信号与系统连续时间LTI系统时域分析教材

合集下载

第二章 信号与系统的时域分析

第二章 信号与系统的时域分析
17
二 卷积积分(The convolution integral) 若 (t ) h(t ) 则 (t ) h(t ) = h (t )
x t x h t

x(t ) x( ) (t )d y(t ) x( )h (t )d
则 y(t ) ak yk (t )
k
4
信号与系统的时域分析:
一般的信号都可以表示为延迟冲激的线性组合。
结合系统的叠加性和时不变性,就能够用LTI的单位
冲激响应来完全表征任何一个LTI系统的特性。这样
一种表示在离散情况下称为卷积和;在连续时间情
况下称为卷积积分。
5
分析方法:
对信号分解可在时域进行,也可在频域或变换域 进行,相应地产生了对LTI系统的时域分析法、频 域分析法和变换域分析法。
h( n n kk n h ) uu (n k )k
1
1
k
0
...
0
k
n
12
运算过程:
k k) ,再随参变量 为 h(
点值累加,得到
将一个信号 xk 不动,另一个信号反转后成为
下,将 xk 与 hn k 对应点相乘,再把乘积的各
n
移位.在每个 n 值的情况
x( [ n] y x x[ (n n] )* [ (n) h2 (n n)] x ) y( n n) (h h1 ) 1 n h2 h (n ) h( n) h2 x(t ) 11 y(t ) x(t ) [h1 (t ) h2 (t )] h1 (t ) h2 (t )
0
16
对一般信号 x(t ) ,可以分成很多 宽度的区段, 用一个阶梯信号 x (t ) 近似表示 x(t ) .当 0 时,

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平

1

C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。

信号与系统分析第二章 连续时间系统的时域分析

信号与系统分析第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析
2.1.1
对系统进行分析时, 首先要建立系统的数学模型。 对于电的系统, 只要利用理想的电路元件, 根据基尔霍 夫定律, 就可以列出一个或一组描述电路特征的线性 微分方程。 现举例来说明微分方程的建立方法。
第二章 连续时间系统的时域分析
例2.1 图2.1所示为RLC串联电路, 求电路中电流i(t) 与激励e(t)之间的关系。
第二章 连续时间系统的时域分析
(3)
y(t) C 1 e t C 2 e 6 t5 2c 0 1o 2 t)s 5 3 (s0i2 n t) (
D(p)y(t)=N(p)f(t)
y(t) N(p) f (t) D(P)
式(2.15)中的 N ( p ) 定义为转移算子, 用H(p)表示,
D (P)
(2.14) (2.15)
H (p ) N D ( (P p ) ) b a m n p p m n a b n m 1 1 p p n m 1 1 a b 1 1 p p a b 0 0 (2.16)
t0
解 (1) 齐次解。 由例2.4 yh (t)=C1e-t+C2e-6t
第二章 连续时间系统的时域分析
(2) 特解。 查表2.2, yp(t)=B1cos (2t)+B2sin(2t)
-14B1+2B2-6=0 2B1+14B2=0
于是,
B15201,
B2530
yp(t)5 20 c 1o2ts) (530 si2 nt)(
第二章 连续时间系统的时域分析
3. 用算子符号表示微分方程, 不仅书写简便, 而且在建 立系统的数学模型时也很方便。 把电路中的基本元件R、 L、 C的伏安关系用微分算子形式来表示, 可以得到相应 的算子模型, 如表2.1所示。

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析连续LTI系统的时域分析是信号与系统学中的重要课题。

MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行信号与系统的分析。

下面将介绍MATLAB在连续LTI系统时域分析中的应用。

首先,我们需要了解连续LTI系统的基本概念。

一个连续域线性时不变系统(LTI系统)可以由它的冲激响应完全描述。

冲激响应是系统对单位冲激信号的响应。

在MATLAB中,可以使用impulse函数来生成单位冲激信号。

假设我们有一个连续LTI系统的冲激响应h(t),我们可以使用conv 函数来计算系统对任意输入信号x(t)的响应y(t)。

conv函数实现了卷积运算,可以将输入信号与冲激响应进行卷积运算得到输出信号。

例如,我们假设一个连续LTI系统的冲激响应为h(t) = exp(-t)u(t),其中u(t)是单位阶跃函数。

我们可以使用以下代码生成输入信号x(t)和计算输出信号y(t):```matlabt=-10:0.1:10;%时间范围x = sin(t); % 输入信号h = exp(-t).*heaviside(t); % 冲激响应y = conv(x, h, 'same'); % 计算输出信号```这段代码首先定义了时间范围t,然后定义了输入信号x(t)和冲激响应h(t)。

接下来,使用conv函数计算输入信号和冲激响应的卷积,设置参数’same’表示输出信号与输入信号长度相同。

最后,得到了输出信号y(t)。

在得到输出信号后,我们可以使用MATLAB的绘图功能来可视化结果。

例如,使用以下代码可以绘制输入信号和输出信号的图像:```matlabfigure;plot(t, x, 'b', 'LineWidth', 2); % 绘制输入信号hold on;plot(t, y, 'r', 'LineWidth', 2); % 绘制输出信号xlabel('时间');ylabel('幅度');legend('输入信号', '输出信号');```除了卷积运算外,MATLAB还提供了许多其他函数来进行连续LTI系统的时域分析。

第二章LTI系统的时域分析ppt课件

第二章LTI系统的时域分析ppt课件

注意:为方便起见,对单一零状态系统进行讨论时常常仅用y(t)代表yf(t)。
y( t ) a0 y当( tf)(t b)0f (t()t )时 h( t ) a0h( t ) b0 ( t )
2、h(t)的求解方法 (1) 利用阶跃响应与冲激响应的关系求解
此方法适用于简单电路,前提是阶跃响应g(t)简单易求。
y( t ) yh( t ) yp( t )
1、齐次解yh(t)
y( n )( t ) an1 y( n1 )( t ) a1 y( t ) a0 y( t ) 0
特征方程
的解
n n1 a1 a0 0
➢ 齐次微分方程的特征根:特征方程的 n 个根λi (i=1,2,…,n) ; ➢ 齐次解yh(t)的函数形式由特征根确定;
零状态 系统
y f ( t ) h( t )
yf(t)= g(t)
➢ 零状态系统:在激励 f(t) 的作用下将产生零状态响应yf(t);
➢ 如果激励是单位冲激信号δ(t),产生的响应称为单位冲激响应,用h(t)表示。 ➢ 如果激励是单位阶跃信号ε(t),产生的响应称为单位阶跃响应,用g(t)表示。
n
m
ai y(k i) bj f (k j)
i0
j0
(an 1, m n)
差分方程的经典解分为齐次解yh(k)和特解yp(k)。
y(k) yh (k) yp (k)
1、差分方程的齐次解
n阶前向齐次差分方程 y(k n) an1y(k n 1) a1y(k 1) a0 y(k) 0
i1
y( t
)
yh( t
)
yp( t
)
C
1e
C2 t
ie

信号与系统 LTI系统的时域频率复频域分析

信号与系统 LTI系统的时域频率复频域分析
8
3. LTI系统的方框图表示
(1) 离散时间系统 一阶差分方程 : y[n] ay[n 1] bx[n]
相加 延时 相乘
基本单元:
x2 [n]
A. 加法器
x1[n]

a
x1[n] x2 [n]
B. 放大器(乘以系数)
C. 单位延时器
x[n]
x[n]
ax[ n]
x[n 1]
x[n 1]
解:
0, n 1 x[n] [n 1] 1, n 1 , 0, n 1
对于因果系统必有 y[n] 0, n 1.
当n 0时, 1 y[1] y[0] x[1] x[1] 1, 4 1 1 1 y[3] y[2] x[3] y[2] , 4 4 4
15



| h(t ) | dt
令:
H ( j ) H ( j ) e j ( ) , X ( j ) X ( j ) e j x ( ) , Y ( j ) Y ( j) e
H ( j ) Y ( j ) X ( j )
j y ( )
---幅频特性(幅频响应)
( ) y ( ) x ( )
---相频特性(相频响应)
系统的输出响应y(t)
1 y (t ) FT Y ( j ) 2
1



X ( j ) H ( j )e jt d
Y ( j) X ( j) H ( j)
Y ( j) | X ( j) || H ( j) |
y(t ) FT 1Y ( j) et e2t u(t )
18
d 2 y (t ) dy(t ) dx(t ) 例: 6 8 y (t ) 3x(t ) 2 dt dt dt

《信号与系统》第四章

《信号与系统》第四章

图 两个矢量正交
矢量的分解
c2V2
V
V2
2
o
1
V1
c1V1
图 平面矢量的分解
c3V3
V3
V
o V1
V2
c2V2
c1V1
V c1V1 c2V2 c3V3
图 三维空间矢量的分解
推广到n维空间
1 正交函数的定义
在区间 (t1,t内2 ),函数集 {0 (t),1(t中),的,各N个(t)函} 数间,若满足下列 正交条件:
➢在波形任一周期内,其第二个半波波形与第一个半波波形相同;
x(t) x(t T0 / 2)
➢这时x(t)是一个周期减半为
的周期非正弦波,其基波频率

,即其只含有偶次谐T0波2;
20
4.4波形对称性与傅里叶系数
4 奇半波对称
➢在波形任一周期内,其第二个半周波形恰为第一个半周波形的
负值; x(t) x(t T0 / 2)
交函数集 {0 (t),1(t), ,N (t)} 是完备的,即再也找不到一个函数 (t)
能满足
t2
(t)
* m
(t
)dt
0
t1
m 0,1, , N
则在区间 (t1,t2 ) 内,任意函数x(t)可以精确地用N+1个正交函数地加权和
表示:
N
x(t) c00 (t) c11(t) cN N (t) cnn (t)
T0
3 傅里叶级数系数的确定
➢正弦—余弦形式傅里叶级数的系数
2Bk
2 T0
x(t) cos k0tdt
T0
2Dk
2 T0
x(t) sin k0tdt

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

信号与系统引论 课件 郑君里 第2章 连续时间系统的时域分析

网络拓扑约束:由网络结构决定的电压电流约束关系,
KCL,KVL。
例2-1
电阻 电感 电容
求并联电路的端电压v(t)与激励is(t)间的关系。
1 iR iR t v t R i s t R L 1 t i L t v d L d v t iC t C 元件特性约束 dt
E (常数)
B(常数)
B1t p B2 t p1 B p t B p1
tp e t
cos t sin t
Be t
B1 cos t B2 sin t
t p e t sin t B1t p B2 t p 1 B p t B p 1 e t cos t
2.2 系统数学模型(微分方程)的建立
对于电路系统,主要是根据元件特性约束和网络拓扑
约束列写系统的微分方程。
对于其他物理系统,根据实际系统的物理特性列写系 统的微分方程。 元件特性约束:表征元件特性的关系式。例如二端元
件电阻、电容、电感各自的电压与电流的关系以及
四端元件互感的初、次级电压与电流的关系等等。
等式两端各对应幂次的系数应相等,于是有
3 B1 1 4 B1 3 B2 2 2 B 2 B 3 B 0 2 3 1
联解得到
1 2 10 B1 , B2 , B3 3 9 27
所以,特解为
1 2 2 10 rp t t t 3 9 27
i L (0 ) i L (0 )
例2-6 如图示出RC一阶电路,电路中无储能,起始电
压和电流都为零,激励信号e(t)=u(t),求t >0系统的响
应——电阻两端电压vR(t)。

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验-——-连续LTI系统的时域分析在信号处理中,MATLAB是一个强大的工具,它提供了许多功能,使我们能够模拟和分析各种信号系统。

对于连续LTI系统,时域分析是一个重要的方法,它允许我们直接观察系统的输入和输出信号之间的关系。

下面是一个关于连续LTI系统的时域分析的实验。

一、实验目的本实验的目的是验证连续LTI系统的时域响应,通过使用MATLAB模拟系统,我们可以观察到不同的输入信号产生的输出信号,从而了解系统的特性。

二、实验步骤1.定义系统:首先,我们需要定义我们的连续LTI系统。

这可以通过使用MATLAB中的lti函数来完成。

我们需要提供系统的传递函数,它描述了系统的输入和输出之间的关系。

2.设置输入信号:为了观察系统的行为,我们需要设置一个合适的输入信号。

在MATLAB中,我们可以使用square函数来生成一个方波信号,该信号具有固定的频率和幅度。

3.模拟系统:使用MATLAB的lsim函数,我们可以模拟我们的连续LTI系统。

这个函数将输入信号和系统的传递函数作为参数,然后计算出系统的输出信号。

4.分析结果:我们可以使用MATLAB的图形功能来观察输入和输出信号。

这可以帮助我们理解系统的行为,并验证我们的模型是否正确。

三、实验结果与分析在实验中,我们使用了不同的输入信号(如方波、正弦波等)来测试我们的连续LTI系统。

对于每种输入信号,我们都观察了系统的输出信号,并记录了结果。

通过对比不同的输入和输出信号,我们可以得出以下结论:1.对于方波输入,系统的输出信号是带有延迟的方波,这表明系统对突变信号的响应是瞬时的。

2.对于正弦波输入,系统的输出信号是与输入信号同频同相位的正弦波,这表明系统对正弦波的响应是具有稳定性的。

这些结果验证了连续LTI系统的基本特性:即对于单位阶跃函数(突变信号)的输入,系统的响应是瞬时的;而对于周期性输入(如正弦波),系统的响应具有稳定性。

这些结果与我们在理论上学到的知识相符,从而验证了我们的模型是正确的。

第二章 连续时间系统的时域分析

第二章 连续时间系统的时域分析

19
2.3 起始点的跳变(初始条件的确定)
分析 激励加入:t=0时刻
响应区间:t≥0+
0
0
0
t
起始状态(0-状态):激励加入之前瞬间的状态。
d r 0 d 2 r 0 d n 1 r 0 r 0 r 0 , , , 2 dt dt d t n 1
9
n阶线性时不变系统的模型

一个线性系统,其激励信号 e(t ) 与响应信号 r (t ) 之间的关 系,可以用下列形式的微分方程式来描述
d n r (t ) d n 1 r (t ) d r (t ) C0 C1 Cn 1 Cn r (t ) n n 1 dt dt dt d m e(t ) d m 1 e(t ) d e(t ) E0 E1 Em 1 Em e(t ) m m 1 dt dt dt
dt
21
[ 例 ] 如 图 所 示 , 已 知 R1=1Ω, R2=3/2Ω, e2(t)=4V,
e1(t)=2V, L=1/4H, C=1F, t<0时开关S处于1的位置而 且电路已经达到稳态;当t=0时,S由1转向2。
建立i(t)的微分方程并求解i(t)在t>0时的变化。
解 : (1) 由 元 件 的 约
k
初始条件(0+状态/导出的起始状态):
k
d r 0 d 2 r 0 d n 1 r 0 r 0 r 0 , , , 2 dt dt d t n 1
由于用经典法求解微分方程时,是考虑了激励作用以 (k ) 后的解, 时间范围是 0 t 所以要利用r (0 ) 确定系 数Ai,而不是利用 r ( k ) (0 ) 。 20

信号与系统——连续时间线性定常系统时域分析

信号与系统——连续时间线性定常系统时域分析

对于输入 t ,其特解为 B t t 0 0 ,单位冲激响应为 h1 (t ) e t u(t ) , 则 y1 (t ) h1 (t ) v(t ) e (t )u (t )v( )d e
0 t t
n 1
0 ,求 y (t) =

(1)求齐次解:由微分方程列特征方程 n an1 n1 a1 a0 0 ,求出 n 个特
i t 征根 i,i 1,, n ,则齐次解为 yh t i 1 Ae ,有 n 个待定系数 Ai,i 1,, n ;对于 i
v d 。综上有:
零状态 t 1 t v t e t v d e u t v t 0 p
e
0
t

v t d
(3-14)
由(3-14)式可进一步推得下面的(3-19)式。 § 3.2 LTI 系统的响应 LTI 系统的微分方程:
(3-11) (3-12)
若(t)、(0)已知,则(t)、(t)可确定。 注: (3-11)的两项分别是状态向量的零输入响应与零状态响应; (3-12)的两项分别是输出向量的零输入响应与零状态响应。 LTI 系统的微分方程模型: 具有 n 个独立储能元件的单输入单输出(SISO)系统,输出输入关系为:


不同的物理系统,输入-输出方程可能相同,但含义不同
对 H p 因式分解,基本单元为 H1 (p)
1 。 H1 (p) 对输入 v t 作用产 p
生输出 y1 (t )
1 v(t ) ,即 y1 (t ) y1 (t ) v(t ) ,齐次解 y1h (t ) e t u(t ) ; p

信号与系统实验报告实验三 连续时间LTI系统的频域分析

信号与系统实验报告实验三   连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

信号与系统第2章 信号通过LTI系统的时域分析

信号与系统第2章 信号通过LTI系统的时域分析

因此,f(t)的第n个分段可近似表示为
f n (t ) f (tn )[ (t tn ) (t tn )](2-3)
图2-1
使用矩形脉冲逼近f(t)
而f(t)就可近似表示为这个分段之和 ,即
f (t )
fn (t ) f (tn )[ (t tn ) (t tn )] n 0 n 0 (2-4) N 1 (t tn ) (t tn ) f (tn )
对式(2-8)中的积分变量作变量置换, d dt1 ,得到 令 t t1 ,因此 t t1 ,
y(t )
∞ ∞

x(t t1 )h(t1 )dt1
∞ ∞

x(t )h( )d h(t ) x(t ) (2-9)
比较式(2-8)、式(2-9)可知,卷 积服从交换律。 这个分解表达式及其物理意义
首先考察下面的数学表达式
∞ ∞

f ( )δ(t )d f (t )
(2-1)
表达式(2-1)在前面1.3.2小节介绍 (t)性质时已经指出,这个表达式的物理 意义是指任何一个连续时间信号可以分 解为单位冲激信号的线性组合。 下面对此进行展开说明。
n 0
N 1
N 1


2.3 信号通过LTI系统的时域分析与卷积积分
2.3.1 分析
如图2-2所示,假设LTI系统处于初始 松弛状态,输入信号为x(t),则利用LTI系 统的线性和时不变性,输出信号为
y (t ) T [ x(t )] T[
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
初始松弛时,LTI系统输出y(t)是输 入x(t)与系统单位冲激响应h(t)的卷积这 一结果表明,对于LTI系统,h(t)已经给 出了系统的全部信息,也即表征了系统 的全部性质。 因此,LTI系统现已可用图2-4所示 的框图来表示。

信号与系统MATLAB仿真——LTI连续系统的时域分析

信号与系统MATLAB仿真——LTI连续系统的时域分析

信号与系统MATLAB仿真——LTI连续系统的时域分析1. 知识回顾(1)经典时域分析⽅法线性时不变(LTI)系统是最常见最有⽤的⼀类系统,描述这类系统的输⼊-输出特性的是常系数线性微分⽅程。

\begin{array}{l} {y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = \\ {b_m}{f^{(m)}}(t) + {b_{m - 1}}{f^{(m - 1)}}(t) + \cdot \cdot \cdot + {b_1}{f^{(1)}}(t) + {b_0}f(t) \end{array}齐次解:{y^{(n)}}(t) + {a_{n - 1}}{y^{(n - 1)}}(t) + \cdot \cdot \cdot + {a_1}{y^{(1)}}(t) + {a_0}y(t) = 0特征⽅程:{\lambda ^n} + {a_{n - 1}}{\lambda ^{n - 1}} + \cdot \cdot \cdot + {a_1}\lambda + {a_0} = 0均为单根:{y_h}(t) = \sum\limits_{i = 1}^n {{C_i}{e^{{\lambda _i}t}}}有重根(r重根):{y_h}(t) = \sum\limits_{i = 1}^r {{C_i}{t^{i - 1}}{e^{{\lambda _1}t}}}共轭复根({\lambda _{1,2}} = \alpha \pm j\beta ):{e^{\alpha t}}({C_1}\cos \beta t + {C_2}\sin \beta t)r重复根:{e^{\alpha t}}(\sum\limits_{i = 1}^r {{C_{1i}}{t^{i - 1}}} \cos \beta t + \sum\limits_{i = 1}^r {{C_{2i}}{t^{i - 1}}} \sin \beta t)特解:f(t) = {t^m}所有的特征根均不等于0:{y_p}(t) = {P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}有r重等于0的特征根:{y_p}(t) = {t^r}[{P_m}{t^m} + {P_{m - 1}}{t^{m - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}] f(t) = {e^{\alpha t}}:\alpha 不是特征根:{y_p}(t) = P{e^{\alpha t}}\alpha 是特征单根:{y_p}(t) = {P_1}t{e^{\alpha t}} + {P_0}{e^{\alpha t}}\alpha 是r重特征根:{y_p}(t) = ({P_r}{t^r} + {P_{r - 1}}{t^{r - 1}} + \cdot \cdot \cdot + {P_1}t + {P_0}){e^{\alpha t}} f(t) = \cos \beta t或\sin \beta t:所有特征根均不等于 \pm j\beta :{y_p}(t) = {P_1}\cos \beta t + {P_2}\sin \beta t\pm j\beta 是特征单根:{y_p}(t) = t[{P_1}\cos \beta t + {P_2}\sin \beta t]全解:y(t) = {y_h}(t) + {y_p}(t)(2)零输⼊响应与零状态响应y(t) = {y_{zi}}(t) + {y_{zs}}(t)(3)冲激响应和阶跃响应\left\{ \begin{array}{l} \delta (t) = \frac{{{\rm{d}}\varepsilon (t)}}{{{\rm{d}}t}}\\ \varepsilon (t) = \int_{ - \infty }^t {\delta (\tau ){\rm{d}}\tau } \end{array} \right. \left\{ \begin{array}{l} h(t) = \frac{{{\rm{d}}g(t)}}{{{\rm{d}}t}}\\ g(t) = \int_{ - \infty }^t {h(\tau ){\rm{d}}\tau } \end{array} \right.(4)卷积积分y(t) = {f_1}(t) * {f_2}(t) = \int_{ - \infty }^{ + \infty } {{f_1}(\tau ){f_2}(t - } \tau ){\rm{d}}\tau系统的零状态响应:{y_{zs}}(t) = f(t) * h(t)卷积积分的性质:交换律分配率结合律任意函数与单位冲激函数卷积的结果仍是函数本⾝:f(t) * \delta (t) = f(t)2. 利⽤MATLAB求LTI连续系统的响应LTI连续系统以常微分⽅程描述,如果系统的输⼊信号及初始状态已知,便可以求出系统的响应。

第2章-连续时间信号与系统的时域分析PPT课件

第2章-连续时间信号与系统的时域分析PPT课件
第二章连续时间信号与系统的时域分析
第二章 连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号 第二节 LTI连续系统的时域响应 第三节 冲激响应与阶跃响应 第四节 卷积积分及其应用
-
1
第二章连续时间信号与系统的时域分析
第一节 单位阶跃信号与单位冲激信号
一、单位阶跃函数与单位冲激函数
单位阶跃信号 (unit step function)用(t)表
求:当f(t)=t2,y(0+)=1,y’(0+)=1时的全解。
例5:已知某LTI连续系统的方程为
y ( t ) 4 y ( t ) 4 y ( t ) 2 f ( t ) 8 f ( t )
求:当f(t)=e-t,y(0+)=3,y’(0+)=4时的全响应。
-
15
第二章连续时间信号与系统的时域分析
例6:如图所示电路图,其中R=5,L=1H,
C=1/6F,is(t)=4A,uc(0-)=0,i(0-)=0,电感电流
为i(t)为响应,求系统全响应。
+ uR(t) -
解:激励is(t),响应i(t)
ic(t)is(t)i(t)
iS(t)
ic(t)
R
+
C vc(t)
-
i(t) + L uL(t) -
-
21
第二章连续时间信号与系统的时域分析
例9:描述某线性时不变系统的微分方程为: y”(t)+4y’(t)+3y(t)=f’(t)+4f(t)
已知输入: f(t)=2e-2t(t)
y(0+)=1 y’(0+)=7 (1)求系统的零状态响应yf(t); (2)求系统的零输入响应yx(t); (3)全响应y(t)。

信号与系统实验五 连续线性时不变系统分析

信号与系统实验五 连续线性时不变系统分析

信号与系统实验陈述课程名称:信号与系统实验实验项目名称:连续线性时不变系统分析专业班级:姓名:学号:完成时间:年月日一、实验目的1.掌握连续LTI系统的单位冲激响应、单位阶跃响应和任意激励对应响应的求解方法。

2.掌握连续LTI系统的频域分析方法。

3.掌握连续LTI系统的复频域分析方法。

4.掌握连续LTI系统的时域、频域和复频域分析方法的相互转换。

二、实验原理1.连续LTI系统的时域分析(1)连续线性时不变系统的描述设连续线性时不变系统的激励为,响应为,则描述系统的微分方程可暗示为为了在Matlab编程中调用有关函数,我们可以用向量和来暗示该系统,即这里要注意,向量和的元素排列是按微分方程的微分阶次降幂排列,缺项要用0补齐。

(2) 单位冲激响应单位冲激响应是指连续LTI系统在单位冲激信号激励下的零状态响应,因此满足线性常系数微分方程(5.1)及零初始状态,即,依照定义,它也可暗示为对于连续LTI系统,若其输入信号为,冲激响应为,则其零状态响应为可见,能够刻画和表征系统的固有特性,与何种激励无关。

一旦知道了系统的冲激响应,就可求得系统对任何输入信号所发生的零状态响应。

Matlab提供了专门用于求连续系统冲激响应的函数impulse(),该函数还能绘制其时域波形。

(3)单位阶跃响应单位阶跃响应是指连续LTI系统在单位阶跃信号激励下的零状态响应,它可以暗示为Matlab提供了专门用于求连续系统单位阶跃响应的函数step( ),该函数还能绘制其时域波形。

(4)任意激励下的零状态响应已经知道,连续LTI系统可用常系数线性微分方程(5.1)式来描述,Matlab提供的函数lsim( )能对上述微分方程描述的连续LTI系统的响应进行仿真,该函数不但能绘制指定时间范围内的系统响应波形图,而且还能求出系统响应的数值解。

其调用格式有lsim(b,a,x,t)y=lsim(b,a,x,t) :只求出系统的零状态响应的数值解,而不绘制响应曲线需要特别强调的是,Matlab总是把由分子和分母多项式暗示任何系统都当作是因果系统。

信号与系统实验报告实验三连续时间LTI系统的频域分析

信号与系统实验报告实验三连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统
§2.1 引言
信号与系统
系统数学模型的时域表示
时域分析方法:不涉及任何变换,直接求解系统的微分、积分方 程式,这种方法比较直观,物理概念比较清楚,是学习各种变换域 方法的基础。
输入输出描述: 一元N阶微分方程
状态变量描述: N元一阶微分方程 本章我们主要讨论输入、输出描述法。
信号与系统
强迫响应: 形式取决于外加激励。对应于特解。
暂态响应: 是指激励信号接入一段时间内,完全响应中暂时出现的 有关成分,随着时间t 增加,它将消失。
稳态响应: 由完全响应中减去暂态响应分量即得稳态响应分量。
零输入响应: 没有外加激励信号的作用,只由起始状态(起始时刻系 统储能)所产生的响应。
零状态响应: 不考虑原始时刻系统储能的作用(起始状态等于 零),由系统的外加激励信号产生的响应。
系统分析过程
列写方程:根据元件约束,网络拓扑约束
经典法 解方程: 双零法
零输入: 可利用经典法求 零状态: 利用卷积积分法求解
变换域法:主要是拉普拉斯变换
经典法:前面电路分析课里已经讨论过,但与 (t) 有关的问题
有待进一步解决—— h(t);
卷积积分法:任意激励下的零状态响应可通过冲激响应来求。(新方法)
信号与系统
利用卷积求系统的零状态响应
④ 物理意义:将信号分解成冲激信号之和,借助系统的 冲激响应h(t),求出系统对任意激励信号的零状态响应,即:
任意信号 f (t) 可表示为冲激序列之和 f (t) f ( ) (t )d
若把它作用于冲激响应为h(t)的LTIS,则响应为
r(t) H f (t)
以通过将输入信号与系统函数(系统的冲激响应)做 卷积获得。 物理学中,任何一个线性系统(符合叠加原理)都存 在卷积。
信号与系统
卷积定义
1.定义与物理意义 ①历史:19世纪,欧拉,泊松,杜阿美尔 ②卷积与反卷积互逆
i)卷积
e(t)√ h(t)√
ii)反卷积1:系统辨识
e(t)√
h(t)?
r(t)? r(t)√
信号与系统
§2.2 微分方程的 建立
信号与系统
微分方程的列写
根据实际系统的物理特性列写系统的微分方程。 对于电路系统,主要是根据元件特性约束和网络拓扑约束列写系 统的微分方程。
元件特性约束:表征元件特性的关系式。例如二端元件电阻、电 容、电感各自的电压与电流的关系以及四端元件互感的初、次级 电压与电流的关系等等。
1/p 表示积分算子,即有
1 t • d
p
由此可以得到电阻、电感、电容的算子伏安关系:
u R i
u
L
di
dt
u
t
1 i dt
C
u R i
u pL i
u
1 pC
i
i
u R
i
1u pL
i pC u
信号与系统
微分方程的列写
例:列写 iL (t)与 v1 (t) 的微分方程。
iii)反卷积2:信号检测
e(t)?
h(t)√
r(t)√
信号与系统
卷积定义
③定义: 设有两个 函数 f1(t) f2 (t) , 积分
f (t) f1( ) f2(t )d
称为 f1(t) f2 (t) 的卷积积分,简称卷积,记为
f (t) f1(t) f2(t) 或 f (t) f1(t) f2(t)
H
f
(
) (t
)d
f ( )H (t )d
f ( )h(t )d
这就是系统的零状态响应。
rzs (t) f (t) h(t)
信号与系统
卷积的计算
可直接利用函数的解析表达式代入卷积积分定义式计算。
信号与系统
§2.7 卷积
信号与系统
卷积在工程和数学上的应用:
统计学中,加权的滑动平均是一种卷积。 概率论中,两个统计独立变量X与Y的和的概率密度
函数是X与Y的概率密度函数的卷积。 声学中,回声可以用源声与一个反映各种反射效应的
函数的卷积表示。 电子工程与信号处理中,任一个线性系统的输出都可
R1 R2 L
diL dt
1 LC
iL
R1 L
diS dt
1 LC
iS
信号与系统
微分方程的一般形式
一个线性连续LTI系统,可以用下面一般形式的微分方程来描述。
an
dn dt n
y(t)
an1
d n-1 dt n1
y(t)
a0 y(t)
bm
dm dt m
x(t) bm1
d m-1 dt m1
网络拓扑约束:由网络结构决定的电压电流约束关系,KCL,KVL。
信号与系统
微分方程的列写
例:求并联电路的端电压v(t) 与激励 is (t)间的关系。
解:电阻
1 iR (t) R v(t)
电感
iL (t)
1 L
t
v( ) d
is (t)
iR C
R iC
电容
iC
(t)
C
d v(t dt
)
根据KCL iR (t) iL (t) iC (t) iS(t)
代入上面元件伏安关系,并化简有
C
d2 v(t) dt2
1 R
d v(t) dt
1 L
v(t)

iS d
(t) t
这是一个代表RCL并联电路系统的二阶微分方程。
L
iL v(t)
信号与系统
微分方程的列写
算子法列写电路的微分方程 用 p 表示微分算子,即有
p
d dt
,
p2
d2 dt 2
,
,
pn
dn dt n
x(t)
b0 x(t)
或者
n
ak
k 0
d k y(t) dt k
m
bk
k 0
d k x(t) dt k
信号与系统
§2.3 微分方程经典求解法
信号与系统
§2.4 起始点的跳变
信号与系统
§2.5 零输入响应和 零状态响应
信号与系统
各种系统响应定义
自由响应也:称 固有响应,由系统本身特性决定,与外加激励形 式无关。对应于齐次解。
is (t)
解:
Lp R2 iL
u1
R1
iS
iL
uC
u1
( 1 R1Cp
1)u1
用消元法求得。
u1
Lp2
R1Lp2 R1R2 p (R1 R2 ) p 1/ C
iS
iL
Lp2
R1 p 1/ C (R1 R2 ) p
1/ C
iS
C iL (t) L
R1 u1(t)
R2
信号与系统
微分方程的列写
即得
(
p
2
R1 R2
L
p
1 LC )u1
(R1 p2
R1R2 L
p)iS
( p2
R1
R2 L
p
1 LC )iL
( R1 p L
1 LC )iS
写成微分方程形式为
d2u1 dt 2
R1
R2 L
du1 dt
1 LC
u1
R1
d2iS dt 2
R1R2 L
diS dt
d2iL dt 2
相关文档
最新文档