高中数学 圆的方程 PPT课件
合集下载
高中数学必修二课件:圆的一般方程(42张PPT)
此方程表示以(1,-2)为圆心,2为半径长的圆.
问题2:方程x2+y2+2x-2y+2=0表示什么图形?
提示:对方程x2+y2+2x-2y+2=0配方得
(x+1)2+(y-1)2=0,即x=-1且y=1. 此方程表示一个点(-1,1). 问题3:方程x2+y2-2x-4y+6=0表示什么图形? 提示:对方程x2+y2-2x-4y+6=0配方得 (x-1)2+(y-2)2=-1. 由于不存在点的坐标(x,y)满足这个方程,所以这 个方程不表示任何图形.
3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求 (1)实数m的取值范围; (2)圆心坐标和半径.
解:(1)根据题意知D2+E2-4F=(2m)2+(-2)2- 1 4(m +5m)>0,即4m +4-4m -20m>0,解得m<5,
2 2 2
1 故m的取值范围为(-∞,5).
(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准 方程为(x+m)2+(y-1)2=1-5m, 故圆心坐标为(-m,1),半径r= 1-5m.
第 二 章 解 析 几 何 初 步
§2 圆 与 圆 的 方 程
2.2
圆 的 一 般 方 程
理解教材新知
把 握 热 点 考 向
考点一 考点二 考点三
应用创新演练
把圆的标准方程(x-a)2+(y-b)2=r2展开得,x2+y2 -2ax-2by+a2+b2-r2=0,这是一个二元二次方程的形 式,那么,是否一个二元二次方程都表示一个圆呢? 问题1:方程x2+y2-2x+4y+1=0表示什么图形? 提示:对x2+y2-2x+4y+1=0配方得 (x-1)2+(y+2)2=4.
1.若x2+y2-x+y-m=0表示一个圆的方程,则m的取值 范围是 1 A.m>-2 1 C.m<-2 1 B.m≥-2 D.m>-2 ( )
高中数学必修二4.1.2圆的一般方程课件(1)
1. 圆的一般方程和标准方程; 2. 配方法和待定系数法.
课后作业
P124 A组 第6题 B组 第3题
小 结: 用待定系数法求圆的方程的步骤:
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
一般式;
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
一般式; 2. 根据条件列出关于a、b、r或D、E、F
的方程;
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
例3.已知线段AB的端点B的坐标是 (4, 3),端点A在圆(x+1)2 +y2=4 上运动,求线段AB的中点M的轨迹 方程.
例4. 等腰三角形的顶点A的坐标是 (4, 2),底边一个端点B的坐标是 (3, 5),求另一端点C的轨迹方程, 并说明它是什么图形.
例4. 等腰三角形的顶点A的坐标是
(4, 2),底边一个端点B的坐标是
(3, 5),求另一端点C的轨迹方程,
并说明它是什么图形.
解:设c点坐标为(a,b) 则 (a-4)^2+(b-2)^2=(4-3)^2+(2-5)^2=10 端点C的轨迹方程以(4,2)为圆心 10 为半径的圆 A,B,C三点不共线,点(5, -1)除外,B点除外
=
1 4
( (x
x 2+y2 ) -3 )2+y2
=
1 2
①
化简得: x2 + y2+2x-3=0 ②
这就是所求的曲线方程。
y
把 ② 左边配方得(x+1)2+ y 2= 4
所以方程 ② 的曲线是以C( —1,0) M.
为圆心,2为半径的圆, 它的图形如图:
课后作业
P124 A组 第6题 B组 第3题
小 结: 用待定系数法求圆的方程的步骤:
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
一般式;
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
一般式; 2. 根据条件列出关于a、b、r或D、E、F
的方程;
小 结:
用待定系数法求圆的方程的步骤: 1. 根据题意设所求圆的方程为标准式或
例3.已知线段AB的端点B的坐标是 (4, 3),端点A在圆(x+1)2 +y2=4 上运动,求线段AB的中点M的轨迹 方程.
例4. 等腰三角形的顶点A的坐标是 (4, 2),底边一个端点B的坐标是 (3, 5),求另一端点C的轨迹方程, 并说明它是什么图形.
例4. 等腰三角形的顶点A的坐标是
(4, 2),底边一个端点B的坐标是
(3, 5),求另一端点C的轨迹方程,
并说明它是什么图形.
解:设c点坐标为(a,b) 则 (a-4)^2+(b-2)^2=(4-3)^2+(2-5)^2=10 端点C的轨迹方程以(4,2)为圆心 10 为半径的圆 A,B,C三点不共线,点(5, -1)除外,B点除外
=
1 4
( (x
x 2+y2 ) -3 )2+y2
=
1 2
①
化简得: x2 + y2+2x-3=0 ②
这就是所求的曲线方程。
y
把 ② 左边配方得(x+1)2+ y 2= 4
所以方程 ② 的曲线是以C( —1,0) M.
为圆心,2为半径的圆, 它的图形如图:
高中数学课件-专题9 直线和圆的方程 (共55张PPT)
2.自一点引圆 的切线的条数
3.弦长公式
考点53 直线与圆的位置关系
1.直线与圆 的位置关系
2.自一点引圆 的切线的条数
(1)若点在圆外,则过此点可以作圆的两条切线; (2)若点在圆上,则过此点只能作圆的一条切线,且此点是切 点; (3)若点在圆内,则过此点不能作圆的切线.
3.弦长公式
考点53 直线与圆的位置关系
2.距离公式 的应用
(2)已知距离求有关方程或有关量
借助于距离公式建立方程(组)得出参数的值或
满足的关系式,然后可结合题中其他条件确定方
程、点的坐标等.
【注意】若已知点到直线的距离求直线方程,用
一般式可避免讨论.否则,应讨论斜率是否存在.
23
24
第2节 圆的方程及直线、圆的位置关系
600分基础 考点&考法
8
10
考法2 求直线方程
常用的方法 1.直接法 2.待定系数法
确定定点和斜率或确定两点, 套用直线方程的相应形式, 写出方程.
11
考法2 求直线方程
常用的方法 1.直接法 2.待定系数法
一般步骤: ①设所求直线方程的某种形式; ②由条件(直线的截距、直线上的点、有关图形的面 积等)建立所求参数的方程(组); ③解这个方程(组)求参数; ④把所求的参数值代入所设直线方程.
1.两条直线的 位置关系
2.两条直线 的交点坐标
3.距离公式 距离公式
考点51 两条直线的位置关系
1.两条直线的 位置关系
2.两条直线 的交点坐标
3.距离公式 距离公式
两直线的方程组成的方程组的解
考法3 两直线平行与垂直的判定及应用
1.两直线平行或 垂直的判定方法
高中数学圆的标准方程(微课)公开课ppt课件
所以所求圆的方程为 (x 2)2 (y 3)2 25.
例2. 已知圆M过两点A(1,-1),B(-1,1)且圆心M在x+y-
2=0上,求圆M的方程.
【解】设圆M的方程为:(x-a)2+(y-b)2=r2(r>0),
1- a2 + -1- b2 = r2, 根据题意得:-1- a2 + 1- b2 = r2 ,
所以圆心C的坐标是 (3, 2),
圆心为C的圆的半径长r | AC | (1 3)2 (1 2)2 5.
所以,圆心为C的圆的标准方程是
(x 3)2 ( y 2)2 25.
1.圆心为C(a,b),半径为r 的圆的标准方程为
(x a)2 ( y b)2 r2.
当圆心在原点时,a=b=0,圆的标准方程为: x2 y2 r2.
根据两点间距离公式: P1P2 x2 x1 2 y2 y1 2 .
则点M、A间的距离为:MA x a2 y b2 .
即:
代入
(x a)2 ( y b)2 r
(x a)2 ( y b)2 r2
化简
回顾
1,求圆的 标准方程的数学思想方法解?析思想
形
平面直角坐标系中
数
2,如何得到圆的标准方程?
a + b - 2 = 0,
解得:a=b=1,r=2, 故所求圆M的方程为:(x-1)2+(y-1)2=4.
例3 已知圆心为C的圆经过点A(1,1)和B(2,-2),且
圆心C 在直线l:x-y+1=0上,求圆心为C的圆的标
准方程.
y A(1,1)
O C
x B(2,-2)
l : x y 1 0
解:因为A(1, 1)和B(2,-2),所以线段AB的中点D
圆的标准方程 圆的一般方程 教学课件(共39张PPT)高中数学北师大版(2019)选择性必修第一册
(, )
r
由两点间的距离公式得
x
a
2
y b
2
r,
(, )
O
将上式两边平方得 x a
2
y b
2
r 2 .①
x
思考一下
以方程①的解为坐标点一定在圆 C 上吗?
设以方程①的任意解 x, y 为坐标的点记为点 Q ,
因为 x, y 是方程①的解,代入方程①可得: x a 2 y b 2 r 2
10
D +3E
20
4 D+2 E
F050ຫໍສະໝຸດ 5D 5EF0
解得 D
F
2, E
0
4, F
2
2
x
+
y
故所求圆的方程为
20 ,
2x
4y
20
0.
例 5:讨论方程 x +y
2
2
x 3
解: 将原方程组整理为 1 2 x2
当
2
y2 表示的是什么图形?
1 y2
2
0,
6x 9
1 时,方程(1)是一元一次方程 6x 9
思考交流
对于点 Px0 , y0 和圆 C : x a 2 y b 2 r 2 ,由圆的标准方程的概念,可知点 P
在圆 C 上的充要条件是 x0 a2 y0 b2 r 2 .
2
2
当点 P 不在圆 C 上时,一定有 x0 a y0 b r 2 ,此时,存在以下两种情况:
PC r
x0 a 2 y0 b2
r
x0 a y0 b r 2
圆的参数方程 高中数学课件
1 1
设P(x,y)为圆O1上与P1对应的点,
x r cos x 则有: y r sin
1 1
1
1
1
1
为圆心(a,b)为半径r为的圆的参数方程
一般的,在取定的坐标系中,如果曲线上 任意一点的坐标x,y都是某个变数t的函数, 即 x f t ③ 并且对于t 的每一个允值, y g t
由方程组 ③ 所确定的点都在这条直线上,那么 方程组 ③ 就叫做这条曲线的参数方程,联系x, y 之间关系的变数叫做参变数,简称参数。参数 方程中的参数可以是有物理,几何意义的变数, 也可以没有明显意义的变数。 相对于参数方程来说,圆的标准方程和一 般方程叫做圆的普通方程。
例6 如图,已知点P是圆x2+y2=16上的一个动点, 点A是x轴上的定点,坐标为(12,0).当点P在圆上运 动时,线段PA的中点M的轨迹是什么? (看看动画吧) y 解: 设点M的坐标是 P (x,y).因为圆x2+y2=16 M 的参数方程为 x 4 cos O Ax y 4 sin
解: 设点Px , y 且Mx, y ,
0 0
y
P
依题意得:
即 : x 2x 12, y 2 y
点Px , y 在圆上,
0 0 2 2 0 0
x 12 y x ,y 2 2
0
O
M
Ax
0
0
0
x y 16 即:2x 12 2 y 16
x r cos ① 即 y r sin 我们把方程组① 叫做圆心为原点,半O1(a,b)半径为r的圆的参数方程呢? y P(x,y)圆心为O1(a,b),半径为r的圆
设P(x,y)为圆O1上与P1对应的点,
x r cos x 则有: y r sin
1 1
1
1
1
1
为圆心(a,b)为半径r为的圆的参数方程
一般的,在取定的坐标系中,如果曲线上 任意一点的坐标x,y都是某个变数t的函数, 即 x f t ③ 并且对于t 的每一个允值, y g t
由方程组 ③ 所确定的点都在这条直线上,那么 方程组 ③ 就叫做这条曲线的参数方程,联系x, y 之间关系的变数叫做参变数,简称参数。参数 方程中的参数可以是有物理,几何意义的变数, 也可以没有明显意义的变数。 相对于参数方程来说,圆的标准方程和一 般方程叫做圆的普通方程。
例6 如图,已知点P是圆x2+y2=16上的一个动点, 点A是x轴上的定点,坐标为(12,0).当点P在圆上运 动时,线段PA的中点M的轨迹是什么? (看看动画吧) y 解: 设点M的坐标是 P (x,y).因为圆x2+y2=16 M 的参数方程为 x 4 cos O Ax y 4 sin
解: 设点Px , y 且Mx, y ,
0 0
y
P
依题意得:
即 : x 2x 12, y 2 y
点Px , y 在圆上,
0 0 2 2 0 0
x 12 y x ,y 2 2
0
O
M
Ax
0
0
0
x y 16 即:2x 12 2 y 16
x r cos ① 即 y r sin 我们把方程组① 叫做圆心为原点,半O1(a,b)半径为r的圆的参数方程呢? y P(x,y)圆心为O1(a,b),半径为r的圆
高中数学-圆的标准方程课件
返回
1.求圆的标准方程有两种方法:①直接法:据已知 条件求得圆心和半径,直接写出圆的标准方程.② 待定系数法:设圆的标准方程为(x-a)2+(y-b)2=r2, 根据条件列方程组求待定系数a,b,r即得. 2.掌握点与圆的位置关系.
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
开始
学点一
学点二
பைடு நூலகம்
1.平面内到 定点的距离等于定长定点定长 的点的集合叫 做圆.就是圆心,就是半径.
2.方程(x-a)2+(y-b)2=r2(r>0)叫做以(a,b)为圆心,r为半径的圆
的 标准方程 .特别地,当圆心为原点O(0,0)时,圆的方程
为 x2+y2=r2
.
返回
返回
学点一 求圆的标准方程 求满足下列条件的各圆的方程. (1)圆心C(8,-3)且过点P(5,1); (2)圆心在直线5x-3y=8上,圆与坐标轴相切.
(3-1)2+(2-4)2=8,
∴点M在圆内,点N在圆外,点Q在圆上.
【评析】(1)以A(x1,y1),B(x2,y2)为直径两端点的圆的方 程可表示为(x-x1)(x-x2)+(y-y1)(y-y2)=0.仿照例题自己推导. (2)判定P(x0,y0)与(x-a)2+(y-b)2=r2的位置关系时,只需 比较(x0-a)2+(y0-b)2与r2的大小即可.
返回
若点(a,a)不在圆(x-1)2+(y-1)2=2的内部,求a的取值范围. 解:因为点(a,a)不在圆的内部,所以点(a,a)应在圆上或圆 外,故有(a-1)2+(a-1)2≥2. 解得a≥2或a≤0.
1.求圆的标准方程有两种方法:①直接法:据已知 条件求得圆心和半径,直接写出圆的标准方程.② 待定系数法:设圆的标准方程为(x-a)2+(y-b)2=r2, 根据条件列方程组求待定系数a,b,r即得. 2.掌握点与圆的位置关系.
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
开始
学点一
学点二
பைடு நூலகம்
1.平面内到 定点的距离等于定长定点定长 的点的集合叫 做圆.就是圆心,就是半径.
2.方程(x-a)2+(y-b)2=r2(r>0)叫做以(a,b)为圆心,r为半径的圆
的 标准方程 .特别地,当圆心为原点O(0,0)时,圆的方程
为 x2+y2=r2
.
返回
返回
学点一 求圆的标准方程 求满足下列条件的各圆的方程. (1)圆心C(8,-3)且过点P(5,1); (2)圆心在直线5x-3y=8上,圆与坐标轴相切.
(3-1)2+(2-4)2=8,
∴点M在圆内,点N在圆外,点Q在圆上.
【评析】(1)以A(x1,y1),B(x2,y2)为直径两端点的圆的方 程可表示为(x-x1)(x-x2)+(y-y1)(y-y2)=0.仿照例题自己推导. (2)判定P(x0,y0)与(x-a)2+(y-b)2=r2的位置关系时,只需 比较(x0-a)2+(y0-b)2与r2的大小即可.
返回
若点(a,a)不在圆(x-1)2+(y-1)2=2的内部,求a的取值范围. 解:因为点(a,a)不在圆的内部,所以点(a,a)应在圆上或圆 外,故有(a-1)2+(a-1)2≥2. 解得a≥2或a≤0.
高中数学《参数方程-圆的参数方程》课件
探究四
2
2
【典型例题 5】 如图,设 P 为等轴双曲线 x -y =1 上的一点,F1,F2 是两
个焦点,证明:|PF1|·
|PF2|=|OP|2.
思路分析:设 P
1
,tan
cos
,证明等式两边等于同一个式子即可.
首 页
探究一
探究二
∴|PF1|=
|PF2|=
1
cos
∴|PF1|·
|PF2|=
= 0 + bsin
圆上一点 P 和椭圆中心 C 的连线 CP 与 x 轴正半轴的夹角.
2
(1)椭圆 2
2
J 基础知识 Z 重点难点
首 页
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
自主思考 1 椭圆的参数方程中参数 φ 的几何意义是什
问题.
【典型例题 3】 在平面直角坐标系 xOy 中,设
一个动点,求 x+y 的最大值.
2 2
P(x,y)是椭圆 +y =1
3
上
思路分析:将普通方程化为参数方程,利用三角函数的相关知识求最值.
J 基础知识 Z 重点难点
首 页
探究一
探究二
探究三
2 2
解:椭圆方程 +y =1
3
ICHU ZHISHI
2
2
数).因此,参数 φ 的几何意义应是椭圆上任意一点 M 所对应的圆的半径
OA(或 OB)的旋转角(称为离心角),而不是 OM 的旋转角,如图.
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
人教版高中数学直线与圆的方程的应用(共20张PPT)教育课件
:
那
你
的
第
一
口
罗
没
有
我
和
他
不
同
。
我
是
从
底
层
但
是
当
我
拍
完
但
是
我
年
轻
时
有
一
个
想
法
就
是
如
果
我
告
诉
你
怎
么
弄
■
电
:
“
口
罗
部
爬
一
,
1
戏
有
上
来
的
我
个
5
分
钟
后
你
还
色
其
没
清
镜
没
有
楚 弄
有 怎
完 情
么
头
我
就
胆
怯
,
像
运
作
这
个
东
西
(
,
下
不
耐
烦
像
如
果
我
自
己
弄
费
电
影
一
五
分
钟
男
女
实
里
拍
个
就
弄
尼
摄
)
所
镜
完
所
以
最
是
拍 以
后
通
不
第
一
为
则四个顶点坐标分别为 A(a,0),B(0,b),C(0,c),D(0,d)
第一步:建立坐 标y系,用坐标表 示B有(0关,b的) 量。
人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)
设圆的标准方程为(x-a)2+(y-b)2=r2。
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系
数
直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)
r2
③
展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0
几
解得a=2,b=-3,r=5.
代
何
O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为
数
(x–2)2+(y+3)2=25.
法
C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2
ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.
代
何
O
x
数
法
C
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系
数
直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)
r2
③
展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0
几
解得a=2,b=-3,r=5.
代
何
O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为
数
(x–2)2+(y+3)2=25.
法
C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2
ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.
代
何
O
x
数
法
C
高中数学课件-2 圆的一般方程
【例2】 圆经过P(-2, 4), Q(3, -1)两点,并且在x轴上截得的 弦长等于6,求圆的方程?
解 解::((11))设 设圆 圆的 的方 方程 程为 为 xx22+ +yy22+ +DDxx+ +EEyy+ +FF= =00, ,
解将 将:(1PP)设、 、圆QQ 的点 点方的 的程坐 坐为标 标分 分x2+别 别y代 代2+入 入D得 得x+Ey+F=0,
(1)x2 y2 2x 4 y 1 0
配方得:(x 1)2 (y 2)2 4
(2)2x2 2y2 2x 2y 1 0
配方得: x
1
2
2
Hale Waihona Puke y122
0
(3)x2 y2 4x 6 y 15 0
配方得:(x 2)2 (y 3)2 2
(1)x2 y2 2x 4 y 1 0
特别的:若圆心为O(0,0),则圆的方 程为:
x2 y2 r2
探究 1:将圆的标准方程展开是什么形式?
(x a)2 (y b)2 r2
将圆的标准方程展开得:
x2+y2-2ax-2by+a2+b2-r2 =0
由于a,b,r均为常数
令 2a D,2b E,a2 b2 r 2 F
探索3 :将下列方程通过配方成化成圆的 标准方程!并思考,是否一定表示圆?
x2 y2 Dx Ey F 0
方程配方为:
x
D 2
2
y
E 2
2
D2
E2 4
4F
(1)当 D2 E 2 4F 0 时,表示圆,
圆心
-
D 2
,
E 2
(2)当 D2 E 2 4F
r D2 E2 4F 2
圆的一般方程(20张PPT)——高中数学人教A版选择性必修第一册
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
第二章直线和圆的方程2.4.2圆的一般方程
0 1在平面直角坐标系中,探索并掌握圆的一般方程.0 2能够应用圆的方程解决简单的数学问题和实际问题.0 3初步了解用代数方法处理几何问题的基本思想和基本方法Dx+E y+F=0 叫做圆的一般方程,且D²+E²-4F >0,
圆的一般方程
为圆心,
将方程x²+y²+Dx+Ey+ F=0(2) 的左边配方,并把常数项移到右 边 ,( 1 ) 当D²+E²-4F>0 时,比较方程①和圆的标准方程,可以看出方程(2)表示 为圆心, 为半径的圆;( 2 ) 当D²+E²-4F=0 时,方程(2)只有实数解 声 手它表示一个点( 3 ) 当D²+E²-4F<0 时,方程(2)没有实数解,它不表示任何图形.
例题巩固例1 求过三点0(0,0),M ₁(1,1), M ₂ (4,2)的圆的方程,并求这个圆的圆心坐标和半径.
解:设圆的方程是x²+y²+Dx+Ey+F=0.①因为0 ,M₁ ,M₂ 三点都在圆上,把它们的坐标依次代入方程①,
所以所求圆的方程是x²+y²-8x+6y=0.故所求圆的圆心坐标是(4,-3),半径
解得
(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r 或 D,E,F 的方程组;(3)解出a,b,r 或 D,E,F, 得到标准方程或一般方程.
求圆的方程常用待定系数法的步骤
例2已知线段 AB的端点B的坐标是(4,3),端点A 在圆(x+1)²+y²=4上运动,求线段AB 的中点M 的轨迹方程.
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
第二章直线和圆的方程2.4.2圆的一般方程
0 1在平面直角坐标系中,探索并掌握圆的一般方程.0 2能够应用圆的方程解决简单的数学问题和实际问题.0 3初步了解用代数方法处理几何问题的基本思想和基本方法Dx+E y+F=0 叫做圆的一般方程,且D²+E²-4F >0,
圆的一般方程
为圆心,
将方程x²+y²+Dx+Ey+ F=0(2) 的左边配方,并把常数项移到右 边 ,( 1 ) 当D²+E²-4F>0 时,比较方程①和圆的标准方程,可以看出方程(2)表示 为圆心, 为半径的圆;( 2 ) 当D²+E²-4F=0 时,方程(2)只有实数解 声 手它表示一个点( 3 ) 当D²+E²-4F<0 时,方程(2)没有实数解,它不表示任何图形.
例题巩固例1 求过三点0(0,0),M ₁(1,1), M ₂ (4,2)的圆的方程,并求这个圆的圆心坐标和半径.
解:设圆的方程是x²+y²+Dx+Ey+F=0.①因为0 ,M₁ ,M₂ 三点都在圆上,把它们的坐标依次代入方程①,
所以所求圆的方程是x²+y²-8x+6y=0.故所求圆的圆心坐标是(4,-3),半径
解得
(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r 或 D,E,F 的方程组;(3)解出a,b,r 或 D,E,F, 得到标准方程或一般方程.
求圆的方程常用待定系数法的步骤
例2已知线段 AB的端点B的坐标是(4,3),端点A 在圆(x+1)²+y²=4上运动,求线段AB 的中点M 的轨迹方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回导航页
结束放映
返回导航页
结束放映
返回导航页
结束放映
返回导航页
结束放映
返回导航页
结束放映
返回导航页
结束放映
返回导航页
结束放映
与圆有关的最值问题,常见的有以下几种类型:
返回导航页
结束放映
返回导航页
结束放映
返回导航页
结束放映
返回导航页
结束放映
返回导航页
结束放映
温馨提示: 请点击相关栏目。
整知识· 萃取知识精华 整方法·启迪发散思维
考向分层突破一
考向分层突破二
考向分层突破三
整知识
萃取知识精华
返回导航页
结束放映
返回导航页
结束放映
整方法
启迪发散思维
返回导航页
结束放映
返回导航页
结束放映返回导航页来自结束放映返回导航页
结束放映
返回导航页
结束放映
求圆的方程的两种方法 (1)直接法:根据圆的几何性质,直接求 出圆心坐标和半径,进而写出方程 . (2)待定系数法:若已知条件与圆心(a,b) 和半径r有关,则设圆的标准方程,依据 已知条件列出关于a,b,r的方程组,从 而求出a,b,r的值.