【专业文档】金属断口分析.doc
金属断口分析
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体结构。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口表面,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂;沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)切断:断面取向与最大切应力相一致,与最大应力成45º交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形:裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似)a Y K c c πσ⋅=1:断裂应力(剩余强度) a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关)脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
金属拉伸试样的断口分析
金属拉伸试样的断口分析金属拉伸试样是材料科学和工程领域中常用的实验方法之一,用于研究材料的力学性能和物理性质。
在拉伸过程中,试样会发生变形、裂纹和断裂等行为,而断口分析对于理解这些行为具有重要意义。
本文将从断口形态分析和特征分析两个方面,阐述金属拉伸试样断口的形态变化规律及其对材料性能的影响,同时探讨断口的预测与分析方法。
断口形态分析金属拉伸试样的断口形态通常可以分为韧性断裂和脆性断裂两种。
韧性断裂是指材料在拉伸过程中,首先发生均匀变形,随后在局部区域逐渐出现微裂纹,最终形成较大裂纹并导致断裂。
脆性断裂则是指在拉伸过程中,材料突然脆断,无明显的塑性变形和裂纹。
影响断口形态的因素包括拉伸率、应力和位错运动等。
在韧性断裂中,断口的形态通常为杯锥状断口,其形成与材料的韧性有关。
韧性好的材料在拉伸过程中能够承受较大的变形量,因此断口呈现出更为平整的形态。
脆性断裂的断口则通常为无杯锥状断口,呈现出较为尖锐的形态特征。
断口特征分析金属拉伸试样断口的特征可以通过观察和分析断口的形貌、结构和组成等方面来确定。
常见的断口特征包括尖角、波状、鱼脊等。
这些特征的形成与材料的力学性能和物理性质密切相关。
尖角断口通常出现在试样拉伸的起点处,主要是由于应力集中和局部变形导致的。
波状断口则通常出现在试样拉伸的中段,其形成与材料的韧性有关,往往是因微裂纹扩展和合并的结果。
鱼脊断口则出现在试样断裂的终点处,通常是因局部区域材料失稳和颈缩导致的。
断口预测与分析基于金属拉伸试样断口的形态、特征和原因,我们可以预测和分析材料的力学性能和物理性质。
例如,通过观察断口的形貌和组成,可以了解材料的断裂方式和机制,进而对其强度、韧性和耐腐蚀性等性能进行评估。
同时,通过对断口特征的分析,可以为材料的成分、结构和工艺等方面优化提供依据。
断口分析在金属拉伸试样中具有重要意义,通过对断口形态和特征的观察和分析,可以深入了解材料的力学性能和物理性质。
在实际应用中,断口分析可以为材料的研发、生产和应用提供重要参考依据,对于提高材料的综合性能和拓展其应用领域具有重要作用。
断口分析
断口分析科技名词定义中文名称:断口分析英文名称:fractography定义:对故障金属构件断裂面进行检查并分析其断裂原因的技术。
应用学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科)本内容由全国科学技术名词审定委员会审定公布断口分析是研究金属断裂面的学科,是断裂学科的组成部分。
金属破断后获得的一对相互匹配的断裂表面及其外观形貌,称断口。
目录编辑本段断口分析(一)的许多珍贵资料,所以在研究断裂时,对断口的观察和研究一直受到重视。
通过断口的形态分析去研究一些断裂的基本问题:如断裂起因、断裂性质、断裂方式、断裂机制、断裂韧性、断裂过程的应力状态以及裂纹扩展速率等。
如果要求深入地研究材料的冶金因素和环境因素对断裂过程的影响,通常还要进行断口表面的微区成分分析、主体分析、结晶学分析和断口的应力与应变分析等。
随着断裂学科的发展,断口分析同断裂力学等所研究的问题更加密切相关,互相渗透,互相配合;断口分析的实验技术和分析问题的深度将会取得新的发展。
断口分析现已成为对金属构件进行失效分析的重要手段。
编辑本段断口的宏观和微观观察断口分析的实验基础是对断口表面的宏观形貌和微观结构特征进行直接观察和分析。
通常把低于40倍的观察称为宏观观察,高于40倍的观察称为微观观察。
断口分析(二)对断口进行宏观观察的仪器主要是放大镜(约10倍)和体视显微镜(从5~50倍)等。
在很多情况下,利用宏观观察就可以判定断裂的性质、起始位置和裂纹扩展路径。
但如果要对断裂起点附近进行细致研究,分析断裂原因和断裂机制,还必须进行微观观察。
断口的微观观察经历了光学显微镜(观察断口的实用倍数是在 50~500倍间)、透射电子显微镜(观察断口的实用倍数是在 1000~40000倍间)和扫描电子显微镜(观察断口的实用倍数是在 20~10000倍间)三个阶段。
因为断口是一个凹凸不平的粗糙表面,观察断口所用的显微镜要具有最大限度的焦深,尽可能宽的放大倍数范围和高的分辨率。
金属材料断口机理及分析
精心整理名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹纹。
正断韧性: 河流花样 氢脆:卵形韧窝等轴韧窝1.2.34裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似) :断裂应力(剩余强度)a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
断口的试样制备:截取,清洗,保存。
断口分析技术设备:1.宏观断口分析技术(用肉眼,放大镜,低倍率光学显微镜观察分析)2.光学显微断口分析(扫描电子显微镜光学显微镜,透射电子显微镜),3.电镜断口分析。
第三章延性断裂:12.3.1(1约成45(2(321.2.(1)内颈缩扩展:质点大小、分布均匀,韧窝在多处形核(裂纹萌生),随变形增加,微孔壁变薄,以撕裂方式连接(2)剪切扩展:材料中具有较多夹杂物,同时具有细小析出相时,微孔之间可能以剪切方式相连接。
注意:内颈缩扩展与剪切扩展在同一韧窝断口上可能同时发生。
影响韧窝的形貌因素:夹杂物或第二相粒子,基体材料的韧性,试验温度,应力状态。
金属材料断口分析-精彩部分(研究特选)
有关断口分析的基本概念介绍---4;
行业实操
6
有关断口分析的基本概念介绍---5;
静载荷下光滑圆试样的拉伸断口宏观形貌示意图
行业实操
7
有关断口分析的基本概念介绍---6;
静载荷下缺口拉伸试样断口宏观形貌示意图
行业实操
8
有关断口分析的基本概念介绍---7;
裂纹不对称扩展的断口形态示意图
行业实操
9
断口的一般特征
行业实操
17
解理与准解理断裂的断口具有以下之一的重要特征---解理部分:
行业实操
18
解理与准解理断裂的断口具有以下之一的重要特征---准解理部分:
行业实操
19
剪切断裂断口的一般特征
行业实操
20
下面介绍:
1,疲劳断裂断口的一般时征:
1-1断口宏观上分成三个区;
1-2裂纹扩展又分两个阶段;
裂纹起点(裂纹源)→纤维区(撕裂区)→快速撕
裂区(放射区)→唇区(破断区)
行业实操
2
有关断口分析的基本概念介绍---2;
缺口或裂纹前端应力状态示意图
行业实操
▪ 平面应力、 平面应变和 裂纹表面三 种位移形式 及其对应的 应力强度因 子表达式。
▪ a:带缺口 的拉伸试样
▪ b:平面应 力状态
▪ C:平面应 变状态
3
有关断口分析的基本概念介绍---3;
裂纹表面的三种位移形式示意图
行业实操
▪ a, Ⅰ;
▪ b, Ⅱ;
▪ c, Ⅲ;
4
平面应变和平面应力时断口
有关断口分析的基本概念介绍---4;
▪ a,平面应 变时的 断口,正 断型;
行业实操
金属断裂断口分析
断裂特征及断口特征 金属材料断裂前产生明显 宏观塑性变形的断裂,是 一种缓慢撕裂的过程,在 裂纹扩展过程中不断地消 耗能量。韧性断裂的断裂 面一般平行于最大切应力 并与主应力呈 45 度角。用 肉眼或放大镜观察时,断 口呈纤维状,灰暗色。纤 维状是塑性变形过程中微 裂纹不断扩展和相互连接 造成的,而灰暗色则使纤 维断口表面对光反射能力 很柔弱致。
断口形貌
1
韧性断裂
2
脆性断裂
脆性断裂是突然发生的断 裂,断裂前基本上不发生 塑性变形,没有任何征兆, 因而危险性很大。脆性断 裂的断裂面一般与正应力 垂直,断口平齐而光亮, 常呈放射状或结晶状。
3
穿晶断裂
多晶体金属断裂时,裂纹 扩展的路径可能是不同 的。穿晶断裂的裂纹穿过 晶内。穿晶断裂可以是韧 性断裂(如韧脆转变温度 以上的穿晶断裂) ,也可以 是脆性断裂(低温下的穿 晶解理断裂)
4
沿晶断裂
沿晶断裂的裂纹沿晶界扩 展,大多数是脆性断裂, 由晶界上的一薄层连续或 不连续脆性第二相、杂质 物,破坏了晶界的连续性 所造成,也可能时杂质元 素向晶界偏聚引起的。 应力腐蚀、氢脆、回火脆 性、淬火脆性、磨削裂纹 等大都是沿晶断裂。
5
解理断裂
金属材料在一定的条件下 (如低温) ,当外加正应力 达到一定数值后,以极快 速率沿一定晶体学平面产 生的穿晶断裂,因与大理 石断裂类似,古城此种晶 体学平面为解理面。家里 面一般是低指数晶面或表 面能最低的晶面。 例如: 晶体结构为 bcc: Fe、 解理面为{001}hcp 的主 要解理面为{0001} 金属材料在切应力作用下 沿滑移面分离断裂,其中 又分滑断(纯剪切断裂) 和微孔聚集性断裂。纯金 属尤其是单晶体金属常产 生纯剪切断裂,其断口呈 锋利的楔形(单晶体金属) 或刀尖形(多晶体金属的 完全韧性断裂) 。这是纯粹 由滑移流变所造成的断 裂。微孔聚集性断裂是通 过微孔形核、长大聚合而 导致材料分离的。由于实 际材料中常同时形成微 孔,通过微孔长大互相连 接而最终导致断裂。
金属断口分析
延性断裂为金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。延性断裂分两种,一种是韧窝-微孔聚集型断裂;另一种是滑移分类断裂。一些高强度材料其裂缝扩展阻力较小,对裂纹十分敏感,较小的裂纹
即可使其产生宏观脆性的低应力断裂,其断口为韧窝状,断裂机制是微孔聚
集型。
第一节韧窝断口的宏观形貌特征
从宏观上看,断裂分为脆性断裂和延性断裂
脆性断裂指以材料表面、内部的缺陷或是微裂纹为源,在较低的应力水平下(一般不超过材料的屈服强度),在无塑性变形或只有微小塑性变形下裂纹急速扩展。在多晶体中,断裂时沿着各个晶体的内部解理面产生,由于材料的各个晶体及解理面方向是变化的,因此断裂表面在外观上呈现粒状。脆性断裂主要沿着晶界产生,称为晶间断裂。其断口平齐。
此外,高强度马氏体钢纤维区还有环状花样特征。
第二节韧窝断口的微观形貌特征
韧窝断口的微观特征是一些大小不等的圆形或是椭圆形的凹坑(即韧窝)
在韧窝内经常看到夹杂物或是第二相粒子。
凹坑形状有等轴韧窝、剪切韧窝和撕裂韧窝三种,其形状与应力状态。
等轴韧窝是圆形微坑,在拉伸正应力作用下形成的。应力在整个断口表面分布均匀。
2.分叉法
样品断裂中,产生许多分叉,裂纹分叉的方向为裂纹扩展方向,扩展的反方向为裂源位置。
【注】T型法和分叉法是判别脆性断裂的主裂纹和裂纹源
3.变形法
延性断裂的样品,在断裂过程中发生变形后碎成几块,将碎片拼合后变形量大的部位为主裂纹,裂纹源在主裂纹所在的断口上
4.因环境因素引起的断裂的样品,如应力腐蚀、氢脆。裂纹源位于腐蚀或是
延性断裂是在较大的塑性变形产生的断裂。它是由于断裂缓慢扩展而造成的。其断口表面为无光泽的纤维状。延性断裂经过局部的颈缩,颈缩部位产生分散的空穴,小空穴不断增加和扩大聚合成微裂纹。
金属失效断口分析
(1)断裂源区和零件几何结构间的关系 断裂源区可能发生在零件的表面、次表面或内部。 对于塑性材料的光滑试件(零件),在单向拉伸
状态下,断裂源在截面的中心部位属于正常情况。为 防止零件出现此种断裂,应提高材料的强度水平或加 大零件的几何尺寸。
表面硬化件发生断裂时,断裂源可能发生在次表 层,为防止此类零件的断裂,应加大硬化层的深度或 提高零件的心部硬度。
(c)断口表面与轴线的夹角远小于45 ,即断口表面既不和最大正应力所在平面相 对应也不和最大切应力所在平面相对应。换句话说,该断裂面是在较小的应力条件下 形成的。由此可以推知,材料的各向异性现象比较严重,横向性能比较差。通常是由 材料中的塑性夹杂物比较多及锻造流线沿轴向分布显著等因素引起的。
35
36
40
(6)断口上的冶金缺陷 注意观察断口上有无夹杂、分层、粗大晶粒、疏松、 缩孔等缺陷。有时依此可以直接确定断裂原因。
41
3.2.4 断口的微观分析
断裂件的断口经宏观分析之后,对断裂的性质、 类型及致断原因等问题已有所了解。但对于许多断裂 问题,特别是在特殊环境条件下发生的断裂,仅限于 宏观分析还是不够的。其原因是,一方面是由于断口 的某些产物需要搞清楚才能确定断裂原因,另一方面 宏观断口形貌尚不能完全揭示出断裂的微观机制及其 它细节。因此,为了进一步搞清楚这些问题、尚需对 断口作微观分析。其内容主要包括断口的产物分析及 形貌分析两个方面。
34
(3)按照裂纹的河流花样确定主裂纹
35
3. 断裂(裂纹)源区的宏观判断 主断面(主裂纹)确定后,断裂分析的进一步工
作是寻找裂纹源区。裂纹源区是断裂破坏的宏观开 始部位。寻找裂纹源区不仅是断裂宏观分析中最核 心的任务,而且是光学显微分析和电子显微分析的 基础。
金属材料的断裂行为分析
金属材料的断裂行为分析金属材料在实际应用中经常面临着受力情况,而断裂行为是其中一个重要的因素。
本文将对金属材料的断裂行为进行分析,探讨其原因和影响因素。
一、断裂行为的定义金属材料的断裂行为指的是在外部作用力的作用下,材料发生断裂的过程。
断裂是材料失去载荷传递能力的结果,其破坏表现为断口形成。
二、断裂行为的原因1. 内部缺陷:金属材料内部可能存在各种缺陷,如气孔、夹杂物、晶界、位错等。
这些缺陷会集中应力,导致断裂的发生。
2. 外部影响:金属材料在使用过程中,承受着多种外部作用力,如拉伸、压缩、弯曲、挤压等。
这些作用力会引起金属的应力集中,进而导致断裂。
三、断裂行为的影响因素1. 材料的强度:金属材料的强度越高,其抵抗断裂的能力也就越强。
因此,金属的强度是断裂行为的一个重要影响因素。
2. 温度:温度对金属材料的断裂行为有着显著的影响。
在高温下,金属易于软化和熔化,从而导致断裂;而在低温下,金属脆性增加,也容易发生断裂。
3. 加载速率:加载速率是指外部作用力施加的速度。
在较高的加载速率下,金属材料容易发生动态断裂;而在较低的加载速率下,金属更容易发生静态断裂。
四、断裂行为的分析方法1. 断裂力学:通过断裂力学的理论和方法,可以定量分析金属材料的断裂行为。
其中,最常用的方法包括线弹性断裂力学、弹塑性断裂力学和韧性断裂力学。
2. 断口分析:通过观察金属材料的断口形貌,可以初步判断断裂的类型和原因。
常见的断口形貌有韧性断口、脆性断口等。
3. 数值模拟:利用有限元方法等数值模拟手段,可以模拟金属材料在受力下的断裂行为。
通过数值模拟可以更加准确地分析和预测金属材料的断裂行为。
五、断裂行为的应用对金属材料的断裂行为进行分析可以为材料的选用、设计和使用提供重要的依据。
通过了解材料的断裂性能,可以避免在实际应用中出现断裂导致的事故和损失。
六、结论金属材料的断裂行为是一个复杂而重要的问题。
内部缺陷和外部作用力是断裂行为的主要原因,而材料的强度、温度和加载速率是断裂行为的关键影响因素。
金属断口机理及分析要点
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体结构。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口表面,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45º交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似)a Y K c c πσ⋅=1:断裂应力(剩余强度) a :裂纹深度(长度) Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法: T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
金属断口观察实验报告
金属断口观察实验报告引言金属断口观察实验是一种常见的金属材料性能测试方法,通过对金属断口形貌的观察和分析,可以了解金属的断裂行为、断裂模式以及材料的强度、韧性等性能。
本次实验我们选取了不同类型的金属材料进行了断口观察,并进行了定性分析。
实验目的1. 理解金属材料的断裂行为和断裂模式;2. 掌握金属材料断口观察的方法和步骤;3. 分析不同类型金属材料的断裂特点,比较它们的强度和韧性。
实验材料和设备1. 实验材料:铁、铜、铝等金属棒材;2. 实验设备:金属切断机、砂纸、显微镜等。
实验步骤与结果1. 选取铁、铜、铝三种金属棒材进行实验。
2. 使用金属切断机将金属棒材切割成相同尺寸的试样。
3. 使用砂纸将试样的断口打磨平整,以便观察。
4. 将试样放置在显微镜下,观察并记录断口形貌,并拍摄照片。
铁的断口观察铁的断口呈现出灰黑色,在显微镜下可以清晰地看到断口面呈现出韧突状的形态。
黏附在断口上的颗粒状物质表明铁发生了韧突断裂。
这种断口表明铁具有较高的韧性和可塑性。
![铁的断口观察](iron.jpg)铜的断口观察铜的断口呈现出金黄色,在显微镜下可以看到断口表面十分光滑,没有很明显的韧突形态。
铜的断口表明其具有较低的韧性,容易发生脆断。
![铜的断口观察](copper.jpg)铝的断口观察铝的断口呈现出银白色,在显微镜下可以观察到断口呈现出类似海浪的波纹状形态。
这种断口表明铝具有较高的韧性,同时也表现出一定的可塑性。
![铝的断口观察](aluminum.jpg)结果分析与讨论通过对不同金属材料的断口观察,我们发现铁的断裂模式是韧突断裂,表现出较高的韧性和可塑性;铜的断裂模式是脆断,表现出较低的韧性;而铝的断裂模式表现出较高的韧性和一定的可塑性。
金属材料的断裂行为与其晶粒结构、材料强度和韧性有关。
铁的断口呈现韧突断裂是因为其晶粒较大,能够发生滑移,同时还具有较高的韧性和可塑性;而铜的断口呈现脆断是因为其晶粒结构较细且收敛,不易发生滑移,导致其强度较高但韧性较低;铝的断口呈现波纹形态是因为其具有良好的可塑性,能够发生较多的滑移带。
金属失效断口分析
26
2. 断口分析的任务
(l)确定断裂的宏观性质。塑性断裂/脆住断裂/疲劳断裂等。 (2)确定断口的宏观形貌。纤维状断口/结晶状断口;有无放射线花样及有无剪 切唇等; (3)查找裂纹源区的位置及数量。裂纹源区的所在位置是在表面、次表面还是在 内部,裂纹源区是单个还是多个,在存在多个裂草源区的情况下,它们产生的先后 顺序是怎样的等; (4)确定断口的形成过程。裂纹是从何处产生的,裂纹向何处扩展,扩展的速度 如何等; (5)确定断裂的微观机制。解理型/准解理型/微孔型,沿晶型/穿晶型等; (6)确定断口表面产物的性质。断口上有无腐蚀产物或其他产物,何种产物,该 产物是否参与了断裂过程等。
34
(3)按照裂纹的河流花样确定主裂纹
35
3. 断裂(裂纹)源区的宏观判断 主断面(主裂纹)确定后,断裂分析的进一步工
作是寻找裂纹源区。裂纹源区是断裂破坏的宏观开 始部位。寻找裂纹源区不仅是断裂宏观分析中最核 心的任务,而且是光学显微分析和电子显微分析的 基础。
36
(1)利用断口上的“三要素”特征确定裂纹源区
40
(6)断口上的冶金缺陷 注意观察断口上有无夹杂、分层、粗大晶粒、疏松、 缩孔等缺陷。有时依此可以直接确定断裂原因。
41
3.2.4 断口的微观分析
断裂件的断口经宏观分析之后,对断裂的性质、 类型及致断原因等问题已有所了解。但对于许多断裂 问题,特别是在特殊环境条件下发生的断裂,仅限于 宏观分析还是不够的。其原因是,一方面是由于断口 的某些产物需要搞清楚才能确定断裂原因,另一方面 宏观断口形貌尚不能完全揭示出断裂的微观机制及其 它细节。因此,为了进一步搞清楚这些问题、尚需对 断口作微观分析。其内容主要包括断口的产物分析及 形貌分析两个方面。
金属断口分析 实验报告
金属断口分析实验报告通过对金属断口进行分析,了解金属的断裂形态,判断金属的断裂性质。
实验原理:金属的断裂形态受多种因素影响,包括金属的材质、加工工艺、应力状态等。
常见的金属断口形态有韧性断口、脆性断口、中间断口等。
韧性断口是指金属在拉伸过程中逐渐展开,伴随表面的细微颗粒状变形,最终形成一条明显的条纹状断口。
韧性断口的特点是具有较高的塑性变形能力和断裂韧性,常见于延性金属材料。
脆性断口是指金属在加载过程中没有明显的变形,断口很快出现,并且没有延展性,呈现出平整且光滑的特点。
脆性断口的特点是无法承受相对较大的塑性变形,并且在加载过程中存在明显的蠕变现象,常见于脆性金属材料。
中间断口是韧性断口和脆性断口之间的一种过渡形态,断口上既有韧性断口的条纹状结构,又有脆性断口的平整、光滑特点。
中间断口常见于具有一定韧性的脆性金属材料。
实验步骤:1. 准备金属试样,根据试样的材料和加工工艺,选择合适的试样形状和尺寸。
2. 对试样进行预处理,包括清洗、抛光等步骤,以保证试样表面的光滑度和清晰度。
3. 将试样固定在实验台上,利用金属试验机进行拉伸实验或冲击实验,使试样断裂。
4. 观察断口形态,可以使用裸眼观察、显微镜观察等方式进行观察和记录。
5. 根据观察结果判断金属的断裂性质,如韧性、脆性或中间性,可以结合实验数据进行进一步分析和判断。
实验结果分析:根据实验所得的断口形态,可以判断金属的断裂性质。
如果试样的断口呈现出明显的条纹状结构,并且断口表面光滑、平整,说明试样具有一定的延展性和塑性变形能力,可以判断为韧性断口,表示金属具有较好的韧性和延性。
如果试样的断口呈现平整、光滑的表面,没有明显的条纹状结构,且试样未发生明显的延展性变形,可以判断为脆性断口,说明金属具有较差的塑性能力和韧性。
如果试样的断口同时具有条纹状结构和光滑表面,可以判断为中间断口,表示金属具有一定的韧性,但同时也存在一定的脆性。
需要注意的是,金属的断裂性质不仅与材料本身的特性有关,还与加工工艺、试样形状和尺寸等因素有关,因此在判断金属的断裂性质时,需要综合考虑多个因素。
金属断口机理及分析
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体结构。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口表面,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45º交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似)a Y K c c πσ⋅=1:断裂应力(剩余强度) a :裂纹深度(长度) Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关) 脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法: T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
金属断口分析
断口(断裂)的基本特征与机理
提纲
1.过载断口宏观特征三要素 2.穿晶韧窝断裂 3.滑移分离 4.解理断裂 5.准解理断裂 6.延晶断裂 7.疲劳断裂
断口(断裂)的基本特征与机理
滑移分离
滑移的形式
✓波状滑移:在晶体材料中不仅有直线型的滑移线或滑移带, 而且有波状的滑移线或滑移带。尤其是体心立方材料,由于它 没有最密排的晶面,所以滑移没有一个确定的晶面,一般可能 在几个较密的低指数面滑移,如{110}、{112}、{123}。而密排 方向是<111>,它便是滑移方向。共有48个滑移系,如果有很 多的滑移系同时开动,除了产生直线滑移外,还可能产生波状 滑移。
断口(断裂)的基本特征与机理
过载断口宏观特征三要素
断口三要素在断裂失效分析中的应用 ✓裂源位置的确定。在通常情况下,裂源位于纤维状区的中心 部位,因此找到了纤维区的位置就可以确定裂源德位置。另一 方面是利用放射区的形貌特征,在一般条件下,放射条纹收敛 处为裂源位置。 ✓裂纹扩展方向的确定。在断口三要素中,放射条纹指向裂纹 扩展方向。通常,裂纹的扩展方向事由纤维区指向剪切唇区方 向。如果是板材零件,断口上放射区的宏观特征为人字条纹, 其反方向为裂纹的扩展方向。如果在板材的两侧开有缺口,则 由于应力集中的影响,形成的人字纹尖顶指向与无缺口正好相 反,逆指向裂纹源。 ✓断口上有两种或三种要素区时,剪切唇区是最后断裂区。
断口(断裂)分类
按断裂方式分类 按断面所受到的外力类型的不同分为正断、切断及混合断
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
名词解释延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。
解理断裂:在正应力作用下沿解理面发生的穿晶脆断。
应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。
正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。
冲击韧性:冲击过程中材料吸收的功除以断的面积。
位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断裂机理或断裂过程。
河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。
其形状类似地图上的河流。
断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些质点的晶体结构。
氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。
卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。
等轴韧窝:拉伸正应力作用下形成的圆形微坑。
均匀分布于断口表面,显微洞孔沿空间三维方向均匀长大。
第一章断裂的分类及特点1.根据宏观现象分:脆性断裂和延伸断裂。
脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。
延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45º .2.根据断裂扩展途分:穿晶断裂与沿晶断裂。
穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂;沿晶断裂:裂纹沿着晶界扩展,多属脆断。
应力腐蚀断口,氢脆断口。
3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂4根据断面的宏观取向与最大正应力的交角分:正断、切断正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂)切断:断面取向与最大切应力相一致,与最大应力成45º交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形:裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型)裂纹尺寸与断裂强度的关系Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则相似)a Y K c c πσ⋅=1:断裂应力(剩余强度) a :裂纹深度(长度)Y :形状系数(与试样几何形状、载荷条件、裂纹位置有关)脆性材料K 准则:KI 是由载荷及裂纹体的形状和尺寸决定的量,是表征裂纹尖端应力场强度的计算量; KIC 是材料固有的机械性能参量,是表示材料抵抗脆断能力的试验量第二章裂纹源位置的判别方法:T 型法(脆断判别主裂纹),分差法(脆断判别主裂纹),变形法(韧断判别主裂纹),氧化法(环境断裂判别主裂纹),贝纹线法(适用于疲劳断裂判别主裂纹)。
断口的试样制备:截取,清洗,保存。
断口分析技术设备:1.宏观断口分析技术(用肉眼,放大镜,低倍率光学显微镜观察分析)2.光学显微断口分析(扫描电子显微镜光学显微镜,透射电子显微镜),3.电镜断口分析。
第三章延性断裂:1.特点:材料断裂前发生明显的塑性变形,也可以说塑性变形是韧断的前奏,而韧断是大量塑性变形的结果。
2. 过程:显微空洞形成,扩展,连接,断裂。
3.类型:韧窝-微孔聚集型断裂、滑移分离断裂。
韧窝断口的宏观和微观形貌特征:1宏观形貌特征(1)纤维区:a.表面颜色灰暗,无金属光泽b.粗糙不平c.无数纤维状小峰组成,小峰的小斜面和拉伸轴线大约成45度角(2)放射区(3)剪切唇:和拉伸轴线大约成45度角注意:塑性较高材料的冲击断口一般具有两个纤维区2微观形貌特征:大小不等的圆形或椭圆形的凹坑(即韧窝)。
韧窝内一般可看到夹杂物或者第二相粒子。
注意:并非每个韧窝都包含一个夹杂物或粒子韧窝的形状等轴韧窝(拉伸正应力,圆形微坑,均匀分布于断口表面)剪切韧窝(剪切应力,抛物线形状,通常出现的位置:拉伸、冲击断口的剪切唇部位) 撕裂韧窝(撕裂应力,抛物线形状)卵形韧窝(卵形)剪切韧窝与撕裂韧窝微观形状无区别,怎么区分?对材料断口的两个表面进行作对比研究:韧窝凸向一致为撕裂韧窝;反之为剪切韧窝 韧窝裂纹的萌生与扩展(以拉伸正应力为例)1.韧窝裂纹的萌生应力超过材料的屈服强度→发生塑性变形→变形部位产生三向应力状态→在沉淀相、夹杂IC c K a K =⋅=I πσ物与金属界面处分离产生微孔,或夹杂物本身破碎形成裂纹,或滑移位错塞积产生孔洞2.韧窝裂纹的扩展(1)内颈缩扩展:质点大小、分布均匀,韧窝在多处形核(裂纹萌生),随变形增加,微孔壁变薄,以撕裂方式连接(2)剪切扩展:材料中具有较多夹杂物,同时具有细小析出相时,微孔之间可能以剪切方式相连接。
注意:内颈缩扩展与剪切扩展在同一韧窝断口上可能同时发生。
影响韧窝的形貌因素:夹杂物或第二相粒子,基体材料的韧性,试验温度,应力状态。
第四章解理断口宏观和微观形貌特征:1.宏观形貌特征:放射状条纹,人字纹,小刻面(发亮的小晶面)2.微观形貌特征:河流花样、舌状花样、扇形花样、鱼骨状花样、瓦纳线、解理台阶 解理台阶的形成:(1)解理裂纹与螺位错交截形成台阶(2)二次解理或撕裂相互连接形成台阶解理台阶的性质:1. 台阶扩展过程中会发生合并或消失(台阶高度减小)2. 相同方向的台阶合并后高度增加3. 相反方向的台阶合并后高度减少或消失4. 台阶高度与柏氏矢量大小、位错密度之间有一定关系河流花样:1.形成机理:河流花样实际上是解理台阶的一种标志。
当裂纹扩展时,同号台阶汇合成较大的台阶,而较大的台阶又汇合成更大的台阶,其结果就形成河流花样。
2.起源:(1)晶界、亚晶界、孪晶界(2)夹杂物或析出相(3)晶粒内部(解理面与螺形位错交截的地方)。
3.影响因素:(1)小角度晶界:倾斜晶界(影响不大,延伸至相邻晶界)扭转晶界(在亚晶界处产生新的裂纹,河流激增)(2)大角度晶界(河流不能通过,在晶界处产生新的裂纹,向外扩展,形成扇形。
) 解理断裂的萌生和扩展1.裂纹萌生机制:(1)位错塞积极制位错运动→运动受阻(晶界、孪晶界、第二相夹杂物)→位错堆积→(理论断裂强度)→产生微裂纹(2)位错反应机制:位错运动→位错相遇→产生新位错(不动位错)→阻碍随后的位错运动→位错堆积→产生微裂纹(3)滑移解理机制位错运动→排列成小角度晶界→部分晶界被阻碍→产生拉应力→微裂纹2.裂纹的扩展:根据格里菲斯表达式来解释 CE c πγσ2=解理断裂的影响因素1.试验温度T↓,裂纹尖端塑性变形区↓→裂纹扩展阻力↓→解理断裂发生的容易程度上升;2.应变速率↑→解理断裂发生的容易程度↑;3.hcp、bcc类型金属、合金易发生解理断裂,fcc类型金属、合金不易发生解理断裂(滑移系);4.晶粒尺寸↑发生解理断裂的可能性↑;5.显微组织不同,解理断裂路径不同。
断口形貌不同;6.第二相粒子越粗大越容易发生解理断裂。
准解理断裂宏观特征:宏观断口较平整,少或无宏观塑性变形,结晶状小刻面,亮但不发光,较明显的放射状花样第五章疲劳断裂:1.定义:由于交变应力或循环载荷作用下的脆断。
2.分类:(1)按负载和环境条件分类:高周疲劳,低周疲劳,接触疲劳,热疲劳,腐蚀疲劳。
(2)依载荷类型特点分类:弯曲疲劳,轴向疲劳,扭转疲劳。
疲劳断裂的一般特征:(1)断裂应力比静载下的抗拉强度,屈服强度低,断裂前无明显塑性变形,是低应力脆断破坏现象。
(2)疲劳断裂是损伤积累过程的结果,是与时间相关的破坏方式。
它包括裂纹萌生、扩展和失稳断裂三个阶段。
(3)工程构件对疲劳抗力比对静载荷要敏感得多。
(4)微观上一般是穿晶断裂,也属一种脆性穿晶。
疲劳裂纹的萌生和扩展:1.萌生:表面(次表面,内部)2.扩展:第一阶段裂纹起源于材料表面,向内部扩展,扩展速度慢。
第二阶段断面与拉伸轴垂直,凹凸不平。
扩展途径为穿晶,扩展速度快。
(显微特征:疲劳辉纹)疲劳断口形貌特征:1疲劳源:光滑、细洁扇形小区域。
位于材料表面、次表面或者内部。
2裂纹扩展区形状:一条条同心的圆弧颜色:因为氧化或者腐蚀,成黑色或褐色变化规律:年轮间距小,表示裂纹扩展慢,材料韧性好3瞬断区形貌:具有断口三要素(放射区、剪切唇)的特征对于塑性材料,断口为纤维状,暗灰色对于脆性材料,断口为结晶状瞬断区面积越大,越靠近中心部位,工件过载程度越大;反之越小。
疲劳辉纹与疲劳条纹(贝纹线)的区别:贝纹线:宏观特征因交变应力幅度变化或载荷停歇造成的。
辉纹:微观特征,是一次交变应力循环裂纹尖端钝化形成的。
辉纹四要素:1.辉纹相互平行且垂直于裂纹局部扩展方向。
2.辉纹间距随应力强度因子振幅而变化。
3.辉纹个数等于负载循环次数4.通常断面上的一组辉纹是连续的,相邻断面上的辉纹不连续。
疲劳辉纹:1.形成机理:裂纹扩展的连续模型和不连续模型。
2.类型:韧性辉纹,脆性辉纹3.产生的必要条件:(1)张开型平面应变,即正断时才出现(2)延性材料比较容易出现(3)真空中不出现辉纹影响疲劳断口形貌的因素:1载荷类型与应力大小2材质3晶界4夹杂物或第二相5环境介质。
腐蚀疲劳:1定义:材料在循环应力和腐蚀介质共同作用下产生的断裂。
2裂源:材料的腐蚀坑或表面缺陷部位。
3特征:(1)多起源于腐蚀坑处或表面缺陷部位,为多源疲劳(2)断口上具有较模糊的疲劳辉纹(3)断口上具有沿晶断裂形貌,也可能有穿晶断口形貌(4)断口中二次裂纹较多第七章环境应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断引起表面膜局部断裂的原因:环境因素,冶金因素,力学因素,机械破损。
蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。
(蠕变断裂为沿晶断裂)第六章环境断裂:金属材料在腐蚀介质和温度环境等条件影响下产生的沿晶或穿晶低应力脆断现象应力腐蚀断裂断裂过程:裂纹的形成、裂纹的扩展氧化膜破坏-腐蚀坑形成-应力腐蚀裂纹萌生和亚临界扩展-机械失稳破坏引起表面氧化膜局部破裂的因素:环境因素、冶金因素、力学因素、机械破损SCC断口形貌特征:1.宏观:(1)呈现脆性特征(2)多源,裂纹形成区成暗色或灰黑色(3)最终断裂区具有金属光泽,常有放射性花样或人字纹。
2.微观:沿晶断口,晶面有撕裂脊等SCC影响因素和预防措施:1.影响因素:应力、环境介质、成分、热处理工艺2.预防措施:降低应力、表面处理、改变腐蚀介质、选材、电化学保护氢脆的分类及其宏微观形貌特征:分为内部氢脆和环境氢脆内部氢脆形貌特征:1宏观:白点(发裂白点、鱼眼型白点)2微观:穿晶解理断口或准解理断口环境氢脆形貌特征:1宏观:与脆性断口相似2微观:沿晶断口和准解理断口SCC与氢脆的关系1联系:通常共同存在,形貌也相似2区别:(1)电化学反应:SCC为阳极溶解控制过程,氢脆为阴极反应控制过程(2)裂源:SCC从表面开始,裂纹分叉;氢脆从次表面或内部开始,裂纹基本不分叉影响氢脆外部因素:温度、氢浓度、置放时间蠕变可由蠕变曲线描述,一般分为三个阶段:1初始蠕变阶段(蠕变速率随时间不断降低)2稳态蠕变阶段(蠕变速率保持不变)3加速蠕变阶段(蠕变速率随时间加快直至断裂)材料蠕变变形机理主要有位错滑移、原子扩散、晶界滑动按照断裂时塑性变形量大小的顺序,可将蠕变断裂分为如下三个类型:沿晶蠕变断裂(高温、低应力)、穿晶蠕变断裂(高应力)、延缩性断裂(高温)沿晶断裂:类型:韧性沿晶断裂、脆性沿晶断裂产生的原因:1脆性沉淀相沿晶界析出2晶界弱化3环境4热应力5晶体粗大断口宏观形貌特征:结晶状、冰糖快状、灰色石状第七章断裂形式:1按裂纹产生部位:表面开裂、内部开裂2按塑性加工方式:轧制开裂、挤压开裂、锻造开裂断裂原因:1塑性变形不均匀2铸锭质量差3加工工艺不合理失效分析的一般程序:外部观察—试验检查—综合分析。