(完整word)新人教版七年级下学期数学知识结构框架图
人教版数学七年级下册思维导图
5.1相交线5.1.1 相交线1.邻补角(定义:一条公共边,另一边互为反向延长线)2.对顶角(定义:两边互为反向延长线)性质:对顶角相等(同角的补角相等)5.1.2 垂线1.垂线(定义:两条线互相垂直,其中一条直线是直线的垂线)2.垂足(定义:两条互相垂直的线的交点)3.定理:①在同一平面内,过一点有且只有一条直线与已知直线垂直②垂线段最短:连接直线外一点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外一点到这条直线的垂线段的长度)5.1.3 同位角、内错角、同旁内角1.同位角(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角)2.内错角(定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间)3.同旁内角(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,)5.2 平行线及其判定5.2.1 平行线1.平行(定义:永不相交)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)5.2.2 平行线的判定1.同位角相等,两直线平行2.内错角相等,两两直线平行直线平行3.同旁内角互补,两直线平行5.3 平行线的性质5.3.1 平行线的性质1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补5.3.2 命题、定理、证明1.命题:题设、结论①真命题:题设成立,结论一定成立②假命题:题设成立,结论不一定成立2.定理3.证明5.4 平移6.1 平方根1.算术平方根、被开方数(规定:0的算术平方根是0)2.平方根、开平方①正数有两个互为相反数的平方根②0的平方根为0③负数没有平方根6.2 立方根1.立方根、开立根6.3 实数1.无理数:无限不循环的小数2.有理数:有限小数和无限循环小数(包含0)3.实数a的相反数是-a4.一个正实数的绝对值是它本身,一个负实数的绝对值时它的相反数,0的绝对值是07.1 平面直角坐标系7.1.1 有序数对(a,b)7.1.2 平面直角坐标系1.横轴x,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2 用坐标表示平移8.1 二元一次方程组1.二元一次方程:两个未知数的次数都是1 8.2 消元——解二元一次方程组1.带入消元法2.加减消元法8.3 实际问题与二元一次方程组1.设未知数2.列方程组*8.4三元一次方程组的解法9.1 不等式9.1.1 不等式及其解集1.不等式的解(值)2.解集(含未知数的不等式的所有的解)9.1.2 不等式的性质1.不等式两边加(或减)同一个数(或式子),不等号的方向不变2.不等式两边乘(或除以)同一个正数,不等号的方向不变3.不等式两边乘(或除以)同一个负数,不等号的方向改变9.2 一元一次不等式9.3 一元一次不等式组10.1 统计调查1.全面调查2.抽样调查3.简单随机抽样调查4.数据处理的一般过程:调查、收集数据、整理数据(制表)、描述数据(绘图:条形图,扇形图,折线图,直方图)、分析数据、得出结论10.2 直方图1.计算最大值和最小值的差2.决定组距和组数3.列频数分布表4.画频数分布直方图10.3 课题学习从数据谈节水。
新人教版七年级下册数学知识框架
第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
EDC BA四、经典例题例1 如图,直线AB,CD,EF 相交于点O ,∠AOE=54°,∠EOD=90°,求∠EOB ,∠COB 的度数。
例2 如图AD 平分∠CAE ,∠B = 350,∠DAE=600,那么∠ACB 等于多少?例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不 相邻的一个内角的2倍,则这个三角形各角的度数为( )。
七年级下学期数学知识框架
七年级下学期数学知识框架七年级下学期数学知识梳理第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
四、经典例题例1如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数。
例2如图AD平分∠CAE,∠B=350,∠DAE=600,那么∠ACB等于多少?例3三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则这个三角形各角的度数为()。
七年级数学下册思维导图(超全)
七年级数学下册思维导图(超全)第一章:实数1. 实数的概念2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数3. 实数的运算加法减法乘法除法乘方开方第二章:代数式1. 代数式的概念2. 代数式的分类单项式多项式3. 代数式的运算减法乘法除法乘方第三章:方程与不等式1. 方程的概念2. 一元一次方程求解方法3. 不等式的概念4. 一元一次不等式求解方法第四章:函数1. 函数的概念2. 函数的表示方法解析式法图象法3. 一次函数定义图象性质4. 二次函数定义图象第五章:几何图形1. 点、线、面2. 线段3. 角锐角、直角、钝角、平角、周角4. 三角形定义分类性质5. 四边形定义分类性质6. 圆定义性质第六章:概率与统计1. 概率的概念2. 概率的计算方法3. 统计的概念4. 数据的收集与整理5. 数据的表示方法表格法6. 数据的分析方法七年级数学下册思维导图(超全)第一章:实数1. 实数的概念实数是包括有理数和无理数在内的所有数的集合。
2. 实数的分类有理数整数正整数、负整数、零分数正分数、负分数无理数不能表示为两个整数比例的数,如根号2、π等。
3. 实数的运算加法将两个实数相加得到一个新的实数。
减法将一个实数减去另一个实数得到一个新的实数。
乘法将两个实数相乘得到一个新的实数。
除法将一个实数除以另一个非零实数得到一个新的实数。
乘方将一个实数乘以自身多次得到一个新的实数。
开方求一个实数的平方根或立方根等。
第二章:代数式1. 代数式的概念代数式是由数、字母和运算符号组成的表达式。
2. 代数式的分类单项式只有一个项的代数式。
多项式由多个项组成的代数式。
3. 代数式的运算加法将两个代数式相加得到一个新的代数式。
减法将一个代数式减去另一个代数式得到一个新的代数式。
乘法将两个代数式相乘得到一个新的代数式。
除法将一个代数式除以另一个非零代数式得到一个新的代数式。
乘方将一个代数式乘以自身多次得到一个新的代数式。
新人教版七年级下学期数学知识结构框架图
第五章 相交线与平行线
“两线四角”—— 邻补角、对顶角
模型
相交线 “三线八角”——同位角F 、内错角Z 、同旁内角C 垂线——①定义及性质1、2 ② 点到直线的距离 定义、平行公理及推论
判定与性质
平行线 定义 应用——平移 性质 定义 作图 构成:“如果.....那么......” 命题 分类及判断方法
证明方法及步骤:执果索因→由因得果
第六章 实 数
(一)
(二)实数 ——无理数:无限不循环小数①π型②根号型③无规型 第七章 平面直角坐标系
坐标轴上及象限内点
坐标系内点的坐标特点 象限角平分线上的点 平行于x 或y 轴直线上的点 坐标方法的简单应用 ①表示平移 ②表示地理位置
第八章 二元一次方程组
程 (消元) 组
检验
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪
⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪
⎪
⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪
⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪
⎩
⎪⎪⎪⎪⎪⎪⎨⎧⎪
⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪
⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立
方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义
平方根开平方开方乘方互为逆运算a
第九章不等式与不等式组
第十章数据的收集、整理与描述。
人教版数学七年级下册-知识框架
人教版数学七年级下册-知识框架第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
第六章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
人教版数学七年级下册思维导图
5.1相交线5.1.1 相交线1.邻补角(定义:一条公共边,另一边互为反向延长线)2.对顶角(定义:两边互为反向延长线)性质:对顶角相等(同角的补角相等)5.1.2 垂线1.垂线(定义:两条线互相垂直,其中一条直线是直线的垂线)2.垂足(定义:两条互相垂直的线的交点)3.定理:①在同一平面内,过一点有且只有一条直线与已知直线垂直②垂线段最短:连接直线外一点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外一点到这条直线的垂线段的长度)5.1.3 同位角、内错角、同旁内角1.同位角(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角)2.内错角(定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间)3.同旁内角(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,)5.2 平行线及其判定5.2.1 平行线1.平行(定义:永不相交)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)5.2.2 平行线的判定1.同位角相等,两直线平行2.内错角相等,两两直线平行直线平行3.同旁内角互补,两直线平行5.3 平行线的性质5.3.1 平行线的性质1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补5.3.2 命题、定理、证明1.命题:题设、结论①真命题:题设成立,结论一定成立②假命题:题设成立,结论不一定成立2.定理3.证明5.4 平移6.1 平方根1.算术平方根、被开方数(规定:0的算术平方根是0)2.平方根、开平方①正数有两个互为相反数的平方根②0的平方根为0③负数没有平方根6.2 立方根1.立方根、开立根6.3 实数1.无理数:无限不循环的小数2.有理数:有限小数和无限循环小数(包含0)3.实数a的相反数是-a4.一个正实数的绝对值是它本身,一个负实数的绝对值时它的相反数,0的绝对值是07.1 平面直角坐标系7.1.1 有序数对(a,b)7.1.2 平面直角坐标系1.横轴x,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2 用坐标表示平移8.1 二元一次方程组1.二元一次方程:两个未知数的次数都是1 8.2 消元——解二元一次方程组1.带入消元法2.加减消元法8.3 实际问题与二元一次方程组1.设未知数2.列方程组*8.4三元一次方程组的解法9.1 不等式9.1.1 不等式及其解集1.不等式的解(值)2.解集(含未知数的不等式的所有的解)9.1.2 不等式的性质1.不等式两边加(或减)同一个数(或式子),不等号的方向不变2.不等式两边乘(或除以)同一个正数,不等号的方向不变3.不等式两边乘(或除以)同一个负数,不等号的方向改变9.2 一元一次不等式9.3 一元一次不等式组10.1 统计调查1.全面调查2.抽样调查3.简单随机抽样调查4.数据处理的一般过程:调查、收集数据、整理数据(制表)、描述数据(绘图:条形图,扇形图,折线图,直方图)、分析数据、得出结论10.2 直方图1.计算最大值和最小值的差2.决定组距和组数3.列频数分布表4.画频数分布直方图10.3 课题学习从数据谈节水。
人教版数学七年级下册思维导图
5.1相交线5.1.1 相交线1.邻补角(定义:一条公共边,另一边互为反向延长线)2.对顶角(定义:两边互为反向延长线)性质:对顶角相等(同角的补角相等)5.1.2 垂线1.垂线(定义:两条线互相垂直,其中一条直线是直线的垂线)2.垂足(定义:两条互相垂直的线的交点)3.定理:①在同一平面内,过一点有且只有一条直线与已知直线垂直②垂线段最短:连接直线外一点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外一点到这条直线的垂线段的长度)5.1.3 同位角、内错角、同旁内角1.同位角(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同一侧的角)2.内错角(定义:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间)3.同旁内角(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,)5.2 平行线及其判定5.2.1 平行线1.平行(定义:永不相交)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)5.2.2 平行线的判定1.同位角相等,两直线平行2.内错角相等,两两直线平行直线平行3.同旁内角互补,两直线平行5.3 平行线的性质5.3.1 平行线的性质1.两直线平行,同位角相等2.两直线平行,内错角相等3.两直线平行,同旁内角互补5.3.2 命题、定理、证明1.命题:题设、结论①真命题:题设成立,结论一定成立②假命题:题设成立,结论不一定成立2.定理3.证明5.4 平移6.1 平方根1.算术平方根、被开方数(规定:0的算术平方根是0)2.平方根、开平方①正数有两个互为相反数的平方根②0的平方根为0③负数没有平方根6.2 立方根1.立方根、开立根6.3 实数1.无理数:无限不循环的小数2.有理数:有限小数和无限循环小数(包含0)3.实数a的相反数是-a4.一个正实数的绝对值是它本身,一个负实数的绝对值时它的相反数,0的绝对值是07.1 平面直角坐标系7.1.1 有序数对(a,b)7.1.2 平面直角坐标系1.横轴x,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2 用坐标表示平移8.1 二元一次方程组1.二元一次方程:两个未知数的次数都是1 8.2 消元——解二元一次方程组1.带入消元法2.加减消元法8.3 实际问题与二元一次方程组1.设未知数2.列方程组*8.4三元一次方程组的解法9.1 不等式9.1.1 不等式及其解集1.不等式的解(值)2.解集(含未知数的不等式的所有的解)9.1.2 不等式的性质1.不等式两边加(或减)同一个数(或式子),不等号的方向不变2.不等式两边乘(或除以)同一个正数,不等号的方向不变3.不等式两边乘(或除以)同一个负数,不等号的方向改变9.2 一元一次不等式9.3 一元一次不等式组10.1 统计调查1.全面调查2.抽样调查3.简单随机抽样调查4.数据处理的一般过程:调查、收集数据、整理数据(制表)、描述数据(绘图:条形图,扇形图,折线图,直方图)、分析数据、得出结论10.2 直方图1.计算最大值和最小值的差2.决定组距和组数3.列频数分布表4.画频数分布直方图10.3 课题学习从数据谈节水。
新人教版七年级下册数学知识框架
第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
EDC BA四、经典例题例1 如图,直线AB,CD,EF 相交于点O ,∠AOE=54°,∠EOD=90°,求∠EOB ,∠COB 的度数。
例2 如图AD 平分∠CAE ,∠B = 350,∠DAE=600,那么∠ACB 等于多少?例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不 相邻的一个内角的2倍,则这个三角形各角的度数为( )。
七级数学下学期知识框架人教版
七年级下学期数学知识梳理第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:叫做同位角。
内错角:∠4与∠6像这样的一对角叫做内错角。
同旁内角:∠4与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
1 / 182 / 18平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
四、经典例题例1 如图,直线AB,CD,EF 相交于点O ,∠AOE=54°,∠EOD=90°,求∠EOB ,∠COB 的度数。
3 / 18EDC BA例2 如图AD 平分∠CAE ,∠B = 35o ,∠DAE=60o ,那么∠ACB 等于多少?例3 三角形的一个外角等于与它相邻的内角的4倍,等于与它不 相邻的一个内角的2倍,则这个三角形各角的度数为( )。
人教版数学七年级下册思维导图
⼈教版数学七年级下册思维导图第五章相交线与平⾏线5.1相交线5.1.1相交线1.邻补⾓(定义:⼀条公共边,另⼀边互为反向延长线)2.对顶⾓(定义:两边互为反向延长线)性质:对顶⾓相等(同⾓的补⾓相等)5.1.2垂线1.垂线(定义:两条线互相垂直,其中⼀条直线是直线的垂线)2.垂⾜(定义:两条互相垂直的线的交点)3.定理:①在同⼀平⾯内,过⼀点有且只有⼀条直线与已知直线垂直②垂线段最短:连接直线外⼀点与直线上个点的所有线段中,垂线段最短③点到直线的距离(定义:直线外⼀点到这条直线的垂线段的长度)5.1.3同位⾓、内错⾓、同旁内⾓1.同位⾓(定义:两条直线被第三条直线所截,在截线的同旁,被截两直线的同⼀侧的⾓)2.内错⾓(定义:两条直线被第三条直线所截,两个⾓分别在截线的两侧,且夹在两条被截直线之间)3.同旁内⾓(定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两⾓,)5.2平⾏线及其判定5.2.1 平⾏线1.平⾏(定义:永不相交)2.平⾏公理:经过直线外⼀点,有且只有⼀条直线与这条直线平⾏。
(如果两条直线都与第三条直线平⾏,那么这两条直线也互相平⾏)5.2.2平⾏线的判定1.同位⾓相等,两直线平⾏2.内错⾓相等,两两直线平⾏直线平⾏3.同旁内⾓互补,两直线平⾏5.3平⾏线的性质5. 3.1平⾏线的性质1.两直线平⾏,同位⾓相等2.两直线平⾏,内错⾓相等3.两直线平⾏,同旁内⾓互补5. 3. 2命题、定理、证明1.命题:题设、结论①真命题:题设成⽴,结论⼀定成⽴②假命题:题设成⽴,结论不⼀定成⽴2.定理3.证明5. 4平移6.1 平⽅根1.算术平⽅根、被开⽅数(规定:0 的算术平⽅根是 0)2.平⽅根、开平⽅①正数有两个互为相反数的平⽅根②0 的平⽅根为 0 ③负数没有平⽅根6.2⽴⽅根1.⽴⽅根、开⽴根6.3实数1.⽆理数:⽆限不循环的⼩数2.有理数:有限⼩数和⽆限循环⼩数(包含 0)3.实数 a 的相反数是-a4.⼀个正实数的绝对值是它本⾝,⼀个负实数的绝对值时它的相反数,0 的绝对值是07. 1平⾯直⾓坐标系7. 1. 1有序数对(a, b)7. 1. 2平⾯直⾓坐标系1.横轴X,纵轴y,原点2.象限(坐标轴上的点不属于任何象限)7. 2坐标⽅法的简单应⽤7. 2. 1⽤坐标表⽰地理位置7. 2. 2⽤坐标表⽰平移& 1⼆元⼀次⽅程组1.⼆元⼀次⽅程:两个未知数的次数都是1& 2消元⼀⼀解⼆元⼀次⽅程组1.带⼊消元法2.加减消元法&3实际问题与⼆元⼀次⽅程组1.设未知数2.列⽅程组*8. 4三元⼀次⽅程组的解法9.1不等式9. 1. 1不等式及其解集1?不等式的解(值)2?解集(含未知数的不等式的所有的解)9. 1. 2不等式的性质1?不等式两边加(或减)同⼀个数(或式⼦),不等号的⽅向不变2.不等式两边乘(或除以)同⼀个正数,不等号的⽅向不变3.不等式两边乘(或除以)同⼀个负数,不等号的⽅向改变9. 2 ⼀元⼀次不等式9. 3 ⼀元⼀次不等式组第⼗章数据的收集、整理与描述< ______________________________________ √10.1统计调查1?全⾯调查2.抽样调查3.简单随机抽样调查4.数据处理的⼀般过程:调查、收集数据、整理数据(制表)、描述数据(绘图10.2直⽅图1.计算最⼤值和最⼩值的差2.决定组距和组数3.列频数分布表4.画频数分布直⽅图10. 3课题学习从数据谈节⽔。
人教版初一下学期数学知识框架及知识点总结
七年级下学期数学知识梳理第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、错角、同旁角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面,不相交的两条直线叫做平行线。
同位角、错角、同旁角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
错角:∠2与∠6像这样的一对角叫做错角。
同旁角:∠2与∠5像这样的一对角叫做同旁角。
命题:判断一件事情的语句叫命题。
平移:在平面,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,错角相等。
性质3:两直线平行,同旁角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:错角相等,两直线平行。
判定3:同旁角相等,两直线平行。
四、经典例题例1 如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数。
例2 如图AD平分∠CAE,∠B = 350,∠DAE=600,那么∠ACB 等于多少?例3 三角形的一个外角等于与它相邻的角的4倍,等于与它不相邻的一个角的2倍,则这个三角形各角的度数为( )。
人教版__初一下学期数学知识框架及知识点总结
.
例 3 已知关于 x、 y 的二元一次方程
二元一次 的值。
.
精品文档
对顶角的性质: 对顶角相等。 垂线的性质: 性质 1:过一点有且只有一条直线与已知直线垂直。 性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最 短。 平行公理: 经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论: 如果两条直线都与第三条直线平行, 那么这两 条直线也互相平行。 平行线的性质: 性质 1:两直线平行,同位角相等。 性质 2:两直线平行,内错角相等。 性质 3:两直线平行,同旁内角互补。 平行线的判定: 判定 1:同位角相等,两直线平行。 判定 2:内错角相等,两直线平行。 判定 3:同旁内角相等,两直线平行。 四、经典例题 例 1 如图,直线 AB,CD,EF相交于点 O,∠ AOE=54°, ∠EOD=90°,求∠ EOB,∠ COB的度数。
.
精品文档
例 2 如图, AB∥CD,EF分别与 AB、 CD交于 G、H,MN⊥ AB于 G,
∠CHG=124度,则∠ EGM等于多少度?
A
M E
GB
第六章 平面直角坐标系 一、知识结构图
有序数对 平面直角坐标系
平面直角坐标系
CH F
N
D
用坐标表示地理位置 坐标方法的简单应用
用坐标表示平移 二、知识定义 有序数对: 有顺序的两个数 a 与 b 组成的数对叫做有序数对, 记 做( a,b ) 平面直角坐标系: 在平面内, 两条互相垂直且有公共原点的数轴 组成平面直角坐标系。 象限: 两条坐标轴把平面分成四个部分,右上部分叫第一象限, 按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上 的点不在任何一个象限内。 三、经典例题
人教版初中数学七年级下册数学知识点思维导图
在平面内,将一个图形沿某个方向移动一定的距离,这样的定义:在平面内取点O,过点O作两条互相垂直的数轴,交点过A(a,b)的特殊直线的表示垂直于x轴(或平行于y轴)的直线表示为直线x=a 垂直于y轴(或平行于x轴)的直线表示为直线y=b 注意:这些特殊直线即为常值函数的图像已知点A(a,b)点A到x轴距离为:|b|点A到y轴距离为:|a|已知点P(a,b)P在一、三象限夹角平分线上,则a=bP在二、四象限夹角平分线上,则a+b=0P在两坐标轴距离相等,则|a|=|b|平面内平行于x轴或y轴线段长度公式二元一次方程定义含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫作二元一次方程 3.含有未知数的项的次数是1详解在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数“未知数的次数为1”是指含有未知数的项(单项式)的次数是1二元一次方程的左边和右边都必须是整式方程的解定义使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来解的个数一般情况下,一个二元一次方程有无数个解即有无数多对数适合这个二元一次方程二元一次方程组方程组的解二元一次方程组中几个方程的公共解,叫做二元一次方程组的解方程可以超过两个有的方程可以只有一元二元一次方程组的解必须同时满足方程组中的每个方程它也必须是一个数对,而不能是一个数二元一次方程组的个数情况定义由几个一次方程组成并且含有两个未知数的方程组叫二元次方程组方程组中有且只有两个未知数方程组中含有未知数的项的次数为 1方程组中每个方程均为整式方程注意:二元一次方程组的不一定由两个二元一次方程合在一起注意事项书写方程组的解时,必须用 { 把各个未知数的值连接在一起解二元一次方程组消元思想两个未知数,消去一个,把二元一次方程组转化为一元一次方程。
这种将未知数由多化少、逐一解决的思想,叫做消元思想基本思路未知数由多变少基本方法把二元一次方程组转为一元一次方程方法代入消元法定义将方程组的一个方程中的某个未知数用含有另一个未知数的代数式表示,并代入另一个方程,消去一个未知数,把解二元一次方程组转化为解一元一次方程解题步骤变选一个系数比较简单的方程进行变形,变成y=ax+b或x=ay+b的形式代将y=ax+b或x=ay+b代入另一个方程,消去—个未知数,从而将另一个方程变成一元一次方程解解这个一元一次方程,求出x或y的值回代将已求出的x或y的值代入方程组中的任意一个方程或y=ax+b或x=ay+b,求出另一个未知数联把求得的两个未知数的值用花括号联立,起来,这样就得到二元一次方程组的解加减消元法定义把方程组的两个方程(或先做适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程步骤化将方程组中的方程化为有一个未知数系数的绝对值相等的形式加减根据其系数特点将变形后的两个方程相加或者相减,得到一元一次方程解解这个一元一次方程,求出一个未知数的值回代把求得的一个未知数的值代入原方程组中较简单的一个方程,求出另一个未知数的值联把求得的两个未知数的值用“{"联立起来,这样就得到二元一次方程组的解三元一次方程组三元一次方程含有三个未知数,并且含有未知数的项的次数都是1的整式方程详解①是整式方程②含有三个未知数③含未知数的项的最高次数是1次三元一次方程组一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可解题思路三元→二元→一元方法①利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组②解这个二元一次方程组,求出两个未知数的值③将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程④解这个一元一次方程,求出最后一个未知数的值⑤将求得的三个未知数的值用“{”合写在一起用二元一次方程组解决问题常见问题行程问题公式路程=速度*时间速度=路程/时间时间=路程/速度类型相遇快者走的路程+慢者走的路程=两者相距的路程追击快者走的路程-慢者走的路程=原来的距离环形跑道同一地点,同时出发时同向而行时首次相遇时快者走的路程-慢者走的路程=一圈的长水流行船顺水(风)背向而行时首次相遇时快者走的路程+慢者走的路程=一圈的长顺水(风)速=静水(风)速+水流(风)速逆水(风)逆水(风)速=静水(风)速-水流(风)速工程问题公式甲乙合做的工作效率=甲的工作效率+乙的工作效率甲的工作量+乙的工作量=总的工作量工作量=工作效率×工作时间详情甲的工作时间与乙的工作时间的和不等于总的工作时间工作总量通常用1来表示配套问题基本等量关系加工总量成比例.根据已知条件分清数量关系,尤其是倍数关系商品问题常用公式利润=售价-成本(进价)利润=成本(进价)×利润率标价=成本(进价)×(1+利润率)实际售价=标价×打折率利润率=((售价-进价)/进价)*100%等基本思想把已知量和未知量联系起来,找出题目中的等量关系解题步骤1.审:弄清题意,找出等量关系2.设:根据问题设出两个未知数直接间接3.列:根据等量关系,列出方程组分析题意,找出两个等量关系,根据等量关系列出方程组4.解:解这个方程组,得出未知数的值5.验:检验所求是否符合题意6.答:写出答案,包括单位。
七年级下学期数学知识框架
1七年级下学期数学知识梳理第五章相交线与平行线一、知识结构图。
相交线:相交线垂线:同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平行线的性质命题、定理平移二、知识定义。
邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
平行线:在同一平面内,不相交的两条直线叫做平行线。
同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠4与∠6像这样的一对角叫做内错角。
同旁内角:∠4与∠5像这样的一对角叫做同旁内角。
命题:判断一件事情的语句叫命题。
2平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
三、定理与性质。
对顶角的性质:对顶角相等。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
四、经典例题。
例1 、如图,直线AB,CD,EF相交于点O,∠AOE=54°,∠EOD=90°,求∠EOB,∠COB的度数。
3EDCBA例2 、如图AD平分∠CAE,∠B = 350,∠DAE=600,那么∠ACB等于多少?例3、三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则这个三角形各角的度数为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 相交线与平行线
“两线四角”—— 邻补角、对顶角
模型
相交线 “三线八角”——同位角F 、内错角Z 、同旁内角C 垂线——①定义及性质1、2 ② 点到直线的距离 定义、平行公理及推论
判定与性质
平行线 定义 应用——平移 性质 定义 作图 构成:“如果.....那么......” 命题 分类及判断方法
证明方法及步骤:执果索因→由因得果
第六章 实 数
(一)
(二)实数 ——无理数:无限不循环小数①π型②根号型③无规型 第七章 平面直角坐标系
坐标轴上及象限内点
坐标系内点的坐标特点 象限角平分线上的点 平行于x 或y 轴直线上的点 坐标方法的简单应用 ①表示平移 ②表示地理位置
第八章 二元一次方程组
程 (消元) 组
检验
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪
⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪
⎪
⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪
⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪
⎩
⎪⎪⎪⎪⎪⎪⎨⎧⎪
⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪
⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立
方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义
平方根开平方开方乘方互为逆运算a
第九章不等式与不等式组
第十章数据的收集、整理与描述。