∴∠ABC=60°,∴AD=BD=3,∵OA=,∴OD=AD﹣OA=2在Rt△OBD中,OB===;故答案为:.16.解:设三角板与圆的切点为C,连接OA、OB,如图所示:由切线长定理知AB=CB=2,OA平分∠ABC,∴∠OBA=60°,在Rt△ABO中,OA=AB tan∠OBA=2,∴光盘的直径为4,故答案为:4.17.解:连接AD,∵D为BC中点,点O为AB的中点,∴OD为△ABC的中位线,∴OD∥AC,①正确;∵AB是⊙O的直径,∴∠ADB=90°=∠ADC,即AD⊥BC,又BD=CD,∴△ABC为等腰三角形,∴∠B=∠C,②正确;∵DE⊥AC,且DO∥AC,∴OD⊥DE,∵OD是半径,∴DE是⊙O的切线,∴④正确;∴∠ODA+∠EDA=90°,∵∠ADB=∠ADO+∠ODB=90°,∴∠EDA=∠ODB,∵OD=OB,∴∠B=∠ODB,∴∠EDA=∠B,∴⑤正确;∵D为BC中点,AD⊥BC,∴AC=AB,∵OA=OB=AB,∴OA=AC,∴③正确,故答案为:①②③④⑤.三.解答题(共4小题)18.(1)证明:连接OD,由圆周角定理得,∠BOC=2∠BAC=120°,∵AD平分∠BAC,∴,∴∠BOD=∠COD=60°,∵OB=OD,OC=OD,∴△BOD和△COD是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形;(2)解连接OA,∵OB=OA,∠ABO=15°,∴∠AOB=150°,∴∠AOC=360°﹣150°﹣120°=90°,∴AC=.19.解:(1)∵OD⊥AB,∴=,∴∠BOD=∠AOD=60°,∴∠DEB=∠BOD=×60°=30°;(2)设⊙O的半径为r,则OC=r﹣2,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△OAC中,由勾股定理得:(r﹣2)2+42=r2,解得:r=5,即⊙O的半径长为5.20.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,∵CE=CF,∴BE=BF,∴∠E=∠BFE,∵AC平分∠DAB,∴∠DAF=∠BAF,∵∠DAF+∠AFD=90°,∴∠BAF+∠E=90°,∴BE是半圆O所在圆的切线;(2)解:∵∠DAF=∠BAF,∴=,∵BC=AD,∴=,∴==,∴∠CAB=30°,∴AB=2BC=12,∴⊙O的半径为6.21.解:(1)△BDE为等腰直角三角形,证明如下:如图,∵点E是△ABC的内心,∴BE平分∠ABC,AF平分∠BAC,∵∠1=∠2,∠3=∠6,而∠4=∠6,∴∠2+∠3=∠1+∠4,而∠5=∠2+∠3,∴∠5=∠1+∠4,即∠5=∠DBE,∴DB=DE,∵AB为直径,∴∠ADB=90°,∴△BDE为等腰直角三角形;(2)连接OD,如图,∵△BDE为等腰直角三角形,∴BD=DE=BE=×2=,∵⊙O的切线PD交AB的延长线于点P,∴OD⊥PD,∴∠ODP=90°,∵∠APD=30°,∴∠POD=90°﹣∠OPD=60°,∴∠PAD=∠POD=30°,在Rt△ABD中,AD=BD=×=,∴AE=AD﹣DE=﹣.。

(常考题)人教版初中数学九年级数学上册第四单元《圆》检测(答案解析)(2)

(常考题)人教版初中数学九年级数学上册第四单元《圆》检测(答案解析)(2)

一、选择题1.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 2.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120°3.如图,分别以AB,AC 为直径的两个半圆,其中AC 是半圆O 的一条弦,E 是弧AEC 中点,D 是半圆ADC 中点.若DE=2,AB=12,且AC˃6,则AC 长为( )A .6+2B .8+2C . 6+22D .8+22 4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π5.如图,在O 中,AB ,AC 为互相垂直且相等的两条弦,⊥OD AB ,OE AC ⊥,垂足分别为D ,E ,若4AB =,则O 的半径是( )A .22B .2C .3D .42 6.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139°7.如图,大半圆中有n 个小半圆,若大半圆弧长为1L ,n 个小半圆弧长的和为2L ,大半圆的弦AB ,BC ,CD 的长度和为3L .则( )A .123L L L =>B .123L L L =<C .无法比较1L 、2L 、3L 间的大小关系D .132L L L >>8.如图,半径为1cm 的P 在边长为9πcm ,12πcm ,15πcm 的三角形外沿三遍滚动(没有滑动)一周,则圆P 所扫过的面积为( )cm 2A .73πB .75πC .76πD .77π9.如图,⊙O 的直径2AB AM =,和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,则四边形ABCD 的面积S 的最小值为( )A .1B .2C .2D .410.如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B .5C .2.5D .23 11.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6 12.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3nD .4cm二、填空题13.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.14.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.15.如图,已知O 是以数轴上原点O 为圆心,半径为2的圆,45AOB ∠=︒,点P 在x正半轴上运动,若过点P 与OA 平行的直线与O 有公共点,设P 点对应的数为x ,则x 的取值范围是______.16.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为________.17.如图,若∠BOD =140°,则∠BCD=___________ .18.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm ,弧长是12πcm 2,那么这个圆锥的高是________cm .参考答案19.如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.20.如图,已知空间站A 与星球B 距离为a ,信号飞船C 在星球B 附近沿圆形轨道行驶,B ,C 之间的距离为b .数据S 表示飞船C 与空间站A 的实时距离,那么S 的最小值________.三、解答题21.如图,AB 是O 的直径,CD 是O 的一条弦,且CD AB ⊥于点E .(1)若50A ∠=︒,求OCE ∠的度数;(2)若42CD =,2AE =,求O 的半径.22.正方形ABCD 的四个顶点都在⊙O 上,E 是⊙O 上的一点.(1)如图1,若点E 在AB 上,F 是DE 上的一点,DF =BE .①求证:ADF ≌ABE ;②求证:DE ﹣BE =2AE .(2)如图2,若点E 在AD 上,直接写出线段DE 、BE 、AE 之间的等量关系.23.如图,已知,90Rt ABC ACB ∆∠=︒.(1)请在图中用无刻度的直尺和圆规作一个圆,使得圆心О在边AC 上,且与边,AB BC 所在直线相切(不写作法,保留作图痕迹);(2)在(1)的条件下,若9,12AC BC ==,求O 的半径.24.如图,AB 是圆的直径,且AD//OC ,求证:CD BC =.25.在学习《圆》这一章时,老师给同学们布置了一道尺规作图题.尺规作图:过圆外一点作圆的切线.已知:P 为O 外一点.求作:经过点P 的O 的切线. 小敏的作法如下: ①连接OP ,作线段OP 的垂直平分线MN 交OP 于点C ;②以点C 为圆心,CO 的长为半径作圆,交O 于,A B 两点; ③作直线,PA PB .所以直线,PA PB 就是所求作的切线.根据小敏设计的尺规作图过程.(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:由作图可知点,A B 在以C 为圆心,CO 为半径的圆上,OAP OBP ∴∠=∠= ︒.( )(填推理的依据),PA OA PB OB ∴⊥⊥,OA OB 为O 的半径∴直线,PA PB 是O 的切线,( )(填推理的依据)26.如图,长方形的长为a ,宽为2a ,用整式表示图中阴影部分的面积,并计算当2a =时阴影部分的面积(π取3.14).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,利用两点之间线段最短和垂线段最短可判断此时FB +FE 的值最小,再判断△ABB′为等边三角形,然后计算出B′E 的长即可.【详解】解:作B 点关于直径AC 的对称点B′,过B′点作B′E ⊥AB 于E ,交AC 于F ,如图,则FB =FB′,∴FB +FE =FB′+FE =B′E ,此时FB +FE 的值最小,∵∠BAC =30°,∴∠B′AC =30°,∴∠BAB′=60°,∵AB =AB′,∴△ABB′为等边三角形,∵B′E ⊥AB ,∴AE =BE =32, ∴B′E 3=332, 即BF +EF 33. 故选:B .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了等腰三角形的性质.2.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.3.D解析:D【分析】连接OE ,交AC 于点F ,由勾股定理结合垂径定理求出AF 的长,即可得到结论.【详解】解:连接OE ,交AC 于点F ,∵E 为AEC 的中点,∴OE AC ⊥,F 为AC 的中点,∵12AB =∴6OE AO ==设EF x =,则6OF x =-∵F 为AC 的中点,D 为半圆ADC 的中点,∴DF AC ⊥,DF AF =∵2DE =,∴2DF x AF =+=在Rt △AOF 中,222OA OF AF =+即2226(6)(2)x x =-++, ∴122x =,222x =∴2(2)822AC x =+=+822-∵6AC > ∴822AC =+故选:D【点睛】本题考查了垂径定理,熟练掌握垂径定理,运用勾股定理求出AF 是解题的关键.4.B解析:B【分析】先根据底面周长可求得底面圆的半径,再根据圆锥的侧面积公式计算即可求解.【详解】解:∵2πr=8π,∴r=4,又∵母线l=5,∴圆锥的侧面积=πrl =π×4×5=20π.故选:B .【点睛】本题考查了圆锥的侧面积计算方法,牢记有关圆锥和扇形之间的对应关系是解决本题的关键.5.A解析:A【分析】根据垂径定理可知,AE=CE ,AD=BD ,易证四边形ODAE 是正方形,即可求得.【详解】如图,连接OA∵⊥OD AB ,OE AC ⊥,AB ⊥AC∴四边形ODAE 是矩形,AE=CE ,AD=BD又∵4AB AC ==,∴AE=AD=2∴四边形ODAE 是正方形,且边长为2∴O 的半径OA=22故选A【点睛】本题考查垂径定理,掌握垂径定理的条件和结论是解题的关键.6.C解析:C【分析】利用圆周角定理求出∠BOC 即可解决问题.【详解】解:∵∠BOC=2∠BDC ,∠BDC=21°,∴∠BOC=42°,∴∠AOC=180°-42°=138°.故选:C .【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型. 7.A解析:A【分析】利用圆周长公式计算1L 和2L 的长.根据圆周长公式分别写出1L 和2L 的表达式进行比较,再根据“两点之间线段最短的性质”得出13L L >,即可选出答案.【详解】解:设n 个小半圆半径依次为1r ,2r ,⋯,n r .则大圆半径为()12n r r r ++⋯+()112n L r r r π∴=++⋯+,212n L r r r πππ=++⋯+()12n r r r π=++⋯+,12L L ∴=;根据“两点之间线段最短的性质”可得:13L L >,123L L L ∴=>..故选A .【点睛】本题考查了半圆弧长的计算,两点之间线段最短的性质,是基础题,难度不大. 8.A解析:A【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形∴圆P所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.9.C解析:C【分析】由切线的性质得到AM、BN与AB垂直,过点D作DF⊥BC于F,,构造一个直角三角形DFC,再由切线长定理和勾股定理列方程,得出关于y的函数关系式,根据直角梯形的面积公式求解.【详解】∵AB是直径,AM、BN是切线,∴AM⊥AB,BN⊥AB,∴AM∥BN.过点D作DF⊥BC于F,则AB∥DF.∴四边形ABFD为矩形.∴DF=AB=2,BF=AD.∵DE、DA,CE、CB都是切线,∴根据切线长定理,设DE=DA=x,CE=CB=y.在Rt△DFC中,DF=2,DC=DE+CE=x+y,CF=BC﹣BF=y﹣x,∴(x+y)2=22+(y﹣x)2,∴y=1x,∴四边形的面积S=12AB(AD+BC)=12×2×(x+1x),即S=x+1x(x>0).∵(x+1x )﹣2=x﹣2+1xxx2≥0,当且仅当x=1时,等号成立.∴x +1x ≥2,即S ≥2, ∴四边形ABCD 的面积S 的最小值为2.故选:C .【点睛】考查了切线的性质、平行线的判定、矩形的性质和勾股定理,解题关键是作出辅助线. 10.C解析:C【分析】如图:延长CP 交O 于N ,连接DN ,易证12PM DN =,所以当DN 为直径时,PM 的值最大.【详解】解:如图:延长CP 交O 于N ,连接DN .AB CN ⊥,CP PN ∴=,CM DM =,12PM DN ∴=, ∴当DN 为直径时,PM 的值最大,最大值为52. 故选:C .【点睛】本题考查是圆的综合题,垂径定理,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.11.C解析:C【分析】过点P 作PD ⊥MN ,连接PM ,由垂径定理得DM =3,在Rt △PMD 中,由勾股定理可求得PM 为5即可.【详解】解:过点P 作PD ⊥MN ,连接PM ,如图所示:∵⊙P 与y 轴交于M (0,−4),N (0,−10)两点,∴OM =4,ON =10,∴MN =6,∵PD ⊥MN ,∴DM =DN =12MN =3, ∴OD =7,∵点P 的横坐标为−4,即PD =4,∴PM 22PD DM +2243+5,即⊙P 的半径为5,故选:C .【点睛】本题考查了垂径定理、坐标与图形性质、勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键. 12.A解析:A【分析】圆锥的底面周长等于侧面展开图的扇形弧长,因而要先求扇形的弧长,根据扇形的面积公式2360n R S π=,可以求出扇形的半径,就可以求出弧长. 【详解】 解:根据扇形的面积公式2360n R S π=得到:2904360R ππ=; ∴R=4,则弧长9042180cm ππ⋅==, 设圆锥的底面半径为r ,则2π=2πr ;∴r=1cm .故选:A .【点睛】 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.二、填空题13.【分析】M 点为BC 和AB 的垂直平分线的交点利用点ABC 坐标易得BC 的垂直平分线为直线x=3AB 的垂直平分线为直线y=x 从而得到M 点的坐标然后计算MB 得到⊙M 的半径【详解】解:∵点ABC 的坐标分别是(解析:()3,3【分析】M 点为BC 和AB 的垂直平分线的交点,利用点A 、B 、C 坐标易得BC 的垂直平分线为直线x=3,AB 的垂直平分线为直线y=x ,从而得到M 点的坐标,然后计算MB 得到⊙M 的半径.【详解】解:∵点A ,B ,C 的坐标分别是(0,2),(2,0),(4,0),∴BC 的垂直平分线为直线x=3,∵OA=OB ,∴△OAB 为等腰直角三角形,∴AB 的垂直平分线为第一、三象限的角平分线,即直线y=x ,∵直线x=3与直线y=x 的交点为M 点,∴M 点的坐标为(3,3),∵MB ==∴⊙M .故答案为(3,3.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了坐标与图形的性质.14.2【分析】方法一:在轴上取一点连接可求由可得由点在上运动可知共线时可以取得最大值或最小值最大值最小值由最大值与最小值求出即可;方法二:连接取中点连接利用三角形三边关系有可得作差计算即可【详解】解:方 解析:2【分析】方法一:在x 轴上取一点()6,0E ,连接PE ,可求3OB BE ==,5AE =,由OM PM =,OB BE =,可得12BM PE =,由点P 在A 上运动,可知P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,由最大值与最小值求出72m =,32n =即可;方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,利用三角形三边关系有BN MN BM BN MN -≤≤+,可得m BN MN =+,n BN MN =-,作差计算22m n MN PA -===即可.【详解】解:方法一:在x 轴上取一点()6,0E ,连接PE ,∵()3,0B ,()3,4A ,∴3OB BE ==,22345AE =+=,∵OM PM =,OB BE =,∴12BM PE =, ∵点P 在A 上运动, ∴P 、A 、B 共线时,可以取得最大值或最小值,最大值'527EP ==+=,最小值''523EP =-=,∴72m =,32n =, ∴2m n -=, 故答案为2.方法二:连接PA 、OA ,取OA 中点N ,连接MN 、BN ,BN MN BM BN MN -≤≤+,m BN MN =+,n BN MN =-,22m n MN PA -===.故答案为:2.【点睛】本题考查三角形的中位线,勾股定理,三角形三边关系,线段和差,掌握三角形的中位线,勾股定理,三角形三边关系,线段和差,引辅助线构造准确图形是解题关键.15.【分析】根据题意知直线和圆有公共点则相切或相交相切时设切点为C连接OC根据等腰直角三角形的直角边是圆的半径2求得斜边是2所以x的取值范围是0<x≤2【详解】解:设切点为C连接OC则圆的半径OC=2O解析:022<≤x【分析】根据题意,知直线和圆有公共点,则相切或相交.相切时,设切点为C,连接OC.根据等腰直角三角形的直角边是圆的半径2,求得斜边是22.所以x的取值范围是0<x≤22.【详解】解:设切点为C,连接OC,则圆的半径OC=2,OC⊥PC,∵∠AOB=45°,OA//PC,∴∠OPC=45°,∴PC=OC=2,∴OP=2222+=22,所以x的取值范围是0<x≤22,故答案为0<x≤22.【点睛】此题主要考查了直线与圆的位置关系,勾股定理,作出切线找出直线与圆有交点的分界点是解决问题的关键.16.【分析】连结OC根据勾股定理可求OC的长根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积依此列式计算即可求解【详解】连接如图∵在扇形中又故答案为:【点睛】考查了正方形的性质和扇形面π-解析:24【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.【详解】连接OC,如图,∵在扇形AOB 中,90AOB ∠=︒,AC BC =,45COD ∴∠=︒,又CD DE ⊥,45OCD COD ∴∠=∠=︒, 22OD CD ∴==,22(22)(22)4OC ∴=+=,224541(22)243602ODC BOC S S Sππ⨯∴=-=-⨯=-阴影扇形. 故答案为:24π-.【点睛】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度. 17.【分析】如图(见解析)先根据圆周角定理可得再根据圆内接四边形的性质即可得【详解】如图在优弧上取一点E 连接BEDE 由圆内接四边形的性质得:故答案为:【点睛】本题考查了圆周角定理圆内接四边形的性质熟练掌 解析:110︒【分析】如图(见解析),先根据圆周角定理可得70BED ∠=︒,再根据圆内接四边形的性质即可得.【详解】如图,在优弧BD 上取一点E ,连接BE 、DE ,140BOD ∠=︒,1702BED BOD ∠∴∠==︒, 由圆内接四边形的性质得:180110BC ED D B ∠=︒-∠=︒,故答案为:110︒.【点睛】本题考查了圆周角定理、圆内接四边形的性质,熟练掌握圆周角定理是解题关键. 18.8【分析】设圆锥的底面半径为利用圆锥的侧面展开图为一个扇形这个扇形的弧长等于圆锥底面的周长圆的周长公式计算出然后利用勾股定理计算出圆锥的高【详解】解:设圆锥底面圆的半径为则有∴圆锥的高为故答案是:【 解析:8【分析】设圆锥的底面半径为r ,利用圆锥的侧面展开图为一个扇形、这个扇形的弧长等于圆锥底面的周长、圆的周长公式计算出r ,然后利用勾股定理计算出圆锥的高.【详解】解:设圆锥底面圆的半径为r ,则有,212r ππ=6r =∴圆锥的高为221068cm -=.故答案是:8【点睛】本题考查了平面图形与立体图形之间的互相转化、求圆锥的底面半径、圆的周长公式以及勾股定理等相关知识,能够利用“扇形的弧长等于圆锥底面的周长”求得圆锥的底面半径是解题的关键.19.6【分析】在线段BD 上取一点E 使得BE=CD 连接AE 由四点共圆得∠再证明△是等边三角形得再由线段的和差关系可得结论【详解】解:在线段BD 上取一点E 使得BE=CD 连接AE ∵∴四点共圆∴∠∴∠∵△是等边解析:6【分析】在线段BD 上取一点E ,使得BE=CD ,连接AE ,由,,,A B C D 四点共圆得∠ABE ACD =∠,再证明ABE ACD ≅∆,△ADE 是等边三角形,得AD DE AE ==,再由线段的和差关系可得结论.【详解】解:在线段BD 上取一点E ,使得BE=CD ,连接AE ,∵180BAD BCD ∠+∠=︒∴,,,A B C D 四点共圆,∴∠ABD ACD =∠∴∠ABE ACD =∠∵△ABC 是等边三角形,∴AB AC BC ==,60DAE ∠=︒,∴△ABE ACD ≅∆,∠60BAE CAF +∠=︒,∴,BAE CAD BAF CAD ∠=∠∠=∠,∴∠60CAD CAE +∠=︒,即60DAE ∠=︒,∴△ADE 是等边三角形,∴AD DE AE ==,∵=8BD ,2CD =,∴6DE BD BE BD CD =-=-=,∴6AD DE ==.【点睛】此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明∠ABE ACD =∠是解答此题的关键.20.a-b 【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可【详解】解:空间站A 与星球B 飞船C 在同一直线上时S 取到最小值a-b 故答案 解析:a-b【分析】根据圆外一点到圆的最大距离是过圆心的直线与圆相交的最远的点,到圆的最小距离是点与圆心的连线与圆相交的最近点求解即可.【详解】解:空间站A 与星球B 、飞船C 在同一直线上时,S 取到最小值a-b .故答案为:a-b .【点睛】本题考查了圆外一点到圆的最大距离和最短距离,最大距离和最短距离都在过圆心的直线上.属于基础知识.三、解答题21.(1)10︒;(2)3【分析】(1)首先求出 ∠ADE 的度数,再根据圆周角定理求出 ∠AOC 的度数,最后求出 ∠OCE 的度数;(2)由弦CD 与直径 AB 垂直,利用垂径定理得到 E 为CD 的中点,求出 CE 的长,在直角三角形 OCE 中,设圆的半径 OC = r ,OE = OA-AE ,表示出 OE ,利用勾股定理列出关于 r 的方程,求出方程的解即可得到圆的半径 r 的值.【详解】解:()1CD AB ⊥,50A ∠=︒,40ADE ∴∠=︒.280AOC ADE∴∠=∠=︒,908010OCE∴∠=︒-︒=︒;()2因为AB是圆O的直径,且CD AB⊥于点E,所以11422222CE CD==⨯=,在Rt OCE中,222OC CE OE=+,设圆O的半径为r,则OC r=,2OE OA AE r=-=-,所以222(22)(2)r r=+-,解得:3r=.所以圆O的半径为3.【点睛】此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.22.(1)①见解析;②见解析;(2)BE﹣DE=2AE【分析】(1)①易证AD=AB,EB=DF,所以只需证明∠ADF=∠ABE,利用同弧所对的圆周角相等不难得出,从而证明全等;②易证AEF是等腰直角三角形,所以EF=2AE,所以只需证明DE﹣BE=EF即可,由BE=DF不难证明此问题;(2)类比(1)不难得出(2)的结论.【详解】(1)①证明:在正方形ABCD中,AB=AD,∵∠1和∠2都对AE,∴∠1=∠2,在ADF和ABE中,12AB ADBE DF=⎧⎪∠=∠⎨⎪=⎩,∴ADF≌ABE(SAS);②由①有ADF≌ABE,∴AF=AE,∠3=∠4.在正方形ABCD中,∠BAD=90°.∴∠BAF+∠3=90°.∴∠BAF+∠4=90°.∴∠EAF=90°.∴EAF是等腰直角三角形.∴EF2=AE2+AF2.∴EF2=2AE2.∴EF=2AE.即DE﹣DF=2AE.∴DE﹣BE=2AE.(2)BE﹣DE=2AE.理由如下:在BE上取点F,使BF=DE,连接AF.∵AB=AD,BF=DE,∠ABE=∠EDA,∴ADE≌ABF(SAS),∴AF=AE,∠DAE=∠BAF.在正方形ABCD中,∠BAD=90°.∴∠BAF+∠DAF=90°.∴∠DAE+∠DAF=90°.∴∠EAF=90°.∴EAF是等腰直角三角形.∴EF2=AE2+AF2.∴EF2=2AE2.∴EF2AE.即BE﹣BF2AE.∴BE﹣DE2.【点睛】本题为圆的综合题,本题主要考查圆周角定理、全等三角形的判定及勾股定理的运用等,有一定的综合性,难度适中.23.(1)见解析;(2)O的半径为4【分析】(1)先作∠ABC的角平分线,交AC于点O,然后过O作AB的垂线,交AB于E,以O为圆心,OE 为半径作圆即可;(2)先利用勾股定理求出AB ,然后由OBC ABO ABC S S S ∆∆∆+=即可求出O 的半径.【详解】解:(1)如图所示:(2)设直线AB 与O 切于点D ,连接OD ,则,OD AB ⊥90,ACB ∴∠=︒22222291215AB AC BC ∴=+=+=.15,AB ∴=设O 的半径为,r由得OBC ABO ABC S S S ∆∆∆+=1215912,r r +=⨯4,r ∴=即O 的半径为4【点睛】本题考查了尺规作图,切线的性质,理解题意熟练掌握角平分线和垂线的作图是解题的关键.24.证明见解析.【分析】主要是根据弧相等只需要证明弧所对的圆周角相等或者弧所对的圆心角相等即可证明.连接AC或者OD都可以证明.【详解】解:连接ACAD//OC∴∠DAC=∠OCAOA=OC∴∠BAC=∠ACO∴∠DAC=∠BAC∴CD BC=.【点睛】主要是考察学生对圆周角定理的内容的掌握.同时角相等和弧相等之间的转化.25.(1)见解析;(2)90;直径所对的圆周角是直角;经过半径外端,且与半径垂直的直线是圆的切线.【分析】(1)根据题意画图即可;(2)分别利用圆周角定理以及切线的判定方法得出答案.【详解】(1)如图(2)如图,连接OA,OB后,由作图可知点,A B在以C为圆心,CO为半径的圆上,∴∠=∠=90︒.(直径所对的圆周角是直角)OAP OBP∴⊥⊥,PA OA PB OBOA OB为O的半径,∴直线,PA PB是O的切线,(经过半径外端,且与半径垂直的直线是圆的切线)【点睛】此题主要考查了切线的判定以及圆周角定理,正确把握切线的判定方法是解题关键.26.2(2)4a π-,1.14 【分析】根据对称性用a 表示出阴影的面积,再将a=2代入求解即可.【详解】解:由题意可知:S 阴=211442222a a a π⎡⎤⎛⎫-⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 2(2)4a π-= 当2a =时,S 阴=(3.142)4 1.144-⨯=. 【点睛】本题考查列代数式、代数式求值、圆的面积公式、三角形的面积公式,解答的关键是找出面积之间的关系,利用基本图形的面积公式解决问题.。

初三数学二模试题分类汇编——圆的综合综合附答案

初三数学二模试题分类汇编——圆的综合综合附答案

初三数学二模试题分类汇编——圆的综合综合附答案一、圆的综合1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.定义:有一个角是其邻角一半的圆内接四边形叫做圆内倍角四边形.(1)如图1,四边形ABCD内接于⊙O,∠DCB﹣∠ADC=∠A,求证:四边形ABCD为圆内接倍角四边形;(2)在(1)的条件下,⊙O半径为5.①若AD为直径,且sinA=45,求BC的长;②若四边形ABCD中有一个角为60°,且BC=CD,则四边形ABCD的面积是;(3)在(1)的条件下,记AB=a,BC=b,CD=c,AD=d,求证:d2﹣b2=ab+cd.【答案】(1)见解析;(2)①BC=6,②753或754;(3)见解析【解析】【分析】(1)先判断出∠ADC=180°﹣2∠A.进而判断出∠ABC=2∠A,即可得出结论;(2)①先用锐角三角函数求出BD,进而得出AB,由(1)得出∠ADB=∠BDC,即可得出结论;②分两种情况:利用面积和差即可得出结论;(3)先得出BE=BC=b,DE=DA=b,进而得出CE=d﹣c,再判断出△EBC∽△EDA,即可得出结论.【详解】(1)设∠A=α,则∠DCB=180°﹣α.∵∠DCB﹣∠ADC=∠A,∴∠ADC=∠DCB﹣∠A=180°﹣α﹣α=180°﹣2α,∴∠ABC=180°﹣∠ADC=2α=2∠A,∴四边形ABCD是⊙O内接倍角四边形;(2)①连接BD.∵AD是⊙O的直径,∴∠ABD=90°.在Rt△ABD中,AD=2×5=10,sin∠A=45,∴BD=8,根据勾股定理得:AB=6,设∠A=α,∴∠ADB=90°﹣α.由(1)知,∠ADC=180°﹣2α,∴∠BDC=90°﹣α,∴∠ADB=∠BDC,∴BC=AB=6;②若∠ADC=60°时.∵四边形ABCD是圆内接倍角四边形,∴∠BCD=120°或∠BAD=30°.Ⅰ、当∠BCD=120°时,如图3,连接OA,OB,OC,OD.∵BC=CD,∴∠BOC=∠COD,∴∠OCD=∠OCB=12∠BCD=60°,∴∠CDO=60°,∴AD是⊙O 的直径,(为了说明AD是直径,点O没有画在AD上)∴∠ADC+∠BCD=180°,∴BC∥AD,∴AB=CD.∵BC =CD ,∴AB =BC =CD ,∴△OAB ,△BOC ,△COD 是全等的等边三角形,∴S 四边形ABCD =3S △AOB =3×34×52=7534. Ⅱ、当∠BAD =30°时,如图4,连接OA ,OB ,OC ,OD . ∵四边形ABCD 是圆内接四边形,∴∠BCD =180°﹣∠BAD =150°. ∵BC =CD ,∴∠BOC =∠COD ,∴∠BCO =∠DCO =12∠BCD =75°,∴∠BOC =∠DOC =30°,∴∠OBA =45°,∴∠AOB =90°. 连接AC ,∴∠DAC =12∠BAD =15°. ∵∠ADO =∠OAB ﹣∠BAD =15°,∴∠DAC =∠ADO ,∴OD ∥AC ,∴S △OAD =S △OCD . 过点C 作CH ⊥OB 于H . 在Rt △OCH 中,CH =12OC =52,∴S 四边形ABCD =S △COD +S △BOC +S △AOB ﹣S △AOD =S △BOC +S △AOB =1522⨯×5+12×5×5=754. 故答案为:7534或754;(3)延长DC ,AB 交于点E .∵四边形ABCD 是⊙O 的内接四边形,∴∠BCE =∠A =12∠ABC . ∵∠ABC =∠BCE +∠A ,∴∠E =∠BCE =∠A ,∴BE =BC =b ,DE =DA =b ,∴CE =d ﹣c . ∵∠BCE =∠A ,∠E =∠E ,∴△EBC ∽△EDA ,∴CE BC AE AD =,∴d c ba b d-=+,∴d 2﹣b 2=ab +cd .【点睛】本题是圆的综合题,主要考查了圆的内接四边形的性质,新定义,相似三角形的判定和性质,等边三角形的判定和性质,正确作出辅助线是解答本题的关键.3.如图,四边形ABCD是⊙O的内接四边形,AB=CD.(1)如图(1),求证:AD∥BC;(2)如图(2),点F是AC的中点,弦DG∥AB,交BC于点E,交AC于点M,求证:AE=2DF;(3)在(2)的条件下,若DG平分∠ADC,GE=53,tan∠ADF=43,求⊙O的半径。

九年级数学下册 2 圆单元测试(二)圆 湘教版(2021年整理)

九年级数学下册 2 圆单元测试(二)圆 湘教版(2021年整理)

2017春九年级数学下册2 圆单元测试(二)圆(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春九年级数学下册2 圆单元测试(二)圆(新版)湘教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春九年级数学下册2 圆单元测试(二)圆(新版)湘教版的全部内容。

单元测试(二) 圆(时间:45分钟满分:100分)题号一二三总分合分人复分人得分一、选择题(每小题3分,共24分)1.如果⊙O的半径为6 cm,OP=7 cm,那么点P与⊙O的位置关系是( )A.点P在⊙O内 B.点P在⊙O上C.点P在⊙O外 D.不能确定2.(诸城二模)如图,AB是⊙O的直径,点D,C在⊙O上,AD∥OC,∠DAB=60°,连接AC,则∠DAC 等于( )A.15° B.30° C.45° D.60°3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,OP=3,则⊙O的半径为( ) A.10 B.8 C.5 D.34.如图,四边形ABCD是⊙O的内接四边形,若∠BO D=80°,则∠C的度数为( )A.100° B.110° C.120° D.140°5.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD,下底BC以及腰AB均相切,切点分别是D,C,E。

若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( ) A.9 B.10 C.12 D.146.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠CBA的度数为()A.15° B.20° C.25° D.30°7.如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB为直径作一个半圆,则图中阴影部分的面积为( )A.25π-6 B.错误!-6 C。

苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷【含答案】

苏科版九年级(上册)数学第二章 对称图形—圆  单元综合检测卷【含答案】

苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)如图,AB 为⊙O 的直径,点C 在⊙O 上,若50OCA ∠=︒,4AB =,则BC 的长为( )A .103πB .109πC .59π D .518π 2.(本题3分)在一个圆中任意画4条半径,则这个圆中有扇形( )A .4个B .8个C .12个D .16个3.(本题3分)如图,半径为5的⊙A 中,弦BC ED ,所对的圆心角分别是BAC ∠,EAD ∠.已知6DE =,180BAC EAD ∠+∠=︒,则弦BC 的弦心距等于( )A B C .4 D .34.(本题3分)如图所示,AB 是O 的直径,PA 切O 于点A ,线段PO 交O 于点C ,连接BC ,若36P ∠=︒,则B 等于( )A .27︒B .32︒C .36︒D .54︒5.(本题3分)如图,半圆的圆心为0,直径AB 的长为12,C 为半圆上一点,⊙CAB =30°,AC 的长是( )A .12πB .6πC .5πD .4π6.(本题3分)如图,一块直角三角板ABC 的斜边AB 与量角器的直径重合,点D 对应54°,则⊙BCD 的度数为( )A .54°B .27°C .63°D .36°7.(本题3分)如图,半径为3的⊙O 内有一点A ,OA P 在⊙O 上,当⊙OP A 最大时,S ⊙OP A 等于( )A .32BCD .18.(本题3分)如图,点A 、B 、C 在O 上,,CD OA CE OB ⊥⊥ ,垂足分别为D 、E ,若40DCE ∠=︒,则ACB ∠的度数为( )A .140︒B .70︒C .110︒D .80︒9.(本题3分)如图是某几何体的三视图及相关数据,则下面判断正确的是( )A .a >cB .b >cC .a 2+4b 2=c 2D .a 2+b 2=c 2 10.(本题3分)O 的半径为5,同一个平面内有一点P ,且OP =7,则P 与O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .12.(本题3分)如图,在O 中,半径OC 垂直AB 于,8,2D AB CD ==,则O 的半径是_____.13.(本题3分)如图,四边形ABCD 内接于⊙O ,且四边形OABC 是平行四边形,则⊙D =______.14.(本题3分)如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊙OA ,OC 交AB 于点P ,已知⊙OAB =22°,则⊙OCB =__________.15.(本题3分)已知圆心角为120的扇形的面积为212cm π,则扇形的弧长是________cm .16.(本题3分)如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.17.(本题3分)在一个圆中,有个圆心角为160°的扇形,则这个扇形的面积是整个圆面积的________. 18.(本题3分)如图,⊙ABC 内接于⊙O ,若⊙OBC=25°,则⊙A=_____.19.(本题3分)如图,Rt ABC △中,90C ∠=︒,30ABC ∠=︒,6AB =.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA DE =,则AD 的取值范围是______.20.(本题3分)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm ),计算这个圆锥侧面展开图圆心角的度数为_______.三、解答题(本大题共10小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题5分)如图所示是一个纸杯,它的母线延长后形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯开口圆的直径为6cm,下底面直径为4cm,母线长EF=9cm,求扇形OAB的圆心角及这个纸杯的表面积.(结果保留根号和π)22.(本题5分)如图,大正方形的边长为8厘米,求阴影部分的周长和面积(结果保留π)23.(本题5分)如图所示,⊙B=⊙OAF=90°,BO=3 cm,AB=4 cm,AF=12 cm,求图中半圆的面积.24.(本题5分)某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹)25.(本题5分)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm,求半圆的半径.26.(本题5分)如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?=,以AB为直径的O分别交BC,AC于点D,27.(本题6分)已知:如图,在ABC中,AB ACE,连结EB,交OD于点F.⊥.(1)求证:OD BE(2)若DE =,5AB =,求AE 的长.28.(本题6分)如图,O 的两条弦//AB CD (AB 不是直径),点E 为AB 中点,连接EC ,ED . (1)直线EO 与AB 垂直吗?请说明理由;(2)求证:EC ED =.29.(本题8分)如图,在Rt⊙ABC 中,90C ∠=︒,AD 平分⊙BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)30.(本题10分)如图,在Rt ⊙ABC 中,⊙C =90°,以BC 为直径的⊙O 交斜边AB 于点M ,若H 是AC 的中点,连接MH .(1)求证:MH 为⊙O 的切线.(2)若MH =32,AC BC =34,求⊙O 的半径. (3)在(2)的条件下分别过点A 、B 作⊙O 的切线,两切线交于点D ,AD 与⊙O 相切于N 点,过N 点作NQ ⊙BC ,垂足为E ,且交⊙O 于Q 点,求线段NQ 的长度.答案1.B解:⊙⊙OCA=50°,OA=OC,⊙⊙A=50°,⊙⊙BOC=2⊙A=100°,⊙AB=4,⊙BO=2,⊙BC的长为:10021819ππ⨯=故选B.2.C解:图中有四条半径,以其中一条半径为始边,可以找到3个扇形, 所以可以把这个图分成4×3=12个扇形,故选C.3.D解:作AH⊙BC于H,作直径CF,连结BF,如图,⊙⊙BAC+⊙EAD=180°,⊙BAC+⊙BAF=180°,⊙⊙DAE=⊙BAF,⊙DE BF=,⊙DE=BF=6,⊙AH⊙BC,⊙CH=BH,而CA=AF,⊙AH为⊙CBF的中位线,⊙AH=12BF=3,故选:D.4.A⊙PA 切O 于点A ,⊙90PAO ∠=︒,⊙36P ∠=︒,⊙903654POA ∠=︒-︒=︒, ⊙1272B POA ∠=∠=︒, 故A .5.D解:如图,连接OC ,⊙OA =OC ,⊙CAB =30°,⊙⊙C =⊙CAB =30°,⊙⊙AOC =120°,⊙弧AC 的长度l =12064180ππ⨯=. 故选:D .6.C⊙一块直角三角板ABC 的斜边AB 与量角器的直径重合, ⊙点A. B. C. D 都在以AB 为直径的圆上,⊙点D 对应54°,即⊙AOD=54°, ⊙⊙ACD=12⊙AOD=27°, ⊙⊙BCD=90°−⊙ACD=63°.故选C.7.B解:如图所示:OA 、OP 是定值,PA OA ∴⊥时,OPA ∠最大,在直角三角形OPA 中,OA =3OP =,PA ∴=12OPA S OA AP ∆∴=⋅12==. 故选:B .8.C解:在优弧AB 上取一点F ,连接AF ,BF .⊙,CD OA CE OB ⊥⊥ ,⊙⊙CDO=⊙CEO=90°.⊙40DCE ∠=︒,⊙⊙O=140°,⊙⊙F=70°,⊙⊙ACB=180°-70°=110°.故选C .9.D由题意可知该几何体是圆锥,根据勾股定理得,a 2+b 2=c 2故选:D .10.C解:因为75OP =>,所以点P 与圆O 的位置关系是点在圆外,故选:C11.4⊙扇形周长等于铁丝的长为8 cm ,扇形的半径是2 cm ,⊙扇形弧长是4 cm ,⊙12S lr=扇形214242cm=⨯⨯=.故4.12.5设⊙O的半径为r,则OD=r-2,⊙OC⊙AB,⊙AD=BD=12AB=4,在Rt⊙AOD中,⊙OD2+AD2=OA2,⊙(r-2)2+42=r2,解得r=5,即⊙O的半径为5.故5.13.60°⊙四边形ABCD内接于⊙O,⊙⊙D+⊙B=180°,由圆周角定理得,⊙D=12⊙AOC,⊙四边形OABC为平行四边形,⊙⊙AOC=⊙B,⊙2⊙D=180°−⊙D,解得,⊙D=60°,故60.14.44°连接OB,⊙BC是⊙O的切线,⊙OB⊙BC,⊙⊙OBA+⊙CBP=90°,⊙OC⊙OA,⊙OA=OB ,⊙OAB=22°,⊙⊙OAB=⊙OBA=22°,⊙⊙APO=⊙CBP=68°,⊙⊙APO=⊙CPB ,⊙⊙CPB=⊙ABP=68°,⊙⊙OCB=180°-68°-68°=44°,故答案为44°15.4π令扇形的半径和弧长分别为R 和l ,则S=2120360R π=12π, ⊙R=6cm , ⊙l=0208161π⨯=4πcm . ⊙扇形的弧长为4πcm .16.35r <<.根据勾股定理可求得BD=5,三个顶点A 、B 、C 中至少有一个点在圆内,点A 与点D 的距离最近,点A 应该在圆内,所以r>3,三个顶点A 、B 、C 中至少有一个点在圆外,点B 与点D 的距离最远,点B 应该在圆外,所以r<5,所以r 的取值范围是35r <<.17.49160°÷360°=49 故答案为.4918.65°.连接OC .⊙OB=OC ,⊙OBC=25°⊙⊙BOC=130°, ⊙⊙A=12⊙BOC=65°. 故答案是:65°.19.23AD ≤<以D 为圆心,AD 的长为半径画圆,当圆与BC 相切,如图⊙,DE BC ⊥时,30ABC =︒∠, ⊙12DE BD =, ⊙DA DE =⊙2DB DA =6AB =,2AD DE ∴==⊙DE 到BC 的最短距离为2⊙2AD ≥当圆与BC 相交时,如图⊙,若交点为B 和C ,则132AD AB ==, ⊙3AD < AD ∴的取值范围是23AD ≤<.20.120⊙圆锥的底面半径为1,⊙圆锥的底面周长为2π,⊙圆锥的高是⊙圆锥的母线长为3,设扇形的圆心角为n°, ⊙32180n ππ⨯==2π,解得n=120.即圆锥的侧面展开图中扇形的圆心角为120°.故答案为120°.21.40度 49π2cm解:由题意可知:BA =6πcm , CD =4π,设⊙AOB=n ,AO=R ,则CO=R ﹣9,由弧长公式得:l =180n R π,⊙618041809n nR nR ⨯=⎧⎨⨯=-⎩,解得:n=40,R=27,故扇形OAB 的圆心角是40度.⊙R=27,R ﹣9=18,⊙S 扇形OCD = 12×4π×18=36π(cm 2),S 扇形OAB = 12×6π×27=81π(cm 2),纸杯侧面积=S 扇形OAB ﹣S 扇形OCD =81π﹣36π=45π(cm 2),纸杯底面积=π•22=4π(cm 2)纸杯表面积=45π+4π=49π(cm 2).22.(16)4π+厘米;(32)8π+平方厘米解:周长:π×8×14×2+8×12×4 =8π×12+16=4π+16(厘米);面积:8×8×12+π×282÷()×12=32+8π(平方厘米).答:阴影部分的周长是4π+16厘米,面积是32+8π平方厘米.23.图中半圆的面积是169π8cm 2. 解:如图,⊙在直角⊙ABO 中,⊙B =90°,BO =3 cm ,AB =4 cm ,⊙AO 5 cm.则在直角⊙AFO 中,由勾股定理,得到FO 13 cm ,⊙图中半圆的面积=12π×2FO ⎛⎫ ⎪⎝⎭2=12π×169π169π88=(cm 2). 答:图中半圆的面积是169π8cm 2. 24.作图见解析. 在圆上取两个弦,根据垂径定理,垂直平分弦的直线一定过圆心,所以作出两弦的垂直平分线即可.25.R =.如下图所示,圆心为A ,设大正方形的边长为2x ,圆的半径为R ,⊙正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,⊙AE BC x ==,2CE x =,⊙小正方形的面积为216cm ,⊙小正方形的边长4cm EF DF ==,由勾股定理得,22222R AE CE AF DF =+=+,即()2222444x x x +=++,解得4x =,⊙R =.26.选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.⊙圆锥形漏斗的底面半径为20cm,高为,⊙圆锥的母线长为R==60(cm).设圆锥的侧面展开图的圆心角为n°,则有60180nπ⨯=2π×20,解得:n=120.方案一:如图⊙,扇形的半径为60 cm,矩形的宽为60 cm,易求得矩形的长为cm.此时矩形的面积为60⨯(cm2).方案二:如图⊙,扇形与矩形的两边相切,有一边重合,易求得矩形的宽为60 cm,长为30+60=90(cm),此时矩形的面积为90×60=5 400(cm2).⊙>5400,⊙方案二所用材料最省,即选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.27.(1)见解析;(2)3(1)证明:⊙AB为⊙O的直径,⊙⊙AEB=90°,⊙AB=AC,⊙⊙C=⊙ABC.⊙BO=OD,⊙⊙ODB=⊙ABC,⊙⊙C=⊙ODB,⊙OD//AC,⊙OD⊙BE;(2)解:⊙OD⊙BE,⊙弧BD=弧DE,⊙AB=5,则OB=OD=52,设OF=x,则DF=52-x,⊙BF2=BD2-DF2=OB2-OF2,即2-(52-x)2=(52)2-x 2, 解得x=32, ⊙OF//AE ,OA=OB , ⊙AE=2OF=2×32=3. 28.(1)直线EO 与AB 垂直.理由见解析;(2)证明见解析.解:(1)直线EO 与AB 垂直.理由如下:如图,连接EO ,并延长交CD 于F .⊙ EO 过点O ,E 为AB 的中点,EO AB ∴⊥.(2)EO AB ⊥,//AB CD ,EF CD ∴⊥.⊙ EF 过点O ,CF DF ∴=,EF ∴垂直平分CD ,EC ED ∴=.29.(1)证明见解析 (2)23π(1)连接OD .⊙OA =OD ,⊙⊙OAD =⊙ODA .⊙⊙OAD =⊙DAC ,⊙⊙ODA =⊙DAC ,⊙OD ⊙AC ,⊙⊙ODB =⊙C =90°,⊙OD ⊙BC ,⊙BC 是⊙O 的切线. (2)连接OE ,OE 交AD 于K .⊙AE DE =,⊙OE ⊙AD .⊙⊙OAK =⊙EAK ,AK =AK ,⊙AKO =⊙AKE =90°,⊙⊙AKO ⊙⊙AKE ,⊙AO =AE =OE ,⊙⊙AOE 是等边三角形,⊙⊙AOE =60°,⊙S 阴=S 扇形OAE ﹣S ⊙AOE 2602360π⋅⋅=2223π=- 30.(1)证明见解析;(2)2;(3)4813. 解:(1)连接OH 、OM ,⊙H 是AC 的中点,O 是BC 的中点⊙OH 是⊙ABC 的中位线 ,⊙OH ⊙AB ,⊙⊙COH =⊙ABC ,⊙MOH =⊙OMB又⊙OB =OM ,⊙⊙OMB =⊙MBO ,⊙⊙COH =⊙MOH ,在⊙COH 与⊙MOH 中,⊙OC =OM ,⊙COH =⊙MOH ,OH =OH⊙⊙COH ⊙⊙MOH (SAS ),⊙⊙HCO =⊙HMO =90°,⊙MH 是⊙O 的切线;(2)⊙MH 、AC 是⊙O 的切线,⊙HC =MH =32, ⊙AC =2HC =3, ⊙AC BC =34, ⊙BC =4 ,⊙⊙O 的半径为2;(3)连接OA 、CN 、ON ,OA 与CN 相交于点I , ⊙AC 与AN 都是⊙O 的切线 ,⊙AC =AN ,AO 平分⊙CAD ,⊙AO ⊙CN ,⊙AC =3,OC =2 ,⊙由勾股定理可求得:A O ⊙12AC •OC =12AO •CI ,⊙CI ,⊙由垂径定理可求得:C N =13, 设OE =x ,由勾股定理可得:2222CN CE ON OE -=-, ⊙22144(2)413x x -+=-, ⊙x =1013, ⊙CE =1013, 由勾股定理可求得:EN =2413, ⊙由垂径定理可知:NQ =2EN =4813.。

湘教版2020-2021九年级数学下册第2章圆单元综合能力提升训练题(附答案)

湘教版2020-2021九年级数学下册第2章圆单元综合能力提升训练题(附答案)

湘教版2020-2021九年级数学下册第2章圆单元综合能力提升训练题(附答案)一、单选题1.如图,Rt △ABC 中,∠C =90°,AB =13,BC =5,则其内切圆半径为( )A .1B .2C .3D .42.如图,已知等边△ABC 的边长为8,以AB 为直径的圆交BC 于点F .以C 为圆心,CF 长为半径作图,D 是⊙C 上一动点,E 为BD 的中点,当AE 最大时,BD 的长为( )A .43B .45C .432+D .123.如图,ABC ∆中,60BAC ∠=,45ABC ∠=,22AB =,点D 是线段BC 上的一个动点,以AD 为直径画O 分别交AB ,AC 于E 、F ,连接EF ,则线段EF 长度的最小值为( )A .2B .3C . 5D . 34.(题文)如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(-2,3),点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是( )A .(0,0)B .(-1,1)C .(-1,0)D .(-1,-1)5.下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③弧长相等的弧是等弧;④半圆是弧A.1个B.2个C.3个D.4个6.如图所示,线段AB切⊙O于点A,连接OA,OB,OB与⊙O交于点C.若OC=BC=2,则图中阴影部分的面积为()A.2233π-B.2433π-C.233π-D.433π-7.如图,△ABC是正三角形,曲线CDEF……叫做“正三角形的渐开线”,其中弧CD、弧DE、弧EF……的圆心依次按A、B、C循环,它们依次相连结.若AB=1,那么曲线C DEF的长是( )A.2πB.4πC.6πD.8π8.如图,边长为23的等边ABC∆的内切圆的半径为( )A.1 B.3C.2 D.239.如图,扇形AOB的圆心角为142°,点C是弧AB上一点,则∠ACB的度数是( )A.38°B.120°C.109°D.119°10.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )A .32°B .30°C .38°D .58°11.如图,AB 是⊙O 的弦,已知∠OAB=30°,AB=4,则⊙O 的半径为( )A .4B .2C .23D .43312.下列说法正确的是( ) A .平分弦的直径垂直于弦 B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .三点确定一个圆二、填空题13.如图,△ABC 中,∠C=90°,AC=6,AB=10,D 为BC 边的中点,以AD 上一点O 为圆心的⊙O 和AB 、BC 均相切,则⊙O 的半径为__.14.如果一个扇形的弧长是43π,半径是6,那么此扇形的圆心角为_______. 15.如图,已知AD 是等腰三角形ABC 底边BC 上的高,AD =1,DC =3,将△ADC 绕着点D 旋转,得△DEF ,点A 、C 分别与点E 、F 对应,当EF 与直线AB 重合时,设AC 与DF 相交于点O ,那么由线段OC 、OF 和弧CF 围成的阴影部分的面积为_____.16.如图,在两个同心圆中,大圆弦AB 交小圆于点C 、D ,已知2AB CD =.AB 与圆心O 的距离12OM CD =,则大圆半径与小圆半径之比为________.17.如图,O 为ABC 的内切圆,C 90∠=,BO 的延长线交AC 于点D ,若BC 3=,CD 1=,则O 的半径等于________.18.如图,在边长为8cm 的正方形ABCD 中,以A 为圆心AB 长为半径画弧交对角线AC 于点E ,以扇形ABE 为圆锥的侧面积,则该圆锥的底面半径为____________cm .19.一个扇形的弧长是cm ,面积是cm 2,这个扇形的半径是________cm . 20.在锐角△ABC 中,AB=5,BC=6,∠ACB=45°(如图),将△ABC 绕点B 按逆时针方向旋转得到△A′BC′(顶点A 、C 分别与A′、C′对应),当点C′在线段CA 的延长线上时,则AC′的长度为(A ). (B )(C )(D )21.如图,五边形ABCDE 为O 的内接正五边形,则CAD ∠=________.22.在⊙O 中,若一条弦AB 的长等于这个圆的半径,则这条弦AB 所对的圆周角是_____(注意:有两种情况,可不要少填哟!)23.如图所示,是一个正六边形ABCDE ,连接AC AD 、,则ACD ∠的度数为_______.三、解答题24.对于平面直角坐标系xOy中的点P和线段AB,给出如下定义:在线段AB外有一点P,如果在线段AB上存在两点C、D,使得∠CPD=90°,那么就把点P叫做线段AB 的悬垂点.(1)已知点A(2,0),O(0,0)①若,D(1,1),E(1,2),在点C,D,E中,线段AO的悬垂点是______;②如果点P(m,n)在直线上,且是线段AO的悬垂点,求的取值范围;(2)如下图是帽形M(半圆与一条直径组成,点M是半圆的圆心),且圆M的半径是1,若帽形内部的所有点是某一条线段的悬垂点,求此线段长的取值范围.25.已知:如图,在△ABC中,BC=AC,以BC为直径的☉O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与☉O的位置关系,并证明你的结论;(3)若☉O的直径为18,cosB=13,求DE的长.26.如图,一条公路的转弯处是一段圆弧AB.(1)用直尺和圆规作出AB 所在圆的圆心O (要求保留作图痕迹,不写作法);(2)若AB 的中点C 到弦AB 的距离为20m ,60AB m =,求AB 所在圆的半径. 27.如图,已知ABC 中,ACB 90∠=,请作ABC 的外接圆.(保面作图痕迹,不写作法)28.如图,在△ABC 中,∠ABC=∠ACB ,以AC 为直径的⊙O 分别交AB 、BC 于点M 、N ,点P 在AB 的延长线上,且2CAB BCP ∠=∠.(1)求证:直线CP 是⊙O 的切线.(2)若25BC =,5sin 5BCP ∠=,求直径AC 的长及点B 到AC 的距离. (3)在第(2)的条件下,求BCP 的周长.29.如图,在△ABC 中,AB=AC ,以AB 为直径的圆交AC 于点D ,交BC 于点E ,延长AE 至点F ,使EF=AE ,连接FB ,FC ,(1)求证:四边形ABFC 是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC 的面积.30.如图,以ABC ∆的边BC 为直径作⊙O ,点A 在⊙O 上,点D 在线段BC 的延长线上,AD AB =,30D ∠=︒(1)求证:直线AD 是⊙O 的切线;(2)若直径4BC =,求图中阴影部分的面积.31.如图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA ,AC=13,BC=5,BE ⊥DC 交DC 的延长线于点E .(1)求证:CB 是∠ECA 的角平分线;(2)求DE 的长;(3)求证:BE 是⊙O 的切线.32.如图,以ABC ∆的BC 边上一点O 为圆心的圆,经过A ,B 两点,且与BC 边交于点E ,D 为弧BE 的中点,连接AD 交BC 于F ,AC FC =,连接BD .(1)求证:AC 是O 的切线; (2)已知O 的半径5R cm =,8AB cm =,求ABD ∆的面积.33.如图,AB 是半圆O 的直径,D 为弦BC 的中点,延长OD 交弧BC 于点E ,点F 为OD 的延长线上一点且满足∠OBC =∠OFC ,(1)求证:CF 为⊙O 的切线;(2)若四边形ACFD 是平行四边形,求sin ∠BAD 的值.参考答案1.B【解析】【分析】根据勾股定理,得AC=12;再根据直角三角形内切圆的半径等于两条直角边的和与斜边的差的一半,得其内切圆半径是(5+12-13)÷2=2.【详解】∵∠C=90°,AB=13,BC=5,∴12 =.∴内切圆半径是(5+12-13)÷2=2.故答案为:B.【点睛】本题考查了勾股定理以及直角三角形的内切圆,必须掌握直角三角形的内切圆半径公式:两条直角边的和与斜边的差的一半即为直角三角形内切圆的半径.2.B【解析】【分析】点D在C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,由△ABC是等边三角形,AB是直径,得到EF⊥BC,根据三角形的中位线的性质得到CD∥EF,根据勾股定理即可得到结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运动,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=8,CD=4,故22641645BD BC CD,=+=+=故选B.【点睛】考查等边三角形的性质,圆周角定理,勾股定理等,综合性比较强,难度较大.3.B【解析】试题分析:如图,连接OE,OF,过O点作OH⊥EF,垂足为H。

2023年中考九年级数学高频考点提升练习--圆的综合(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合(含答案)

2023年中考九年级数学高频考点提升练习--圆的综合1.如图,AB是⊙O的直径,点C为⊙O上一点,OE⊥BC于点H,交⊙O于点E,点D为OE的延长线上一点,DC的延长线与BA的延长线交于点F﹐且∠BOD=∠BCD,连结BD、AC、CE.(1)求证:DF为⊙O的切线;(2)过E作EG⊥FD于点G,求证:△CHE≌△CGE;(3)如果AF=1,sin∠FCA=√33,求EG的长.2.如图,在平面直角坐标系中,直线y=−12x+2与x轴交于点A,与y轴交于点B,抛物线y=−23x 2+bx+c过点B且与直线相交于另一点C(52,34).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0) (0<n<52)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?3.综合与探究如图,抛物线y=−x2+bx+c经过A(−1,0),D(3,4)两点,直线AD与y 轴交于点Q.点P(m,n)是直线AD上方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,并且交直线AD于点E.(1)请直接写出抛物线与直线AD的函数关系表达式;(2)当CP//AD时,求出点P的坐标;(3)是否存在点P,∠CPE=∠QFE?若存在,求出m的值;若不存在,请说明理由.4.如图,在梯形ABCD中,AD⊙BC,⊙B=90°,BC=6,AD=3,⊙DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动,已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边⊙EFG,设E点移动距离为x(x>0).(1)⊙EFG的边长是(用含有x的代数式表示),当x=2时,点G的位置在;(2)若⊙EFG与梯形ABCD重叠部分面积是y,求y与x之间的函数关系式;(3)探究(2)中得到的函数y在x取何值时,存在最大值?并求出最大值.5.如图,抛物线y=−34x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3),点M(m,0)为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.(1)求抛物线的解析式,并写出此抛物线的对称轴;(2)如果以点P、N、B、O为顶点的四边形为平行四边形,求m的值;(3)若△BPN与△OPM面积相等,直接写出点M的坐标.6.在平面直角坐标系xOy中,⊙C的半径为r(r>1),点P是圆内与圆心C不重合的点,⊙C的“完美点”的定义如下:过圆心C的任意直线CP与⊙C交于点A,B,若满足|PA﹣PB|=2,则称点P为⊙C的“完美点”,如图点P为⊙C的一个“完美点”.(1)当⊙O的半径为2时,﹣12)⊙O的“完①点M( 32,0)⊙O的“完美点”,点(﹣√32美点”;(填“是”或者“不是”)②若⊙O的“完美点”P在直线y=34x上,求PO的长及点P的坐标;(2)设圆心C的坐标为(s,t),且在直线y=﹣2x+1上,⊙C半径为r,若y轴上存在⊙C的“完美点”,求t的取值范围.7.平面直角坐标系xOy中有点P和某一函数图象M,过点P作x轴的垂线,交图象M 于点Q ,设点P ,Q 的纵坐标分别为 y P , y Q .如果 y P >y Q ,那么称点P 为图象M 的上位点;如果 y P =y Q ,那么称点P 为图象M 的图上点;如果 y P <y Q ,那么称点P 为图象M 的下位点. (1)已知抛物线 y =x 2−2 .① 在点A (-1,0),B (0,-2),C (2,3)中,是抛物线的上位点的是 ;② 如果点D 是直线 y =x 的图上点,且为抛物线的上位点,求点D 的横坐标 x D 的取值范围;(2)将直线 y =x +3 在直线 y =3 下方的部分沿直线 y =3 翻折,直线 y =x +3 的其余部分保持不变,得到一个新的图象,记作图象G .⊙H 的圆心H 在x 轴上,半径为 1 .如果在图象G 和⊙H 上分别存在点E 和点F ,使得线段EF 上同时存在图象G 的上位点,图上点和下位点,求圆心H 的横坐标 x H 的取值范围.8.在平面直角坐标系xOy 中,⊙O 的半径为1,点A 在⊙O 上,点P 在⊙O 内,给出如下定义:连接AP 并延长交⊙O 于点B ,若AP =kAB ,则称点P 是点A 关于⊙O 的k 倍特征点.(1)如图,点A 的坐标为(1,0).①若点P 的坐标为(−12,0),则点P 是点A 关于⊙O 的 ▲倍特征点;②在C 1(0,12),C 2(12,0),C 3(12,−12)这三个点中,点 ▲是点A 关于⊙O 的12倍特征点; ③直线l 经过点A ,与y 轴交于点D ,∠DAO =60°.点E 在直线l 上,且点E 是点A 关于⊙O 的12倍特征点,求点E 的坐标;(2)若当k取某个值时,对于函数y=−x+1(0<x<1)的图象上任意一点M,在⊙O上都存在点N,使得点M是点N关于⊙O的k倍特征点,直接写出k的最大值和最小值.9.如图,已知抛物线y=x2+bx-3c经过点A(1,0)和点B(0,-3),与x 轴交于另一点C .(1)求抛物线的解析式;(2)若点P 是抛物线上的动点,点Q 是抛物线对称轴上的动点,是否存在这样的点P ,使以点A、C、P、Q 为顶点的四边形是平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,在⊙ABC中,⊙ACB =90°,AB=10,AC=8,CD是边AB的中线.动点P 从点C出发,以每秒5个单位长度的速度沿折线CD-DB向终点B运动.过点P作PQ⊙AC于点Q,以PQ为边作矩形PQMN,使点C、N始终在PQ的异侧,且PN= 2.设矩形PQMN与⊙ACD重叠部分图形的面积是S,点P的运动时间为t(s)3PQ(t>0).(1)当点P在边CD上时,用含t的代数式表示PQ的长.(2)当点N落在边AD上时,求t的值.(3)当点P在CD上时,求S与t之间的函数关系式.(4)连结DQ,当直线DQ将矩形PQMN分成面积比为1:2的两部分时,直接写出t的值.11.如图1,在平面直角坐标系中,抛物线y= √36x2﹣114x+3 √3与x轴交于点A、B两点(点A在点B的左侧),与y轴交于点C,过点C作CD⊙x轴,且交抛物线于点D,连接AD,交y轴于点E,连接AC.(1)求S⊙ABD的值;(2)如图2,若点P是直线AD下方抛物线上一动点,过点P作PF⊙y轴交直线AD于点F,作PG⊙AC交直线AD于点G,当⊙PGF的周长最大时,在线段DE上取一点Q,当PQ+ 35QE的值最小时,求此时PQ+35QE的值;(3)如图3,M是BC的中点,以CM为斜边作直角⊙CMN,使CN⊙x轴,MN⊙y 轴,将⊙CMN沿射线CB平移,记平移后的三角形为⊙C′M′N′,当点N′落在x轴上即停止运动,将此时的⊙C′M′N′绕点C′逆时针旋转(旋转度数不超过180°),旋转过程中直线M′N′与直线CA交于点S,与y轴交于点T,与x轴交于点W,请问⊙CST是否能为等腰三角形?若能,请求出所有符合条件的WN′的长度;若不能,请说明理由.12.在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=12x2−32x−2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;(3)设点Q是抛物线L1上的一个动点,且位于其对称轴的右侧.若⊙DPQ与⊙ABC相似,求其“共根抛物线”L2的顶点P的坐标.13.如图,已知抛物线与x轴交于A(−1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x 轴于点F,交BC于点E,过点D作DM⊥BC,垂足为M.求线段DM的最大值;(3)已知P为抛物线对称轴上一动点,若△PBC是直角三角形,求出点P的坐标.14.如图,D是⊙ABC的BC边上一点,连接AD,作⊙ABD的外接圆,将⊙ADC沿直线AD折叠,点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)填空:①当⊙CAB=90°,cos⊙ADB=13,BE=2时,边BC的长为.②当⊙BAE=时,四边形AOED是菱形.15.如图,在平面直角坐标系xOy中,已知点A(0,4),点B是x轴正半轴上一点,连结AB,过点A作AC⊙AB,交x轴于点C,点D是点C关于点A的对称点,连结BD,以AD为直径作⊙Q交BD于点E,连结AE并延长交x轴于点F,连结DF.(1)求线段AE的长;(2)若AB﹣BO=2,求tan⊙AFC的值;(3)若⊙DEF与⊙AEB相似,求BEDE的值.16.如图,已知AB为⊙O的直径,C为⊙O上一点,BG与⊙O相切于点B,交AC的延长线于点D(点D在线段BG上),AC = 8,tan⊙BDC = 4 3(1)求⊙O的直径;(2)当DG= 52时,过G作GE//AD,交BA的延长线于点E,说明EG与⊙O相切.答案解析部分1.【答案】(1)证明:如图,连结OC ,∵OE⊙BC , ∴⊙OHB=90°, ∴⊙OBH+⊙BOD=90°, ∵OB=OC , ∴⊙OBH=⊙OCB , ∵⊙BOD=⊙BCD , ∴⊙BCD+⊙OCB=90°, ∴OC⊙CD ,∵点C 为⊙O 上一点, ∴DF 为⊙O 的切线(2)证明:∵⊙OCD=90°, ∴⊙ECG+⊙OCE=90°, ∵OC=OE , ∴⊙OCE=⊙OEC , ∴⊙ECG+⊙OEC=90°, ∵⊙OEC+⊙HCE=90°, ∴⊙ECG=⊙HCE , 在⊙CHE 和⊙CGE 中, {∠CHE =∠CGE =90°∠ECG =∠HCE CE =CE,∴⊙CHE⊙⊙CGE (AAS ) (3)解:∵AB 是⊙O 的直径,∴⊙ACB=90°, ∴⊙ABC+⊙BAC=90°, ∵DF 为⊙O 的切线, ∴⊙OCA+⊙FCA=90°, ∵OA=OC , ∴⊙OAC=⊙OCA , ∴⊙FCA=⊙ABC ,∴sin∠ABC =sin∠FCA =√33,设AC= √3a ,则AB=3a ,∴BC =√AB 2−AC 2=√(3a)2−(√3a)2=√6a , ∵⊙FCA=⊙ABC ,⊙AFC=⊙CFB , ∴⊙ACF⊙⊙CFB ,∴AF CF =CF BF =AC BC =1√2,∵AF=1, ∴CF= √2 , ∴BF =(√2)21=2 ,∴BF-AF=AB=1,∴OC =12,BC =√63,∵OE⊙BC ,∴CH =12BC =√66,∴OH =√OC 2−CH 2=(12)2−(√66)2=√36,∴HE=OE-OH= 12−√36,∵⊙CHE⊙⊙CGE ,∴EG=HE= 12−√36.2.【答案】(1)解:∵直线 y =−12x +2 与x 轴交于点A ,与y 轴交于点B ,令x=0,则y=2,令y=0,则x=4, ∴A (4,0),B (0,2),∵抛物线 y =−23x 2+bx +c 经过B (0,2), C(52,34) ,∴{2=c 34=−23×254+52b +c ,解得: {b =76c =2 , ∴抛物线的表达式为: y =−23x 2+76x +2 ; (2)解:当点P 在x 轴上方时,点P 与点C 重合,满足 ∠PAO =∠BAO , ∵C(52,34) ,∴P(52,34) ,当点P 在x 轴下方时,如图,AP 与y 轴交于点Q ,∵∠PAO =∠BAO ,∴B ,Q 关于x 轴对称,∴Q (0,-2),又A (4,0),设直线AQ 的表达式为y=px+q ,代入,{−2=q0=4p +q ,解得: {p =12q =−2 ,∴直线AQ 的表达式为: y =12x −2 ,联立得:{y =12x −2y =−23x 2+76x +2,解得:x=3或-2,∴点P 的坐标为(3, −12 )或(-2,-3),综上,当 ∠PAO =∠BAO 时,点P 的坐标为: (52,34) 或(3,−12 )或(-2,-3); (3)解:①如图,⊙MNC=90°,过点C 作CD⊙x 轴于点D ,∴⊙MNO+⊙CND=90°,∵⊙OMN+⊙MNO=90°,∴⊙CND=⊙OMN,又⊙MON=⊙CDN=90°,∴⊙MNO⊙⊙NCD ,∴MO ND =NO CD ,即 m 52−n =n 34 , 整理得: m =−43n 2+103n ; ②如图,∵⊙MNC=90°,以MC 为直径画圆E ,∵N(n,0) (0<n <52) , ∴点N 在线段OD 上(不含O 和D ),即圆E 与线段OD 有两个交点(不含O 和D ), ∵点M 在y 轴正半轴,当圆E 与线段OD 相切时,有NE= 12 MC ,即NE 2= 14MC 2, ∵M (0,m ), C(52,34) , ∴E ( 54, 38+m 2 ), ∴(38+m 2)2 = 14[(52)2+(m −34)2] , 解得:m= 2512, 当点M 与点O 重合时,如图,此时圆E 与线段OD (不含O 和D )有一个交点,∴当0<m < 2512时,圆E 与线段OD 有两个交点, 故m 的取值范围是:0<m < 2512. 3.【答案】(1)解:∵抛物线 y =−x 2+bx +c 经过 A(−1,0) , D(3,4) 两点,∴{−(−1)2+b ×(−1)+c =0−32+b ×3+c =4,解之得: {b =3c =4 ∴抛物线的函数关系表达式为 y =−x 2+3x +4 ,设直线 AD 的函数关系表达式为 y =kx +b ,∵直线 AD 经过 A(−1,0) , D(3,4) 两点,∴{k ×(−1)+b =0k ×3+b =4,解之得: {k =1b =1 ∴直线 AD 的函数关系表达式为 y =x +1 .(2)解:把 x =0 代入 y =−x 2+3x +4 ,得 y =4 .∴点 C 坐标是(0,4),∵CP//AD∴k CP =k AD =1 ,设直线 CP 的函数关系表达式为 y =x +b ,∵将点 C (0,4),代入 y =x +b 得: b =4 ,∴直线 CP 的函数关系表达式为 y =x +4 ,∵直线 CP 与抛物线 y =−x 2+3x +4 相交于 P ,则有: x +4=−x 2+3x +4 ,解之得: x 1=0 , x 2=2 ,把 x =2 代入 y =x +4 ,得 y =6 ,∴点P 的坐标是(2,6).(3)解:存在点 P ,使得 ∠CPE =∠QFE .过点 C 作 CG ⊥PF ,垂足为 G .过点 Q 作 QH ⊥PF ,垂足为 H .则四边形CGHQ为矩形.∴CG=QH,∠CGP=∠QHF=90°.∴当PG=HF时,△CGP≌△QHF,这时∠CPG=∠QFH,即∠CPE=∠QFE.设P(m,−m2+3m+4),则PG=−m2+3m+4−4=−m2+3m.∵HF=QO=1.∴−m2+3m=1,解得m=3+√52或m=3−√52.4.【答案】(1)x;D(2)解:①当0<x≤2时,⊙EFG在梯形ABCD内部,所以y= √34x2;②分两种情况:⊙.当2<x<3时,如图1,点E、点F在线段BC上,⊙EFG与梯形ABCD重叠部分为四边形EFNM,∵⊙FNC=⊙FCN=30°,∴FN=FC=6﹣2x.∴GN=3x﹣6.∵在Rt⊙NMG中,⊙G=60°,GN=3x﹣6,∴GM= 12(3x﹣6),由勾股定理得:MN= √32(3x﹣6),∴S⊙GMN= 12×GM×MN= 12× 12(3x﹣6)× √32(3x﹣6)= √38(3x﹣6)2,所以,此时y= √34x2﹣√38(3x﹣6)2=﹣7√38x2+9√32x−9√32;⊙.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上,⊙EFG与梯形ABCD重叠部分为⊙ECP,∵EC=6﹣x,∴y= √38(6﹣x)2= √38x2﹣3√32x+ 9√32,⊙.当x>6时,点E,F都在线段BC的延长线上,没公共部分,∴y=0(3)解:当0<x≤2时,∵y= √34x2,在x>0时,y随x增大而增大,∴x=2时,y最大= √3;当2<x<3时,∵y=﹣9√37x 2+9√32x−9√32在x= 187时,y最大= 9√37;当3≤x≤6时,∵y= √38x−3√32x+9√32,在x<6时,y随x增大而减小,∴x=3时,y最大= 9√38.综上所述:当x= 187时,y最大=9√37.5.【答案】(1)解:∵抛物线y=−34x2+bx+c与x轴交于点A(4,0),与y轴交于点B(0,3),∴{−34×16+4 b+c=0c=3,解得{b=94c=3,∴抛物线y=−34x 2+94x+3=−34(x−32)2+7516;∴抛物线的对称轴为直线x=32(2)解:设直线A(4,0),B(0,3)的解析式为y=ax+d,∴{4a+d=0d=3,解得{a=−34 d=3,∴直线AB的表达式为:y=−34x+3;∵点M(m,0)为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴PN//y轴,即PN//OB,且点N在点P上方,若以点P、N、B、O为顶点的四边形为平行四边形,则只需要PN=OB,∴−34m2+94m+3−(−34m+3)=3,解得m=2;即当m=2时,以点P、N、B、O为顶点的四边形为平行四边形.(3)解:M(1,0)6.【答案】(1)不是;是;解:如图1,根据题意,|PA−PB|=2,∴|OP+2−(2−OP)|=2,∴OP=1. 若点P在第一象限内,作PQ⊙x轴于点Q,∵点P在直线y=34x上,OP=1,∴OQ=45,PQ=3 5 .∴P( 45,35). 若点P在第三象限内,根据对称性可知其坐标为(﹣45,﹣35). 综上所述,PO的长为1,点P的坐标为( 45,35)或(−45,−35)).(2)解:对于⊙C的任意一个“完美点”P都有|PA﹣PB|=2,∴|CP+r﹣(r﹣CP)|=2.∴CP=1.∴对于任意的点P,满足CP=1,都有|CP+r﹣(r﹣CP)|=2,∴|PA﹣PB|=2,故此时点P为⊙C的“完美点”.因此,⊙C的“完美点”是以点C为圆心,1为半径的圆.设直线y=﹣2x+1与y轴交于点D,如图2,当⊙C 移动到与y 轴相切且切点在点D 的上方时,t 的值最大.设切点为E ,连接CE ,∵⊙C 的圆心在直线y =﹣2x+1上,∴此直线和y 轴,x 轴的交点D(0,1),F( 12,0), ∴OF = 12,OD =1, ∵CE⊙OF ,∴⊙DOF⊙⊙DEC ,∴OD DE =OF CE, ∴1DE =12, ∴DE =2,∴OE =3,t 的最大值为3,当⊙C 移动到与y 轴相切且切点在点D 的下方时,t 的值最小.同理可得t 的最小值为﹣1.综上所述,t 的取值范围为﹣1≤t≤3.7.【答案】(1)解:① A ,C ②∵点D 是直线 y =x 的图上点,∴点D 在 y =x 上. 又∵点D 是 y =x 2−2 的上位点, ∴点D 在 y =x 与y =x 2−2 的交点R ,S 之间运动. ∵{y =x 2−2,y =x.∴{x 1=−1,y 1=−1. {x 2=2,y 2=2.∴点R( −1 , −1 ),S( 2 , 2 ). ∴−1<x D <2 .(2)解:如图,当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求.将y=x+3沿直线y=3翻折后的直线的解析式为y=−x+3当y=x+3=0时,x=−3,∴A(-3,0),OA=3当x=0时,y=x+3=3∴C(0,3),OC=3∴OA=OC∵∠AOC=90°∴∠CAO=45°∴AH1=rsin45°=1√22=√2∵A(-3,0)∴x H1=−3+√2同理可得x H2=3−√2∴线段EF上同时存在图象G的上位点,图上点和下位点,圆心H的横坐标x H的取值范围为x H>3−√2或x H<−3+√2.8.【答案】(1)解:①34②C3③如图所示,设直线AD交圆O于B,连接OE,过点E作EF⊙x轴于F,∵点E 是点A 关于⊙O 的12倍的特征点, ∴AE AB =12, ∴E 是AB 的中点,∴OE⊙AB ,∵⊙EAO=60°,∴⊙EOA=30°,∴AE =12OA =12,EF =12OE , ∴OE =√OA 2−AE 2=√32, ∴EF =√34, ∴OF =√OE 2−EF 2=34, ∴点E 的坐标为(34,√34); (2)k 的最小值为2−√24,k 有最大值为2+√249.【答案】(1)解:把A (1,0),B (0,-3)代入 y=x 2+bx-3c ,得 {1+b −3c =0−3c =−3解得 {b =2c =1∴抛物线的解析式为y=x 2+2x-3;(2)解:对于y=x 2+2x-3,∵x =−b 2a=−1 ,A(1,0)∴C 点坐标为(-3,0),AC=4,Q点的横坐标为-1.如图所示:若以点A、C、P、Q 为顶点的平行四边形以AC为边,则PQ=AC=4.①当P点的横坐标为x1=-1-4=-5时,y1=x2+2x−3=25−10−3=12,即P1(-5,12)②当P点的横坐标为x2=-1+4=3时,y2=x2+2x−3=9+6−3=12,即P2(3,12);若以点A、C、P、Q为顶点的平行四边形以AC为对角线,则设P3的横坐标为x3,则有x3−12=−3+12,解得x3=-1,y3=x2+2x−3=1−2−3=−4,即P3(-1,-4)。

数学九年级上册 圆 几何综合专题练习(word版

数学九年级上册 圆 几何综合专题练习(word版

数学九年级上册 圆 几何综合专题练习(word 版一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.如图,矩形ABCD中,BC=8,点F是AB边上一点(不与点B重合)△BCF的外接圆交对角线BD于点E,连结CF交BD于点G.(1)求证:∠ECG=∠BDC.(2)当AB=6时,在点F的整个运动过程中.①若BF=22时,求CE的长.②当△CEG为等腰三角形时,求所有满足条件的BE的长.(3)过点E作△BCF外接圆的切线交AD于点P.若PE∥CF且CF=6PE,记△DEP的面积为S1,△CDE的面积为S2,请直接写出12SS的值.【答案】(1)详见解析;(2)①1825;②当BE为10,395或445时,△CEG为等腰三角形;(3)724.【解析】【分析】(1)根据平行线的性质得出∠ABD=∠BDC,根据圆周角定理得出∠ABD=∠ECG,即可证得结论;(2)根据勾股定理求得BD =10,①连接EF ,根据圆周角定理得出∠CEF =∠BCD =90°,∠EFC =∠CBD .即可得出sin ∠EFC=sin ∠CBD ,得出35CE CD CF BD ==,根据勾股定理得到CF =CE ; ②分三种情况讨论求得: 当EG =CG 时,根据等腰三角形的性质和圆周角定理即可得到∠GEC =∠GCE =∠ABD =∠BDC ,从而证得E 、D 重合,即可得到BE =BD =10;当GE =CE 时,过点C 作CH ⊥BD 于点H ,即可得到∠EGC =∠ECG =∠ABD =∠GDC ,得到CG =CD =6.根据三角形面积公式求得CH =245,即可根据勾股定理求得GH ,进而求得HE ,即可求得BE =BH +HE =395; 当CG =CE 时,过点E 作EM ⊥CG 于点M ,由tan ∠ECM =43EM CM =.设EM =4k ,则CM =3k ,CG =CE =5k .得出GM =2k ,tan ∠GEM =2142GM k EM k ==,即可得到tan ∠GCH =GH CH =12.求得HE =GH =125,即可得到BE =BH +HE =445; (3)连接OE 、EF 、AE 、EF ,先根据切线的性质和垂直平分线的性质得出EF =CE ,进而证得四边形ABCD 是正方形,进一步证得△ADE ≌△CDE ,通过证得△EHP ∽△FBC ,得出EH =16BF ,即可求得BF =6,根据勾股定理求得CF =10,得出PE =106,根据勾股定理求得PH ,进而求得PD ,然后根据三角形面积公式即可求得结果.【详解】(1)∵AB ∥CD .∴∠ABD =∠BDC ,∵∠ABD =∠ECG ,∴∠ECG =∠BDC .(2)解:①∵AB =CD =6,AD =BC =8,∴BD =10,如图1,连结EF ,则∠CEF =∠BCD =90°,∵∠EFC =∠CBD .∴sin ∠EFC =sin ∠CBD , ∴35CE CD CF BD ==∴CF∴CE②Ⅰ、当EG=CG时,∠GEC=∠GCE=∠ABD=∠BDC.∴E与D重合,∴BE=BD=10.Ⅱ、如图2,当GE=CE时,过点C作CH⊥BD于点H,∴∠EGC=∠ECG=∠ABD=∠GDC,∴CG=CD=6.∵CH=BC CD24 BD5⋅=,∴GH185 =,在Rt△CEH中,设HE=x,则x2+(245)2=(x+185)2解得x=75,∴BE=BH+HE=325+75=395;Ⅲ、如图2,当CG=CE时,过点E作EM⊥CG于点M.∵tan∠ECM=43 EMCM=.设EM=4k,则CM=3k,CG=CE=5k.∴GM=2k,tan∠GEM=2142 GM kEM k==,∴tan∠GCH=GHCH=tan∠GEM=12.∴HE=GH=12412 255⨯=,∴BE=BH+HE=321244 555+=,综上所述,当BE为10,395或445时,△CEG为等腰三角形;(3)解:∵∠ABC=90°,∴FC是△BCF的外接圆的直径,设圆心为O,如图3,连接OE、EF、AE、EF,∵PE是切线,∴OE⊥PE,∵PE∥CF,∴OE⊥CF,∵OC=OF,∴CE=EF,∴△CEF是等腰直角三角形,∴∠ECF=45°,EF=2FC,∴∠ABD=∠ECF=45°,∴∠ADB=∠BDC=45°,∴AB=AD=8,∴四边形ABCD是正方形,∵PE∥FC,∴∠EGF=∠PED,∴∠BGC=∠PED,∴∠BCF=∠DPE,作EH⊥AD于H,则EH=DH,∵∠EHP=∠FBC=90°,∴△EHP∽△FBC,∴16 EH PEBF FC==,∴EH=16 BF,∵AD=CD,∠ADE=∠CDE,∴△ADE≌△CDE,∴AE=CE,∴AE=EF,∴AF=2EH=13 BF,∴13BF+BF=8,∴BF=6,∴EH=DH=1,CF10,∴PE=16FC=53,∴PH4 3 =,∴PD=47133 +=,∴1277 3824S PDS AD===.【点睛】本题是四边形的综合题,考查了矩形的性质,圆周角定理、三角形的面积以及相似三角形的判定和性质,作出辅助线构建直角三角形是解题的关键.3.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A(﹣2,0),∴OA=2,∵P 是半圆O 上的点,P 在y 轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC 是正方形,∴正方形的面积是4,又∵BD ⊥AB ,BD=6,∴梯形OPDB 的面积=()(26)2822OP DB OB +⨯+⨯==, ∴点P 的关联图形的面积是12.(2)判断△OCD 是直角三角形.证明:延长CP 交BD 于点F ,则四边形ACFB 为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC ⊥CD ,∴△OCD 是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值, 要使点P 的关联图形的面积最大,就要使△PCD 的面积最小,∵CD 为定长,∴P 到CD 的距离就要最小,连接OC ,设交半圆O 于点P , ∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形, ∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=2∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42CP=222,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+考点:圆的综合题.4.如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(−4,0)处.(1)求直线AB的解析式;(2)点P从点A出发以每秒45个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.【答案】(1)132y x=-+(2)d=5t (3)故当 t=85,或815,时,QR=EF,N(-6,6)或(2,2).【解析】试题分析:(1)由C(0,8),D(-4,0),可求得OC,OD的长,然后设OB=a,则BC=8-a,在Rt△BOD中,由勾股定理可得方程:(8-a)2=a2+42,解此方程即可求得B的坐标,然后由三角函数的求得点A的坐标,再利用待定系数法求得直线AB的解析式;(2)在Rt△AOB中,由勾股定理可求得AB的长,继而求得∠BAO的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR,则可求得d与t的函数关系式;(3)首先过点分别作NT⊥RQ于T,NS⊥EF于S,易证得四边形NTOS是正方形,然后分别从点N在第二象限与点N在第一象限去分析求解即可求解;(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a , 由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42,解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k b b +== ,解得:1{23k b =-= , 故直线AB 的解析式为:y=-12x +3; (2)如图所示:在Rt △AOB 中,∠AOB=90°,OB=3,OA=6,则22135,tan 2OB OB OA BAO OA +=∠== ,255OA cos BAO AB∠==, 在Rt △PQA 中,905APQ AP t ∠=︒=,则AQ=10cos AP t BAO=∠ , ∵PR ∥AC ,∴∠APR=∠CAB , 由折叠的性质得:∠BAO=∠CAB ,∴∠BAO=∠APR ,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR ,∴RP=RQ ,∴RQ=AR ,∴QR=12AQ=5t, 即d=5t; (3)过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,∵EF=QR ,∴NS=NT ,∴四边形NTOS 是正方形,则TQ=TR=1522QR t = , ∴1115151022224NT AT AQ TQ t t t ==-=-=()() , 分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2,即1524t ,解得:t=815∴当 t=85,或815,时,QR=EF,N(-6,6)或(2,2)。

九年级数学二模试题分类汇编——圆的综合综合及详细答案

九年级数学二模试题分类汇编——圆的综合综合及详细答案

九年级数学二模试题分类汇编——圆的综合综合及详细答案一、圆的综合1.如图,⊙A过▱OBCD的三顶点O、D、C,边OB与⊙A相切于点O,边BC与⊙O相交于点H,射线OA交边CD于点E,交⊙A于点F,点P在射线OA上,且∠PCD=2∠DOF,以O为原点,OP所在的直线为x轴建立平面直角坐标系,点B的坐标为(0,﹣2).(1)若∠BOH=30°,求点H的坐标;(2)求证:直线PC是⊙A的切线;(3)若OD=10,求⊙A的半径.【答案】(1)(132)详见解析;(3)5 3 .【解析】【分析】(1)先判断出OH=OB=2,利用三角函数求出MH,OM,即可得出结论;(2)先判断出∠PCD=∠DAE,进而判断出∠PCD=∠CAE,即可得出结论;(3)先求出OE═3,进而用勾股定理建立方程,r2-(3-r)2=1,即可得出结论.【详解】(1)解:如图,过点H作HM⊥y轴,垂足为M.∵四边形OBCD是平行四边形,∴∠B=∠ODC∵四边形OHCD是圆内接四边形∴∠OHB=∠ODC∴∠OHB=∠B∴OH=OB=2∴在Rt△OMH中,∵∠BOH=30°,∴MH=12OH=1,33∴点H的坐标为(13(2)连接AC.∵OA=AD,∴∠DOF=∠ADO∴∠DAE=2∠DOF∵∠PCD=2∠DOF,∴∠PCD=∠DAE∵OB与⊙O相切于点A∴OB⊥OF∵OB∥CD∴CD⊥AF∴∠DAE=∠CAE∴∠PCD=∠CAE∴∠PCA=∠PCD+∠ACE=∠CAE+∠ACE=90°∴直线PC是⊙A的切线;(3)解:⊙O的半径为r.在Rt△OED中,DE=12CD=12OB=1,OD=10,∴OE═3∵OA=AD=r,AE=3﹣r.在Rt△DEA中,根据勾股定理得,r2﹣(3﹣r)2=1解得r=53.【点睛】此题是圆的综合题,主要考查了平行四边形的性质,圆内接四边形的性质,勾股定理,切线的性质和判定,构造直角三角形是解本题的关键.2.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=上时停止旋转,旋转过程中,AB边交直线y x=于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN 和AC 平行时,求正方形OABC 旋转的度数;(3)设MBN ∆的周长为p ,在旋转正方形OABC 的过程中,p 值是否有变化?请证明你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA 在旋转过程中所扫过的面积; (2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM 的度数;(3)利用全等把△MBN 的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A 点第一次落在直线y=x 上时停止旋转,直线y=x 与y 轴的夹角是45°,∴OA 旋转了45°.∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=. (2)∵MN ∥AC ,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM .∴BM=BN .又∵BA=BC ,∴AM=CN .又∵OA=OC ,∠OAM=∠OCN ,∴△OAM ≌△OCN .∴∠AOM=∠CON=12(∠AOC-∠MON )=12(90°-45°)=22.5°. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45°-22.5°=22.5°. (3)在旋转正方形OABC 的过程中,p 值无变化.证明:延长BA 交y 轴于E 点,则∠AOE=45°-∠AOM ,∠CON=90°-45°-∠AOM=45°-∠AOM ,∴∠AOE=∠CON .又∵OA=OC ,∠OAE=180°-90°=90°=∠OCN .∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC 的过程中,p 值无变化.考点:旋转的性质.3.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r上,点E 在弦AB 上(E 不与A 重合),且四边形BDCE 为菱形.(1)求证:AC=CE ;(2)求证:BC 2﹣AC 2=AB•AC ;(3)已知⊙O的半径为3.①若ABAC=53,求BC的长;②当ABAC为何值时,AB•AC的值最大?【答案】(1)证明见解析;(2)证明见解析;(3)2;②3 2【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得BE BGBF BA=,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知6k,连接ED交BC于点M,Rt△DMC中由DC=AC=3k、MC=126k求得22CD CM-3,可知OM=OD-3,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴BE BGBF BA=,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴6k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=126k,∴223CD CM k-=,∴OM=OD﹣DM=33k,在Rt△COM中,由OM2+MC2=OC2得(33)2+6k)2=32,解得:23k=0(舍),∴62;②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,∴BC2=(2MC)2=36﹣4d2,AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,由(2)得AB•AC=BC2﹣AC2=﹣4d 2+6d+18=﹣4(d ﹣34)2+814, ∴当d=34,即OM=34时,AB•AC 最大,最大值为814, ∴DC 2=272, ∴AC=DC=36, ∴AB=96,此时32AB AC . 点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.4.如图,以O 为圆心,4为半径的圆与x 轴交于点A ,C 在⊙O 上,∠OAC=60°. (1)求∠AOC 的度数;(2)P 为x 轴正半轴上一点,且PA=OA ,连接PC ,试判断PC 与⊙O 的位置关系,并说明理由;(3)有一动点M 从A 点出发,在⊙O 上按顺时针方向运动一周,当S △MAO =S △CAO 时,求动点M 所经过的弧长,并写出此时M 点的坐标.【答案】(1)60°;(2)见解析;(3)对应的M 点坐标分别为:M 1(2,﹣3M 2(﹣2,﹣3)、M 3(﹣2,3M 4(2,3).【解析】【分析】(1)由于∠OAC=60°,易证得△OAC 是等边三角形,即可得∠AOC=60°.(2)由(1)的结论知:OA=AC ,因此OA=AC=AP ,即OP 边上的中线等于OP 的一半,由此可证得△OCP 是直角三角形,且∠OCP=90°,由此可判断出PC 与⊙O 的位置关系. (3)此题应考虑多种情况,若△MAO 、△OAC 的面积相等,那么它们的高必相等,因此有四个符合条件的M 点,即:C 点以及C 点关于x 轴、y 轴、原点的对称点,可据此进行求解.【详解】(1)∵OA=OC,∠OAC=60°,∴△OAC是等边三角形,故∠AOC=60°.(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;∴AC=12OP,因此△OCP是直角三角形,且∠OCP=90°,而OC是⊙O的半径,故PC与⊙O的位置关系是相切.(3)如图;有三种情况:①取C点关于x轴的对称点,则此点符合M点的要求,此时M点的坐标为:M1(2,﹣3劣弧MA的长为:6044 1803ππ⨯=;②取C点关于原点的对称点,此点也符合M点的要求,此时M点的坐标为:M2(﹣2,﹣3劣弧MA的长为:12048 1803ππ⨯=;③取C点关于y轴的对称点,此点也符合M点的要求,此时M点的坐标为:M3(﹣2,3优弧MA的长为:240416 1803ππ⨯=;④当C、M重合时,C点符合M点的要求,此时M4(2,3);优弧MA的长为:300420 1803ππ⨯=;综上可知:当S△MAO=S△CAO时,动点M所经过的弧长为481620,,,3333ππππ对应的M点坐标分别为:M1(2,﹣3M2(﹣2,﹣3)、M3(﹣2,3M4(2,3【点睛】本题考查了切线的判定以及弧长的计算方法,注意分类讨论思想的运用,不要漏解.5.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=52AD,∶DE=4∶1,求DE的长.【答案】(1)见解析;(2)5【解析】分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.详解:(1)连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵DB平分∠ADC,∴∠ADB=∠CDB,∴¶AB=¶BC,∴BC=AB=52.在Rt△ABC中,AC2=AB2+BC2=100.又∵AC⊥CE,∴∠ACE=90°,∴△ADC~△ACE,∴ACAD =AEAC,∴AC2=AD•AE.设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x=5,∴DE=5.点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.6.如图,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,AEO C =∠∠,OE 交BC 于点F .(1)求证:OE ∥BD ;(2)当⊙O 的半径为5,2sin 5DBA ∠=时,求EF 的长.【答案】(1)证明见解析;(2)EF 的长为212【解析】 试题分析:(1)连接OB ,利用已知条件和切线的性质证明;(2)根据锐角三角函数和相似三角形的性质,直接求解即可.试题解析:(1)连接OB , ∵CD 为⊙O 的直径 , ∴ 90CBD CBO OBD ∠=∠+∠=︒. ∵AE 是⊙O 的切线,∴ 90ABO ABD OBD ∠=∠+∠=︒. ∴ ABD CBO ∠=∠. ∵OB 、OC 是⊙O 的半径,∴OB=OC . ∴C CBO ∠=∠. ∴C ABD ∠=∠.∵E C ∠=∠,∴E ABD ∠=∠. ∴ OE ∥BD .(2)由(1)可得sin ∠C = ∠DBA= 25,在Rt △OBE 中, sin ∠C =25BD CD =,OC =5, 4BD =∴90CBD EBO ∠=∠=︒∵E C ∠=∠,∴△CBD ∽△EBO . ∴BD CD BO EO= ∴252EO =. ∵OE ∥BD ,CO =OD ,∴CF =FB . ∴122OF BD ==. ∴212EF OE OF =-=7.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】10cm【解析】分析:先过圆心O作半径CO⊥AB,交AB于点D设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.详解:解:过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=12AB=12×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.点睛:此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.8.如图,已知AB为⊙O直径,D是»BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴»»DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.9.(8分)已知AB为⊙O的直径,OC⊥AB,弦DC与OB交于点F,在直线AB上有一点E,连接ED,且有ED=EF.(1)如图①,求证:ED为⊙O的切线;(2)如图②,直线ED与切线AG相交于G,且OF=2,⊙O的半径为6,求AG的长.【答案】(1)见解析;(2)12【解析】试题分析:(1)连接OD,由ED=EF可得出∠EDF=∠EFD,由对顶角相等可得出∠EDF=∠CFO;由OD=OC可得出∠ODF=∠OCF,结合OC⊥AB即可得知∠EDF+∠ODF=90°,即∠EDO=90°,由此证出ED为⊙O的切线;(2)连接OD,过点D作DM⊥BA于点M,结合(1)的结论根据勾股定理可求出ED、EO 的长度,结合∠DOE的正弦、余弦值可得出DM、MO的长度,根据切线的性质可知GA⊥EA,从而得出DM∥GA,根据相似三角形的判定定理即可得出△EDM∽△EGA,根据相似三角形的性质即可得出GA的长度试题解析:解:(1)连接OD,∵ED=EF,∴∠EDF=∠EFD,∵∠EFD=∠CFO,∴∠EDF=∠CFO.∵OD=OC,∴∠ODF=∠OCF.∵OC⊥AB,∴∠CFO+∠OCF=∠EDF+∠ODF=∠EDO=90°,∴ED为⊙O的切线;(2)连接OD,过点D作DM⊥BA于点M,由(1)可知△EDO为直角三角形,设ED=EF=a,EO=EF+FO=a+2,由勾股定理得,EO2=ED2+DO2,即(a+2)2=a2+62,解得,a=8,即ED=8,EO=10.∵sin∠EOD=45EDEO=,cos∠EOD=35ODOE=,∴DM=OD•sin∠EOD=6×45=245,MO=OD•cos∠EOD=6×35=185,∴EM=EO﹣MO=10﹣18 5=325,EA=EO+OA=10+6=16.∵GA切⊙O于点A,∴GA⊥EA,∴DM∥GA,∴△EDM∽△EGA,∴DM EMGA EA=,即24325516GA=,解得GA=12.点睛:本题考查的是切线的判定、垂径定理和勾股定理的应用、等腰三角形的性质、角的三角函数值、相似三角形的判定及性质,解题的关键是:(1)通过等腰三角形的性质找出∠EDO=90°;(2)通过相似三角形的性质找出相似比.10.(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:2PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=43AC,AB⊥AC,垂足为A,则OC的最小值为.【答案】(1)证明见解析;(2)OC最小值是32﹣3;(3)32.【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=43OC,当BQ最小时,OC最小;试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);∵BC是直径,∴∠BAC=90°,∵AB=AC,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA ,∠ACB=∠APB=45°,PC=QB ,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q ,B ,P 三点共线,∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP 2=AP 2+AQ 2=2AP 2,∴QP=2AP=QB+BP=PC+PB ,∴2AP=PC+PB .(2)如图②中,连接OA ,将△OAC 绕点A 顺时针旋转90°至△QAB ,连接OB ,OQ ,∵AB ⊥AC,∴∠BAC=90°,由旋转可得 QB=OC ,AQ=OA ,∠QAB=∠OAC ,∴∠QAB+∠BAO=∠BAO+∠OAC=90°, ∴在Rt △OAQ 中,OQ=32,AO=3 ,∴在△OQB 中,BQ≥OQ ﹣OB=32﹣3 , 即OC 最小值是32﹣3;(3)如图③中,作AQ ⊥OA ,使得AQ=43OA ,连接OQ ,BQ ,OB .∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC =43, ∴△QAB ∽OAC ,∴BQ=43OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,]∴BQ 的最小值为2,∴OC 的最小值为34×2=32, 故答案为32. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.11.定义:数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为“智慧三角形”.理解:⑴如图,已知是⊙上两点,请在圆上找出满足条件的点,使为“智慧三角形”(画出点的位置,保留作图痕迹);⑵如图,在正方形中,是的中点,是上一点,且,试判断是否为“智慧三角形”,并说明理由;运用:⑶如图,在平面直角坐标系中,⊙的半径为,点是直线上的一点,若在⊙上存在一点,使得为“智慧三角形”,当其面积取得最小值时,直接写出此时点的坐标.【答案】(1)详见解析;(2)详见解析;(3)P的坐标(223,13),(223,13).【解析】试题分析:(1)连结AO并且延长交圆于C1,连结BO并且延长交圆于C2,即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2,再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.试题解析:(1)如图1所示:(2)△AEF是否为“智慧三角形”,理由如下:设正方形的边长为4a,∵E是DC的中点,∴DE=CE=2a,∵BC:FC=4:1,∴FC=a,BF=4a﹣a=3a,在Rt△ADE中,AE2=(4a)2+(2a)2=20a2,在Rt△ECF中,EF2=(2a)2+a2=5a2,在Rt△ABF中,AF2=(4a)2+(3a)2=25a2,∴AE2+EF2=AF2,∴△AEF是直角三角形,∵斜边AF上的中线等于AF的一半,∴△AEF为“智慧三角形”;(3)如图3所示:由“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,由勾股定理可得PQ=,PM=1×2÷3=,由勾股定理可求得OM=,故点P的坐标(﹣,),(,).考点:圆的综合题.12.如图所示,AB 是半圆O 的直径,AC 是弦,点P 沿BA 方向,从点B 运动到点A ,速度为1cm/s ,若10AB cm ,点O 到AC 的距离为4cm .(1)求弦AC 的长;(2)问经过多长时间后,△APC 是等腰三角形.【答案】(1)AC=6;(2)t=4或5或145s 时,△APC 是等腰三角形; 【解析】 【分析】(1)过O 作OD ⊥AC 于D ,根据勾股定理求得AD 的长,再利用垂径定理即可求得AC 的长;(2)分AC=PC 、AP=AC 、AP=CP 三种情况求t 值即可.【详解】(1)如图1,过O 作OD ⊥AC 于D ,易知AO=5,OD=4,从而AD==3,∴AC=2AD=6;(2)设经过t 秒△APC 是等腰三角形,则AP=10﹣t①如图2,若AC=PC ,过点C 作CH ⊥AB 于H ,∵∠A=∠A,∠AHC=∠ODA=90°,∴△AHC∽△ADO,∴AC:AH=OA:AD,即AC: =5:3,解得t=s,∴经过s后△APC是等腰三角形;②如图3,若AP=AC,由PB=x,AB=10,得到AP=10﹣x,又∵AC=6,则10﹣t=6,解得t=4s,∴经过4s后△APC是等腰三角形;③如图4,若AP=CP,P与O重合,则AP=BP=5,∴经过5s后△APC是等腰三角形.综上可知当t=4或5或s时,△APC是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC是等腰三角形时,点P的位置有三种情况.13.如图1,是用量角器一个角的操作示意图,量角器的读数从M点开始(即M点的读数为0),如图2,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合,现有射线C绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到与CB,在旋转过程中,射线CP与量角器的半圆弧交于E.连接BE.(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是;(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式;(3)当CP旋转多少秒时,△BCE是等腰三角形?【答案】(1)60°,直角三角形;(2)y=4x(0≤x≤45);(3)7.5秒或30秒【解析】【分析】(1)根据圆周角定理即可解决问题;(2)如图2﹣2中,由题意∠ACE=2x,∠AOE=y,根据圆周角定理可知∠AOE=2∠ACE,可得y=2x(0≤x≤45);(3)分两种情形分别讨论求解即可;【详解】解:(1)如图2﹣1中,∵∠ACB=90°,OA=OB,∴OA=OB=OC,∴∠OCA=∠OAC=30°,∴∠AOE=60°,∴点E处的读数是60°,∵∠E=∠BAC=30°,OE=OB,∴∠OBE=∠E=30°,∴∠EBC=∠OBE+∠ABC=90°,∴△EBC是直角三角形;故答案为60°,直角三角形;(2)如图2﹣2中,∵∠ACE=2x,∠AOE=y,∵∠AOE=2∠ACE,∴y=4x(0≤x≤45).(3)①如图2﹣3中,当EB=EC时,EO垂直平分线段BC,∵AC⊥BC,∵EO∥AC,∴∠AOE=∠BAC=30°,∠AOE=15°,∴∠ECA=12∴x=7.5.②若2﹣4中,当BE=BC时,易知∠BEC=∠BAC=∠BCE=30°,∴∠OBE=∠OBC=60°,∵OE=OB,∴△OBE是等边三角形,∴∠BOE=60°,∴∠AOB=120°,∴∠ACE=12∠ACB=60°,∴x=30,综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形;【点睛】本题考查几何变换综合题、创新题目、圆周角定理、等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.14.AB是⊙O直径,在AB的异侧分别有定点C和动点P,如图所示,点P在半圆弧AB上运动(不与A、B重合),过C作CP的垂线CD,交PB的延长线于D,已知5AB=,BC∶CA=4∶3.(1)求证:AC·CD=PC·BC;(2)当点P运动到AB弧的中点时,求CD的长;(3)当点P运动到什么位置时,PCD∆的面积最大?请直接写出这个最大面积.【答案】(1)证明见解析;(2)CD=23;(3)当PC为⊙O直径时,△PCD的最大面积=503. 【解析】 【分析】 (1)由圆周角定理可得∠PCD=∠ACB=90°,可证△ABC ∽△PCD ,可得AC BC CP CD =,即可得证.(2)由题意可求BC=4,AC=3,由勾股定理可求CE 的长,由锐角三角函数可求PE 的长,即可得PC 的长,由AC•CD=PC•BC 可求CD 的值;(3)当点P 在¶AB 上运动时,12PCD S PC CD =⨯⨯V ,由(1)可得:43CD PC =,可得2142233PCD S PC PC PC V =⨯⨯=,当PC 最大时,△PCD 的面积最大,而PC 为直径时最大,故可求解.【详解】证明:(1)∵AB 为直径,∴∠ACB =90°∵PC ⊥CD ,∴∠PCD =90°∴∠PCD =∠ACB ,且∠CAB =∠CPB∴△ABC ∽△PCD∴AC BC CP CD= ∴AC •CD =PC •BC(2)∵AB =5,BC :CA =4:3,∠ACB =90°∴BC =4,AC =3,当点P 运动到¶AB 的中点时,过点B 作BE ⊥PC 于点E∵点P 是¶AB 的中点,∴∠PCB =45°,且BC =4∴CE =BE =22BC =22 ∵∠CAB =∠CPB ∴tan ∠CAB =43=BC AC =tan ∠CAB =BE PE ∴PE =322∴PC =PE +CE =32+22=722 ∵AC •CD =PC •BC ∴3×CD =722×4 ∴CD =142 (3)当点P 在¶AB 上运动时,S △PCD =12×PC ×CD , 由(1)可得:CD =43PC ∴S △PCD =1423PC PC ⨯⨯=23PC 2, ∴当PC 最大时,△PCD 的面积最大, ∴当PC 为⊙O 直径时,△PCD 的最大面积=23×52=503 【点睛】本题是圆的综合题,考查了相似三角形的判定和性质,圆的有关知识,锐角三角函数,求出PC 的长是本题的关键.15.如图,四边形为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在如图中,过点作边上的高. (2)在如图中,过点作的切线,与交于点.【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.【解析】【分析】(1)连接AC交圆于一点F,连接PF交AB于点E,连接CE即为所求.(2)连接OF交BC于Q,连接PQ即为所求.【详解】(1)如图1所示.(答案不唯一)(2)如图2所示.(答案不唯一)【点睛】本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。

初三数学二模试题分类汇编——圆的综合综合及答案解析

初三数学二模试题分类汇编——圆的综合综合及答案解析

初三数学二模试题分类汇编——圆的综合综合及答案解析一、圆的综合1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过»BD上一点E作EG∥AC 交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:∠G=∠CEF;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG =34,AH=33,求EM的值.【答案】(1)证明见解析;(2)证明见解析;(3)253 8.【解析】试题分析:(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出»»AD AC=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得AH HCEM OE=,由此即可解决问题;试题解析:(1)证明:如图1.∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴»»AD AC=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE.∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G=AHHC=34,∵AH=33,∴HC=43,在Rt△HOC中,∵OC=r,OH=r﹣33,HC=43,∴222(33)(43)r r-+=,∴r=2536,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴AH HCEM OE=,∴33432536=,∴EM=253.点睛:本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.2.如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.【答案】(1)证明见解析;(2)见解析;(3)92DE =. 【解析】 【分析】(1)连接AD ,如图1,设∠BDC =α,∠ADC =β,根据圆周角定理得到∠CAB =∠BDC =α,由AB 为⊙O 直径,得到∠ADB =90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE =∠ADC ,等量代换得到∠ACE =∠CAE ,于是得到结论; (3)如图2,连接OC ,根据圆周角定理得到∠COB =2∠CAB ,等量代换得到∠COB =∠ABD ,根据相似三角形的性质得到OH =5,根据勾股定理得到AB =22AD BD +=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD .如图1,设∠BDC =α,∠ADC =β, 则∠CAB =∠BDC =α,∵点C 为弧ABD 中点,∴¶AC =¶CD,∴∠ADC =∠DAC =β,∴∠DAB =β﹣α, ∵AB 为⊙O 直径,∴∠ADB =90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD =90°﹣∠DAB =90°﹣(β﹣α),∴∠ABD =2α,∴∠ABD =2∠BDC ;(2)∵CH ⊥AB ,∴∠ACE +∠CAB =∠ADC +∠BDC =90°, ∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB 22AD BD +,∴AO =13,∴AH =18,∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.3.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.(1)求证:BD平分∠ABC;(2)求证:BE=2AD;(3)求DEBE的值.【答案】(1)答案见解析(2)BE=AF=2AD(3)21 -【解析】试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得BE=AF=2AD;(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-, 然后根据相似三角形的性质可求解.试题解析:(1)∵D是的中点∴AD=DC∴∠CBD=∠ABD∴BD平分∠ABC(2)提示:延长BC与AD相交于点F,证明△BCE≌△ACF,BE=AF=2AD(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,DH=21-,DEBE=DHBCDEBE=212-4.如图,在ABC∆中,90,BAC∠=︒2,AB AC==AD BC⊥,垂足为D,过,A D 的⊙O分别与,AB AC交于点,E F,连接,,EF DE DF.(1)求证:ADE∆≌CDF∆;(2)当BC与⊙O相切时,求⊙O的面积.【答案】(1)见解析;(2)24π.【解析】分析:(1)由等腰直角三角形的性质知AD=CD、∠1=∠C=45°,由∠EAF=90°知EF是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;(2)当BC与⊙O相切时,AD是直径,根据∠C=45°、AC2可得AD=1,利用圆的面积公式可得答案.详解:(1)如图,∵AB=AC,∠BAC=90°,∴∠C=45°.又∵AD⊥BC,AB=AC,∴∠1=12∠BAC=45°,BD=CD,∠ADC=90°.又∵∠BAC=90°,BD=CD,∴AD=CD.又∵∠EAF=90°,∴EF是⊙O的直径,∴∠EDF=90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE和△CDF中.∵123CAD CD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CDF(ASA).(2)当BC与⊙O相切时,AD是直径.在Rt△ADC中,∠C=45°,AC=2,∴sin∠C=ADAC ,∴AD=AC sin∠C=1,∴⊙O的半径为12,∴⊙O的面积为24.点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.5.如图,在RtΔABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接EF,求证:∠FEB=∠GDA;(3)连接GF,若AE=2,EB=4,求ΔGFD的面积.【答案】(1)(2)见解析;(3)9【解析】分析:(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB 为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=12AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行,再根据平行线的性质和同弧所对的圆周角相等,即可得出结论;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长,根据三角形的面积公式计算即可.详解:(1)连接BD.在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°.∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=12AC,∠CBD=∠C=45°,∴∠A=∠FBD.∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°.∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB.在△AED和△BFD中,A FBDAD BDEDA FDB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AED≌△BFD(ASA),∴AE=BF;(2)连接EF,BG.∵△AED≌△BFD,∴DE=DF.∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°.∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF,∴∠FEB=∠GBA.∵∠GBA=∠GDA,∴∠FEB=∠GDA;(3)∵AE=BF,AE=2,∴BF=2.在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2.∵EB=4,BF=2,∴EF=2242+=25.∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=DEEF.∵EF=25,∴DE=25×22=10.∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴GEAE=EBED,即GE•ED=AE•EB,∴10•GE=8,即GE=410,则GD=GE+ED=910.∴1191011092252S GD DF GD DE=⨯⨯=⨯⨯=⨯⨯=.点睛:本题属于圆综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,圆周角定理,以及平行线的判定与性质,熟练掌握判定与性质是解答本题的关键.6.等腰Rt△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O 与直线AB的距离为5.(1)若△ABC以每秒2个单位的速度向右移动,⊙O不动,则经过多少时间△ABC的边与圆第一次相切?(2)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,则经过多少时间△ABC的边与圆第一次相切?(3)若两个图形同时向右移动,△ABC的速度为每秒2个单位,⊙O的速度为每秒1个单位,同时△ABC的边长AB、BC都以每秒0.5个单位沿BA、BC方向增大.△ABC的边与圆第一次相切时,点B运动了多少距离?【答案】(1)522-;(2)52-;(3)20423-【解析】分析:(1)分析易得,第一次相切时,与斜边相切,假设此时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′于F.由切线长定理易得CC′的长,进而由三角形运动的速度可得答案;(2)设运动的时间为t秒,根据题意得:CC′=2t,DD′=t,则C′D′=CD+DD′-CC′=4+t-2t=4-t,由第(1)的结论列式得出结果;(3)求出相切的时间,进而得出B点移动的距离.详解:(1)假设第一次相切时,△ABC移至△A′B′C′处,如图1,A′C′与⊙O切于点E,连接OE并延长,交B′C′于F,设⊙O与直线l切于点D,连接OD,则OE⊥A′C′,OD⊥直线l,由切线长定理可知C′E=C′D,设C′D=x,则C′E=x,∵△ABC是等腰直角三角形,∴∠A=∠ACB=45°,∴∠A′C′B′=∠ACB=45°, ∴△EFC′是等腰直角三角形, ∴C′F=2x ,∠OFD=45°, ∴△OFD 也是等腰直角三角形, ∴OD=DF , ∴2x+x=1,则x=2-1,∴CC′=BD -BC-C′D=5-1-(2-1)=5-2, ∴点C 运动的时间为522-; 则经过52-秒,△ABC 的边与圆第一次相切; (2)如图2,设经过t 秒△ABC 的边与圆第一次相切,△ABC 移至△A′B′C′处,⊙O 与BC 所在直线的切点D 移至D′处,A′C′与⊙O 切于点E ,连OE 并延长,交B′C′于F , ∵CC′=2t ,DD′=t ,∴C′D′=CD+DD′-CC′=4+t-2t=4-t , 由切线长定理得C′E=C′D′=4-t , 由(1)得:2-1, 解得:2,答:经过2秒△ABC 的边与圆第一次相切; (3)由(2)得CC′=(2+0.5)t=2.5t ,DD′=t , 则C′D′=CD+DD′-CC′=4+t -2.5t=4-1.5t , 由切线长定理得C′E=C′D′=4-1.5t , 由(1)得:2-1, 解得:1022-, ∴点B 运动的距离为1022-2042-.点睛:本题要求学生熟练掌握圆与直线的位置关系,并结合动点问题进行综合分析,比较复杂,难度较大,考查了学生数形结合的分析能力.7.已知:如图,△ABC中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC的外接圆,保留作图痕迹,不写作法;(2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π.【解析】试题分析:(1)按如下步骤作图:①作线段AB的垂直平分线;②作线段BC的垂直平分线;③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆.如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC=3,如图弦AC所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.8.如图,已知AB为⊙O直径,D是»BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴»»DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.9.已知:如图1,∠ACG=90°,AC=2,点B为CG边上的一个动点,连接AB,将△ACB沿AB边所在的直线翻折得到△ADB,过点D作DF⊥CG于点F.(1)当23时,判断直线FD与以AB为直径的⊙O的位置关系,并加以证明;(2)如图2,点B在CG上向点C运动,直线FD与以AB为直径的⊙O交于D、H两点,连接AH,当∠CAB=∠BAD=∠DAH时,求BC的长.【答案】(1)直线FD与以AB为直径的⊙O相切,理由见解析;(2)222.【解析】试题分析:(1)根据已知及切线的判定证明得,直线FD与以AB为直径的⊙O相切;(2)根据圆内接四边形的性质及直角三角形的性质进行分析,从而求得BC的长.试题解析:(1)判断:直线FD与以AB为直径的⊙O相切.证明:如图,作以AB为直径的⊙O;∵△ADB是将△ACB沿AB边所在的直线翻折得到的,∴△ADB≌△ACB,∴∠ADB=∠ACB=90°.∵O为AB的中点,连接DO,∴OD=OB=AB,∴点D在⊙O上.在Rt△ACB中,BC=,AC=2;∴tan∠CAB==,∴∠CAB=∠BAD=30°,∴∠ABC=∠ABD=60°,∴△BOD是等边三角形.∴∠BOD=60°.∴∠ABC=∠BOD,∴FC∥DO.∵DF⊥CG,∴∠ODF=∠BFD=90°,∴OD⊥FD,∴FD为⊙O的切线.(2)延长AD交CG于点E,同(1)中的方法,可证点C在⊙O上;∴四边形ADBC是圆内接四边形.∴∠FBD=∠1+∠2.同理∠FDB=∠2+∠3.∵∠1=∠2=∠3,∴∠FBD=∠FDB,又∠DFB=90°.∴EC=AC=2.设BC=x,则BD=BC=x,∵∠EDB=90°,∴EB=x.∵EB+BC=EC,∴x+x=2,解得x=2﹣2,∴BC=2﹣2.10.在直角坐标系中,O为坐标原点,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>2),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.(1)求证:△OBC≌△ABD(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.(3)以线段BC为直径作圆,圆心为点F,当C点运动到何处时,直线EF∥直线BO;这时⊙F 和直线BO 的位置关系如何?请给予说明.【答案】(1)见解析;(2)直线AE 的位置不变,AE 的解析式为:33y x =-(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由见解析.【解析】【分析】(1)由等边三角形的性质可得到OB=AB ,BC=BD ,∠OBA=∠DBC ,等号两边都加上∠ABC ,得到∠OBC=∠ABD ,根据“SAS”得到△OBC ≌△ABD.(2)先由三角形全等,得到∠BAD=∠BOC=60°,由等边△BCD ,得到∠BAO=60°,根据平角定义及对顶角相等得到∠OAE=60°,在直角三角形OAE 中,由OA 的长,根据tan60°的定义求出OE 的长,确定出点E 的坐标,设出直线AE 的方程,把点A 和E 的坐标代入即可确定出解析式.(3)由EA ∥OB ,EF ∥OB ,根据过直线外一点作已知直线的平行线有且只有一条,得到EF 与EA 重合,所以F 为BC 与AE 的交点,又F 为BC 的中点,得到A 为OC 中点,由A 的坐标即可求出C 的坐标;相切理由是由F 为等边三角形BC 边的中点,根据“三线合一”得到DF 与BC 垂直,由EF 与OB 平行得到BF 与OB 垂直,得证.【详解】(1)证明:∵△OAB 和△BCD 都为等边三角形,∴OB=AB ,BC=BD ,∠OBA=∠DBC=60°,∴∠OBA+∠ABC=∠DBC+∠ABC ,即∠OBC=∠ABD ,在△OBC 和△ABD 中,OB AB OBC ABD BC BD =⎧⎪∠=∠⎨⎪=⎩, ∴△OBC ≌△ABD.(2)随着C 点的变化,直线AE 的位置不变,∵△OBC ≌△ABD ,∴∠BAD=∠BOC=60°,又∵∠BAO=60°,∴∠DAC=60°,∴∠OAE=60°,又OA=2,在Rt △AOE 中,tan60°=OE OA,则OE=23, ∴点E坐标为(0,-23),设直线AE 解析式为y=kx+b ,把E 和A 的坐标代入得:0223k b b =+⎧⎪⎨-=⎪⎩, 解得,323k b ⎧=⎪⎨=-⎪⎩ , ∴直线AE 的解析式为:323y x =-.(3)C 点运动到(4,0)处时,直线EF ∥直线BO ;此时直线BO 与⊙F 相切,理由如下: ∵∠BOA=∠DAC=60°,EA ∥OB ,又EF ∥OB ,则EF 与EA 所在的直线重合,∴点F 为DE 与BC 的交点,又F 为BC 中点,∴A 为OC 中点,又AO=2,则OC=4,∴当C 的坐标为(4,0)时,EF ∥OB ,这时直线BO 与⊙F 相切,理由如下:∵△BCD 为等边三角形,F 为BC 中点,∴DF ⊥BC ,又EF ∥OB ,∴FB ⊥OB ,∴直线BO 与⊙F 相切,【点睛】本题考查了一次函数;三角形全等的判定与性质;等边三角形的性质和直线与圆的位置关系.熟练掌握相关性质定理是解题关键.11.如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD 于点D ,E 是AB 延长线上一点,CE 交⊙O 于点F ,连接OC 、AC .(1)求证:AC 平分∠DAO .(2)若∠DAO=105°,∠E=30°①求∠OCE 的度数;②若⊙O 的半径为2EF 的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23-2.【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=22,∠OCE=45°.等腰直角三角形的斜边是腰长的2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23,则EF=GE-FG=23-2.【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=22,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=23.∴EF=GE-FG=23-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.12.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E在CF 上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)当AB=AC时,若CE=2,EF=3,求⊙O的半径.【答案】(1)证明见解析;(2)35.【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F=∠EDF,根据等腰三角形的判定得到DE=EF=3,根据勾股定理得到CD225=-=,证明△CDE∽△DBE,根据相似三DE CE角形的性质即可得到结论.【详解】(1)如图,连接BD.∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°.∵AB=AC,∴∠ABC=∠ACB.∵∠ADB=∠ACB,∴∠F=∠FDE,∴DE=EF=3.∵CE=2,∠BCD=90°,∴∠DCE=90°,∴CD225DE CE=-=∵∠BDE=90°,CD⊥BE,∴∠DCE=∠BDE=90°.∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 533522⨯==,∴⊙O 的半径354=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.13.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ;(1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【答案】(1)详见解析;(2)详见解析;【解析】【分析】()1根据垂径定理得到BD CD =n n ,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠o o ,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =n n ,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=o ,求得90OAD DAP ∠+∠=o ,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥Q ,BD CD ∴=n n,CBD DCB ∴∠=∠,90DFE EDF ∠+∠=o Q ,90EDF DFE ∴∠=-∠o ,OD OA =Q , ()111809022ODA AOD AOD ∴∠=-∠=-∠o o , 190902DFE AOD ∴-∠=-∠o o , 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠Q ,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥Q ,BE CE ∴=,BD CD =n n, BD CD ∴=,OA OD Q =,ADO OAD ∴∠=∠,PA Q 切O e 于点A ,90PAO ∴∠=o ,90OAD DAP ∴∠+∠=o ,PFA DFE ∠=∠Q ,90PFA ADO ∴∠+∠=o ,PAF PFA ∴∠=∠,PA PF ∴=.【点睛】本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.14.已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连结CB .[感知]如图①,点A、B在CD同侧,且点B在AC右侧,在射线AM上截取AE=BD,连结CE,可证△BCD≌△ECA,从而得出EC=BC,∠ECB=90°,进而得出∠ABC=度;[探究]如图②,当点A、B在CD异侧时,[感知]得出的∠ABC的大小是否改变?若不改变,给出证明;若改变,请求出∠ABC的大小.[应用]在直线MN绕点A旋转的过程中,当∠BCD=30°,BD=时,直接写出BC的长.【答案】【感知】:45;【探究】:不改变,理由详见解析;【拓展】:BC的长为+1或﹣1.【解析】【分析】[感知]证明△BCD≌△ECA(SAS)即可解决问题;[探究]结论不变,证明△BCD≌△ECA(SAS)即可解决问题;[应用]分两种情形分别求解即可解决问题.【详解】解:【感知】,如图①中,在射线AM上截取AE=BD,连结CE.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°.∴∠CDB+∠CAB=180°,∵∠CAB+∠CAE=180°∴∠D=∠CAE,∵CD=AC,AE=BD,∴△BCD≌△ECA(SAS),∴BC=EC,∠BCD=∠ECA,∵∠ACE+∠ECD=90°,∴∠ECD+∠DCB=90°,即∠ECB=90°,∴∠ABC=45°.故答案为45【探究】不改变.理由如下:如图,如图②中,在射线AN上截取AE=BD,连接CE,设MN与CD交于点O.∵AC⊥DC,DB⊥MN,∴∠ACD=∠DBA=90°,∵∠AOC=∠DOB,∴∠D=∠EAC,CD=AC,∴△BCD≌△ECA(SAS),∴BC=EC,∠BCD=∠ECA,∵∠ACE+∠ECD=90°,∴∠ECD+∠DCB=90°,即∠ECB=90°,∴∠ABC=45°.【拓展】如图①﹣1中,连接AD.∴∠ACD+∠ABD=180°,∴A,C,D,B四点共圆,∴∠DAB=∠DCB=30°,∴AB=BD=,∴EB=AE+AB=+,∵△ECB是等腰直角三角形,如图②中,同法可得BC=﹣1.综上所述,BC的长为+1或﹣1.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.15.已知:如图,以等边三角形ABC一边AB为直径的⊙O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F.(1)求证:DF为⊙O的切线;(2)若等边三角形ABC 的边长为4,求图中阴影部分的面积.【答案】(1)见解析(2)3323π-【解析】试题分析:(1)连接DO,要证明DF为⊙O的切线只要证明∠FDP=90°即可;(2)首先由已知可得到CD,CF的长,从而利用勾股定理可求得DF的长;再连接OE,求得CF,EF的长,从而利用S直角梯形FDOE﹣S扇形OED求得阴影部分的面积.试题解析:(1)证明:连接DO.∵△ABC是等边三角形,∴∠A=∠C=60°.∵OA=OD,∴△OAD是等边三角形.∴∠ADO=60°,∵DF⊥BC,∴∠CDF=90°﹣∠C=30°,∴∠FDO=180°﹣∠ADO﹣∠CDF=90°,∴DF为⊙O的切线;(2)∵△OAD是等边三角形,∴AD=AO=AB=2.∴CD=AC﹣AD=2.Rt△CDF中,∵∠CDF=30°,∴CF=CD=1.∴DF=,连接OE,则CE=2.∴CF=1,∴EF=1.∴S直角梯形FDOE=(EF+OD)•D F=,∴S扇形OED==,∴S阴影=S直角梯形FDOE﹣S扇形OED=﹣.【点睛】此题考查学生对切线的判定及扇形的面积等知识点的掌握情况,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.也考查了等边三角形的性质和利用割补法计算补规则图形的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆24.1.1—1.4综合训练
山东省东营市利津县虎滩中学 马新华
一、选择题(本题共10小题,每题4分,共40分) 1.(改编)下列命题中,正确的个数是
⑴直径是弦,但弦不一定是直径 ⑵半圆是弧,但弧不一定是半圆
⑶圆周角等于圆心角的一半 ⑷一条弦把圆分成的两段弧中,至少有一段是优弧。

A .1个
B .2个
C .3个
D .4个
2. ⊙O 中,∠AOB =∠84°,则弦AB 所对的圆周角的度数为( )
A .42°
B .138°
C .69°
D .42°或138°
3.(原创)如图,⊙O 的直径CD 垂直于弦EF ,垂足为G ,若∠EOD=40°,则∠CDF 等于( )
A .80°
B . 70°
C . 40°
D . 20°
4..(08长春中考试题)如图,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线
段OE 的长为( )
A 、10
B 、8
C 、6
D 、4
5.已知O 的半径为5cm ,弦AB ∥CD ,且6AB cm =,8CD cm =,则弦AB,CD 间的距离
为( ).
A .1cm
B .7cm
C .5cm
D .7cm 或1cm
6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等
于( )
A .80°
B .50°
C .40°
D .30°
7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O
于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )
A .5
B .7
C .8
D .10
8.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨
需在粮仓顶部铺上油毡,则这块油毡的面积是( )
A.2
6m
B.2
6m
πC.2
12m D.2
12m
π
9.如图24—A—6,两个同心圆,大圆的弦AB与小圆相切于点P,
大圆的弦CD经过点P,且CD=13,PC=4,则两圆组成的圆环的面
积是()
A.16πB.36πC.52πD.81π
10.已知在△ABC中,AB=AC=13,BC=10,那么△ABC的内切圆的半径为()
A.
3
10
B.
5
12
C.2 D.3
11.如图24—A—7,两个半径都是4cm的圆外切于点C,一只蚂蚁由
点A开始依A、B、C、D、E、F、C、G、A的顺序沿着圆周上的8段长
度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006π
cm后才停下来,则蚂蚁停的那一个点为()
A.D点 B.E点 C.F点 D.G点
二、填空题
12.如图24—A—8,在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O于点C,
则∠AOC= 。

13.如图24—A—9,AB、AC与⊙O相切于点B、C,∠A=50゜,P为⊙O上
异于B、C的一个动点,则∠BPC的度数为。

14.已知⊙O的半径为2,点P为⊙O外一点,OP长为3,那么以P为圆心且与
⊙O相切的圆的半径为。

15.一个圆锥的底面半径为3,高为4,则圆锥的侧面积是。

16.扇形的弧长为20πcm,面积为240πcm2,则扇形的半径为 cm。

17.如图24—A—10,半径为2的圆形纸片,沿半径OA、OB裁成1:3两部分,
用得到的扇形围成圆锥的侧面,则圆锥的底面半径分别为。

18.在Rt△ABC中,∠C=90゜,AC=5,BC=12,以C为圆心,R为半径作圆
与斜边AB相切,则R的值为。

19.已知等腰△ABC的三个顶点都在半径为5的⊙O上,如果底边BC的长为8,
那么BC边上的高为。

20.已知扇形的周长为20cm,面积为16cm2,那么扇形的半径为。

21.如图24—A—11,AB为半圆直径,O 为圆心,C为半圆上一点,
E是弧AC的中点,OE交弦AC于点D。

若AC=8cm,DE=2cm,则
OD的长为cm。

图24—A—6
图24—A—7
图24—A—8 图24—A—9 图24—A—10
图24—A—11
三、解答题本题共8小题,共48分)
22、(5分)如图,已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什
么?
23.(5分)如图,AD、BC是⊙O的两条弦,且AD=BC,
求证:AB=CD。

6.(5分)如图,已知:⊙O的半径为5,弦AB长为8,弦BC∥OA,求AC长
7.(5分)(2008黄冈市)如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据,于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20 cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?
8.(6分)如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C
.若AB是⊙O的直径,D是BC的中点.
(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,ΔABC还需满足什么条件,点E才一定是AC的中点?(直接
写出结论)
9.(6分)如图.某货船以20海里∕时的速度将一批重要物资由A处运往正西方向的B 处,经16h的航行达到,达到后必须立即卸货。

此时接到气象部门的通知,一台风中心正
以40海里∕时的速度由
A向北偏西60的方向移动,距台风中心200海里的圆形区域
(包括边界)均回受到影响。

问:
(1).B处是否回受到台风的影响?请说明理由:
(2).为避免受到台风的影响,该船应在多少小时内卸完货物?(供选用数据:
2 1.4,
3 1.7
≈≈)
10.(8分)如图,⊙O是△ABC的外接圆,AB为直径,

AC=

CF,CD⊥AB于D,且交⊙O于G,AF交CD于E.
(1)求∠ACB的度数;
(2)求证:AE=CE;
11.(改编)(8分)如图,ABC
△是⊙O的内接三角形,AC BC
=,D为⊙O中⌒AB上一点,延长DA至点E,使CE CD
=.
(1)求证:AE BD
=;
(2)若2
AD BD CD
+=,求证:AC BC
⊥.
A
B D C
E
O。

相关文档
最新文档