八年级几何证明题

合集下载

(完整版)八年级数学几何经典题【含答案】

(完整版)八年级数学几何经典题【含答案】

F八年级数学几何经典题【含答案】1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF ..4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .B5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。

求证:EF=FD 。

8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。

9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EFD FEP CB AFPDE CBA,九年级数学【答案】1.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。

2.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。

可得PQ=2EGFH。

由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。

八年级数学十二道全等几何证明题(难度适中型)

八年级数学十二道全等几何证明题(难度适中型)

全等几何证明(1)如图,已知点D为等腰直角△ABC一点,∠CAD=∠CBD=15°.E 为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;全等几何证明(2)如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.全等几何证明(3)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.全等几何证明(4)如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;全等几何证明(5)如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO全等几何证明(6)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE ⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;全等几何证明(7)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.全等几何证明(7)如图,AD∥BC,AE平分∠BAD,AE⊥BE;说明:AD+BC=AB.全等几何证明(8)将两个全等的直角三角形ABC和DBE如图方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC 所在直线于点F.求证:AF+EF=DE全等几何证明(9)如图,在△ABC中,AD平分∠BAC,AB=AC-BD,则∠B∶∠C的值为多少?全等几何证明(10)已知:如图,P是正方形ABCD点,∠PAD=∠PDA=150.求证:△PBC是正三角形.ADP全等几何证明(11)如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与C BCD相交于F.求证:CE=CF.全等几何证明(12)设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.D。

八年级上册几何证明题

八年级上册几何证明题

八年级上册几何证明题一、三角形内角和定理相关证明题。

1. 已知:在△ABC中,∠A = 50°,∠B = 60°,求证:∠C = 70°。

解析:根据三角形内角和定理,三角形内角和为180°。

在△ABC中,因为∠A+∠B +∠C=180°,已知∠A = 50°,∠B = 60°,所以∠C=180°∠A ∠B = 180°-50° 60° = 70°。

2. 如图,在△ABC中,AD是∠BAC的平分线,∠B = 70°,∠C = 30°,求∠ADC的度数。

解析:根据三角形内角和定理,在△ABC中,∠BAC=180°∠B ∠C = 180°-70° 30° = 80°。

因为AD是∠BAC的平分线,所以∠BAD = 1/2∠BAC = 40°。

在△ABD中,根据三角形外角性质,∠ADC = ∠B+∠BAD,所以∠ADC = 70°+40° = 110°。

二、等腰三角形性质证明题。

3. 已知:在等腰△ABC中,AB = AC,∠A = 80°,求∠B和∠C的度数。

解析:因为AB = AC,所以△ABC是等腰三角形,根据等腰三角形两底角相等的性质,设∠B =∠C=x。

根据三角形内角和定理,∠A+∠B +∠C = 180°,即80°+x + x = 180°,2x=180° 80°,2x = 100°,x = 50°,所以∠B =∠C = 50°。

4. 如图,在等腰三角形ABC中,AB = AC,BD⊥AC于点D,求证:∠CBD=(1)/(2)∠A。

解析:设∠A=x。

因为AB = AC,所以∠ABC =∠ACB=(1)/(2)(180° x)=90°-(x)/(2)。

八年级数学几何经典题【含答案解析】

八年级数学几何经典题【含答案解析】

F八年级数学几何经典题【含答案】1、已知:如图,在四边形ABCD 中,AD =BC ,M 、NBC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.B3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF ..4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF求证:PA =PF .E6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。

求证:EF=FD 。

8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。

FPDE CBA9、已知在三角形ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC与F,求证AF=EF,九年级数学【答案】1.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN和∠QMN=∠QNM ,从而得出∠DEN =∠F 。

2.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。

可得PQ=2EGFH。

由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。

从而可得PQ=2AI BI=2AB,从而得证。

八年级几何证明题

八年级几何证明题

几何证明题1、已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,;求证:DE =DF2、已知:如图2所示,AB =CD,AD =BC,AE =CF;求证:∠E =∠F3、如图3所示,设BP 、CQ 是∆ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线;求证:KH ∥BC4、已知:如图4所示,AB =AC,∠,,A AE BF BD DC =︒==90;求证:FD ⊥ED5、已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O; 求证:AC =AE +CD6、已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=︒EAF 45;求证:EF =BE +DF7、如图8所示,已知∆ABC 为等边三角形,延长BC 到D,延长BA 到E,并且使AE =BD,连结CE 、DE; 求证:EC =ED8、例题:已知:如图9所示,∠=∠>12,AB AC ; 求证:BD DC >作业1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE ⊥CD 于D,交BC 于E,且有AC AD CE ==;求证:DE CD =122. 已知:如图12所示,在∆ABC 中,∠=∠A B 2,CD 是∠C 的平分线; 求证:BC =AC +AD3. 已知:如图13所示,过∆ABC 的顶点A,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ;设M 为BC 的中点; 求证:MP =MQ4. ∆ABC 中,∠=︒⊥BACAD BC 90,于D,求证:()AD AB AC BC <++14试题答案1、 分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD,易得CD AD =,∠=︒DCF 45;从而不难发现∆∆DCF DAE ≅证明:连结CD说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线;显然,在等腰直角三角形中,更应该连结CD,因为CD 既是斜边上的中线,又是底边上的中线;本题亦可延长ED 到G,使DG =DE,连结BG,证∆EFG 是等腰直角三角形;有兴趣的同学不妨一试; 2、证明:连结AC在∆ABC 和∆CDA 中, 在∆BCE 和∆DAF 中,说明:利用三角形全等证明线段求角相等;常须添辅助线,制造全等三角形,这时应注意:1制造的全等三角形应分别包括求证中一量;2添辅助线能够直接得到的两个全等三角形; 3、分析:由已知,BH 平分∠ABC,又BH ⊥AH,延长AH 交BC 于N,则BA =BN,AH =HN;同理,延长AK 交BC 于M,则CA =CM,AK =KM;从而由三角形的中位线定理,知KH ∥BC; 证明:延长AH 交BC 于N,延长AK 交BC 于M ∵BH 平分∠ABC ∴=∠∠ABHNBH 又BH ⊥AH ∴==︒∠∠AHB NHB 90 BH =BH同理,CA =CM,AK =KM ∴KH 是∆AMN 的中位线 ∴KH MN // 即KH ∆ADE ∆BDF AE BF B DAE AD BDADE BDFFD ED===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆313290∆∆AEO AFO ≅∴∠=∠12∠=︒B 60∠+∠=︒∠=︒∠+∠=︒566016023120,,∴∠=∠=∠=∠=︒123460∆∆FOC DOC FC DC ≅∴=,()∠=∠=∴≅∴∠=∠BAD CAD AO AOAEO AFO SAS ,∆∆42∠=︒B 60∴∠+∠=︒∴∠=︒∴∠+∠=︒∴∠=∠=∠=∠=︒∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC()AC AE CD =+∠=∠=︒=ABG D AB AD90,∴≅∴=∠=∠∆∆ABG ADF SAS AG AF (),13∠=︒EAF 45∴∠+∠=︒∴∠+∠=︒23452145∴=∴=+GE EFEF BE DF ∆ABC∴∆BFD∴==∴==AE FD BF BA AF EF AC FDEAC EFD EAC DFE SAS EC ED//()∴∠=∠∴≅∴=∆∆∆ADE ∆ADB∆∆ADF ADC ≅∴∠=∠=>∠∠>∠∴∠>∠∴>∴>3434,,DF DCBFD BBFD BBD DF BD DC证明:取CD 的中点F,连结AF 又∠+∠=︒∠+∠=︒14901390, ∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF EDDE CD∆∆()2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法;“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段;证明:延长CA 至E,使CE =CB,连结ED在∆CBD 和∆CED 中,又∠=∠+∠BAC ADE E∴∠=∠∴=∴==+=+ADE E AD AEBC CE AC AE AC AD,3. 证明:延长PM 交CQ 于R 又BMCM BMP CMR =∠=∠,∴≅∴=∆∆BPM CRMPM RM∴QM 是Rt QPR ∆斜边上的中线 ∴=MP MQ4. 取BC 中点E,连结AE。

(完整版)八年级下册几何证明题

(完整版)八年级下册几何证明题

天生我才,文成不怠!God rewards the diligent , though , not a genius. 1_ D_ C_B _ C_ A _ B_ A_ B_ E _ B四边形试题1.已知:在矩形ABCD 中,AE ⊥BD 于E ,∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC ,AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD ,AC 为邻边作平行四边形ACED ,DC 延长线交BE 于F ,求证:F 是BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB ,AC 平分∠A ,又∠B=60︒,梯形的周长是20cm, 求:AB 的长。

天生我才,文成不怠!God rewards the diligent , though , not a genius.2_ A _ B_B_ C _B _F _ B _ C _ F6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ∆=S EBF ∆,求证:DF ∥AC 。

8、在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。

9、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

(完整版)八年级几何证明题集锦及解答值得收藏

(完整版)八年级几何证明题集锦及解答值得收藏

八年级几何全等证明题归纳1.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB 于E,交对角线BD于F,点G为BC中点,连接EG、AF.求证:CF=AB+AF.证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.2.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.解:垂直.理由:∵四边形ABCD为正方形,∴∠ABD=∠CBD,AB=BC,∵BF=BF,∴△ABF≌△CBF,∴∠BAF=∠BCF,∵在RT△ABE和△DCE中,AE=DE,AB=DC,∴RT△ABE≌△DCE,∴∠BAE=∠CDE,∴∠BCF=∠CDE,∵∠CDE+∠DEC=90°,∴∠BCF+∠DEC=90°,∴DE⊥CF.3.如图,在直角梯形ABCD中,AD∥BC,∠A=90º,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证DA明:CF=EF解:EB F C过D作DG⊥BC于G.由已知可得四边形ABGD为正方形,∵DE⊥DC∴∠ADE+∠EDG=90°=∠GDC+∠EDG,∴∠ADE=∠GDC.又∵∠A=∠DGC且AD=GD,∴△ADE≌△GDC,∴DE=DC且AE=GC.在△EDF和△CDF中∠EDF=∠CDF,DE=DC,DF为公共边,∴△EDF ≌△CDF,∴EF=CF4.已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。

第19章几何证明(基础、常考、易错、压轴)分类专项训练(原卷版)

第19章几何证明(基础、常考、易错、压轴)分类专项训练(原卷版)

第19章几何证明(基础、常考、易错、压轴)分类专项训练【基础】一、单选题1.(2022·上海·八年级专题练习)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()V的三条中线的交点A.ABCV三边的垂直平分线的交点B.ABCV三条角平分线的交点C.ABCV三条高所在直线的交点D.ABC2.(2022·上海·八年级单元测试)三角形的外心是三角形的()A.三条中线的交点B.三条角平分线的交点C.三边垂直平分线的交点D.三条高所在直线的交点3.(2022·上海·八年级专题练习)下列命题中,真命题是()A.三角形的一个外角大于这个三角形的内角B.如果两个角的两边分别平行,那么这两个角相等C.一对邻补角的角平分线互相垂直D.面积相等的两个三角形全等4.(2022·上海·八年级专题练习)如图,将线段OA绕点O逆时针旋转45°,得到线段OB.若OA=8,则点A经过的路径长度为()A.4p B.3p C.2p D.p5.(2022·上海·同济大学附属七一中学八年级期中)下列语句不是命题的是()A.两条直线相交有且只有一个交点B.两点之间线段最短C.延长AB到D,使2BD AB=D.等角的补角相等6.(2022·上海浦东新·八年级期中)在下列各命题中,是假命题的是( )A.在一个三角形中,等边对等角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等角的补角相等7.(2022·上海·八年级单元测试)如图,已知钓鱼竿AC的长为6m,露在水面上的鱼线BC长为,某钓者想看看鱼钩上的情况,把鱼竿AC转动到AC¢的位置,此时露在水面上的鱼线B C¢¢,则BB¢的长为()A B.C D.8.(2022·上海·八年级专题练习)下列命题中,其逆命题是真命题的命题个数()(1)全等三角形的对应角相等; (2) 对顶角相等; (3) 等角对等边;(4)两直线平行,同位角相等; (5)全等三角形的面积相等;A.1个B.2个C.3个D.4个9.(2022·上海·八年级单元测试)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB于点R,PS⊥AC于点S,若PR=PS,则下列结论正确的个数是( )(1)PQ=PB;(2)AS=AR;(3)△BRP≌△PSC (4)∠C=∠SPCA.1个B.2个C.3个D.4个二、填空题10.(2022·上海·八年级专题练习)命题:“对顶角相等”的逆命题是_____________________________.11.(2022·上海市市西初级中学八年级期中)命题“等腰三角形的两个底角相等”的逆命题是_________.12.(2022·上海·八年级专题练习)请写出“两直线平行,同位角相等”的结论:_____.13.(2022·上海·八年级专题练习)平面内在角的内部(包括顶点)且到角的两边距离相等的点的轨迹是这个角的 _____.14.(2022·上海·八年级专题练习)命题“如果a b =,那么22a b =”的逆命题是_______,逆命题是______命题(填“真”或“假”)15.(2022·上海市南洋模范初级中学八年级期中)底边为已知线段BC 的等腰三角形ABC 的顶点A 的轨迹是_____.16.(2022·上海浦东新·八年级期中)“若0ab >,则0a >,0b >”_____命题(选填“是”或“不是”).17.(2022·上海·八年级专题练习)命题“等腰三角形两底角的平分线相等”的逆命题是________________.18.(2022·上海·八年级专题练习)把“同角的余角相等”改成“如果…,那么…”:_____________.19.(2022·上海·同济大学附属七一中学八年级期中)把命题“同角的余角相等”写成“如果……,那么……”的形式为______.20.(2022·上海·八年级专题练习)平面上经过A 、B 两点的圆的圆心的轨迹是_____.21.(2022·上海·八年级专题练习)命题“直角三角形的两个锐角互余”的逆命题为_____.22.(2022·上海·八年级专题练习)到点A 的距离等于6cm 的点的轨迹是________________.23.(2022·上海·八年级专题练习)“全等三角形的对应角相等”的逆命题是_______________________________.24.(2022·上海·八年级期末)已知两点A 、B ,到这两点距离相等的点的轨迹是____________.25.(2022·上海·八年级专题练习)如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,BC =12cm ,AC =9cm ,那么BD 的长是_____.26.(2022·上海·八年级单元测试)已知直角坐标平面内的两点分别为A (﹣3,1)、B (1,﹣2),那么A 、B 两点间的距离等于_____.27.(2022·上海·八年级专题练习)“,则=a b ”的逆命题为___________________.三、解答题28.(2022·上海·八年级单元测试)如图,在正方形ABCD中,点E、F分别在AD、CD边上,且AE DF=,联结BE、AF.求证:AF BE=.【常考】一.选择题(共5小题)1.(2020秋•闵行区期中)下列命题是真命题的是( )A.两个锐角的和还是锐角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等腰三角形既是轴对称图形,又是中心对称图形2.(2019秋•虹口区校级月考)如图,BD,CE分别是△ABC的高线和角平分线,且相交于点O,若∠BCA =70°,则∠BOE的度数是( )A.60°B.55°C.50°D.40°3.(2022秋•杨浦区期中)若两条平行线被第三条直线所截,则下列说法错误的是( )A.一对同位角的平分线互相平行B.一对内错角的平分线互相平行C.一对同旁内角的平分线互相平行D.一对同旁内角的平分线互相垂直4.(2019秋•浦东新区校级月考)在Rt△ABC中,∠C=90°,有一点D同时满足以下三个条件:①在直角边BC上;②在∠CAB的角平分线上;③在斜边AB的垂直平分线上,那么∠B为( )A.15°B.30°C.45°D.60°5.(2022秋•徐汇区校级期中)在△ABC中,AB=4,AC=6,AD是BC边上的中线,则AD的取值范围是( )A.0<AD<10B.1<AD<5C.2<AD<10D.0<AD<5二.填空题(共11小题)6.(2021秋•奉贤区校级期中)将命题“同角的补角相等”改写成“如果…那么…”形式为 .7.(2022秋•闵行区校级期中)将一副三角板如图所示放置(其中含30°角的三角板的一条较短直角边与另一块三角板的斜边放置在一直线上),那么图中∠1= 度.8.(2021秋•静安区校级期末)命题“等腰三角形两底角的平分线相等”的逆命题是 .9.(2022秋•徐汇区校级期中)命题“同旁内角相等,两直线平行”是 (填“真“或“假”)命题10.(2022秋•闵行区校级期中)将命题“对顶角相等”改为“如果…那么…”的形式为: .11.(2022秋•虹口区校级期中)已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么b∥c.其中正确的是 .(填写序号)12.(2021秋•徐汇区校级期末)如图,在△ABC中,∠ACB=90°,∠A=20°,CD与CE分别是斜边AB 上的高和中线,那么∠DCE= 度.13.(2022秋•徐汇区校级期中)如图,在△ABC和△DEF中,∠ACB=∠EFD=90°,点B、F、C、D在同一直线上,已知AB⊥DE,且AB=DE,AC=6,EF=8,DB=10,则CF的长度为 .14.(2020秋•徐汇区校级期中)“等腰三角形两腰上的中线相等.”的逆命题是 .15.(2022秋•徐汇区校级期中)在△ABC中,∠BAC=α,边AB的垂直平分线交边BC于点D,边AC的垂直平分线交边BC于点E,连接AD,AE,则∠DAE的度数为 .(用含α的代数式表示)16.(2022秋•虹口区校级期中)如图,已知:△ABC中,∠C=90°,AC=40,BD平分∠ABC交AC于D,AD:DC=5:3,则D点到AB的距离是 .三.解答题(共2小题)17.(2022秋•静安区校级期中)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费马点.若点M为△ABC的费马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费马点的简便方法:如图②,分别以△ABC的AB、AC 为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费马点.试说明这种作法的依据.18.(2021秋•崇明区校级期末)如图,在四边形ABCD中,∠DAB=∠DCB=90°,对角线AC与BD相交于点O,M、N分别是边BD、AC的中点.(1)求证:MN⊥AC;(2)当AC=8cm,BD=10cm时,求MN的长.【易错】一.选择题(共4小题)1.(2022秋•黄浦区校级月考)下列命题中,是真命题的是( )A.从直线外一点向直线引垂线,这条垂线段就是这个点到这条直线的距离B.过一点,有且只有一条直线与已知直线平行C.两条直线被第三条直线所截,同旁内角互补D.两点之间,线段最短2.(2021秋•浦东新区期末)下列三个数为边长的三角形不是直角三角形的是( )A.3,3,3B.4,8,4C.6,8,10D.5,5,53.(2021秋•浦东新区期中)在下列各原命题中,逆命题是假命题的是( )A.两直线平行,同旁内角互补B.如果两个三角形全等,那么这两个三角形的对应边相等C.如果两个三角形全等,那么这两个三角形的对应角相等D.两个相等的角是对顶角4.(2019秋•浦东新区校级月考)BP和CP是△ABC两个外角的平分线,则∠BPC为( )A .B .90°+C .90°﹣D .∠A二.填空题(共2小题)5.(2020秋•浦东新区校级期末)以线段MN 为底边的等腰三角形的顶角顶点的轨迹是 .6.(2020秋•浦东新区校级月考)在△ABC 中,AB =13cm ,AC =15cm ,高AD =12cm ,则BC = .三.解答题(共1小题)7.(2019秋•浦东新区期末)如图(1),已知锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,M 、N 分别是线段BC 、DE 的中点.(1)求证:MN ⊥DE .(2)连接DM ,ME ,猜想∠A 与∠DME 之间的关系,并证明猜想.(3)当∠A 变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.【压轴】一、单选题1.(2020·上海市曹杨第二中学附属学校八年级期中)如图,D 为BAC Ð的外角平分线上一点,过D 作DE AC ^于E ,DF AB ^交BA 的延长线于F ,且满足FDE BDC Ð=Ð,则下列结论:①CDE V ≌BDF V ;②CE AB AE =+;③BDC BAC Ð=Ð;④DAF CBD Ð=Ð.其中正确的结论有( ).A .1个B .2个C .3个D .4个二、填空题2.(2022·上海市民办文绮中学八年级阶段练习)在ABC V 中,12AB AC ==,30A Ð=°,点E 是AB 中点,点D 在AC 上,DE =ADE V 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.三、解答题3.(2022·上海·测试·编辑教研五八年级期末)梯形ABCD 中,AD BC ∥,90B Ð=°,4AB =,5BC =,点G 是CD 中点,过点G 作CD 的垂线交射线BC 于点F ,DCF Ð的角平分线交射线BA 于点E ,交直线GF 于点P .(1)当点F 与点B 重合时,求CD 的长;(2)若点F 在线段BC 上,AD x =,CF y =,求y 关于x 的函数关系式,并写出函数定义域;(3)联结DP、DE,当DPEV是以DP为腰的等腰三角形时,求AD的长.4.(2022·上海·八年级专题练习)已知△ABC和△ADE都是等腰直角三角形,其中∠ABC=∠ADE=90°,连接BD、EC,点M为EC的中点,连接BM、DM.(1)如图1,当点D、E分别在AC、AB上时,求证:△BMD为等腰直角三角形;(2)如图2,将图1中的△ADE绕点A逆时针旋转45°,使点D落在AB上,此时(1)中的结论“△BMD为等腰直角三角形”还成立吗?请对你的结论加以证明;(3)如图3,将图2中的△ADE绕点A逆时针旋转90°时,△BMD为等腰直角三角形的结论是否仍成立?若成立,请证明;若不成立,请说明理由.5.(2022·上海·八年级专题练习)如图,在直角坐标平面内,正比例函数y=的图像与一个反比例函数图像在第一象限内的交点为点A,过点A作AB⊥x轴,垂足为点B,AB=3.(1)求反比例函数的解析式;(2)在直线AB上是否存在点C,使点C到直线OA的距离等于它到点B的距离?若存在,求点C的坐标;若不存在,请说明理由;(3)已知点P在直线AB上,如果△AOP是等腰三角形,请直接写出点P的坐标.6.(2022·上海松江·八年级期末)如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AB=1,点D是边AC上一点(不与点A、C重合),EF垂直平分BD,分别交边AB、BC于点E、F,联结DE、DF.(1)如图1,当BD⊥AC时,求证:EF=AB;(2)如图2,设CD=x,CF=y,求y与x的函数解析式,并写出函数的定义域;(3)当BE=BF时,求线段CD的长.7.(2022·上海·八年级专题练习)已知:如图,在△ABC纸片中,AC=3,BC=4,AB=5,按图所示的方法将△ACD 沿AD 折叠,使点C 恰好落在边AB 上的点C ′处,点P 是射线AB 上的一个动点.(1)求折痕AD 长.(2)点P 在线段AB 上运动时,设AP =x ,DP =y .求y 关于x 的函数解析式,并写出此函数的定义域.(3)当△APD 是等腰三角形时,求AP 的长.8.(2021·上海·八年级专题练习)在直角梯形ABCD 中,//AB CD ,BC AB ^,AB AD =,联结BD ,如图(a ).点P 沿梯形的边,按照点A B C D A ®®®®移动,设点P 移动的距离为x ,BP y =.(1)当点P 从点A 移动到点C 时,y 与x 的函数关系如图(b )中折线MNQ 所示.则AB =______,BC =_____,CD =_____.(2)在(1)的情况下,点P 按照点A B C D A ®®®®移动(点P 与点A 不重合),BDP △是否能为等腰三角形?若能,请求出所有能使BDP △为等腰三角形的BP 的值;若不能,请说明理由.9.(2021·上海·八年级专题练习)如图,在四边形ABCD 中,∠ADC=∠ABC=90°,CB=CD ,点E 、F 分别在AB 、AD 上,AE=AF .连接CE 、CF .(1)求证:CE=CF ;(2)如果∠BAD=60°,CD=①当AF=x 时,设EFC S y D =,求y 与x 的函数关系式;(不需要写定义域)②当AF=2时,求△CEF 的边CE 上的高.10.(2020·上海市曹杨第二中学附属学校八年级期中)如图,在ABC V 中,2ACB B Ð=Ð,BAC Ð平分线AO 交BC 于点D ,点H 为AO 上一动点,过H 作直线l AO ^于H ,分别交直线AB 、AC 、BC 于点N 、E 、M .=;(1)当直线l经过点C时(如图2),求证:BN CD(2)当M是线段BC的中点时,写出线段CE和线段CD之间的数量关系,并证明;(3)请直接写出BN、CE和CD之间的数量关系.。

(完整版)八年级上册几何证明题专项练习

(完整版)八年级上册几何证明题专项练习

八年级上册几何证明题专项练习1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.求证:△ACD≌△CBE.15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.16.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.17.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.18.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.19.已知△ABC中,AD是∠BAC的平分线,AD的垂直平分线交BC的延长线于F.求证:∠BAF=∠ACF.20.如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.21.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.22.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.24.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.25.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.26.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.27.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.28.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.29.图1、图2中,点C为线段AB上一点,△ACM与△CBN都是等边三角形.(1)如图1,线段AN与线段BM是否相等?证明你的结论;(2)如图2,AN与MC交于点E,BM与CN交于点F,探究△CEF的形状,并证明你的结论.30.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.。

八年级上册几何证明题专项练习

八年级上册几何证明题专项练习

八年级上册几何证明题专项练习1 如图,△ ABC、△ CDE均为等腰直角三角形,/ ACB= / DCE=90 :点E在AB上.求证: △ CDA CEB .2. 如图,BD丄AC于点D,CE丄AB于点E,AD=AE .求证:BE=CD .3. 如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE, / A= / D .(1)求证:AC // DE ;(2)若BF=13,EC=5,求BC 的长.4. 如图:点C 是AE 的中点,/A= / ECD,AB=CD,求证:/ B= / D .5. 如图,点D是AB上一点,DF交AC于点E,DE=FE,FC // AB 求证:AE=CE .E -----------------C6. 如图,BE丄AC,CD丄AB,垂足分别为E,D,BE=CD .求证:AB=AC .C7.如图,点A,B,C,D 在同一条直线上,CE //DF,EC=BD,AC=FD .求证:AE=FB&如图,在厶ABC中,AC=BC, / C=90 °,D是AB的中点,DE丄DF,点E,F分别在证:DE=DF.AC,BC上,求9.如图,点A、C、D、B 四点共线,且AC=BD, / A= / B, / ADE= / BCF,求证:DE=CF .10.如图,已知/ CAB= / DBA, / CBD= / DAC .求证:BC=AD .E13. 已知△ ABN 和厶ACM 位置如图所示,AB=AC,AD=AE, /仁/2.(1) 求证:BD=CE ;(2) 求证:/ M= / N .14. 如图,/ ACB=90 °,AC=BC,AD 丄 CE,BE 丄 CE,垂足分别为 D,E . 求证:△ ACDCBE .15. 如图,四边形 ABCD 中,E 点在 AD 上,/ BAE= / BCE=90 °,且 BC=CE,AB=DE .AB //DE .12.如图,AB // CD,E 是 CD 上一点,BE 交 AD 于点 F,EF=BF .求证:AF=DF .3求证:△ ABC DEC .16. 如图,在厶ABC 中,AB=CB, / ABC=90 °,D 为AB 延长线上一点,点E 在BC 边上,且BE=BD,连结 AE 、DE 、DC .① 求证:△ ABE ◎△ CBD ;② 若/ CAE=30。

八年级数学十二道全等几何证明题 难度适中型

八年级数学十二道全等几何证明题 难度适中型

八年级数学十二道全等几何证明题难度适中型 The document was prepared on January 2, 2021全等几何证明(1)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.E 为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;全等几何证明(2)如图,在正方形ABCD中,F是CD的中点,E是BC边上的一点,且AF平分∠DAE,求证:AE=EC+CD.全等几何证明(3)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:AD=DE.全等几何证明(4)如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E.求证:CF=CG;全等几何证明(5)如图,已知P为∠AOB的平分线OP上一点,PC⊥OA于C,PA=PB,求证AO+BO=2CO全等几何证明(6)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;全等几何证明(7)如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .全等几何证明(7)如图,AD ∥BC ,AE 平分∠BAD ,AE ⊥BE ;说明:AD+BC=AB . 全等几何证明(8)将两个全等的直角三角形ABC 和DBE 如图方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .求证:AF+EF=DE全等几何证明(9) 如图,在△ABC 中,AD 平分∠BAC ,AB =AC -BD ,则∠B ∶∠C 的值为多少全等几何证明(10)已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.全等几何证明(11)如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . A B CD A P CDB求证:CE=CF.设P是正方形ABCD DCE.求证:PA=PF.。

八年级上语文几何证明练习题

八年级上语文几何证明练习题

八年级上语文几何证明练习题一、选择题1. 直角三角形中,斜边的边长为10,一个锐角的边长为6,则另外一个锐角的边长是_______。

A. 3B. 4C. 8D. 92. 在△ABC 中,∠B = 60°,∠C = 30°,则△ABC 的面积是底边AC长度的_________。

A. 1/4B. 1/3C. 1/2D. 2/33. 设边长为a的正方形的面积是P,边长为b的正方形的面积是Q,当Q = 16P时,边长b与边长a的比是_______。

A. 2:1B. 3:1C. 4:1D. 5:14. 如图所示,四边形ABCD中,∠A=110°,∠B=∠C=105°,则∠D等于_______。

A. 100°B. 105°C. 115°D. 120°5. 如图是一个菱形,已知∠ACB = 40°,则∠ACD 等于_______。

A. 40°B. 50°C. 60°D. 70°二、填空题6. 已知△ABC 中,∠B=60°,BC=3,AC=√19,则BC的【余弦值】为_________。

7. 已知正方形ABCD中,AE=2,AC的垂直平分线与AE相交于点F,则FE的长度为_________。

8. 已知两个角的度数比是2:3,且两个角的差为40°,则较小角的度数为_________。

9. 如图,一辆车从A点向东走,在B处向北转弯,再在C处向西转弯,最后到达D点。

车走过的从A到D的路径为_________。

10. 如图,矩形ABCD中,AO是对角线AC的垂线,AO交BC于点E,若AE=2m,CE=3m,则矩形ABCD的长AC为_________。

三、解答题11. 在△ABC 中,∠ABC = 90°,BC = 3,AB = √10,求 AC的长度。

12. 如图所示,四边形ABCD是一个菱形,且 AD=6cm,BD=8cm,则角 BDC 的度数是多少?13. 如图所示,已知正方形ABCD中AE 是BC的垂直平分线,AF是CD上的一个点,连接FD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明题
1、已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DF
2、已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。

求证:∠E =∠F
3、如图3所示,设BP 、CQ 是∆ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。

求证:KH ∥BC
4、已知:如图4所示,AB =AC ,∠,,A AE BF BD DC =︒==90。

求证:FD ⊥ED
5、已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。

求证:AC =AE +CD
6、已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=︒EAF 45。

求证:EF =BE +DF
7、如图8所示,已知∆ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。

求证:EC =ED
8、例题:已知:如图9所示,∠=∠>12,AB AC 。

求证:BD DC >
作业
1. 已知:如图11所示,∆ABC 中,∠=
C 90于E ,且有AC A
D C
E ==。

求证:DE CD =
1
2
C
图11
A
B D E
2. 已知:如图
求证:BC =
3. 已知:如图13所示,过∆ABC 的顶点A ,在∠A 内任引一射线,过
B 、
C 作此射线的垂线BP 和CQ 。

设M 为BC 的中点。

求证:MP =MQ
4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <
++4
【试题答案】
1、 分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅
证明:连结CD
AC BC A B
ACB AD DB
CD BD AD DCB B A AE CF A DCB AD CD
=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,
∴≅∴=∆∆ADE CDF
DE DF
说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。

本题亦可延长ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰直角三角形。

有兴趣的同学不妨一试。

2、证明:连结AC
在∆ABC 和∆CDA 中,
AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF
BE DF
===∴≅∴∠=∠==∴=,,,∆∆()
在∆BCE 和∆DAF 中,
BE DF B D BC DA BCE DAF SAS E F
=∠=∠=⎧⎨⎪

⎪∴≅∴∠=∠∆∆()
说明:利用三角形全等证明线段求角相等。

常须添辅助线,制造全等三角形,这时应注意:1制造的全等三角形应分别包括求证中一量;2添辅助线能够直接得到的两个全等三角形。

3、分析:由已知,BH 平分∠ABC ,又BH ⊥AH ,延长AH 交BC 于N ,则BA =BN ,AH =HN 。

同理,延长AK 交BC 于M ,则CA =CM ,AK =KM 。

从而由三角形的中位线定理,知KH ∥BC 。

证明:延长AH 交BC 于N ,延长AK 交BC 于M ∵BH 平分∠ABC
∴=∠∠ABH NBH 又BH ⊥AH ∴==︒∠∠AHB NHB 90 BH =BH
∴≅∴==∆∆ABH NBH ASA BA BN AH HN
(),
同理,CA =CM ,AK =KM ∴KH 是∆AMN 的中位线 ∴KH MN // 即KH//BC 说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。

我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。

4、 证明一:连结AD
AB AC BD DC
DAE DAB BAC BD DC BD AD
B DAB DAE
==∴+=︒==︒=∴=∴==,∠∠,∠∠∠,∠∠∠129090
在∆ADE 和∆BDF 中, AE BF B DAE AD BD
ADE BDF
FD ED
===∴≅∴∠=∠∴∠+∠=︒
∴⊥,∠∠,∆∆31
3290
说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用
AB AC BF AE AF CE BM
==∴==,
∴≅∴==∴⊥∆∆AEF BFM
FE FM DM DE FD ED
说明:证明两直线垂直的方法如下:(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。

(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。

(3)证明二直线的夹角等于90°。

5、 分析:在AC 上截取AF =AE 。

易知∆∆AEO AFO ≅,∴∠=∠12。

由∠=︒B 60,知∠+∠=︒∠=︒∠+∠=︒566016023120,,。

∴∠=∠=∠=∠=︒123460,得:
∆∆FOC DOC FC DC ≅∴=,
证明:在AC 上截取AF =AE
()
∠=∠=∴≅∴∠=∠BAD CAD AO AO
AEO AFO SAS ,∆∆42
又∠=︒B 60 ∴∠+∠=︒∴∠=︒
∴∠+∠=︒
∴∠=∠=∠=∠=︒
∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC
() 即AC AE CD =+
6、分析:此题若仿照例1,将会遇到困难,不易利用正方形这一条件。

不妨延长CB 至G ,使BG =DF 。

证明:延长CB 至G ,使BG =DF 正方形ABCD 中,
∠=∠=︒=ABG D AB AD 90,
∴≅∴=∠=∠∆∆ABG ADF SAS AG AF (),13
又∠=︒EAF 45
∴∠+∠=︒∴∠+∠=︒
23452145 即∠GAE =∠FAE
∴=∴=+GE EF EF BE DF
7、证明:作DF//AC 交BE 于F ∆ABC 是正三角形 ∴∆BFD 是正三角形 又AE =BD
∴==∴==AE FD BF BA AF EF
即EF =AC
AC FD
EAC EFD EAC DFE SAS EC ED
//()∴∠=∠∴≅∴=∆∆
8、证明一:延长AC 到E ,使AE =AB ,连结DE 在∆ADE 和∆ADB 中,
AE AB AD AD ADE ADB
BD DE E B DCE B
DCE E
DE DC BD DC
=∠=∠=∴≅∴=∠=∠∠>∠∴∠>∠∴>∴>,,,,21∆∆
∴=
∴=
1
2
CF ED
DE CD
2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。

“截长”即将长的线段截
,使CE=CB,连结ED
CB CE BCD ECD CD CD CBD CED B E BAC B BAC E
=∠=∠=⎧⎨⎪

⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22
又∠=∠+∠BAC ADE E ∴∠=∠∴=
ADE E AD AE
,。

相关文档
最新文档