柱、锥、球及其简单组合体(1)
2020新课标高考艺术生数学复习:空间几何体的结构特征、直观图含解析
已知A′B′=A′C′=a,在△OA′C′中,
由正弦定理得 = ,
所以OC′= a= a,
A.圆柱
B.圆锥
C.球体
D.圆柱、圆锥、球体的组合体
解析:C[当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.]
3.如图所示,观察四个几何体,其中判断正确的是( )
A.①是棱台B.②是圆台
C.③是棱锥D.④不是棱柱
解析:C[图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图③是棱锥;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱.故选C.]
(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.
斜二测画法中的“三变”与“三不变”
“三变”
“三不变”
[思考辨析]
判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.
(1)球的任何截面都是圆.( )
A. a2B. a2C. a2D. a2
[解析]D[如图所示为原图形和其直观图.
由图可知,A′B′=AB=a,O′C′= OC= a,
在图中作C′D′⊥A′B′于D′,则C′D′= O′C′
= a.∴S△A′B′C′= A′B′·C′D′= ×a× a= a2.故选D.]
[互动探究]
【文库精品】高中数学 第一章柱、锥、台、球的结构特征 简单组合体的结构特征情境导学素材
1.1.1-1.1.2 柱、锥、台、球的结构特征简单组合体的结构特征
【情境导学】
小学和初中我们学过平面上的一些几何图形,如直线,三角形,长方形,圆等.现实生活中,我们周围还存在着很多不是平面上而是“空间”中的物体,它们占据着空间的一部分,如粉笔盒、
足球、易拉罐等.如果只考虑这些物体的形状和大小,那么它们有很多相同的特征
.
观察下面两组物体,你能说出各组内物体的共同点吗?
(1)
(2)
(第(1)组中每个物体都是由多个平面多边形围成,第(2)组中每个物体都是由平面图形旋转得到)
1。
2019版-创新设计-高考总复习-数学-人教A版-理科-第八章-第1节
法二 (估值法)由题意知,12V 圆柱<V 几何体<V 圆柱,又 V 圆柱=π×32×10=90π,∴45 π<V 几何体<90π.观察选项可知只有 63π符合. 答案 B
5.正△AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是 ________.
解析 画出坐标系 x′O′y′,作出△OAB 的直观图 O′A′B′(如图).D′为 O′A′的中点.易知 D′B′=12DB(D 为 OA 的中点),∴S△O′A′B′=12× 22S△OAB= 42× 43a2=166a2.
解析 由直观图知,俯视图应为正方形,又上半部分相邻两曲面的交线为可见线, 在俯视图中应为实线,因此,选项B可以是几何体的俯视图. 答案 B
命题角度2 由三视图判断几何体
【例2-2】 (1)(2014·全国Ⅰ卷)如图,网格纸的各小格都是正
方形,粗实线画出的是一个几何体的三视图,则这个几何体
是( )
4.直观图 空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z 轴两两垂直,直观图中,x′轴、y′轴的夹角为_4_5_°__(_或__1_3_5_°__)_,z′轴与x′轴、y′轴所 在平面__垂__直__. (2)原图形中平行于坐标轴的线段,直观图中仍分别__平__行__于___坐标轴.平行于x轴 和z轴的线段在直观图中保持原长度_不__变___,平行于y轴的线段长度在直观图中变 为原来的__一__半__.
(2)由三视图可知,该几何体是半个圆锥和一个三棱锥的组合体,半圆锥的底面半径
为 1,高为 3,三棱锥的底面积为12×2×1=1,高为 3. 故原几何体体积为:V=12×π×12×3×13+1×3×13=π2 +1. 答案 (1)B (2)A
高考理科数学立体几何大全(含考纲-知识-例题)
第八章立体几何§8.1空间几何体的结构、三视图和直观图1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.高考主要考查空间几何体的结构和视图,柱、锥、台、球的定义与性质是基础,以它们为载体考查线线、线面、面面的关系是重点,三视图一般会在选择题、填空题中考查,以给出空间图形选择其三视图或给出三视图判断其空间图形的形式出现,考查空间想象能力.1.棱柱、棱锥、棱台的概念(1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相________,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是有一个公共顶点的__________,由这些面所围成的多面体叫做棱锥.※注:如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥.(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,叫做棱台.※注:由正棱锥截得的棱台叫做正棱台.※2.棱柱、棱锥、棱台的性质(1)棱柱的性质侧棱都相等,侧面是______________;两个底面与平行于底面的截面是__________的多边形;过不相邻的两条侧棱的截面是______________;直棱柱的侧棱长与高相等且侧面、对角面都是________.(2)正棱锥的性质侧棱相等,侧面是全等的__________;棱锥的高、斜高和斜高在底面上的射影构成一个____________;§8.2空间几何体的表面积与体积1.了解棱柱、棱锥、台、球的表面积和体积的计算公式.2.会利用公式求一些简单几何体的表面积与体积.高考主要考查空间几何体的侧面积、表面积、体积以及相关元素的关系与计算,这些内容常与三视图相结合,以选择题、填空题的形式出现,也可能以空间几何体为载体,考查线面关系、侧面积、表面积以及体积.1.柱体、锥体、台体的表面积(1)直棱柱、正棱锥、正棱台的侧面积S直棱柱侧=__________,S正棱锥侧=__________,S正棱台侧=__________(其中C,C′为底面周长,h为高,h′为斜高).(2)圆柱、圆锥、圆台的侧面积S圆柱侧=________,S圆锥侧=________,S圆台侧=________(其中r,r′为底面半径,l为母线长).(3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和.2.柱体、锥体、台体的体积(1)棱柱、棱锥、棱台的体积V棱柱=__________,V棱锥=__________,V棱台=__________(其中S,S′为底面积,h为高).(2)圆柱、圆锥、圆台的体积V圆柱=__________,V圆锥=__________,V圆台=__________(其中r,r′为底面半径,h为高).3.球的表面积与体积(1)半径为R的球的表面积S球=________.(2)半径为R的球的体积V球=________.【自查自纠】1.(1)Ch12Ch′12()C+C′h′(2)2πrlπrlπ(r+r′)l(3)侧面积两个底面积侧面积一个底面积2.(1)Sh13Sh13h()S+SS′+S′(2)πr2h13πr2h13πh()r2+rr′+r′23.(1)4πR2(2)43πR3§8.3空间点、线、面之间的位置关系1.理解空间直线、平面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.本节内容在高考中常以几何体为载体,考查平面的基本性质、空间两直线的位置关系的判定及运用,特别是异面直线的概念、所成角的计算等.题型多以选择、填空的形式出现,有时也出现在解答题中,以此考查学生的空间想象能力、逻辑推理能力.1.平面的基本性质(1)公理1:如果一条直线上的______在一个平面内,那么这条直线在此平面内.它的作用是可用来证明点在平面内或__________________.(2)公理2:过____________上的三点,有且只有一个平面.公理2的推论如下:①经过一条直线和直线外一点,有且只有一个平面;②经过两条相交直线,有且只有一个平面;③经过两条平行直线,有且只有一个平面.公理2及其推论的作用是可用来确定一个平面,或用来证明点、线共面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们____________过该点的公共直线.它的作用是可用来确定两个平面的交线,或证明三点共线、三线共点等问题.2.空间两条直线的位置关系(1)位置关系的分类(2)异面直线①定义:不同在任何一个平面内的两条直线叫做异面直线.注:异面直线定义中“不同在任何一个平面内的两条直线”是指“不可能找到一个平面能同时经过这两条直线”,也可以理解为“既不平行也不相交的两条直线”,但是不能理解为“分别在两个平面内的两条直线”.②异面直线的画法:画异面直线时,为了充分显示出它们既不平行又不相交,也不共面的特点,常常需要以辅助平面作为衬托,以加强直观性.③异面直线所成的角:已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).异面直线所成角的范围是____________.若两条异面直线所成的角是直角,则称两条异面直线__________,所以空间两条直线垂直分为相交垂直和§8.4空间中的平行关系1.以立体几何中相关的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间中的平行关系的简单命题.本节在高考中,主要考查线线、线面以及面面平行的判定和性质,难度适中,运用的数学思想主要有转化与化归的思想,即空间问题平面化(面面问题⇒线面问题⇒线线问题)、几何问题代数化等.近几年,在试题的形式比较稳定的基础上,高考对立体几何中这方面的考查进行了一些改革,加强了对开放题的考查,主要考查学生综合运用知识的能力.1.空间中直线与平面之间的位置关系(1)直线在平面内,则它们有__________公共点;(2)直线与平面相交,则它们___________公共点;(3)直线与平面平行,则它们________公共点.直线与平面相交或平行的情况统称为_________.2.直线与平面平行的判定和性质(1)直线与平面平行的判定定理平面外____________与此平面内的____________平行,则该直线与此平面平行.即线线平行⇒线面平行.用符号表示:____________________________.(2)直线与平面平行的性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的__________与该直线__________.即线面平行⇒线线平行.用符号表示:_______________.3.平面与平面之间的位置关系(1)两个平面平行,则它们______________;(2)两个平面相交,则它们______________.两个平面垂直是相交的一种特殊情况.4.平面与平面平行的判定和性质(1)平面与平面平行的判定定理①一个平面内的两条__________与另一个平面平行,则这两个平面平行.用符号表示:_____________.②推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线,则这两个平面平行.③垂直于同一条直线的两个平面平行.即l⊥α,l⊥β⇒α∥β.④平行于同一个平面的两个平面平行.即α∥γ,β∥γ⇒α∥β.(2)平面与平面平行的性质定理①如果两个平行平面同时和第三个平面相交,那么它们的交线______________.即面面平行⇒线线平行.用符号表示:_______________________.②如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.用符号表示:_____________.③如果一条直线垂直于两个平行平面中的一个平面,那么它也垂直于另一个平面.用符号表示:__________________.【自查自纠】1.(1)无数个(2)有且只有一个(3)没有直线在平面外2.(1)一条直线一条直线a⊄α,b⊂α,且a∥b ⇒a∥α(2)交线平行a∥α,a⊂β,α∩β=b⇒a∥b1.证明线线平行的方法 (1)利用平面几何知识;(2)平行公理:a ∥b ,b ∥c ⇒a ∥c ;(3)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b ;(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b ;(5)线面垂直的性质定理:m ⊥α,n ⊥α⇒m ∥n . 2.证明直线和平面平行的方法 (1)利用定义(常用反证法);(2)判定定理:a ⊄α,b ⊂α,且a ∥b ⇒a ∥α; (3)面面平行性质:α∥β,l ⊂α⇒l ∥β; (4)向量法.m ⊄α,n ⊥α,m ⊥n ⇒m ∥α;(5)空间平行关系传递性:m ∥n ,m ,n ⊄α,m ∥α⇒n ∥α;(6)α⊥β,l ⊥β,l ⊄α⇒l ∥α. 3.证明面面平行的方法 (1)利用定义(常用反证法); (2)利用判定定理:a ,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β;推论:a ,b ⊂β,m ,n ⊂α,a ∩b =P ,m ∩n =Q ,a ∥m ,b ∥n (或a ∥n ,b ∥m ) ⇒α∥β;(3)利用面面平行的传递性:⎩⎨⎧α∥βγ∥β ⇒α∥γ;(4)利用线面垂直的性质:⎩⎨⎧α⊥lβ⊥l⇒α∥β.4.应用面面平行的性质定理时,关键是找(或作)辅助线或平面,对此需要强调的是:(1)辅助线、辅助平面要作得有理有据,不能随意添加;(2)辅助面、辅助线具有的性质,一定要以某一性质定理为依据,不能主观臆断.5.注意线线平行、线面平行、面面平行间的相互转化应用判定定理时,注意由“低维”到“高维”: “线线平行”⇒“线面平行”⇒“面面平行”; 应用性质定理时,注意由“高维”到“低维”: “面面平行”⇒ “线面平行”⇒ “线线平行”.1.已知平面α,β和直线a ,b ,a ⊂α,b ⊂β,且a ∥b ,则α与β的关系是( )A .平行B .相交C .平行或相交D .垂直解:可在平面α内作一直线c ,且c 与a 相交,若c 平行于面β,则根据面面平行的判定定理知α∥β;若c 与面β相交,则面α与β相交.故选C.2.若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交解:∵直线l 不平行于平面α,且l ⊄α,∴l 与α相交.观察各选项,易知A ,C ,D 都是错误的.故选B.3.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =6,AD =4,AA 1=3.分别过BC ,A 1D 1的两个平行截面将长方体分成三部分,其体积分别记为V 1=VAEA 1-DFD 1,V 2=VEBE 1A 1-FCF 1D 1,V 3=VB 1E 1B -C 1F 1C .若V 1∶V 2∶V 3=1∶4∶1,则截面A 1EFD 1的面积为( )。
2020年高考数学五年真题与三年模拟考点分类解读(江苏版)22 空间几何题的面积与体积(原卷版)
考点22 空间几何题的面积与体积一、考纲要求1. 直观了解柱、锥、台、球及其简单组合体的结构特征,对柱、锥、台、球的概念的理解不作过高要求,复习时不要过分挖深.2. 多面体与旋转体表面上两点间的最短距离问题,要适当强化,体现了空间问题向平面问题转化.3. 柱、锥、台、球的表面积与体积的计算可能会在高考填空题中出现,注意体现不同几何体之间的联系,同时注意与平面几何中的面积等进行类比.二、近五年江苏高考立体几何中的计算作为江苏考纲必考知识点,每年都会考查,但是江苏高考对立体几何中的运算要求比较简单,近要求计算简单几何体的体积与表面积等简单的运算。
从近五年江苏高考试题可以发现主要考查柱、锥、球的表面积与体积,因此,在复习中要注意把握深度。
三、考点总结:把握空间几何体的结构特征是认识几何体的一个重要方面,也是进一步学习立体几何的基础. 在学习过程中,要通过互相对比的方式来把握它们的实质与不同,既要看到它们之间的不同,也要理解它们之间的联系,这样才能理解它们之间的共性和个性,做到心中有数,心中有图. 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题. 即使考查空间线面的位置关系问题,也常以几何体为依托,因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式. 同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解.四、近五年江苏高考题1、(2019江苏卷)如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、(2018江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、(2017江苏卷)如图,圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.4、(2016江苏卷)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A 1B 1C 1D 1,下部的形状是正四棱柱ABCDA 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?5、(2015江苏卷)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.五、三年模拟题型一柱的表面积与体积1、(2019南通、泰州、扬州一调)已知正四棱柱的底面长是3 cm,侧面的对角线长是3 5 cm,则这个正四棱柱的体积为________cm3.2、(2019常州期末)已知圆锥SO,过SO的中点P作平行于圆锥底面的截面,以截面为上底面作圆柱PO,圆柱的下底面落在圆锥的底面上(如图),则圆柱PO的体积与圆锥SO的体积的比值为________.3、(2019苏锡常镇调研(一))已知圆柱的轴截面的对角线长为2,则这个圆柱的侧面积的最大值为________.4、(2019南京三模)有一个体积为2的长方体,它的长、宽、高依次为a,b,1.现将它的长增加1,宽增加2,且体积不变,则所得新长方体高的最大值为.5、(2018南京学情调研)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27πcm3,则该圆柱的侧面积为________cm2.6、(2018南通、泰州一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm,圆柱的底面积为9 3 cm2.若将该螺帽熔化后铸成一个高为6 cm的正三棱柱零件,则该正三棱柱的底面边长为________cm(不计损耗).7、(2018苏北四市期末)已知正四棱柱的底面边长为3 cm,侧面的对角线长是35cm,则这个正四棱柱的体积是________cm3.8、(2018苏中三市、苏北四市三调)现有一正四棱柱形铁块,底面边长为高的8倍,将其熔化锻造成一个底面积不变的正四棱锥形铁件(不计材料损耗).设正四棱柱与正四棱锥的侧面积分别为1S ,2S ,则12S S 的值为 .9、(2017南通一调)如图,在正四棱柱ABCDA 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1A 1BD 的体积为________cm 3.10.(2017常州期末)以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.题型二 锥的表面积与体积1、(2019扬州期末)底面半径为1,母线长为3的圆锥的体积是________.2、(2019镇江期末) 已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为________.3、(2019泰州期末) 如图,在直三棱柱ABCA 1B 1C 1中,点M 为棱AA 1的中点,记三棱锥A 1MBC 的体积V 1,四棱锥A 1BB 1C 1C 的体积为V 2,则V 1V 2的值是________.4、(2019苏北三市期末)已知正四棱锥的底面边长为23,高为1,则该正四棱锥的侧面积为________.5、(2018苏州暑假测试)如图,正四棱锥PABCD 的底面一边AB 的长为2 3 cm ,侧面积为8 3 cm 2,则它的体积为________cm 3.6、(2018常州期末) 已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为________.7、(2018镇江期末) 已知正四棱锥的底面边长为2,侧棱长为6,则该正四棱锥的体积为________. 8、(2018扬州期末) 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________.9、(2018南京、盐城、连云港二模)在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),折叠成底面边长为2的正四棱锥SEFGH(如图2),则正四棱锥SEFGH 的体积为________.(图1) (图2)10、(2018苏锡常镇调研(一))若正四棱锥的底面边长为 2 cm ,侧面积为8 cm 2,则它的体积为________cm 3.11、(2017苏锡常镇调研(一)) 已知正四棱锥的底面边长是2,侧棱长是3,则该正四棱锥的体积为________.题型三 球的表面积与体积1、(2019苏州期末)如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为________.2、(2019苏州三市、苏北四市二调)设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA=2 m,PB=3 m,PC=4 m,则球O的表面积为________m2.3、(2018无锡期末)直三棱柱ABCA1B1C1中,已知AB⊥BC,AB=3,BC=4,AA1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为________.4、(2018苏州期末)鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根等长的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为5,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积至少为________(容器壁的厚度忽略不计,结果保留π).。
2020年高考数学专题讲解:立体几何(一)
年级:辅导科目:数学课时数:课题立体几何(一)教学目的教学内容一、知识网络二、命题分析立体几何在高考中考查的主要内容有:空间几何体的性质、线面关系的判定与证明、表面积与体积的运算、空间几何体的识图,空间中距离、角的计算等.从近几年高考来看,一般以2~3个客观题来考查线面关系的判定、表面积与体积、空间中的距离与角、空间几何体的性质与识图等,以1个解答题来考查线面关系的证明以及距离、角的计算.在高考中属于中档题目.而三视图作为新课标的新增内容,在2011年高考中,有多套试卷在此知识点命题,主要考查三视图和直观图,特别是通过三视图来确定原图形的相关量.预计今后高考中,三视图的考查不只在选择题、填空题中出现,很有可能在解答题中与其他知识点结合在一起命题.三、复习建议在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.在2012年高考复习中注意以下几个方面:(1)从命题形式来看,涉及立体几何内容的命题形式最为多变,除保留传统的“四选一”的选择题外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类题目往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合.(3)从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相结合,考查转化的思想方法,如要把立体.4.空间几何体的直观图画空间几何体的直观图常用画法,基本步骤是:(1)在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′= .(2)已知图形中平行于x轴、y轴的线段,在直观图中分别画成平行于的线段.(3)已知图形中平行于x轴的线段,在直观图中保持原长度,平行于y轴的线段,长度变为.(4)在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度.5.中心投影与平行投影(1)平行投影的投影线互相,而中心投影的投影线相交于一点.(2)从投影的角度看,三视图和用斜二测画法画出的直观图都是在投影下画出来的图形.(三)基础自测1.(2010·北京理)一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )[答案] C[解析] 本题考查了三视图知识,解题的关系是掌握三视图与直观图的知识,特别是应明确三视图是从几何体的哪个方向看到的.由三视图中正(主)视图、侧(左)视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.2.(2010·福建理)如图,若Ω是长方体ABCD—A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确...的是( ) A.EH∥FG B.四边形EFGH是矩形 C.Ω是棱柱 D.Ω是棱台[答案] D[解析] ∵EH∥A1D1,∴EH∥B1C1∴B1C1∥面EFGH,B1C1∥FG,∴Ω是棱柱,故选D.3.右图为水平放置的正方形ABCO,它在直角坐标系xOy中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为( )A.12B.22C.1 D. 2[答案] B[解析] 如图,在平面直观图中,B′C′=1,∠B′C′D′=45°,∴B′D′=2 2 .4.已知某物体的三视图如图所示,那么这个物体的形状是( )A.六棱柱 B.四棱柱 C.圆柱 D.五棱柱[答案] A[解析] 由俯视图可知,该物体的形状是六棱柱,故选A.5.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体最多为________个.[答案] 7[解析] 由主视图和左视图知,该几何体由两层组成,底层最多有3×2=6个,上层只有1个,故最多为7个.6.(2010·新课标理)正(主)视图为一个三角形的几何体可以是________.(写出三种)[答案] 三棱锥、三棱柱、圆锥(其他正确答案同样给分).[解析] 本题考查空间几何体的三视图.本题属于开放性题目,答案不唯一.正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.7.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .[分析] 由三视图的形状大小,还原成几何体;再利用体积公式和表面积公式求解.[解析] (1)由该几何体的俯视图、主视图、左视图可知,该几何体是四棱锥.且四棱锥的底面ABCD 是边长为6和8的矩形,高VO =4,O 点是AC 与BD 的交点.∴该几何体的体积V =13×8×6×4=64. (2)如图所示,OE ⊥AB ,OF ⊥BC ,侧面VAB 中,VE =VO 2+OE 2=42+32=5,∴S △VAB =12×AB ×VE =12×8×5=20, 侧面VBC 中,VF =VO 2+OF 2=42+42=42,∴S △VBC =12×BC ×VF =12×6×42=12 2. ∴该几何体的侧面积S =2(S △VAB +S △VBC )=40+24 2.[点评] 由三视图还原成几何体,需要对常见的柱、锥、台、球的三视图非常熟悉,有时还可根据三视图的情况,还原成由常见几何体组合而成的组合体.(四)典型例题1.命题方向:空间几何体的结构特征[例1] 下列命题中,成立的是( )A .各个面都是三角形的多面体一定是棱锥B .四面体一定是三棱锥C .棱锥的侧面是全等的等腰三角形,该棱锥一定是正棱锥D .底面多边形既有外接圆又有内切圆,且侧棱相等的棱锥一定是正棱锥[分析] 结合棱锥、正棱锥的概念逐一进行考查.[解析] A 是错误的,只要将底面全等的两个棱锥的底面重合在一起,所得多面体的每个面都是三角形,但这个多面体不是棱锥;B 是正确的,三个面共顶点,另有三边围成三角形是四面体也必定是个三棱锥;对于C ,如图所示,棱锥的侧面是全等的等腰三角形,但该棱锥不是正棱锥;D 也是错误的,底面多边形既有内切圆又有外接圆,如果不同心,则不是正多边形,因此不是正棱锥.[答案] B[点评] 本题考查棱锥、正棱锥的概念以及四面体与三棱锥的等价性,当三棱锥的棱长都相等时,这样的三棱锥叫正四面体.判断一个命题为真命题要考虑全面,应特别注意一些特殊情况.跟踪练习1:以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥、得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1 C.2 D.3[答案] A[解析] ①应以直角三角形的一条直角边为轴旋转才可以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转可得到圆台;③它们的底面为圆面,④用平行于圆锥底面的平面截圆锥,可得到一个圆锥和圆台.应选A.2.命题方向:直观图[例2] 若已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为( )A.32a2 B.34a2 C.62a2 D.6a2[解析] 如图是△ABC的平面直观图△A′B′C′.作C′D′∥y′轴交x′轴于D′,则C′D′对应△ABC的高CD,∴CD=2C′D′=2·2·C′O′=22·32a=6a.而AB=A′B′=a,∴S△ABC=12·a·6a=62a2[答案] C[点评] 解决这类题的关键是根据斜二测画法求出原三角形的底和高,将水平放置的平面图形的直观图,还原成原来的图形,其作法就是逆用斜二测画法,也就是使平行于x轴的线段的长度不变,而平行于y轴的线段长度变为直观图中平行于y′轴的线段长度的2倍.跟踪练习2已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2D.616a 2 [分析] 先根据题意画出直观图,然后根据直观图△A ′B ′C ′的边长及夹角求解.[答案] D[解析] 如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a , 在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2. 3.命题方向:三视图[例3] 下列图形中的图(b)是根据图(a)中的实物画出的主视图和俯视图,你认为正确吗?若不正确请改正并画出左视图.[解析] 主视图和俯视图都不正确.主视图的上面的矩形中缺少中间小圆柱形成的轮廓线(用虚线表示);左视图的轮廓是两个矩形叠放在一起,上面的矩形中有2条不可视轮廓线.下面的矩形中有一条可视轮廓线(用实线表示),该几何体的三视图如图所示:[点评] 简单几何体的三视图的画法应从以下几个方面加以把握:(1)搞清主视、左视、俯视的方向,同一物体由放置的位置不同,所画的三视图可能不同.(2)看清简单组合体是由哪几个基本元素组成.(3)画三视图时要遵循“长对正,高平齐,宽相等”的原则,还要注意几何体中与投影垂直或平行的线段及面的位置关系.跟踪练习3(2010·浙江文)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A.3523cm 3B.3203cm 3C.2243cm 3D.1603cm 3 [答案] B[解析] 本题考查了三视图及几何体体积的求解.由三视图可知,该几何体是由一个正四棱台和一个长方体构成的一个组合体,V 台=13×2×(16+42×82+64)=2243cm 3, V 长方体=4×4×2=32cm 3 ∴V 总=V 台+V 长方体=2243+32=3203cm 3.(五)思想方法点拨:1.要注意牢固把握各种几何体的结构特点,利用它们彼此之间的联系来加强记忆,如棱柱、棱锥、棱台为一类;圆柱、圆锥、圆台为一类;或分成柱体、锥体、台体三类来分别认识.只有对比才能把握实质和不同,只有联系才能理解共性和个性.2.要适当与平面几何的有关概念、图形和性质进行对比,通过平面几何与立体几何相关知识的比较,丰富自己的空间想象力.对组合体可通过把它们分解为一些基本几何体来研究.3.画图时要紧紧把握住一斜——在已知图形中垂直于x 轴的线段,在直观图中均与x 轴成45°;二测——两种度量形式,即在直观图中,平行于x 轴的线段长度不变,平行于y 轴的线段变为原长度的一半.4.三视图(1)几何体的三视图的排列规则:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图右面,高度与主视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.注意虚、实线的区别.(2)应用:在解题的过程中,可以根据三视图的形状及图中所涉及到的线段的长度,推断出原几何图形中的点、线、面之间的关系及图中的一些线段的长度,这样我们就可以解出有关的问题.5.本节常涉及一些截面问题,它把空间图形的性质、画法及有关论证、计算融为一体,常见的、基本的截面问题,如直截面、对角截面、中截面等,要求熟知并掌握.要知道这些截面的形状、位置,并能画出其图形,这常常可以将较难的问题变得简单,如“用一个平面截一个球,截面是圆面”这一点很重要,它把有关球的一些问题转化为圆的问题来解决.(六)课后强化作业一、选择题1.(2010·陕西理)若某空间几何体的三视图如图所示,则该几何体的体积是( )A.13B.23 C .1 D .2[答案] C[解析] C 该几何体是如图所示的直三棱柱V =12×1×2×2=1. 2.下列命题中:①与定点的距离等于定长的点的集合是球面;②球面上三个不同的点,一定都能确定一个圆;③一个平面与球相交,其截面是一个圆,其中正确命题的个数为( )A .0B .1C .2D .3[答案] C[解析] 命题①、②都对,命题③一个平面与球相交,其截面是一个圆面,故选C.[点评] 要注意球与球面的区别.3.(2009·上海文,16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )[答案] B[解析] 本题考查三视图的基本知识及空间想象能力.由题可知,选B.4.如果一个空间几何体的主视图与左视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A.33πB.233πC.3πD.π3- 11 - [答案] A[解析] 由三视图知,该几何体是底半径为1的圆锥,轴截面是边长为2的正三角形,∴高为3,体积V =33π. 5.如图,△O ′A ′B ′是△OAB 水平放置的直观图,则△OAB 的面积为( )A .6B .3 2C .6 2D .12[答案] D[解析] 若还原为原三角形,则易知OB =4,OA ⊥OB ,OA =6,∴S △AOB =12×4×6=12. 6.棱长为1的正方体ABCD -A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 、F 分别是棱AA 1、DD 1的中点,则直线EF 被球O 截得的线段长为( )A.22 B .1 C .1+22 D. 2 [答案] D[解析] 由条件知球O 半径为32,球心O 到直线EF 的距离为12,由垂径定理可知直线EF 被球O 截得的线段长d =2⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫122= 2. 7.(2010·广东)如图所示,△ABC 为正三角形,AA ′∥BB ′∥CC ′,CC ′⊥平面ABC 且3AA ′=32BB ′=CC ′=AB ,则多面体ABC -A ′B ′C ′的正视图(也称主视图)是( )[答案] D[解析] 本小题考查线面垂直的判定方法及三视图的有关概念.由于AA ′∥BB ′∥CC ′及CC ′⊥平面ABC ,知BB ′⊥平面ABC ,又CC ′=32BB ′,且△ABC 为正三角形,故正(主)视图为D.8.用单位正方体搭一个几何体,使它的主视图和俯视图如图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与15[答案] C [解析] 由俯视图知几何体有三行和三列,且第三列的第一行,第二行都没有小正方体,其余各列各行都有小正- 12 -。
【聚焦典型题】(人教B版)《空间几何体的结构特征及三视图和直观图》
[答案] 1.(1)×
(2)×
(3)×
(4)√
返回目录
第37讲
空间几何体的结构特征及三视图和直观图
双 向 [解析] (1)如果上、下两个面平行,但它们是大小不一样的多 固 边形,即使各面是四边形,那也不能是棱柱. 基 础 (2)如图,图中平面 ABC∥平面 A1B1C1,但图中的几何体每相
邻两个四边形的公共边并不都互相平行,故不是棱柱.
第37讲
空间几何体的结构特征及三视图和直观图
双 向 固 基 础
—— 疑 难 辨 析 ——
1.棱柱、棱锥、棱台的结构特征 (1)有两个面平行,其余各面都是四边形的几何体叫 棱柱.( ) (2)有两个面平行,其余各面都是平行四边形的几何 体叫棱柱.( ) (3)有一个面是多边形,其余各面都是三角形的几何 体叫棱锥.( ) (4)棱台各侧棱的延长线交于一点.( )
空间几何体的结构特征及三视图和直观图
(2)[2012· 福建卷] 一个几何体的三视图形状都相同、大小均 相等,那么这个几何体不可以是( ) A.球 B.三棱锥 点 C.正方体 D.圆柱
面 讲 考 向
返回目录
第37讲
空间几何体的结构特征及三视图和直观图
[思考流程] (1)分析:理解三视图的概念;推理:根据三视 图定义结合给出图形分析判断;结论:判断为组合体的三视图. (2)分析:理解三视图的定义;推理:根据三视图特征想象几 点 何体的特征;结论:判断得出几何体为圆柱.
讲 考 向
返回目录
第37讲
空间几何体的结构特征及三视图和直观图
点
归纳总结 由几何体的三视图来判断原 面 物体的形状时的一般规律为:“长对正,高 讲 考 平齐,宽相等”,由此可见,正视图和侧视 向 图的形状确定原几何体为柱体、锥体还是台 体;俯视图确定原几何体为多面体还是旋转 体.
高三数学 7.1空间几何体教案
7.1空间几何体【高考目标定位】一、空间几何体的结构及其三视图和直观图1、考纲点击(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图;(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式;(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。
2、热点提示1、高考考查的热点是三视图和几何体的结构特征,借以考查空间想象能力;2、以选择、填空的形式考查,有时也出现在解答题中。
二、空间几何体的表面积与体积1、考纲点击了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式);2、热点提示(1)通过考查几何体的表面积和体积,借以考查空间想象能力和计算能力;(2)多与三视图、简单组合体相联系;(3)以选择、填空的形式考查,属容易题。
【考纲知识梳理】一、空间几何体的结构及其三视图和直观图1、多面体的结构特征(1)棱柱(以三棱柱为例)如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与ΔA1B1C1的关系是全等。
各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C。
(2)棱锥(以四棱锥为例)如图:一个面是四边形,四个侧面是有一个公共顶点的三角形。
(3)棱台棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台。
2、旋转体的结构特征旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴。
3、空间几何体的三视图空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图。
4、空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x’轴、y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直;(2)原图形中平行于坐标轴的线段,直观图中仍平行。
高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案
描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。
系统集成2018高考数学理一轮总复习教案:第十章 立体
第十章立体几何高考导航知识网络10.1 空间几何体的结构及其三视图和直观图考点诠释重点:掌握简单几何体和简单旋转体的有关概念和结构特征,掌握斜二测画法与三视图的画法及应用.难点:由三视图分析几何体的结构及性质,三视图与直观图的相互转化.典例精析题型一空间几何体的结构特征【例1】下列说法正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D.棱台是由平行于底面的平面截棱锥所得到的平面与底面之间的部分【思路分析】根据空间几何体的结构特征进行判断,也可辅以画图帮助理解.【解析】D.A,B中,不满足“每相邻两个侧面的公共边互相平行”,所以不是棱柱;C中,不满足各个三角形有唯一的公共顶点,故选D.【方法归纳】对于这类题目,一定要仔细审题,掌握好简单几何体的概念与性质,根据定义与性质来进行判断.【举一反三】1.下图所示的四个几何体,其中判断正确的是( D )A.(1)不是棱柱B.(2)是棱柱C.(3)是圆台D.(4)是棱锥【解析】显然(1)符合棱柱的定义;(2)不符合;(3)中两底面不互相平行,故选D.题型二直观图的斜二测画法【例2】用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()【思路分析】根据斜二测画法规则来判断.【解析】A.由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为22,故选A.【方法归纳】本题为已知直观图,探求原平面图形,考查逆向思维能力.要熟练运用斜二测画法画水平放置的平面图形的直观图的基本规则,注意直观图中的线段、角与原图中的对应线段、角的关系.【举一反三】2.如图所示,△A′B′C′是△ABC的直观图,且△A′B′C′是边长为a的正三角形,求△ABC的面积.【解析】建立如图所示的坐标系xOy′,△A′B′C′的顶点C′在y′轴上,A ′B ′边在x 轴上,把y ′轴绕原点逆时针旋转45°得y 轴,在y 轴上取得点C 使OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变.由已知得A ′B ′=A ′C ′=a ,在△OA ′C ′中, 由正弦定理得 OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45°a =62a ,所以原三角形ABC 的高OC =6a ,所以S △ABC =12×a ×6a =62a 2.题型三 三视图与直观图【例3】一个几何体的三视图如图所示,则该几何体的体积是( ) A.64 B.72 C.80 D.112【思路分析】将三视图还原成直观图,再求该组合体的体积.【解析】B.根据几何体的三视图知,该几何体下部是棱长为4的正方体,上部是三棱锥,如图所示,所以该几何体的体积是V 组合体=V 正方体+V 三棱锥=43+13×12×42×3=72.【方法归纳】本题是以三视图为载体考查空间几何体体积的计算,解决此类问题的关键是将三视图还原成直观图,再对给出的三视图进行恰当分析,从三视图中发现相应的数量关系,然后在直观图中解决问题.【举一反三】3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( B )A.6B.9C.12D.18【解析】由三视图可得,该几何体为如图所示的三棱锥,其底面△ABC 为等腰三角形,且BA =BC ,AC =6,AC 边上的高为3,SB ⊥底面ABC ,且SB =3,所以该几何体的体积V =13×12×6×3×3=9.故选B.体验高考(2015新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A.1B.2C.4D.8 【解析】B.由已知可知,该几何体的直观图如图所示,其表面积为2πr 2+πr 2+4r 2+2πr 2=5πr 2+4r 2.由5πr 2+4r 2=16+20π,得r =2.故选B.【举一反三】(2015北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是( C )A.2+5B.4+5C.2+2 5D.5【解析】由三视图可得该三棱锥的直观图如图三棱锥P -ABC 所示,其中P A =1,BC =2,取BC 的中点M ,连接AM ,MP ,则AM =2,AM ⊥BC ,故AC =AB =BM 2+AM 2=1+4=5,由正视图和侧视图可知P A ⊥平面ABC , 因此可得PM =P A 2+AM 2=1+4=5,因为P A ⊥BC ,又AM ∩P A =A ,所以BC ⊥面APM ,所以BC ⊥PM .所以三棱锥的表面积为S △ABC +S △PAB +S △PAC +S △PBC =12×2×2+12×5×1+12×5×1+12×2×5=2+25,故选C.10.2 空间几何体的表面积与体积考点诠释重点:掌握空间几何体的表面积与体积的计算. 难点:锥体和台体的表面积与体积的计算.典例精析题型一 表面积问题【例1】 某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.28+6 5B.30+65C.56+12 5D.60+125【思路分析】根据几何体的三视图画出其直观图,利用直观图的图形特征求其表面积. 【解析】B.由三棱锥的三视图可得三棱锥的直观图如图(1)所示.过D 作DM ⊥AC ,连接BM .S △ACD =12×AC ×DM =12×5×4=10.S △ABC =12×AC ×BC =12×5×4=10.在△CMB 中,∠C =90°,所以BM =5.由三视图可知DM ⊥平面ABC ,所以∠DMB =90°,所以DB =42+52=41,所以△BCD 为直角三角形,∠DCB =90°,所以S △BCD =12×5×4=10.在△ABD 中,如图(2),S △ABD =12×25×6=6 5.所以S 表=10+10+10+65=30+6 5.故选B. 【方法归纳】几何体表面积的求解策略(1)若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.(2)多面体的表面积是各个面的面积之和,求组合体的表面积时要注意重合部分面积. 【举一反三】1.一个四棱锥的三视图如图所示,那么这个四棱锥的侧面积是( D )A.9+23+52B.9+232C.9+252D.6+23+52【解析】根据题中所给的三视图,可知该几何体为底面是直角梯形,且一条侧棱垂直于底面的四棱锥,其侧面有三个是直角三角形,面积分别为12×2×2=2,12×1×2=1,12×1×5=52,还有一个三角形,其边长分别为2,22,6,所以该三角形也是直角三角形,其面积为12×2×6=3,所以其侧面积为3+3+52=6+23+52,故选D.题型二 体积问题【例2】一个几何体的三视图如图所示,则该几何体的体积是( )A.23B.1C.43D.53 【思路分析】首先由三视图得出该几何体是一个长方体截去两个三棱锥,然后分别求出长方体和三棱锥的体积再相减,即为所求.【解析】C.由题意知,该几何体为一个长方体截去了两个三棱锥所得的图形,截去的两个三棱锥的体积分别为V 1=13×⎝⎛⎭⎫12×2×1×2=13,V 2=13×⎝⎛⎭⎫12×2×2×1=13, 长方体的体积为V 长方体=1×2×2=2,所以V =2-13-13=43,故选C.【方法归纳】1.由三视图画出几何体的直观图,掌握“长对正,宽相等,高平齐”的规则,是确定几何体特征的关键;2.把不规则几何体分割成几个规则几何体或者补上一部分使之成为规则几何体,是求不规则几何体的表面积和体积的常用方法.【举一反三】2.一个母线长与底面圆直径相等的圆锥形容器,里面装满水,一铁球沉入水内,有水溢出,容器盖上一平板,恰与球相切,问容器内剩下的水是原来的几分之几?【解析】设球的半径为R ,则圆锥的高h =3R ,底面半径r =3R ,V 圆锥=π3·(3R )2·3R =3πR 3;V 球=43πR 3.所以V 球V 圆锥=43πR 33πR 3=49,所以剩下的水是原来的1-49=59.题型三 组合体的面积、体积的关系【例3】求棱长为a 的正四面体外接球与内切球的表面积与体积. 【思路分析】先画出该组合体的截面图,然后在截面图中求解.【解析】设正四面体A -BCD 的高为AO 1,外接球球心为O ,半径为R ,如图所示. 因为正四面体的棱长为a ,所以O 1B =32a ×23=33a .在Rt △AO 1B 中, AO 1=AB 2-BO 21==63a .在Rt △OO 1B 中,OO 21=R 2-⎝⎛⎭⎫33a2=R 2-a 23,所以AO 1=63a =R +R 2-a 23, 所以R =64a ,即外接球半径为64a .S 外=32πa 2,V 外=68πa 3.设内切球的半径为r ,则正四面体可分割为4个四棱锥O -ABC ,O -ACD ,O -ADB ,O -BCD ,它们的高均为r ,底面恰为正四面体的各个面.V A -BCD =4×V O -BCD ,所以212a 3=4×13r ×34a 2,所以r =612a .S 内=16πa 2,V 内=6216πa 3.【方法归纳】解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的过球心的截面图,将立体几何问题转化为平面几何问题求解.【举一反三】3.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( A )A.26B.36C.23D.22【解析】△ABC 的外接圆的半径r =33,点O 到平面ABC 的距离d =R 2-r 2=63.SC 为球O 的直径,故点S 到平面ABC 的距离为2d =263,故棱锥的体积为V =13S △ABC ×2d=13×34×263=26. 体验高考(2015新课标Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛【解析】B.设圆锥底面的半径为r 尺,由14×2πr =8,得r =16π,从而米堆的体积V =14×13×πr 2×5=3203π=3209(立方尺),因此堆放的米约有3209÷1.62≈22(斛).故选B. 【举一反三】(2015浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( C )A.8 cm 3B.12 cm 3C.323 cm 3D.403cm 3【解析】该几何体是由棱长为2的正方体和底面边长为2,高为2的正四棱锥组合而成的几何体.故其体积为V =2×2×2+13×2×2×2=323cm 3.10.3 空间点、线、面之间的位置关系考点诠释重点:三个公理及三个推论,求异面直线所成的角. 难点:三个公理及三个推论的应用.典例精析题型一 平面的基本性质及平面公理的应用【例1】如图,已知:E ,F ,G ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱AB ,BC ,CC 1,C 1D 1的中点,证明:EF ,HG ,DC 三线共点.【思路分析】本题主要考查三线共点的知识,解题的关键是利用公理3来证明其中两条直线的交点在第三条线上.【证明】连接C 1B ,HE ,GF ,如图所示. 由题意知HC 1EB ,所以四边形HC1BE 是平行四边形,所以HE ∥C 1B . 又C 1G =GC ,CF =BF ,故GF 12C 1B ,所以GF ∥HE ,且GF ≠HE ,所以HG 与EF 相交,设交点为K ,则K ∈HG . 又HG ⊂平面D 1C 1CD ,所以K ∈平面D 1C 1CD . 因为K ∈EF ,EF ⊂平面ABCD , 所以K ∈平面ABCD .因为平面D 1C 1CD ∩平面ABCD =DC ,所以K ∈DC ,所以EF ,HG ,DC 三线共点.【方法归纳】证明三线共点的方法:首先证明其中的两条直线交于一点,然后证明第三条直线是经过这两条直线的两个平面的交线,再由公理3可知,两个平面的公共点必在这两个平面的交线上,即三条直线交于一点.【举一反三】1.如右图所示,在正方体ABCD -A1B 1C 1D 1中,E 为AB 的中点,F 为A 1A 的中点,求证:(1)E ,C ,D 1,F 四点共面; (2)CE ,D 1F ,DA 三线共点.【证明】(1)分别连接EF ,A 1B ,D 1C .因为E ,F 分别是AB 和AA 1的中点,所以EF 12A 1B .又A 1D 1B 1C 1BC ,所以四边形A 1D 1CB 为平行四边形,所以A 1B CD 1,从而EF 12CD 1.所以EF 与CD 1确定一个平面,所以E ,F ,D 1,C 四点共面.(2)因为EF 12CD 1,所以直线D 1F 和CE 必相交,设D 1F ∩CE =P . 因为P ∈D 1F 且D 1F ⊂平面AA 1D 1D , 所以P ∈平面AA 1D 1D .又P ∈EC 且CE ⊂平面ABCD ,所以P ∈平面ABCD . 即P 是平面ABCD 与平面AA 1D 1D 的公共点,而平面ABCD ∩平面AA 1D 1D =AD ,所以P ∈AD . 所以CE ,D 1F ,DA 三线共点. 题型二 空间直线的位置关系【例2】如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A.MN 与CC 1垂直B.MN 与AC 垂直C.MN 与BD 平行D.MN 与A 1B 1平行【思路分析】结合图形,利用公理或定理判断. 【解析】D.由于MN 与平面DCC1D 1相交于N 点,D 1C 1⊂平面DCC 1D 1,且C 1D 1与MN 没有公共点,所以MN 与C 1D 1是异面直线.又因为C 1D 1∥A 1B 1,连接B 1C ,A 1D ,由M 为BC 1中点且BCC 1B 1为正方形,知M ∈B 1C ,即MN 与面A 1B 1CD 交于点M ,又A 1B 1不过点M ,所以A 1B 1与MN 没有公共点,所以A 1B 1与MN 是异面直线,故选项D 错误.【方法归纳】异面直线的判定方法 (1)定义法:依据定义判断(较为困难);(2)定理法:过平面内一点与平面外一点的直线与平面内不经过该点的直线为异面直线(此结论可作为定理使用);(3)反证法:先假设两条直线不是异面直线,即两直线平行或相交,由假设的条件出发,经过严密的推理,导出矛盾,从而否定假设,肯定两条直线异面.【举一反三】2.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.问:(1)AM 和CN 是否是异面直线?说明理由; (2)D 1B 和CC 1是否是异面直线?说明理由.【解析】(1)不是异面直线,证明如下:连接MN ,A 1C 1,AC . 因为M ,N 分别是A 1B 1,B 1C 1的中点,所以MN ∥A 1C 1. 又因为A 1A C 1C ,所以A 1ACC 1为平行四边形.所以A 1C 1∥AC ,得到MN ∥AC ,所以A ,M ,N ,C 在同一平面内,故AM 和CN 不是异面直线. (2)是异面直线,证明如下:ABCD -A 1B 1C 1D 1是正方体,所以B ,C ,C 1,D 1不共面.假设D 1B 与CC 1不是异面直线,则存在平面α,使D 1B ⊂平面α,CC 1⊂平面α, 所以D 1,B ,C ,C 1∈α,即D 1,B ,C ,C 1共面, 所以与已知D 1,B ,C ,C 1不共面矛盾.所以假设不成立,即D 1B 与CC 1是异面直线.题型三异面直线所成的角【例3】如图所示,在正方体ABCD-A1B1C1D1中,(1)求A1C1与B1C所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.【思路分析】(1)把A1C1平移到平面ABCD上,再连接AB1即可;(2)把A1C1平移到平面ABCD上,再连接BD即可.【解析】(1)如图,连接AC,AB1,因为AA1CC1,所以四边形AA1C1C为平行四边形,所以AC∥A1C1,从而B1C与AC所成的角就是A1C1与B1C所成的角.由AB1=AC=B1C,可知∠B1CA=60°,即A1C1与B1C所成角为60°.(2)如图,连接BD,由AA1∥CC1,且AA1=CC1,可知四边形A1ACC1是平行四边形,所以AC∥A1C1,即AC与EF所成的角就是A1C1与EF所成的角.因为EF是△ABD的中位线,所以EF∥BD.又因为AC⊥BD,所以EF⊥A1C1,即所求角为90°.【方法归纳】平移法求异面直线所成角的一般步骤为:(1)平移选取适当的点,平移异面直线的一条或两条成相交直线↓(2)证明证明所作的角是异面直线所成的角↓(3)求角作出含有此角的三角形,并解之↓(4)取舍根据异面直线所成角的范围确定大小【举一反三】3.在如图所示的正方体中,M,N分别为棱BC和棱CC1的中点,则异面直线AC和MN所成的角为( B )A.30°B.60°C.90°D.45°【解析】直线MN与直线AD1平行,△ACD1为正三角形,此时AD1与AC所成的角为60°,因此异面直线AC和MN所成的角为60°.体验高考(2015广东)若空间中n个不同的点两两距离都相等,则正整数n的取值()A.至多等于3B.至多等于4C.等于5D.大于5【解析】B.由正四面体的定义可知n=4能满足条件.当n≥5时,可设其中三个点为A,B,C,由直线与平面垂直的性质及点到点的距离定义可知到A,B,C三点距离相等的点必在过△ABC的外心且与平面ABC垂直的直线上,从而易知到A,B,C的距离等于正三角形ABC边长的点有两个,分别在平面ABC的两侧.此时可知这两点间的距离大于正三角形的边长,从而不可能有5个点满足条件.当然也不可能有多于5个的点满足条件.故选B.【举一反三】(2015四川)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E,F分别为AB,BC的中点.设异面直线EM与AF所成的角为θ,则cos θ的最大值为.【解析】如图,以分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系A -xyz , 设AB =2,QM =m (0≤m ≤2),则F (2,1,0),E (1,0,0),M (0,m,2)(0≤m ≤2).=(2,1,0),=(1,-m ,-2),cos θ=|cos 〈,〉|==⎪⎪⎪⎪⎪⎪2-m 5·m 2+5=|m -2|5m 2+25. 设y =(m -2)25m 2+25, 则y ′=2(m -2)(5m 2+25)-(m -2)2·10m (5m 2+25)2 =(m -2)[(10m 2+50)-(m -2)·10m ](5m 2+25)2=(m -2)(50+20m )(5m 2+25)2. 当0≤m ≤2时,y ′<0,所以y =(m -2)25m 2+25在(0,2)上单调递减. 所以当m =0时,y 取最大值,此时cos θ取最大值,(cos θ)max =|0-2|5×02+25=25.10.4 直线、平面平行的判定及其性质考点诠释重点:线面、面面平行的判定及其性质应用.难点:解答或证明线面、面面平行的有关问题.典例精析题型一 线面平行的判定【例1】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,PD =DC =CB =1,BA =2,AB ∥DC ,∠BCD =90°,点E ,F ,G 分别是线段AB ,PC ,DE 的中点.求证:FG ∥平面P AB .【思路分析】欲证线面平行,关键是在平面P AB 内找一直线与FG 平行.可以作辅助线得出要找的线,也可以先证两平面平行再证线面平行.【证明】因为DC =1,BA =2,AB ∥DC ,E 是线段AB 的中点.所以AE ∥DC ,且AE =DC ,所以四边形AECD 为平行四边形.连接AC ,EC ,则点G 为AC 的中点.在△P AC 中,点F ,G 分别是线段PC ,AC 的中点,所以FG ∥P A ,又FG ⊄平面P AB ,P A ⊂平面P AB ,所以FG ∥平面P AB . 【方法归纳】解决本题的关键在于找出平面内的一条直线和该平面外的一条直线平行,即线(内)∥线(外)⇒线(外)∥平面,或转化为证明两个平面平行.【举一反三】1.如图甲,⊙O 的直径AB =2,圆上两点C ,D 在直径AB 的两侧,使∠CAB =π4,∠DAB =π3.沿直径AB 折起,使两个半圆所在的平面互相垂直(如图乙),F 为BC 的中点,E 为AO 的中点.P 为AC 上的动点,根据图乙解答下列各题:(1)求点D 到平面ABC 的距离;(2)在上是否存在一点G ,使得FG ∥平面ACD ?若存在,试确定点G 的位置;若不存在,请说明理由.【解析】(1) △ADO 中,AO =DO ,且∠OAD =π3, 所以AO =DO =AD .又E 是AO 的中点,所以DE ⊥AO .又因为面ABC ⊥面AOD ,且面ABC ∩面AOD =AO ,DE ⊂面AOD ,所以DE ⊥面ABC .所以DE 即为点D 到面ABC 的距离.又DE =32·DO =32×12AB =32,所以点D 到平面ABC 的距离为32.(2) 上存在一点G ,满足,使得FG ∥面ACD .理由如下:连接OF ,FG ,OG ,在△ABC 中,F ,O 分别为BC ,AB 的中点.所以FO ∥AC .又因为FO ⊄面ACD ,AC ⊂面ACD ,所以FO ∥面ACD ,因为∠BAD =π3,且G 为的中点, 所以∠BOG =π3,所以AD ∥OG . 又OG ⊄面ACD ,AD ⊂面ACD ,所以OG ∥面ACD .且FO ∩OG =O ,FO ⊂面FOG ,OG ⊂面FOG .所以面FOG ∥面ACD .又FG ⊂面FOG ,所以FG ∥面ACD .题型二 面面平行的判定【例2】如图所示,三棱柱ABC -A 1B 1C 1,D 是BC 上一点,且A 1B ∥平面AC 1D ,D 1是B 1C 1的中点.求证:平面A 1BD 1∥平面AC 1D .【思路分析】可证明平面A 1BD 1内的两条相交直线分别与平面AC 1D 平行.【证明】连接A 1C 交AC 1于点E ,因为四边形A 1ACC 1是平行四边形,所以E 是A1C 的中点,连接ED ,因为A 1B ∥平面AC 1D ,平面A 1BC ∩平面AC 1D =ED ,所以A 1B ∥ED ,因为E 是A 1C 的中点,所以D 是BC 的中点.又因为D 1是B 1C 1的中点,所以BD 1∥C 1D ,又因为C 1D ⊂平面AC 1D ,BD 1⊄平面AC 1D ,所以BD 1∥平面AC 1D ,又A 1B ∩BD 1=B ,所以平面A 1BD 1∥平面AC 1D . 【方法归纳】证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”“线面平行”“面面平行”的相互转化.【举一反三】2.如图,B 为△ACD 所在平面外一点,M ,N ,G 分别为△ABC ,△ABD ,△BCD 的重心.(1)求证:平面MNG ∥平面ACD ;(2)若△ACD 是边长为2的正三角形,判断△MNG 的形状,并求△MNG 的面积.【解析】(1)证明:连接BM ,BN ,BG 并延长分别交AC ,AD ,CD 于E ,F ,H 三点.因为M 为△ABC 的重心,N 为△BAD 的重心,所以BM ME =BN NF=2. 所以MN ∥EF ,同理MG ∥HE .因为MN ⊄平面ACD ,MG ⊄平面ACD ,EF ⊂平面ACD ,HE ⊂平面ACD ,所以MN ∥平面ACD ,MG ∥平面ACD ,因为MN ∩MG =M ,所以平面MNG ∥平面ACD .(2)由(1)知,平面MNG ∥平面ACD ,BM ME =BN NF =BG GH =2,所以MG EH =MN EF =NG FH =23, 因为EH =12AD ,EF =12CD ,FH =12AC , 所以MG 12AD =MN 12CD =NG 12AC =23, 所以MG AD =MN CD =NG AC =13, 又△ACD 为正三角形.所以△MNG 为等边三角形,且边长为13×2=23, 面积S =34×⎝⎛⎭⎫232=39. 题型三 线面、面面平行的性质【例3】如图所示,平面α∥平面β,点A ∈α,C ∈α,点B ∈β,D ∈β,点E ,F 分别在线段AB ,CD 上,且AE ∶EB =CF ∶FD .求证:EF ∥β.【思路分析】将异面问题转化为平面问题,通常是构造平行线或构造三角形.证明EF ∥β,应分AB ,CD 共面和异面两种情况.【证明】①当AB ,CD 在同一平面内时,由α∥β,平面α∩平面ABDC =AC ,平面β∩平面ABDC =BD ,所以AC ∥BD ,因为AE ∶EB =CF ∶FD ,所以EF ∥BD ,又EF ⊄β,BD ⊂β,所以EF ∥β.②当AB 与CD 异面时,如图所示.设平面ACD ∩β=DH ,且DH =AC .因为α∥β,α∩平面ACDH =AC ,所以AC ∥DH ,所以四边形ACDH 是平行四边形,在AH上取一点G,使AG∶GH=CF∶FD,又因为AE∶EB=CF∶FD,所以GF∥HD,EG∥BH,又GF⊄平面β,EG⊄平面β,HD⊂平面β,BH⊂平面β,所以GF∥平面β,EG∥平面β.又EG∩GF=G,所以平面EFG∥平面β.因为EF⊂平面EFG,所以EF∥β.综上,EF∥β.【方法归纳】面面平行的性质定理的应用问题,往往涉及面面平行的判定、线面平行的判定与性质.解题时,要准确地找到切入点,灵活地运用相关定理来解决问题,注意三种平行关系之间的相互转化.【举一反三】3.如图,P为ABCD所在平面外一点,M,N分别为AB,PC的中点,平面P AD∩平面PBC=l.(1)判断BC与l的位置关系,并证明你的结论;(2)判断MN与平面P AD的位置关系,并证明你的结论.【证明】(1)结论:BC∥l.因为AD∥BC,BC⊄平面P AD,AD⊂平面P AD,所以BC∥平面P AD.又因为BC⊂平面PBC,平面P AD∩平面PBC=l,所以BC∥l.(2)结论:MN∥平面P AD.设Q为CD的中点,如图所示,连接NQ,MQ,则NQ∥PD,MQ∥AD.又NQ⊄平面P AD,MQ⊄平面P AD,PD⊂平面P AD,AD⊂平面P AD,所以NQ∥平面P AD,MQ∥平面P AD,又因为NQ∩MQ=Q,所以平面MNQ∥平面P AD.又因为MN⊂平面MNQ,所以MN∥平面P AD.体验高考(2015江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.【证明】(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥B1C.因为AC⊂平面B1AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1.【举一反三】(2015山东)如图,三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面GFH ;(2)若CF ⊥BC ,AB ⊥BC ,求证:平面BCD ⊥平面EGH .【证明】(1)连接DG ,CD ,设CD ∩GF =M ,连接MH .在三棱台DEF -ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则M 为CD 的中点,又H 为BC 的中点,所以HM ∥BD ,又HM ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH .(2)连接HE .因为G ,H 分别为AC ,BC 的中点,所以GH ∥AB .由AB ⊥BC ,得GH ⊥BC .又H 为BC 的中点,所以EF ∥HC ,EF =HC ,因此四边形EFCH 是平行四边形.所以CF ∥HE ,又CF ⊥BC ,所以HE ⊥BC .又HE ⊂平面EGH ,GH ⊂平面EGH ,HE ∩GH =H ,所以BC ⊥平面EGH .又BC ⊂平面BCD ,所以平面BCD ⊥平面EGH .10.5 直线、平面垂直的判定及其性质考点诠释重点:会判断线面垂直和面面垂直,会求线面角和二面角.难点:灵活运用直线、平面垂直的判定及性质解决有关问题,二面角的求法.典例精析题型一 线面垂直的判定与性质【例1】 如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高.(1)求证:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积;(3)求证:EF ⊥平面P AB .【思路分析】(1)由PH ⊥AD 及AB ⊥平面PAD 可证;(2)以AD 为△BCF 边CF 上的高,而点E 到平面BCF 的距离可借助PH 垂直于底面ABCD 求得;(3)取P A 的中点M ,可证DM ∥FE ,且DM ⊥平面P AB ,从而得证.【解析】(1)证明:因为AB ⊥平面P AD ,且PH ⊂平面P AD ,所以AB ⊥PH ,又因为PH 为△P AD 中AD 边上的高,所以PH ⊥AD ,又因为AB ∩AD =A ,所以PH ⊥平面ABCD .(2)连接BH ,取BH 的中点G ,连接EG .因为E 是PB 的中点,所以EG ∥PH .因为PH ⊥平面ABCD ,所以EG ⊥平面ABCD ,所以EG =12PH =12, 因为AB ⊥平面P AD ,所以AB ⊥AD ,又AB ∥CD ,所以AD ⊥CD ,即AD 为△BCF 边CF 上的高,所以V E -BCF =13S △BCF ·EG =13·12·FC ·AD ·EG =212. (3)证明:取P A 的中点M ,连接MD ,ME .因为E 是PB 的中点,所以ME 12AB . 又因为DF 12AB ,所以ME DF . 所以四边形MEFD 是平行四边形,所以EF ∥MD .因为PD =AD ,所以MD ⊥P A .因为AB ⊥平面P AD ,MD ⊂平面P AD ,所以MD ⊥AB .因为P A ∩AB =A ,所以MD ⊥平面P AB ,所以EF ⊥平面P AB .【方法归纳】判定直线与平面垂直的常用方法(1)利用线面垂直的定义:一条直线垂直于平面内的任意一条直线,则这条直线垂直于该平面.(2)利用线面垂直的判定定理:一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直.(3)利用线面垂直的性质:两平行线中的一条垂直于平面,则另一条也垂直于这个平面.(4)利用面面平行的性质定理:一条直线垂直于两平行平面之一,则必垂直于另一平面.(5)利用面面垂直的性质定理:两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.【举一反三】1.如图,平面P AC ⊥平面ABC ,点E ,F ,O 分别为线段P A ,PB ,AC 的中点,点G 是线段CO 的中点,AB =BC =AC =4,P A =PC =2 2.求证:(1)P A ⊥平面EBO ;(2)FG ∥平面EBO .【证明】(1)由题意可知,△P AC 为等腰直角三角形,△ABC 为等边三角形.因为O 为边AC 的中点,所以BO ⊥AC .因为平面P AC ⊥平面ABC ,平面P AC ∩平面ABC =AC ,BO ⊂平面ABC ,所以BO ⊥平面P AC .因为P A ⊂平面P AC ,所以BO ⊥P A .在等腰直角三角形P AC 内,O ,E 分别为AC ,AP 的中点,所以OE ⊥P A .又BO ∩OE =O ,所以P A ⊥平面EBO .(2)连接AF 交BE 于Q ,连接QO .因为E ,F ,O ,G 分别为边P A ,PB ,AC ,OC 的中点, 所以AO OG=2,且Q 是△P AB 的重心, 于是AO OG =2=AQ QF,所以FG ∥QO . 因为FG ⊄平面EBO ,QO ⊂平面EBO ,所以FG ∥平面EBO .题型二 面面垂直的判定与性质【例2】如图所示,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,EC =CA =2BD ,M 是EA 的中点.求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA .【思路分析】(1)利用Rt △DEF ≌Rt △ADB ,从而有DE =DA ;(2)利用一个平面经过另一个平面的垂线,从而证明两平面垂直.【证明】(1)如图所示,取EC 的中点F ,连接DF .因为EC ⊥平面ABC ,BD ∥CE ,所以DB ⊥平面ABC .所以DB ⊥AB ,所以EC ⊥BC .因为BD ∥CE ,BD =12CE =FC , 所以四边形FCBD 是矩形,所以DF ⊥EC .又BA =BC =DF ,所以Rt △DEF ≌Rt △ADB ,所以DE =DA .(2)如图所示,取AC 的中点N ,连接MN ,NB ,因为M 是EA 的中点,所以MN 12EC . 由BD 12EC ,且BD ⊥平面ABC ,可得四边形MNBD 是矩形,于是DM ⊥MN ,因为DE =DA ,M 是EA 的中点,所以DM ⊥EA .又EA ∩MN =M ,所以DM ⊥平面ECA ,而DM ⊂平面BDM ,所以平面ECA ⊥平面BDM .【方法归纳】面面垂直的性质应用技巧(1)两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.这是把面面垂直转化为线面垂直的依据.运用时要注意“平面内的直线”.(2)两个相交平面同时垂直于第三个平面,那么它们的交线也垂直于第三个平面,此性质是在课本习题中出现的,在不是很复杂的题目中,要对此进行证明.【举一反三】2.如图所示,在斜三棱柱A1B 1C 1-ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC .(1)若D 是BC 的中点,求证:AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1,求证:截面MBC 1⊥侧面BB 1C 1C .【证明】(1)因为AB =AC ,D 是BC 的中点,所以AD ⊥BC .因为底面ABC ⊥侧面BB 1C 1C ,底面ABC ∩侧面BB 1C 1C =BC ,AD ⊂平面ABC , 所以AD ⊥侧面BB 1C 1C ,又CC 1⊂侧面BB 1C 1C ,所以AD ⊥CC 1.(2)延长B1A 1与BM 的延长线交于点N ,连接C 1N .因为AM =MA 1,所以MA 112BB 1, 所以NA 1=A 1B 1.因为A 1B 1=A 1C 1,所以A 1C 1=A 1N =A 1B 1,所以NC 1⊥C 1B 1.因为底面NB 1C 1⊥侧面BB 1C 1C ,且底面NB 1C 1∩侧面BB 1C 1C =B 1C 1,NC 1⊂底面NB 1C 1,所以C 1N ⊥侧面BB 1C 1C ,所以截面C 1NB ⊥侧面BB 1C 1C ,即截面MBC 1⊥侧面BB 1C 1C .题型三 折叠问题【例3】在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°.将△ABD。
基本立体图形圆柱、圆锥、圆台、球、简单组合体(课件)-高一数学(人教A版2019必修第二册)
上底面
侧面
母线
下底面
圆柱、圆锥、圆台的性质
1、底面都是圆 并且平行于底面的截面都是 圆
2、圆柱、圆锥、圆台过轴的截面(轴截面) 分别是矩形、等腰三角形、等腰梯形
7.球
如图8.1-13,半圆以它的直径所在直线为旋转轴,旋转一周形成的曲面叫做球 面,球面所围成的旋转体叫做球体(solid sphere),简称球.半圆的圆心叫 做球的球心;连接球心和球面上任意一点的线段叫做球的半径;连接球面上 两点并且经过球心的线段叫做球的直径.球常用表示球心的字母来表示,如 图8.1-13中的球记作球O.
(2)错误,反例如图
A
B
C
D
8.如图,长方体ABCD ABCD中被截去一部分,其中EH //AD.剩下的 几何体是什么? 截去的几何体是什么? 你能说出它们的名称吗?
剩下的几何体是棱柱,截去 的几何体也是棱柱;他们分 别是五棱柱和三棱柱。
D
H
C
A
E
B G
D
FC
A
B
9.如图,以平行四边形ABCD的一边AB所在直线为轴,其他三边旋转一周 形成的面围成一个几何体.画出这个几何体的图形,并说出其中的简单几何 体及有关的结构特征.
O 图8.1-13
半径 直径 球心
棱柱、棱锥、棱台、圆柱、圆锥、圆台和球是常见的简单几何体.其中棱柱 与圆柱统称为柱体,棱锥与圆锥统称为椎体,棱台和圆台统称为台体.
圆柱与棱柱统 称为柱体。
圆台与棱台统 称为台体。
圆锥与棱锥统 称为锥体。
探究 棱柱、棱锥与棱台都是多面体,它们在结构上有哪些相同点和不同点?当底 面发生变化时,它们能否互相转化?圆柱、圆锥与圆台呢?
高中数学必修2空间几何典型例题及讲解
数学必修2第一章一、学习目标:1. 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。
2. 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图与直观图,能识别上述三视图与直观图所表示的立体模型。
二、重点、难点:重点:空间几何体中的棱柱、棱锥、棱台、圆柱、圆锥、圆台、球的结构特征;空间几何体的三视图与直观图的画法。
难点:柱、锥、台、球结构特征的概括;识别三视图所表示的空间几何体;几何体的侧面展开图,计算组合体的表面积和体积。
三、考点分析:三视图是新课程改革中出现的内容,是新课程高考的热点之一,几乎每年都考,同学们要予以足够的重视。
在高考中经常以选择、填空题的形式出现,属于基础或中档题,但也要关注三视图以提供信息为目的,出现在解答题中。
这部分知识主要考查学生的空间想象能力与计算求解能力。
1. 多面体棱柱、棱锥、棱台2. 旋转体圆柱、圆锥、圆台、球3. 三视图(1)正视图、侧视图、俯视图(2)三种视图间的关系4. 直观图水平放置的平面图形的直观图的斜二测画法表中S表示面积,c′、c分别表示上、下底面的周长,h表示高度,h′表示斜高,l 表示侧棱长。
5. 旋转体的面积和体积公式表中l、h分别表示母线长、高,r表示圆柱、圆锥与球冠的底面半径,r1、r2分别表示圆台上、下底面的半径,R表示半径。
知识点一柱、锥、台、球的结构特征例1. 下列叙述正确的是()①有两个面平行,其余各面都是平行四边形的几何体叫棱柱。
②两个底面平行且相似,其余各面都是梯形的多面体是棱台。
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台。
④直角三角形绕其一条边旋转得到的旋转体是圆锥。
⑤直角梯形以它的一条垂直于两底边的腰所在的直线为旋转轴,其余三边旋转形成的面围成的旋转体叫圆台。
⑥用一个平面去截圆锥,底面和截面之间的部分是圆台。
⑦通过圆锥侧面上一点,有无数条母线。
⑧以半圆的直径所在直线为旋转轴,半圆面旋转一周形成球体。
圆柱、圆锥、圆台、球及简单组合体的结构特征 课件
[思路探究] 探究点一 圆锥、圆台的轴截面是什么? 提示 圆锥的轴截面为等腰三角形,圆台的轴截面是等腰 梯形.
探究点二 解决此问题的关键是什么? 提示 解决此问题关键是,作出轴截面,然后利用相似三角 形中的相似比,构设相关几何变量的方程组而得解. 解 设圆台的母线长为l cm,由截得圆台上、下底面面积之 比为1∶16,可设截得圆台的上、下底面的半径分别为r,4r. 过轴SO作截面,如图所示. 则△SO′A′∽△SOA,SA′=3 cm. ∴SSAA′=O′OAA′.∴3+3 l=4rr=14. 解得 l=9(cm),即圆台的母线长为 9 cm.
解 (1)以AB边为轴旋转所得旋转体是圆台,如图(1)所示. (2)以CD边为轴旋转所得旋转体为一组合体:上部为圆锥,下 部为圆台,再挖去一个小圆锥.如图(2)所示. (3)以AD边为轴旋转得到一个组合体,它是一个圆柱上部挖去 一个圆锥.如图(3)所示.
类型三 有关几何体的计算问题(互动探究) 【例3】 如图所示,用一个平行于圆锥SO底面的平面截这个
(2)圆锥 ①定义:以直角三角形的_一__直__角__边__所在直线为旋转轴, 其余两边旋转形成的面所围成的旋转体叫做_圆__锥___. ②相关概念(图2) ③表示法:圆锥用_表__示__它__的__轴__的__字__母__表示,图中圆锥表 示为_圆__锥__S_O___.
(3)圆台 ①定义:用平行于圆锥底面的平面去截圆锥,底面与_截__面__ 之间的部分叫做_圆__台__. ②相关概念(图3) ③表示法:圆台用_表__示__轴__的字母表示,图中圆台表示为 _圆__台__O_O__′ .
解 (1)错.由圆柱母线的定义知,圆柱的母线应平行于轴. (2)错.直角梯形绕下底所在直线旋转一周所形成的几何体是由 一个圆柱与一个圆锥组成的简单组合体,如图所示.
数学(文)一轮总复习3.立体几何初步(1)空间几何体的结构与三视图、直观图
课堂互动讲练
【名师点评】 熟悉空间几何体 的结构特征,依据条件构建几何模 型,在条件不变的情况下,变动模型 中的线面位置关系或增加线、面等基 本元素,然后再依据题意判定,是解 决这类题目的基本思考方法.
课堂互动讲练
考点二 几何体的三视图
1.画几何体的三视图时,可 以把垂直投射面的视线想象成平行 光线,体会可见的轮廓线(包括被 遮挡住,但可以经过想象透视到的 光线)的投影就是要画出的视图, 可见的轮廓线要画成实线,不可见 的轮廓线要画成虚线.
课堂互动讲练
例1
给出以下命题:①底面是矩形的 四棱柱是长方体;②直角三角形绕着 它的一边旋转一周形成的几何体叫做 圆锥;③四棱锥的四个侧面可以都是 直角三角形.其中说法正确的是 __________.
课堂互动讲练
【思路点拨】 根据几何体的结 构特征,借助熟悉的几何体模型进行 判定.
课堂互动讲练
2011高考导航
命题探究
1.纵观近几年高考试题可知,高考命题 形式比较稳定,主要考查形式有: (1)以几何体为依托考查几何体的结构 特征,几何体的三视图、直观图、表面积与 体积.
2011高考导航
命题探究
(2)直线与平面的平行与垂直的判定、 线面间距离的计算作为考查的重点,尤其以 多面体为载体的线面位置关系的论证,更是 年年考,并在难度上也始终以中等题为主. (3)判断并证明两个平面的垂直关系, 通常是在几何体中出现. (4)高考中多以一小一大形式出现,分 值为17分左右,试题难度较小.
2011高考导航
考纲解读
1.空间几何体 (1)认识柱、锥、台、球及其简单组 合体的结构特征,并能运用这些特征描述 现实生活中简单物体的结构. (2)能画出简单空间图形的三视图, 能识别三视图所表示的立体模型,会用斜 二测画法画出它们的直观图.
2019年高考数学理科考点一遍过28空间几何体的结构及其三视图与直观图(含解析)
空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).一、空间几何体的结构1.多面体①底面互相平行.②侧面都是平行四边形.③每相邻两个平行四边形的公共边互相平行.2之间满足关系式.1.空间几何体的三视图(1)三视图的概念①光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;②光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;③光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.如图.(2)三视图的画法规则①排列规则:一般地,侧视图在正视图的右边,俯视图在正视图的下边.如下图:②画法规则ⅰ)正视图与俯视图的长度一致,即“长对正”;ⅱ)侧视图和正视图的高度一致,即“高平齐”;ⅲ)俯视图与侧视图的宽度一致,即“宽相等”.③线条的规则ⅰ)能看见的轮廓线用实线表示;ⅱ)不能看见的轮廓线用虚线表示.(3)常见几何体的三视图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的′轴和y′轴,两轴相交于点O′,且使∠′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于轴或y轴的线段,在直观图中分别画成平行于′轴或y′轴的线段.③已知图形中平行于轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴O,Oy,再作O轴使∠O=90°,且∠yO=90°.②画直观图时,把它们画成对应的轴O′′,O′y′,O′′,使∠′O′y′=45°(或135°),∠′O′′=90°,′O′y′所确定的平面表示水平平面.③已知图形中,平行于轴、y轴或轴的线段,在直观图中分别画成平行于′轴、y′轴或′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于轴或轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度变为原的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.(3)直观图的面积与原图面积之间的关系①原图形与直观图的面积比为,即原图面积是直观图面积的倍,②直观图面积是原图面积的倍.考向一空间几何体的结构特征关于空间几何体的结构特征问题的注意事项:(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过举反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.典例1 给出下列四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③若棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥;④长方体一定是正四棱柱.其中正确的命题个数是A.0 B.1C.2 D.3【答案】A1.正三棱锥内有一个内切球,经过棱锥的一条侧棱和高作截面,正确的图是典例2 边长为5 cm的正方形EFGH是圆柱的轴截面,则从E点沿圆柱的侧面到相对顶点G的最短距离是A.10 cm B.cmC.cm D.cm【答案】D【名师点睛】求几何体的侧面上两点间的最短距离问题,常常把侧面展开,转化为平面几何问题处理.2.已知正三棱柱的底面边长为1,侧棱长为2,为的中点,则从拉一条绳子绕过侧棱到达点的最短绳长为A.B.C.D.考向二空间几何体的三视图三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.典例3 如图所示,在放置的四个几何体中,其正视图为矩形的是A B C D 【答案】B【解析】A选项三棱锥、C选项圆台、D选项的正视图都不是矩形,而B选项圆柱的正视图为矩形.故选B.3.如图,在正方体中,分别为棱的中点,用过点的平面截去该正方体的上半部分,则剩余几何体(下半部分)的侧视图为典例4 如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B4.某几何体的三视图如图所示,则在该几何体的所有顶点中任取两个顶点,它们之间距离的最大值为A.B.C. D.考向三空间几何体的直观图斜二测画法中的“三变”与“三不变”:“三变”;“三不变”.典例5 如图是水平放置的平面图形的直观图,则原平面图形的面积为A.3 B.C.6 D.【答案】C【方法点晴】本题主要考查了平面图形的直观图及其原图形与直观图面积之间的关系,属于基础题,解答的关键是牢记原图形与直观图的面积比为,即原图面积是直观图面积的倍,直观图面积是原图面积的倍.5.已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是A. B.C.D.1.有下列三个说法:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②有两个面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中正确的有A.0个 B.1个C.2个 D.3个2.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的正视图为A B C D 3.某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱B.圆锥C.四面体D.三棱柱4.某正四棱锥的正(主)视图和俯视图如图所示,则该正四棱锥的侧棱长是A. B.C.D.5.用斜二测画法画一个水平放置的平面图形的直观图是如图所示的一个正方形,则原的图形是A.B.C.D.6.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆中的A.①②B.②③C.③④D.①④7.一个四面体的顶点在空间直角坐标系中的坐标分别是,绘制该四面体的三视图时,按照如下图所示的方向画正视图,则得到的正视图为A.B.C.D.8.已知用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是,则棱台的高是A. B.C. D.9.一个正方体的内切球、外接球、与各棱都相切的球的半径之比为A.B.C. D.10.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是某几何体的三视图,该几何体的各个面中有若干个是梯形,则这些梯形的面积之和为A.28 B.30C.32 D.3611.长方体中,,,设点关于直线的对称点为,则与两点之间的距离是A. B.C.D.12.某三棱锥的三视图如图所示,则该三棱锥的最长棱的长度为A.B.C.D.13.如图所示,E,F分别为正方体ABCD-A'B'C'D'的面ADD'A'、面BCC'B'的中心,现给出图①~④的4个平面图形,则四边形BFD'E在该正方体的面上的射影可能是图.(填上所有正确图形对应的序号)14.如图所示是一个几何体的表面展开平面图,该几何体中与“数”字面相对的是“”.15.已知某一几何体的正视图与侧视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有_____________.(填序号)16.一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积为____________.17.正三棱锥P−ABC中,,,AB的中点为M,一小蜜蜂沿锥体侧面由M爬到C点,最短路程是____________.1.(2018新课标全国Ⅰ理科)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A.B.C.3 D.22.(2018新课标全国Ⅲ理科)中国古建筑借助榫卯将木构件连接起,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是3.(2017新课标全国Ⅰ理科)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12C.14 D.164.(2017北京理科)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A.3B.2C.2D.21.【答案】C【解析】正三棱锥的内切球与各个面的切点为正三棱锥各面的中心,所以过一条侧棱和高的截面必过该棱所对的面的高线,故C正确.4.【答案】B【解析】由已知中的三视图可得该几何体是一个以侧视图为底面的直四棱柱,在该几何体的所有顶点中任取两个顶点,它们之间距离取最大值时,最大距离相当于一个长、宽、高分别为2,1,1的长方体的体对角线,为=,故选B.5.【答案】B【解析】根据斜二测画法,原的高变成了方向的线段,且长度是原高的一半,则原高为,而横向长度不变,且梯形是直角梯形,如图,,故选B.1.【答案】A【解析】本题主要考查棱台的结构特征.①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,故②③错.2.【答案】D【解析】所得几何体的正视图为一个长方形,且有一条从左下到右上的对角线,如下所示:故选D.5.【答案】A【解析】根据斜二测画法知,平行于轴的线段长度不变,平行于y的线段变为原的,由此得原的图形是A.故选A.6.【答案】B【解析】若俯视图为正方形,则正视图中的边长不成立;若俯视图为圆,则正视图中的边长也不成立.所以其俯视图不可能为②正方形;③圆,故选B.7.【答案】D【解析】根据空间直角坐标系中点的位置,画出直观图如图,则正视图为D中图形.故选D.【方法点睛】球与几何体的组合体的问题,尤其是相切,一般不画组合体的直观图,而是画切面图,圆心到切点的距离是半径并且垂直,如果是内切球,那么对面切点的距离就是直径,而对面切点的距离是棱长,如果与棱相切,那么对棱切点的距离就是直径,而切点在棱的中点,所以对棱中点的距离等于面对角线长,而如果外接球,那么相对顶点的距离就是直径,即正方体的体对角线是直径.10.【答案】C【解析】由三视图可知该几何体如图所示,各个面中有两个梯形,一个矩形,两个直角三角形,则这两个梯形的面积和为.故选C.11.【答案】A12.【答案】C【解析】由三视图可知:原三棱锥为,其中,,如图,∴这个三棱锥最长棱的棱长是.故选C.13.【答案】②③【解析】四边形BFD'E在正方体ABCD-A'B'C'D'的面BCC'B'上的射影是③;在面ABCD上的射影是②;易知①④的情况不可能出现.14.【答案】学【解析】由图形可知,该几何体为三棱台,两个三角形为三棱台的上下底面,∴与“数”字面相对的是“学”.15.【答案】①②③④16.【答案】【解析】由题意得,水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,其面积为,又原图形与直观图的面积比为,所以原图形的面积为.17.【答案】【解析】由题意,将侧面PBC展开,那么点M到C的距离,就是在中的长度,由题中数据易得,,,如果将侧面PAC展开,同理可得.1.【答案】B【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.2.【答案】A【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.3.【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为,故选B.【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.4.【答案】B【解析】几何体是四棱锥,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为,故选B.【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.。
柱锥球及其简单组合体解析
圆锥的侧面积、体积的计算公式如下:
S圆锥侧 rl
V圆锥
1 r2h
3
其中r为底面半径,l为母线长,h圆锥的高.
巩固知识 典型例题
例4 已知圆锥的母线的长为 2 cm,圆锥的高为 1 cm,求该圆锥的体积.
解 由图知
r l2h2 3cm
故圆锥的体积为
V 圆 锥 1 3(3)21cm 3
论旋转到什么位置,斜边都叫做
侧面的母线.母线与轴的交点叫
做顶点.顶点到底面的距离叫做
圆锥的高.
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
观察圆锥,可以得到圆锥的下列性质
(1) 平行于底面的截面是圆;
(2) 顶点与底面圆周上任意一点 的距离都相等,且等于母线的 长度;
(3) 轴截面为等腰三角形,其底边上 的高等于圆锥的高.
经过球面上两点的大圆在这两点间的一段劣弧(指不超过半个大圆的弧) 的长度叫做两点的球 面距离.它是球面上 这两点之间最短连线 的长度,右图的劣弧 »A B 的长度就是A、B 两点的球面距离.飞 机、轮船都是尽可能以大圆弧为两点间的航线航行的.
9.5 柱、锥、球及简单组合体
自我反思 目标检测
已知圆锥的底面半径为 2 cm,高为 2 cm,求这个圆锥的体积(保留4个有效数字).
2.如图所示,一个铸铁零件,是由半个圆柱与一个正四棱柱组合成的 几何体,圆柱的底面直径与高均为2 cm,正四棱柱底面边长为2 cm、侧棱为 3 cm.求该零件的重量(铁的比重约7.4 g/cm3).(精确到0.1 g)
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
把地球近似地看作一个球时,经线就是球面上从北极到南极的半个大圆; 赤道是一个大圆,其余的纬线都是小圆.如左图所示.
人教A版数学必修第二册8_1_2圆柱、圆锥、圆台、球与简单组合体的结构特征课件
母线:无论旋转到什么位置,_______________;
棱锥和圆锥统称锥体
锥体:____________________。
3.圆台的结构特征
定义
用_______________的平面去截圆锥,___________之间部分
平行于圆锥底面
底面与截面
叫做圆台。
轴
轴:圆锥的______;
简单组合体
由简单几何体截去或挖去一部分而成
典例剖析
题型一
【例1】
旋转体的结构特征
(1)下列说法不正确的是( C )
A.圆柱的侧面展开图是一个矩形
B.圆锥过轴的截面是一个等腰三角形
C.直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥
一条直角边
D.圆台平行于底面的截面是圆面
(2)给出下列命题:
(1)准确掌握圆柱、圆锥、圆台和球的生成过程及其结构特征是解决此
类概念问题的关键.
(2)解题时要注意两个明确:
①明确由哪个平面图形旋转而成.
②明确旋转轴是哪条直线.
活学活用
1.给出下列说法:
√
①圆柱的底面是圆面;
√
②经过圆柱任意两条母线的截面是一个矩形面;
③圆台的任意两条母线的延长线可能相交,也可能不相交;
× 一定相交
④夹在圆柱的两个截面间的几何体还是一个旋转体.
×
平行截面
①②
其中说法正确的是_______.(填序号)
题型二
【例2】
简单组合体的结构特征
如图①②所示的图形绕虚线旋转一周后形成的立体图形
分别是由哪些简 先将平面图形割补成三角形、梯形、矩形,再旋转辨认几何体.
方法技能
9.5 柱、锥、球及其简单组合体(1)
S正棱柱侧 ch
S正棱柱全 ch 2S底
其中,c 表示底面周长,
h表示正棱柱的高,
S底 表示正棱柱底面的面积.
棱柱的侧面展开图是什么?如何计算它的表面积?
h
正棱柱的侧面展开图
S表面积 S侧 2S底
把直三棱柱侧面沿一条侧棱展开,得到什么图形? 侧面积怎么求?
空间图形,叫做多面体;围成多面体的
各个多边形叫多面体的面,两个相邻面
的公共边叫多面体的棱,棱与棱的公共
点叫多面体的顶点,连结不在同一面上 的两个顶点的线段叫多面体的对角线。
对角线
棱
像圆柱、圆锥、球那样的封闭几何
体叫做旋转体 。
一个多面体至少有四个面,多面体依照它的面数 分别叫做四面体、五面体、六面体等.
所以正三棱柱的体积为 V S底h 4 3 5 20 3 cm3
9.5 柱、锥、球及简单组合体
例3 已知一个长方体的长是12cm,宽是9cm,高是8cm. 求这个长方体对角线的长d.
结论:若长方体的长宽高分别是a,b,c则其对角 线的长是
a2 b2 c2
即:长方体的一条对角线长的平方等于一个顶 点上的三条棱长 的平方和。
第9章 立体几何
授课教师:游彦
授课教师:游彦
在现实生活中,我们的周围存在着各种各样的物体, 它们具有不同的几何形状。
如果我们只考虑物体的形状和大小,而不考虑其它 因素,那么由这些物体抽象出来的空间图形就叫做空间 几何体。
创设情境 兴趣导入
什么样的几何体叫做多面体?
面
顶点
由若干个平面多边形围成的封闭的
A'
B'
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
正棱柱的体积计算公式为
V正棱柱 S底h
其中, S 底 表示正棱锥的底面的面积, h 是正棱锥的高.
9.5 柱、锥、球及简的底面边长为4 cm,高为5 cm,求这个正三
棱柱的侧面积和体积. 解 正三棱锥的侧面积为 S侧=ch=3×4×5 = 60( cm 2). 由于边长为4 cm的正三角形面积为
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
上图所示的四个多面体都是棱柱. 表示棱柱时,通常分别顺次写出两个底面各个顶点的字母,中间用一条短 横线隔开,如图 (2)所示的棱柱,可以记作棱柱 ABCD A1B1C1D1 或简记作 棱柱 AC1
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
经常以棱柱底面多边形的边数来命名棱柱,如图9−57所示的棱柱依次为三 棱柱、四棱柱、五棱柱.
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
正棱柱所有侧面的面积之和,叫做正棱柱的侧面积.正棱柱的侧面积 与两个底面面积之和,叫做正棱柱的全面积. 观察正棱柱的表面展开图,可以得到正棱柱的侧面积、全面积计算公 式分别为 S正棱柱侧 ch
S正棱柱全 ch 2S底
其中,c 表示正棱柱底面 的周长, h 表示正棱柱的高,
9.5 柱、锥、球及简单组合体
动脑思考
积)计算公式分别为
探索新知
观察正棱锥的表面展开图,可以得到正棱锥的侧面积、全面积(表面
S 正棱锥侧
1 ch 2
S 正棱锥全
其中,
1 ch S 底 2
c 表示正棱锥底面的 周长, h 是正棱锥的斜高, S 底
表示正棱锥的底面的面积,h 是正棱锥的高.
9.5 柱、锥、球及简单组合体
创设情境
兴趣导入
准备好同底等高的正三棱锥与正三棱柱形容器,将正三棱锥容器中装满沙 子,然后倒入正三棱柱形状的容器中,发现:连续倒三次正好将正三棱柱容 器装满.
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
实验表明,对于同底等高的棱锥与棱柱,棱锥的体积是棱柱体积 的三分之一.即
CD PD2 PO2 132 122 5 cm .
2
3
在底面正三角形ABC中, CD=3 所以底面边长为 AC 3 cm.
OD=15(cm).
V正棱锥 S底h (10 3) sin 60 12 520 cm . 3 3 2
1 1 S ch 3 10 3 13 337.7 cm2 . 所以侧面积与体积分别约为 侧 2 2 1 1 1 2 3
第九章
立体几何
9.5 柱、锥、球及简单组合体
创设情境
兴趣导入
观察上图所示的多面体,可以发现它们具如下特征: (1)有两个面互相平行,其余各面都是四边形; (2)每相邻两个四边形的公共边互相平行.
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
有两个面互相平行,其余每相邻两个面的交线都互相平行的多面体 叫做棱柱,互相平行的两个面,叫做棱柱的底面,其余各面叫做棱柱的 侧面.相邻两个侧面的公共边叫做棱柱的侧棱.两个底面间的距离, 叫做棱柱的高.
9.5 柱、锥、球及简单组合体
运用知识
强化练习
1. 设正三棱柱的高为6,底面边长为4,求它的侧面积、全面积及体积.
2. 正四棱锥的高是a,底面的边长是2a,求它的全面积与体积.
3 42 4 3 cm 2 4
所以正三棱柱的体积为 V S底h 4 3 5 20
3 cm3
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
利用几何画板可以方便地作出棱柱的直观图形.方法是:首先选中所以绘制 棱柱的名称(左图),然后选择合适的位置,点击并拖动,即可得到棱柱的直观 图形(右图),最后再标注字母.
(3)
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
底面是正多边形,其余各面是全等的等腰三角形矩形的棱锥叫做 正棱锥.图中(1)、(2)分别表示正三棱锥、正四棱锥.
(3)
9.5 柱、锥、球及简单组合体
动脑思考
正棱锥有下列性质: (1)各侧棱的长相等;
探索新知
(2)各侧面都是全等的等腰三角形.各等腰三角形底边上的高都叫做正 棱锥的斜高; (3)顶点到底面中心的连线垂直与底面,是正棱锥的高; (4)正棱锥的高、斜高与斜高在底面的射影组成一个直角三角形; (5)正棱锥的高、侧棱与侧棱在底面的射影也组成一个直角三角形.
V正棱锥
1 S底h 3
h 是正棱锥的高. 其中, S 底 表示正棱锥的底面的面积,
9.5 柱、锥、球及简单组合体
巩固知识
典型例题
例 2 如图,正三棱锥P-ABC中,点O是底面中心, PO=12 cm,斜高PD=13 cm.求它的侧面积、体积
(面积精确到0.1 cm ,体积精确到1 cm ).
解 在正三棱锥P-ABC中,高PO=12 cm,斜高PD=13 cm. 在直角三角形PBD中,
9.5 柱、锥、球及简单组合体
创设情境
兴趣导入
观察如图所示的多面体,可以发现它们具如下特征:有一个面是多边形, 其余各面都是三角形,并且这些三角形有一个公共顶点.
(3)
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
具备上述特征的多面体叫做棱锥.多边形叫做棱锥的底面(简称底), 有公共顶点的三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶 点,顶点到底面的距离叫做棱锥的高.底面是三角形、四边形、……的棱 锥分别叫做三棱锥、四棱锥、…….通常用表示底面各顶点的字母来表示 棱锥.例如,图(2)中的棱锥记作:棱锥 S ABCD .
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
侧棱与底面斜交的棱柱叫做斜棱柱,如图(2);侧棱与底面垂直的棱 柱叫做直棱柱,如图9−56(1);底面是正多边形的直棱柱叫做正棱柱, 如图(3)和(4),分别为正四棱柱和正五棱柱.
9.5 柱、锥、球及简单组合体
动脑思考
探索新知
正棱柱有下列性质: (1)侧棱垂直于底面,各侧棱长都相等,并且等于正棱柱的高; (2)两个底面中心的连线是正棱柱的高.