材料力学第六版PPT交变应力

合集下载

材料力学课件第九章动荷载交变应力

材料力学课件第九章动荷载交变应力
二定律和运动 学基本公式推导出的微分 方程,用于描述物体的运 动规律。
交变应力的基本计算方法
平均应力和应力幅
交变应力由大小不断变化的瞬时应力 组成,平均应力是交变应力的时间平 均值,应力幅是交变应力的最大值和 最小值之差。
交变应力的分类
交变应力的疲劳强度
交变应力作用下,材料会发生疲劳断 裂,疲劳强度是衡量材料抵抗疲劳断 裂能力的指标。
详细描述
风荷载和地震荷载是常见的外部动荷载,它们的作用会导致桥梁、大坝、高层建筑等结构的振动,从 而产生交变应力。此外,车辆的行驶也会对桥梁等结构产生动荷载和交变应力。这些动荷载和交变应 力的影响需要考虑在结构设计阶段,以确保结构的强度和稳定性。
航空航天工程中的动荷载与交变应力问题
要点一
总结词
要点二
详细描述
航空航天工程中,由于飞行器的高速运动和复杂环境,会 产生严重的动荷载和交变应力问题。
飞行器在高速飞行过程中,由于气动力的作用会产生动荷 载,同时由于飞行姿态的变化、发动机工作等也会产生交 变应力。此外,在火箭发射过程中,由于推进剂燃烧产生 的振动和冲击,也会对箭体产生动荷载和交变应力。这些 动荷载和交变应力的影响需要考虑在飞行器的设计阶段, 以确保飞行器的安全性和可靠性。
动荷载与交变应力的产生原因
01
02
03
自然现象
如地震、风载等自然现象 产生的动荷载和交变应力 。
机械振动
机械设备运转、车辆行驶 等产生的振动和冲击。
人为因素
如建筑物的施工、设备的 安装和运行等也会产生动 荷载和交变应力。
02
动荷载与交变应力的影响
对材料性能的影响
短期效应
动荷载和交变应力会导致材料在短期内出现弹性变形和塑性变形,影响材料的 刚度和强度。

材料力学刘鸿文第六版最新课件第十一章 交变应力

材料力学刘鸿文第六版最新课件第十一章 交变应力
一个应力循环
按正弦规律变化的交变应力 如图所示。
σmax σm σmin σ a
在交变应力中,应力每重复变化一次称为一个“应力循环”。
应力重复变化的次数称为“应力循环次数”,用N表示。
应力的极大值称为最大应力,用σmax表示;
应力的极小值称为最小应力,用σmin表示。
循环特征 r——最小应力与最大应力的比值
第十一章 交变应力
§11.1 交变应力与疲劳失效 §11.2 交变应力的循环特征,应力幅和平均应力 §11.3 疲劳(持久)极限 §11.4 影响疲劳极限的因素 §11.5 对称循环下构件的疲劳强度计算 §11.6 疲劳极限曲线 §11.7 不对称循环下构件的疲劳强度计算 §11.8 弯扭组合交变应力的强度计算 §11.9 变幅交变应力 §11.10 提高构件疲劳强度的措施
15
外形突变影响的描述 有效应力集中系数 对称循环时的有效应力集中系数为:
k
( 1)d ( 1 )k
对扭转:
k
( 1)d ( 1)k
其中,(-1)d , (-1)d , 表示无应力集中的光滑试样的持久极限; (-1)k , (-1)k , 表示有应力集中的相同尺寸的试样的持久极限。
显然,有: k 1, k 1 值越大说明应力
坐标平面上确定A、B、C三点。折线ACB即为简化曲线。
a
A
1
O
r 1
r 0
G
G ( m, a )
C
(
0
,0
max
M W
860 12.3 106
70 MN
m2
min 70 MN m 2
r 1
28
2.确定 K
由图11-9,a 中曲线2查得端铣加工的键槽,当材料

材料力学之交变应力

材料力学之交变应力
第三章
§3-1 §3-2 §3-3 §3-4 §3-5
动载荷
概述 构件作 冲击时应力和变形的计算 冲击韧度 提高构件抗冲击能力的措施
§4-1
概述
一、交变应力的概念 交变应力:随时间作周期性变化的应力,金属 在交变应力作用下发生的破坏称为疲劳破坏。 如:机车车轴
§4-1
概述
My Pa d sin t I I 2
min
m
o
max :最大应力
m :应力幅度
t
min :最小应力
a :平均应力
§4-2 交变应力的循环特征

a
a
max
min m
min 循环特征:r max
t
o
1 1 m max min max (1 r ) 2 2 1 1 a max min max (1 r ) 2 2 min m a max m a
n
1
k
a m
§4-6
对于塑性材料制成的构件,除应满足疲劳强度 外,危险点的应力不应超过屈服极限.
a
非对称循环下构件的 疲劳强度计算
L

* 1

K
1
A1
s
P1
K
C1

* 1
P2
m
O
s
C
J
B
§4-6
疲劳强度计算
非对称循环下构件的 疲劳强度计算
N
r
O
r 1
E
D
C
A
N0
材料的疲劳极限与强度极限的近似关系:
弯曲: 拉压: 扭转:

材料力学应力分析PPT课件

材料力学应力分析PPT课件

假设σx>σy,则σmax与σx的夹角小于450。
2
+
xy
cos 2
n E( ,
x
OF OC - FC
x
+ y
2
-
R cos[180o
- (2
+ 20 )]
0
2
D1(x ,xy)
F
C
20
x
+ y
2
+
R cos(2
+ 20 )
D2(y ,yx)
x
+ y
2
+
R(cos 2
cos 20
- sin
2
sin
20 )
x
+ y
2
+
x
- y
2
cos 2
- xy
dA·cos t
e
n
x
xy
a
dA
y
f yx
dA·sin
t
x
xy n yx
y
平衡方程—— Fn 0 及 Ft 0
第20页/共123页
§2 平面应力状态分析
应力状态
Fn 0 dA - (dAcos) cos+ xy(dAcos) sin
+yx
x
(dAsin
)
cos-
(dAsin) sin
第11页/共123页
§1 概述
y
x
x
应力状态
y
yx xy
x
单向应力状态
纯剪应力状态
第12页/共123页
应力状态
§2 平面应力状态分析

材料力学动载荷、交变应力

材料力学动载荷、交变应力
03
材料力学关注材料在不同载荷条件下的行为,为工 程设计和结构分析提供基础。
材料的基本属性
弹性
材料在受力后恢复到原始状态的 能力。
塑性
材料在应力超过屈服点后发生不 可逆变形的性质。
强度
材料抵抗破坏的能力,通常用极 限应力表示。
疲劳强度
材料在交变应力作用下抵抗疲劳 破坏的能力。
韧性
材料吸收能量的能力,通常用冲 击试验测定。
详细描述
在汽车部件的交变应力分析中,需要考虑发 动机、传动系统等不同部件的工作载荷和交 变应力。通过建立数学模型和进行数值模拟 ,可以预测部件在不同工况下的疲劳寿命和 可靠性,从而为汽车的设计和优化提供依据

案例三:航空材料的疲劳寿命预测
总结词
航空材料的疲劳寿命预测是材料力学在航空航天领域的重要应用,通过分析材料在不同 循环载荷下的响应,可以预测其疲劳寿命和可靠性。
详细描述
在桥梁结构的动载荷分析中,需要考虑车辆、 风、地震等多种外部载荷的作用,以及桥梁 自身的动力学特性。通过建立数学模型和进 行数值模拟,可以预测桥梁在不同载荷下的 变形、应力和振动响应,从而为桥梁的设计 和加固提供依据。
案例二:汽车部件的交变应力分析
总结词
汽车部件的交变应力分析是材料力学在汽车 工程领域的重要应用,通过分析部件在交变 载荷下的响应,可以预测其疲劳寿命和可靠 性。
详细描述
在航空材料的疲劳寿命预测中,需要考虑飞机在不同飞行条件下的循环载荷和交变应力。 通过建立数学模型和进行数值模拟,可以预测材料在不同循环载荷下的疲劳寿命和可靠 性,从而为飞机的设计和优化提供依据。同时,疲劳寿命预测还可以为飞机的维护和检
修提供指导,确保飞机的安全性和可靠性。

材料力学课件-交变应力

材料力学课件-交变应力
材料力学课件-交变应力
本课件将介绍交变应力的概念和定义,并探讨其对材料力学的重要性。我们 还将讨论交变应力的分类、应力变形集中以及举例分析其对材料的影响。
总览
概念和定义
介绍交变应力的概念和定义, 帮助学生理解其基本含义。
重要性
概述交变应力对材料力学的 重要性,为后续内容打下基 础。
变形形式和模式
简要介绍交变应力的变形形 式和模式,让学生对其有初 步了解。
交变应力的分类
分类方式
展示交变应力的分类方式, 帮助学生理清概念。
正交应力、剪切应力和 主应力
详细探讨正交应力、剪切应 力和主应力的概念,帮助学 生深入理解。
Von Mises准则和Tresca 准则
介绍惠更斯圆Von Mises准则 和Tresca准则,帮助学生了解 常用的应力分类方法。
应力变形集中
1
概念和含义
讲解应力变形集中的概念和含义,引导学生思考。
ห้องสมุดไป่ตู้
2
应力集中的形式
展示应力集中的形式,如钢筋混凝土Baushinger现象等,生动呈现问题。
3
破坏问题和设计
详细探究应力集中引起的破坏问题,以及如何进行应力集中设计,培养学生解决 问题的能力。
举例分析
交变应力对材料的影响
结合实际案例分析交变应力对材料的影响,帮助学生理解其重要性。
应力变形因素与疲劳寿命
分类讨论应力变形因素对材料疲劳寿命的影响,拓宽学生的知识。
小结
知识总结
通过全面讲述交变应力相关知识,进行本章知识的 总结和回顾,巩固学生对所学内容的理解。
应力集中设计
重点强调交变应力对材料的影响和如何进行应力集 中设计,提醒学生重视此类问题。

《交变应力》课件

《交变应力》课件

什么是交变应力
定义
交替作用下引起材料内部产生的应力
特点
频率高、振幅小、易疲劳
交变应力的类型
1 弯曲交变应力
2 扭转交变应力
3 疲劳交变应力
交变应力的影响因素
ห้องสมุดไป่ตู้
1 受力部位与结构形式 3 频率与振幅
2 受力方向与大小 4 热度与冷却速度
交变应力的测量方法
1 曲线法
2 线性法
3 应变环法
交变应力下材料的疲劳寿命
《交变应力》PPT课件
交变应力 什么是交变应力 定义:交替作用下引起材料内部产生的应力 特点:频率高、振幅小、易疲劳 交变应力的类型 弯曲交变应力、扭转交变应力、疲劳交变应力 交变应力的影响因素 受力部位与结构形式、受力方向与大小、频率与振幅、热度与冷却速度 交变应力的测量方法 曲线法、线性法、应变环法 交变应力下材料的疲劳寿命 S-N曲线、疲劳裂纹扩展规律、疲劳寿命的预测方法 交变应力下的工程应用 飞机发动机叶盘失效案例、汽车车轮失效案例、电力设备绝缘子失效案例 如何减少交变应力对材料的影响 材料表面处理、必要时增加材料厚度、其他工艺措施
1 S-N曲线
2 疲劳裂纹扩展规律
3 疲劳寿命的预测方法
交变应力下的工程应用
1 飞机发动机叶盘失效
案例
2 汽车车轮失效案例
3 电力设备绝缘子失效
案例
如何减少交变应力对材料的影响
1 材料表面处理
2 必要时增加材料厚度
3 其他工艺措施

材料力学-第十一章交变应力

材料力学-第十一章交变应力

在一定的循环特征 r 下:
max , N ; max , N
疲劳极限或有限寿命持久极限:
材料在规定的应力循环次数N下,不发生疲劳破环的最
大应力值,记作

N r
(
N r
)

无限寿命疲劳极限或持久极限 r :


m
a
不超过某一极限值,材料可以经受“无数次”应力
x
循环而不发生破坏,此极限值称为无限寿命疲劳极限或持久极限。
r 1
(2)脉动循环:如齿轮
max 2 m 2 a min 0
r 0

max
a
m in
t
max m
a t
材料力学 2019/10/30
8
(3)静应力:如拉压杆
max min m
a 0
r 1
(4)非对称循环:
max min 0
甚至小于屈服极限 s 。
2、破坏时,不论是脆性材料和塑性材料,均无明显的塑性变形, 且为突然断裂,通常称疲劳破坏。
3、疲劳破坏的断口,可分为光滑区及晶粒粗糙区。在光滑区可 见到微裂纹的起始点(疲劳源),周围为中心逐渐向四周扩 展的弧形线。
材料力学 2019/10/30
3
材料力学 2019/10/30
劳极限),疲劳曲线不出现水平渐近线。
步骤:
max

min

M W

Pa/ 2
1 d 3

16Pa
d 3
32
材料力学 2019/10/30
11
材料力学 2019/10/30
12
步骤:

材料力学课件第11章 交变应力zym

材料力学课件第11章  交变应力zym
理论应力集中因数只与构件外形有关。 有效应力集中因数不但与构件外形有关还与材料有关。
( 1 )d k ( 1 )k
(11.5)
二、构件尺寸的影响: 1、影响趋势: •构件的持久极限随尺寸的增 大而降低。 2、修正因数:

( 1 )d
1
(11.6)


( 1 )d
k
1
1 n
• n 构件在弯曲单独作用时的工作安全系数 • n 构件在扭转单独作用时的工作安全系数
整理上三式得:
n n n n
2 2
n
或:
n
n n n n
2 2
n
(11.19)
二、强度计算步骤: 1、确定工作应力; 2、确定修正因数; 3、强度条件计算; 4、结论。
第十一章
交变应力
§11—1 交变应力与疲劳失效 一、交变应力 •随时间作周期变化的应力称为交变应力或循环应力。
2 3 4 2 3 1 4 1
二、疲劳失效 1、疲劳失效的定义: •构件在交变应力作用下发生的脆性 断裂失效称为疲劳失效或称为疲劳 破坏。 2、疲劳失效的特点: (1)破坏时名义应力值远小于静荷载 作用下的强度极限值; (2)呈脆性断裂;
•结构构件持久极限: r , r
4、持久极限的确定: •试件的持久极限由试验确定。 •构件的持久极限由材料持久极限修正确定。
二、标准试件对称循环弯曲正应力持久极限的测定
1、试验装置: 2、试件:
d 7 10mm
3、试验方法: •应力-寿命曲线。 •循环基数: 钢制试件: 0 107 N 应力-寿命曲线
§11—3 持久极限 一、持久极限的概念 1、定义: •杆件在无限次应力循环作用下而不发生疲劳破坏的最大应 力称为杆件的疲劳极限或持久极限。 2、影响持久极限的因素: •应力循环类型、外形、尺寸和表面质量等等。 3、持久极限的表示符号: •材料持久极限(光滑小试件持久极限): r , r(r为循环特征) •非标准试件持久极限: 如光滑大试件: ( 1 ) d

《材料力学》交变应力和冲击应力

《材料力学》交变应力和冲击应力


光滑小试件条件:
(1) 有足够大的圆角过渡; (2) 中间直径7-10mm; (3) 磨削加工; (4) 同一炉钢10根为一组; 钢 N0=107 有色金属 N0=108
max 1 max 2
0
水平渐近线
N1 N 2
S N曲线
N0 t
§12.2影响构件持久极限的主要因素 一 构件外形(应力集中)的影响 构件外形的突然变化,如:轴肩,槽,孔,缺口,螺纹等.会引起应力集 中,使材料持久极限降低,其影响因素用有效应力集中系数表示.
2
2hg v2 Kd 1 1 1 1 st g g st
3 突加载荷
h0
20 Kd 1 1 2 st
4 水平冲击 势能 动能 V=0
1Q 2 T v 2 g
v
2 1 1 d 变形能 U P Q d d d 2 2 st
1 Q 2 1 2d v Q 2g 2 st
或者
st max
[ ] Kd
图示悬臂梁,A端固定,自由端B上方有一重物自由落下,撞 击到梁上.已知:梁材料为木材,弹性模量E=10GPa;梁长 l=2m,截面为矩形,面积120mm×200mm;重物高度为400mm, 重量Q=1kN. 求:(1) 梁所受到的冲击载荷; (2) 梁横截面上的最大冲击正应力与最大冲击挠度. 解: 1 梁的最大静应力和最大静挠度
n
1

K
max
n

n
1
K
max
n
例题:合金钢阶梯轴如图示,D=50mm,d=40mm,r=5mm.材料的 σb=900MPa,σ-1=400MPa,M=±450N· m,n=2.试校核该轴的疲 劳强度. 解: 1 计算最大弯曲应力

《材料力学》交变应力和冲击应力23页PPT

《材料力学》交变应力和冲击应力23页PPT

13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)

工程力学课件 16交变应力22页PPT

工程力学课件 16交变应力22页PPT
NA
N(次数)
N0—循环基数。
r—材料持久限。
N0
三、构件持久极限—r 0
0 r
K
r
1. K —有效应力集中系数(P337-338):
K 同 无 尺 应 寸 力 有 集 应 中 力 的 集 光 中 滑 的 试 试 件 件 的 的 持 持 久 久 极 极 限 限 ( (r r) )d k
2. —尺寸系数(P339):
§16–3 对称循环下构件的疲劳强度计算
一、对称循环的疲劳容许应力:
1
0 1
nf
1
nf
K
1
二、对称循环的疲劳强度条件:
max 1
max
0 1
n
n
0 1
max
n
n
1
K
n
max
扭转交变应力:
n
1
K
n
max
例3 旋转碳钢轴上,作用一不变的力偶 M=0.8kN·m,轴表面经
过精车, b=600MPa,–1= 250MPa,规定 n=1.9,试校核轴
2.脉动循环:
r min 0 max
a m
t
m ax
2
3.静循环:
r min 1 max
t
a 0
m max
例1 发动机连杆工作时最大拉力Pmax =58.3kN,最小拉力Pmin
=55.8kN ,螺纹内径为 d=11.5mm,试求 a 、m 和 r。
解: m axP m A ax4 0 5 .0 8 1 3 1 0 5 02561 M P a m inP A m in4 0 5 .0 5 1 8 1 0 5 0 25 3 7 .2 M P a
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(The point changes his location periodically with time under an unchangeable load)
例题1 一简支梁在梁中间部分固接一电动机,由于电动机的重力 作用产生静弯曲变形,当电动机工作时,由于转子的偏心而引起离 心惯性力.由于离心惯性力的垂直分量随时间作周期性的变化,梁 产生交变应力.
and mean stress for alternating stress) §11–3 持久极限(Endurance limit)
§11–4 影响持久极限的因素
(The effective factor- s of endurance limit2 )
(Alternating Stress)
§11–5 对称循环下构件的疲劳强度计算
(1)交变应力的破坏应力值一般低于静载荷作用下的强度 极限值,有时甚至低于材料的屈服极限.
(2)无论是脆性还是塑性材料,交变应力作用下均表现为脆性断 裂,无明显塑性变形.
(3)断口表面可明显区分为光滑区与粗糙区两部分.
-
8
(Alternating Stress)
粗糙区
光滑区
裂纹源
材料发生破坏前,应力随时间变化经过多次重复,其循环次数 与应力的大小有关.应力愈大,循环次数愈少.
-
11
(Alternating Stress)
一、基本参数(Basic parameters)
一个应力循环
1.应力循环(Stress cycle)
s
应力每重复变化一次,称
为一个应力循环(stress cycle)
s max
2.循环特征(Cycle symbol) O
s min
t
最小应力和最大应力的比值称为循环特征(cycle symbol).
用手折断铁丝,弯折一次一般不断,但反复来回弯折多次后,铁 丝就会发生裂断,这就是材料受交变应力作用而破坏的例子.
因疲劳破坏是在没有明显征兆的情况下突然发生的,极易造
成严重事故.据统计,机械零件,尤其是高速运转的构件的破坏,大部
分属于疲劳破坏.
-
9
(Alternating Stress)
2.疲劳过程一般分三个阶段 (The three phases of fatigue process)
§11–8 弯扭组合交变应力的强度计算
(Calculation of the strength of composit
deformations) -
3
(Alternating Stress)
§11–1 交变应力与疲劳失效 (Alternating stress and fatigue failure)
-
5
(Alternating Stress)
ωt
s
静平衡位置
s max s st s min
-
t6
(Alternating Stress)
例题2 火车轮轴上的力来自车箱.大小、方向基本不变. 即弯矩
基本不变.
F
F
假设轴以匀角速度 转动.
横截面上 A点到中性轴的 距离却是随时间 t 变化的.
y r sint
A
t
z
A点的弯曲正应力为
s
s M y M r sint
s2
I
I
s3
s 随时间 t 按正弦曲线变化 O s1
s1
t
-
s4
7
(Alternating Stress) 三、疲劳破坏(Fatigue failure)
材料在交变应力作用下的破坏习惯上称为疲劳破坏
(fatigue failure) 1.疲劳破坏的特点(Characteristics of the fatigue failure)
一、交变应力(Alternating stress )
构件内一点处的应力随时间作周期性变化,这种应力称为交 变应力.
F A
s
-O
4t
(Alternating Stress)
二、产生的原因(Reasons)
1.载荷做周期性变化
(Load changes periodically with time) 2.载荷不变,构件点的位置随时间做周期性的变化
§11–2 交变应力的循环特征、应力幅和 平均应力
(The cycle symbol,stress amplitude and mean stress for alternating stress)
交变应力的疲劳破坏与静应力下的破坏有很大差异,故表征材
料抵抗交变应力破坏能力的强度指标也不同.
下图为交变应力下具有代表性的正应力—时间曲线.
用r 表示.
在拉,压或弯曲交变应力下 r s min s max
在扭转交变应力下 r min
max
12
(Alternating Stress)
3.应力幅(Stress amplitude)
一个应力循环
s
最大应力和最小应力的差
值的的二分之一,称为交变应力
的 应力幅(stress amplitude) s max
用sa 表示
sa
s max
s min
2
O
s min
sa sa
Chapter 11 Alternating Stress
(Alternating Stress)
第十一章 交变应力
(Alternating stress)
§11–1 交变应力与疲劳失效(Alternating stress and fatigue failure) §11–2 交变应力的循环特征、应力幅和平 均应力(The cycle symbol,stress amplitude
(Calculation of the fatigue strength of the member under symmetric cycles)
§11–6 持久极限曲线
(Enduring limit curve)
§11–7 不对称循环下构件的疲劳强度计算
(Calculation of the fatigue strength of the member under unsymmetric cycles)
(1)裂纹萌生 在构件外形突变或材料内部பைடு நூலகம்陷等部位,都可能 产生应力集中引起微观裂纹.分散的微观裂纹经过集结沟通,将形 成宏观裂纹.
(2)裂纹扩展 已形成的宏 观裂纹在交变应力下逐渐扩展.
(3)构件断裂 裂纹的扩展 使构件截面逐渐削弱,削弱到一
定极限时,构件便突然断裂.
-
10
(Alternating Stress)
相关文档
最新文档