四年级奥数——鸡兔同笼问题
四年级奥数举一反三-用假设法解题鸡兔同笼
![四年级奥数举一反三-用假设法解题鸡兔同笼](https://img.taocdn.com/s3/m/b0341dca2cc58bd63186bd69.png)
你知道吗?
大约一千五百年前,我国古代数学 名著《孙子算经》中记载了一道数 学题,这就是著名的“鸡兔同笼” 问题。
中国古代《孙子算经》中有云:
问 鸡 兔 各 几 何
下 有 九 十 四 足
上 有 三 十 五 头
腿?
例 1:
今有鸡、兔共居一笼,已知鸡头 和兔头共35个,鸡脚与兔脚共 94只。问鸡、兔各有多少只?
同步奥数
P89:1、
P90:4、5
假设全是鸡
脚:35x2=70(只)
相差:94-70=24(只)
兔:24÷( 4-2)=12(只) 鸡:35-12=23(只)
假设全是兔
举一反三
1,鸡与兔共有30只,共有脚70只。 鸡与兔各有多少只?
举一反三
2、面值是2元、5元的人民币共27张,
全计99元。面值是2元、5元的人民 币各有多少张?
小学四年级 数学鸡兔同笼问题(奥数题剖析)
![小学四年级 数学鸡兔同笼问题(奥数题剖析)](https://img.taocdn.com/s3/m/f7637a1105087632301212b6.png)
小学四年级数学鸡兔同笼问题(奥数题剖析)1、基本公式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)鸡兔同笼问题例题透析一有若干只鸡和兔子,它们共有66个头,222只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是222÷2=111(只).在111这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从111减去总头数66,剩下的就是兔子头数111-66=45,有45只兔子.当然鸡就有21只.答:有兔子45只,鸡21只.上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数.上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说此题.如果设想66只都是兔子,那么就有4×66只脚,比222只脚多了66×4-222=42(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(66×4-222)÷(4-2)= 21(只).说明我们设想的66只“兔子”中,有21只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想66只都是“鸡”,那么共有脚2×66=132(只),比244只脚少了222-132=90(只).每只鸡比每只兔子少(4-2)只脚,90÷2=45(只).说明设想中的“鸡”,有45只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.鸡兔同笼问题例题透析二红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3。
鸡兔同笼解题方法四年级下册
![鸡兔同笼解题方法四年级下册](https://img.taocdn.com/s3/m/7c61188dd0f34693daef5ef7ba0d4a7302766ce7.png)
鸡兔同笼解题方法四年级下册例:鸡兔同笼,上有40个头,下有100只足。
鸡兔各有多少只。
1、极端假设解法一:假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。
这是把兔看作鸡的缘故。
而把一只兔看成一只鸡,足数就会少4-2=2(只)。
因此兔有20÷2=10(只),鸡有40-10=30(只)。
解法二:假设40个头都是兔,那么应有足4×40=160(只),比实际多160-100=60(只)。
这是把鸡看作兔的缘故。
而把一只鸡看成一只兔,足数就会多4-2=2(只)。
因此鸡有60÷2=30(只),兔有40-30=10(只)。
解法三:假设100只足都是鸡足,那么应有头100÷2=50(个),比实际多50-40=10(个)。
把兔足看作鸡足,兔的只数(头数)就会扩大4÷2倍,即兔的只数增加(4÷2-1)倍。
因此兔有10÷(4÷2-1)=10(只),鸡有40-10=30(只)。
解法四:假设100只足都是兔足,那么应有头100÷4=25(个),比实际少40-25=15(个)。
把鸡足看作兔足,鸡的只数(头数)就会缩小4÷2倍,即鸡的只数减少1-1÷(2÷4)=1/2。
因此鸡有15÷1/2=30(只),兔有40-30=10(只)。
2、任意假设解法五:假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。
这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。
那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。
解法六:假设100只足中,有鸡足80只(0至100中的任意整数,最好是2的倍数),则兔足有100-80=20(只),那么它们一共有头80÷2+20÷4=45(个),比实际多45-40=5(个)。
小学四年级奥数之鸡兔同笼
![小学四年级奥数之鸡兔同笼](https://img.taocdn.com/s3/m/9aa0e4fdd5bbfd0a795673a1.png)
鸡兔共100只,共有腿280条,问鸡兔各有几只?
解法一: 假设都是兔子, 应有腿400条, 增加腿数为 400-280=120(条) 所以有小鸡 120÷2=60(只) 有小兔 100-60=40(只)
解法二: 假设都是小鸡, 应有腿200条, 减少腿数为 280-200=80(条) 所以有小兔 80÷2=40(只) 有小鸡 100-40=60(只)
解:假设100人全部是教师,每个学生栽1棵小树 苗,则每位教师可以栽9棵小树苗。 学生人数为(100×9-100×3)÷(9-1)=75(人) 教师人数为100-75=25(人)
练习(2):一辆汽车运实验仪器360个,每个运费5元, 若损坏一个仪器不但不能获得运费,还要赔50元,结 果司机只收到1250元运费,问损坏了几个仪器?
一只鸡变兔子增加两条腿
增加的腿数:30×4-88=32(条)
还有没有
小鸡的数量:32÷2=16(只) 别的想法
兔子的数量:30-16=14(只)
吗?
笼子里有鸡和兔共30只,总共有88条腿。 问鸡和兔各有几只?
一只兔子变鸡减少两条腿
减少的腿数:88-30×2=28(条) 兔子的数量:28÷2=14(只) 小鸡的数量:32-14=16(只)
换个情境
(2)四(5)班学生共44人,春 游划船时共租用8条船,每条大 船坐6人,每条小船坐4人,刚好
坐满。求租用的大船、小船各多 少只?
解法一:
解法二:
假设都租小船,
假设都租大船,
则乘坐32人,
则乘坐48人,
少坐了44-32=12(人)
多出了48-44=4(人)
所以有大船12÷2=6(只) 所以有小船4÷2=2(只)
解析:假设将鸡和兔像变形金刚一样进行合体,合 体后的动物就是每只6条腿。 所以这样的合体动物就有(122+106)÷(2+4)=38(只) 又因为兔子比鸡多了(122-106)÷2=8(只) 所以鸡有(38-8)÷2=15(只) 兔子有15+8=23(只)。
小学奥林匹克数学之鸡兔同笼问题
![小学奥林匹克数学之鸡兔同笼问题](https://img.taocdn.com/s3/m/a119ed1ee45c3b3567ec8bcf.png)
第一讲
知识引导
“鸡兔同笼”问题,是讲诉了一个笼子里 有鸡和兔两种动物,只告诉你它们头的总 个数和腿的总条数,计算出鸡和兔各有多 少只的问题。
“鸡兔同笼”问题,是ห้องสมุดไป่ตู้国古代著名的数 学趣题之一。在小学数学竞赛中,关于此 类问题比较常见。
解题思维
鸡兔同笼问题也叫置换问题,顾名思义就是将 鸡的量置换成兔的量,或者将兔的量置换成鸡 的量。 解题步骤: 1. 以兔(或鸡)去置换鸡(或兔),从而推算出 鸡或兔的只数。 2. 基本公式: 3. (实际足数-鸡足数×总头数)÷每只鸡兔足 数差=兔数 4. (兔足数×总头数-实际足数)÷每只鸡兔足 数差=鸡数
练练手
鸡兔同笼有8只,腿20条,笼中鸡和兔各有 多少只?
例题二
鸡兔同笼,共20个头,50条腿。笼中鸡兔 各多少只?
这么多 怎么画
运用公式 兔数=(实际足数-鸡足数×总头数)÷每只鸡兔足数差
解: 兔子数: (50-2×20)÷(4-2) =(50-40)÷2 = 10 ÷2 = 5(只) 鸡数: 20-5=15(只) 答:笼中的鸡有15只,兔子有5只。
提升练习
马路边上有一些自行车和三轮车,一共有8 辆车,18个轮子,算一算,自行车和三轮 车各有多少辆?
一只青蛙4条腿,一只蛐蛐6条腿。现在有 青蛙和蛐蛐共11只,腿54条。青蛙和蛐蛐 各有多少只?
妈妈买了螃蟹和鸽子共10只,共68条腿。 螃蟹和鸽子各多少只?
I’m a superman.
Thank you!
例题一
鸡和兔在一个笼子里,一共有3个头,8条 腿,请你算出,笼子里有鸡和兔各多少只 ?
你会算吗?
思维向导
一只鸡有_2_条腿,一只兔子有_4_条腿,它们腿的 条数不一样,所以给我们解题带来了麻烦。假如 兔子把它的前面两条腿藏起来,那么这只兔子也 就是_2_条腿,这样就和鸡的腿数一样。
四年级奥数.应用题.鸡兔同笼
![四年级奥数.应用题.鸡兔同笼](https://img.taocdn.com/s3/m/d18fec6f011ca300a6c390c0.png)
假设法一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法一两个量的“鸡兔同笼”问题——变例【例 1】某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【例 2】张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中___________发。
四年级奥数鸡兔同笼问题
![四年级奥数鸡兔同笼问题](https://img.taocdn.com/s3/m/18beb9ab541810a6f524ccbff121dd36a32dc4a3.png)
鸡兔同笼问题学会鸡兔同笼问题的解决方法,并尝试用不同方法解决鸡兔同笼问题。
这句话表达什么意思,你能帮帮图中的小朋友回答老师给出的问题吗?鸡兔同笼”问题的解题方法1、假设法总结:鸡兔同笼问题的基本公式:(1)如果假设全是兔,那么则有鸡数=(每只兔的腿数×鸡兔总数—实际腿数)÷(每只兔子腿数—每只鸡的腿数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么则有兔数=(实际腿数—每只鸡的腿数×鸡兔总数)÷(每只兔子腿数—每只鸡的腿数)鸡数=鸡兔总数-兔数2、方程法设鸡的只数为X,则另一只的只数为(总数-X),再分别乘以它们的腿数,就是总的腿数。
一、鸡兔同笼应用题例题1、已知总头数和总脚数,求鸡兔各多少只;笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡和兔各有几只?牛刀小试1:清华小学有30间宿舍,其中大宿舍每间住6人,小宿舍每间住4人。
如果这些宿舍一共可以住168人,那么有几间大宿舍?牛刀小试2:有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?牛刀小试3:鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?例题2.鸡兔互换问题;有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?牛刀小试小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?3.拓展题型鸡兔同笼,兔子比鸡多10只,兔子和鸡的腿数总和为100,鸡和兔子各有几只?牛刀小试1:灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?牛刀小试2:货运公司运送50箱玻璃仪器,合同规定每箱运费20元,但如果有损坏,被损坏的那一箱不仅不给运费,还要赔偿60元,货运公司最后只得到了760元,请求出损坏了多少箱?1.三轮车和小汽车共5辆,18个轮子.小汽车有()辆.A.3B.4C.52.有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.153.36人去划船,一共租了8只船,每只大船坐5人,每只小船坐3人,那么一共租了()只小船.A.6B.2C.34.有面值为5角和8角的邮票共35张,总价值是25元,两种邮票各有多少张?5.盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?6.实验小学“环保卫士”小分队12人参加植树活动.男同学每人栽了3棵,女同学每人栽了2棵,一共栽了32棵.男、女同学各有多少人?7.鸡和兔放在一只笼子里,上有12个头,下有40只脚.笼中有鸡兔各多少只?8.10人参加智力竞赛,每人必须回答24个问题,答对一题得5分,答错一题扣3分,结果得分最低的人得8分,且每个人的得分都不相同,那么第一名至少得______分.9.12张乒乓球桌上一共有34个同学在比赛,你知道正在单打和双打的乒乓球各有几张?10.笼中共有鸡兔10只,鸡和兔的腿共有32条.求笼中鸡和兔各有几只?方法1:按照顺序列表计算.方法2:假设10只全是鸡,就有腿______条,比32条少______条;要使腿达到32条,就要给其中______只各添上2条腿.这说明兔有______只,鸡有______只.方法3:假设10只全是兔,就有腿______条,比32条多______条;要使腿减少到32条,就要将其中______只各减去2条腿.这说明鸡有______只,兔有______只.两种方法解题:假设法和方程法1、李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。
四年级数学奥数鸡兔同笼含答案
![四年级数学奥数鸡兔同笼含答案](https://img.taocdn.com/s3/m/e0b6567abe23482fb4da4c8b.png)
鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1、鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?2 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?2、小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?3、小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?4、小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
问:两种硬币各多少枚?6、45人去划船,一共乘坐7只船,其中每只大船坐7人,每只小船坐5人。
求大船和小船的只数。
7、46名同学去公园划船,共乘坐9只船,其中大船坐6人,小船坐4人。
大船和小船各有几只?8、六(1)班42个同学向2008年北京奥运会捐款。
其中12人每人捐2元,其余同学每人捐5元或10元,一共捐了229元。
求捐5元和10元的同学各有多少人?鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1鸡兔同笼,共30个头,88只脚。
笼中鸡兔各有多少只?22 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?3小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?4小华买了2元和5元的纪念邮票一共34枚,用去98元钱。
小华买了2元和5元的纪念邮票各多少枚?5小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。
四年级下册奥数试题-鸡兔同笼问题(含答案)全国通用
![四年级下册奥数试题-鸡兔同笼问题(含答案)全国通用](https://img.taocdn.com/s3/m/284c74f959eef8c75ebfb310.png)
小学奥数:鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
例题:鸡兔同笼,头共有52个,脚共有136只,问鸡和兔各有多少只?根据上面所说的思路,套用公式方法1:把所有的鸡假设成兔子:鸡=(4 × 52 - 136 )÷(4 - 2 )= 36兔= 52 - 36 = 16方法2:把所有的兔子假设成鸡:兔=(136 - 2 × 52 )÷ ( 4 - 2 ) = 16鸡= 52 - 16 = 36特点:公式所得那个种类与假设的种类相反1、某玩具店购进飞机和汽车模型共30个,其中飞机模型每个有3个轮子,汽车模型每个有4个轮子,这些玩具模型共有110个轮子,那么新购进的飞机模型和汽车模型各有多少个?解:假设全为飞机模型全为飞机情况下总轮数:3×30=90 (个)汽车模型数量:20÷1=20(个)与实际总轮子数之差:110-90=20(个)飞机模型数量:30-10(个)每单位轮子数之差:4-3=1(个)公式综合算式:汽车=(110-3×30)÷(4-3)=20(个)2、某商店买了儿童上衣和裤子共30件,其中一件上衣20元,一条裤子15元,一共花了515元,求买了几件上衣和几条裤子?解:假设全为上衣全为上衣情况下总价格:20×30=600(元)裤子数量:85÷5=17(条)与实际总价之差:600-515=85(元)衣服数量:30-17=13(件)每单位价格之差:20-15=5(元)公式综合算式:裤子=(20×30-515)÷(20-15)=17(条)3、一些2角和5角的硬币放在同一个存钱罐里,一共50枚,总钱数是14元8角,求各有多少枚?解:假设全为2角硬币 ,14元8角=148角全为2角时总钱数:2×50=100(角) 5角数量:48÷3=16(枚)与实际钱数之差:148-100=48(角) 2角数量:50-16=34(枚)每单位钱数之差:5-2=3(角)公式综合算式:(148-2×50)÷(5-2)=16(枚)4、现有大油瓶和小油瓶一共35个,其中大油瓶可装5千克,小油瓶可装3千克,一共装了145千克的由,求有大小油瓶各有几个?解:假设全为大油瓶全为大油瓶时总容量:5×35=175(千克)小油瓶数量:30÷2=15(个)与实际容量之差:175-145=30(千克)大油瓶数量:35-15=20(个)每单位容量之差:5-3=2(千克)公式综合算式:(5×35-145)÷(5-3)=15(个)5、亮亮参加数学竞赛,一共20道题,按照规定每答对一道题得5分,答错一道或者不答倒扣2分,一共得了72分,请问答对了几道题?解:假设全为答对的全为答对时总得分数:5×20=100(分)答错题数:28÷7=4(题)与实际得分之差:100-72=28(分)答对题数:20-4=16(题)每单位得分之差:5-(-2)= 5+2=7(分)公式综合算式:(5×20-72)÷(5+2)=4(题)*本题由于答对得5分,答错扣2分,故一共相差为7分*6、鸡和兔子关在同一个笼子里,鸡比兔子多28只,一共有176条腿,求鸡和兔各有几只?解:把兔子数量看做单位数鸡比兔子多28只,除这28只以外,鸡与兔子一样多,兔子的腿数量是鸡的2倍(鸡×2)那么得出脚的数量算式:(鸡+鸡×2+28)×2 = 176等式两边扩大或缩小相同倍数等式不变(鸡×3+28)×2÷2=176÷2鸡×3+28 = 88等式两边增加或减少相同的数等式不变鸡×3+28-28 = 88-28鸡×3=60等式两边扩大或缩小相同倍数等式不变鸡×3÷3=60÷3鸡=20只此得数为单位数,故兔子=20只,鸡=20+28=48只。
鸡兔同笼奥数教案(6篇)
![鸡兔同笼奥数教案(6篇)](https://img.taocdn.com/s3/m/d13ca326fbd6195f312b3169a45177232e60e454.png)
鸡兔同笼奥数教案(6篇)最新鸡兔同笼奥数教案(精选6篇)教案中需要对教学方法进行详尽的探讨,以使教师能够更好地操作和运用教具资源。
这里给大家分享一些关于最新鸡兔同笼奥数教案,供大家参考学习。
最新鸡兔同笼奥数教案【篇1】教学内容:人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。
教材分析:“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。
教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。
“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。
通过两种方法的探究让学生感知解决问题的多样性。
因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。
3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。
教学重点:1、理解掌握解决问题的不同思路和方法。
2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。
教学难点:理解掌握假设法,能运用假设法解决数学问题。
教学具准备:表格教学过程:一、导入师生谈话导入新知(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。
)二、探究新知1、质疑:提问:(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?(2)鸡和兔相比:什么比什么多?多多少?(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?(4)尝试解决,交流想法;(5)出示交换已知条件以后的题目。
四年级奥数-鸡兔同笼经典题讲解
![四年级奥数-鸡兔同笼经典题讲解](https://img.taocdn.com/s3/m/a61d0b4519e8b8f67d1cb94f.png)
例1:笼子有若干鸡和兔,从上面数,有20个头;从下面数,有54只脚。
问鸡和兔各有多少?分析:鸡兔同笼问题,核心的解法是假设法。
随着难度的加大,会结合转化思想,分组处理等。
本题是最基础的鸡兔同笼问题,我们假设20个头全是鸡,则共有脚20×2=40只。
而实际上有54只脚,两者的差是54-40=14只,因为20只不全是鸡,还有兔子,一只兔子可以补回4-2=2只脚的差,共要14÷2=7只兔子才能补回14只脚的差。
于是鸡有20-7=13只。
例2:实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分,王刚做错了几题?分析:我们假设王刚全做对,则他应该得:12×9=108分,实际只得了84分,有108-84=24分的差,这24分的差,是因为王刚有些题做错了,做错了一道补回3+9=12分,所以做错了:24÷12=2道。
例3:鸡和兔共100只,鸡的脚数比兔子的脚数多80只,问鸡和兔子各有多少只?分析:这是一道稍有难度的鸡兔同笼问题。
鸡兔同笼问题,一般来说会给出动物的头数和、动物的脚数和,但本题在给出动物的头数和时,却只提供了动物的脚数差,稍有不同。
思路还是用假设法,假设100只全是鸡,则鸡的脚数是100×2=200只,兔子的脚数为0,鸡和兔的脚数差是200只,但实际上鸡的脚数别只比兔多80只,这200-80=120只脚的差是把兔子假设成鸡导致的,一只鸡换回一只兔子,可以补回4+2=6只脚的差,要120÷6=20只兔子才能补回,所以鸡有100-20=80只。
例4:鸡兔同笼,鸡比兔多10只,但鸡的脚数比兔子的脚数却少60只,问鸡和兔子各有多少只?分析:这是一道知道头数差、脚数差,求鸡兔数量的问题。
我们假设兔子有2只脚,则鸡比兔多10×2=20只脚,但实际鸡脚却比兔子脚数少60只,鸡脚和兔脚的差是20-(-60)=20+60=80只脚,是因为兔子的脚只算了2只,每只兔子少算了4-2=2只脚,所以有:80÷2=40只兔子,有40+10=50只鸡。
佳一奥数--小学四年级奥数专题之鸡兔同笼问题
![佳一奥数--小学四年级奥数专题之鸡兔同笼问题](https://img.taocdn.com/s3/m/4f0bac873c1ec5da50e270d6.png)
四年级鸡兔同笼专题鸡兔同笼例题例1、笼子里有若干只鸡和兔。
从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?练习:笼子里有若干只鸡和兔。
从上面数,有35个头,从下面数,有94只脚。
鸡和兔各有几只?举一反三1、龟和鹤共40只,龟的腿和鹤的腿共有112龟、鹤各有几只?2、新星小学“环保卫士”小分队12人参加植树活动。
男生每人栽了3棵树,女生每人栽了2棵树,一共裁了32棵树。
男、女生各有几人?3、盒子里有大、小两种钢珠共30颗,共重266g。
已知大钢珠每颗11g,小钢珠每颗7g。
盒中大、小钢珠各有多少颗?4、全班一共有38人,共租了8条船,每条船都坐满了。
已知:大船6人小船4人,大船小船各租了几条?例2、答对一题加10分,答错一题扣6分(1)3号选手共抢答8题,最后得分64分。
她答对了几题? (2)1号选手共抢答10题,最后得分36分。
他答错了几题? (3)2号选手共抢答16题,最后得分16分。
他答对了几题? 练习:1、2、3、4、鸡兔同笼练习1.鸡和兔共49只,一共有100条腿,问鸡和兔各有多少只?2.有龟和鹤共50只,龟和鹤的腿(腿均健全)共132条,龟和鹤各有几只?3.二元和五元的人民币共40张,面值合计125元,二元和五元的人民币各有多少张?4.一辆汽车参加拉力赛,9天行了5000公里,已知他晴天平均每天行688公里,雨天平均每天行390公里,在这次比赛期间共有几天晴天?几天雨天?5.全班一共有38人,共租8条船(大船每只乘6人,小船每只乘4人),每条船都刚好坐满.大小船个租了几条?6.刘畅同学去参加数学竞赛,共有20道题,做对一道得5分,做错一道题倒扣2分.结果刘畅同学考了72分,问他做对了几道题?例3、鸡兔同笼,鸡和兔一样多,兔子和鸡的腿数总和为30,请问:鸡和兔子各有几只?练习1、鸡兔同笼,鸡和兔子一样多,一共有90条腿.鸡和兔子各有几只?练习2、鸡兔同笼,鸡和兔子一样多,一共有126条腿.鸡和兔子各有几只?例4、鸡兔同笼,兔比鸡多10只,兔子和鸡的腿数总和为100.请问:鸡和兔子各有几只?练习1、鸡兔同笼,兔比鸡多5只,鸡兔共有140条腿,鸡兔各有几只?练习2、鸡兔同笼,鸡比兔多10只,鸡兔共有212条腿,鸡兔各有几只?练习3、六一儿童节。
四年级奥数第17讲鸡兔同笼问题 第18讲盈亏问题
![四年级奥数第17讲鸡兔同笼问题 第18讲盈亏问题](https://img.taocdn.com/s3/m/eaa3a0c41eb91a37f0115c8c.png)
第17讲鸡兔同笼问题练习十七1、笼子里有鸡和兔共25只,总共有70条腿。
鸡和兔各有多少只?2、动物园里有百灵鸟和松鼠共15只,总共有48条腿。
百灵鸟和松鼠各有多少只?3、中国有一首民谣:“一队猎手一队狗,二队并着一队走,数头一共三百六,数脚一共八百九。
”这首民谣实际是一道应用题,问:有多少猎手和多少狗?4、小君有2分、5分的硬币共45枚,一共是1元3角5分,那么2分、5分硬币各多少枚?5、将92张图片分给16个小朋友,有的分到3张,有的分到7张,正好分完。
分到3张和7 张的各有多少人?6、智力竞赛共10道题,答对一道得10分,答错一道倒扣4分。
小芸得了72分,她答对、答错各几道题?7、英语竞赛有20道题,做对一道得7分,做错一道倒扣4分,不答得0分。
小钊得了100分,他有几道题没答?几道题答错?8、我国古代有这样一道算题:“一百馒头一百僧,大僧三个便无增,小僧三人分一个,大小和尚各几人?”翻译成现代文是:大和尚与小和尚共100名,分配100个馒头,大和尚每人给3个,小和尚3个人分1个,问大、小和尚各有多少人?9、动物园里有一群鸵鸟和长颈鹿,它们共有30只眼睛和44只脚。
鸵鸟和长颈鹿各有多少只?10、饲养员老王养着一群鹅和猫,鹅比猫多26只,足数共274只。
鹅和猫各多少只?11、甲、乙、丙三种练习簿每本的价钱分别为7角、3角、2角,三种练习簿一共买了47本,付了21元2角,买乙种练习簿的本数是丙种练习簿的2倍。
三种练习簿各买了多少本?12、买来3元、4元、5元的电影票共200张,用去780元,其中4元和5元的张数相等。
5元、4元、3元票各买了多少张?13、已知蜘蛛有8条腿;蜻蜓有6条腿,两对翅膀;蝉有6条腿,一对翅膀。
现在三种动物共47只,共有腿324条,翅膀37对。
这三种动物各有多少只?14、学校现有12间宿舍,可以住80人,大宿舍住8人,中宿舍住7人,小宿舍住5人,已知中、小宿舍的间数相同,问大、中、小宿舍各多少间?15、文化宫电影院有2000张座位票,前排票每张4元,后排票每张3元,已知前排票比后排票的总价少1100元。
30道的鸡兔同笼类型的题
![30道的鸡兔同笼类型的题](https://img.taocdn.com/s3/m/0ff33316f342336c1eb91a37f111f18582d00c11.png)
30道的鸡兔同笼类型的题鸡兔同笼类型的题可有趣啦,下面我就给大家整30道这样的题哦。
1. 鸡和兔在一个笼子里,共有头20个,脚62只,问鸡和兔各有多少只?2. 笼子里有鸡和兔,头共35个,脚共94只,鸡和兔分别多少只呀?3. 一个笼子里鸡兔同笼,鸡兔共有头12个,脚34只,求鸡兔数量。
4. 有个笼子,鸡和兔在里面,总共头有15个,脚有46只,鸡兔各几只呢?5. 鸡兔同笼,头18个,脚50只,这里面鸡和兔各是多少只呢?6. 笼子里鸡和兔,头数为25个,脚数是70只,鸡兔各多少?7. 鸡兔同在一个笼子,头共10个,脚共28只,鸡兔各几只呀?8. 有个笼子装着鸡和兔,头有16个,脚有44只,鸡兔的数量是多少呢?9. 鸡兔同笼,头数是13个,脚数为38只,求鸡兔的数量。
10. 笼子里鸡和兔,头共22个,脚共68只,鸡和兔分别有多少?11. 鸡兔同笼,头11个,脚30只,鸡兔各几只?12. 一个笼子里有鸡和兔,头14个,脚40只,求鸡兔数量。
13. 笼子里鸡和兔,头数23个,脚数66只,鸡兔各多少只?14. 鸡兔同笼,头17个,脚48只,这里面鸡和兔各有多少呢?15. 有个笼子装鸡和兔,头21个,脚60只,鸡兔各几只呀?16. 鸡兔同笼,头9个,脚26只,鸡兔各多少只?17. 笼子里鸡和兔,头19个,脚52只,鸡兔分别多少只?18. 鸡兔同笼,头24个,脚70只,求鸡兔数量。
19. 有个笼子,鸡兔在里面,头10个,脚32只,鸡兔各几只呢?20. 鸡兔同笼,头26个,脚76只,这里面鸡和兔各是多少只呢?21. 笼子里鸡和兔,头数为15个,脚数是42只,鸡兔各多少?22. 鸡兔同笼,头8个,脚22只,鸡兔各几只呀?23. 一个笼子里有鸡和兔,头20个,脚56只,求鸡兔数量。
24. 笼子里鸡和兔,头13个,脚36只,鸡兔各多少只?25. 鸡兔同笼,头16个,脚46只,这里面鸡和兔各有多少呢?26. 有个笼子装着鸡和兔,头23个,脚64只,鸡兔各几只呀?27. 鸡兔同笼,头12个,脚32只,鸡兔各多少只?28. 笼子里鸡和兔,头18个,脚50只,鸡兔分别多少只?29. 鸡兔同笼,头25个,脚72只,求鸡兔数量。
四年级奥数《鸡兔同笼》练习题
![四年级奥数《鸡兔同笼》练习题](https://img.taocdn.com/s3/m/6c121f5949d7c1c708a1284ac850ad02de8007e4.png)
第二讲《鸡兔同笼》(必做与选做)1.鸡兔同笼,有头76个,有脚133双,鸡、兔各有()只。
A. 19 57B. 20 56C. 22 55D. 23 54解析:鸡与兔一共有头76个,就是鸡与兔76只,鸡与兔一共有133双脚,即有脚133×2=266(只),假设76只都是鸡,现在脚有76×2=152(只),比已知少266-152=114(只)脚,因此用少掉的脚除以每只兔少算的脚得到就是兔子的只数,即114÷(4-2)=57(只),鸡的只数就是76-57=19(只)。
所以选A。
2.幼儿园园长去超市买皮球,大皮球每个5元,小皮球每个3元,共买了39 个皮球,付了129元。
大、小皮球各买了()个。
A. 39 0B. 30 9C. 6 33D. 5 34解析:假设39个都是大皮球,则一共花39×5=195(元),比实际多了195-129=66(元),这66元是将小皮球算成大皮球多算的,所以用66÷(5-3)=33(个),就是小球的个数,则大皮球的个数为39-33=6(个)。
所以选C。
3.蜜蜂采花粉,晴天每天可以采50克花粉,阴天每天可以采36克花粉,8天共采330克花粉,晴天有()天。
A. 3B. 4C. 5D. 6解析:假设这8天都是阴天,则共采花粉36×8=288(克),比实际少采330-288=42(克),少了的原因是晴天也按阴天算,所以用42÷(50-36)=3(天)就是晴天。
所以选A。
4. 芭啦啦小学四年级465名学生去参观科技展览,租用17辆客车刚好坐满,其中每辆大客车限乘50人,每辆小客车限乘15人。
租用了大客车()辆,小客车()辆。
A. 11 6B. 9 8C. 6 11D. 4 13解析:假设17辆车都是大客车,则可坐17×50=850(人),比实际可乘坐的人数多850-465=385(人);多的原因是将小客车乘坐人数也按大客车算,所以385÷(50-15)=11(辆)是小客车的数量,然后用17-11=6(辆)是大客车的数量。
四年级 奥数 鸡兔同笼
![四年级 奥数 鸡兔同笼](https://img.taocdn.com/s3/m/042d2340caaedd3383c4d3cb.png)
四年级奥数鸡兔同笼(一)同学们,可能你们一看本题目就会嘀咕,什么是鸡兔同笼?这类题怎样解答?甭急,下面就听老师细细道来。
“鸡免同笼”问题是我国古代著名的数学问题之一。
在我国古代著名的数学专著《孙子算经》中有这样一道广为流传的数学趣题:“个有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?”将这道题译成现代数学语言就是:“现在有鸡兔共居一个笼子,鸡头和兔头一共是35个,鸡脚和兔脚共有94只,问鸡、兔各有几只?”在小学阶段,解答“鸡免同笼”问题,我们常用“假设法”。
先根据题意进行假设,然后把假设的情形和实际情形作比较.得出两种情形下总数的差;而出现这个“差”的原因是因为经过假设后,每份数增加了,因此我们只要用总数的差除以每一份的差就可以求出份数;在我们日常生活中类似鸡兔同笼的问题的确不少,如:两种钱放在一起如何分开、一场考试如何算出答对几题答错几题、运输队打坏玻璃如何赔偿等这些问题,用假设法,也能化难为易。
希望同学们能很好地掌握这类问题的解题方法。
金牌例题例1、现在有鸡、兔共居一笼,鸡头和兔头一共有15个,鸡脚和兔脚共有44只,问鸡、兔各有几只?思路分析:由笼中鸡头、兔头共有15个可知鸡、兔共有15只。
题中还有两个隐含条件:每只鸡有2只脚,每只兔有4只脚。
解答本题可综合运用假设法和图解法。
先假设15只全是鸡。
因为每只鸡有两只脚,15只鸡共有30只脚。
得下图:而根据题意可知,笼中鸡、兔共有脚44只,这样还多出44-30=14(只)脚。
怎么会多出14只脚?这是因为我们在假设时,把兔子也看做了鸡,因此每只兔子便少算了2只脚。
把多出的14只脚补画在上图中,又得下图:图中有四只脚的是兔,因此一共有7只兔。
用算式来表示这一过程就是:14÷2=7(只),意思是求14里面包含了几个2。
解法一:假设笼中全是鸡,则兔的只数为:(44-15×2)÷(4-2)=7(只)鸡的只数为:15-7=8(只)解法二:假设笼中全是兔,则鸡的只数为:(15×4-44)÷(4-2)=8只兔的只数为:15-8=7(只)答:鸡有8只,兔有7只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲鸡兔同笼问题与假设法
鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
【例题讲解及思维拓展训练题】
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只),
有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),
有兔16——10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
【思维拓展训练一】
1、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
2、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。
问:两种文化用品各买了多少套?
分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。
这样,就将买文化用品问题转换成鸡兔同笼问题了。
假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以
买普通文化用品 24÷8=3(套),
买彩色文化用品 16-3=13(套)。
例2 鸡、兔共100只,鸡脚比兔脚多20只。
问:鸡、兔各多少只?
分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。
这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。
解:有兔(2×100——20)÷(2+4)=30(只),
有鸡100——30=70(只)。
答:有鸡70只,兔30只。
【思维拓展训练二】
1、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。
问:大、小瓶各有多少个?
分析:本题与例4非常类似,仿照例4的解法即可。
解:小瓶有(4×50-20)÷(4+2)=30(个),
大瓶有50-30=20(个)。
答:有大瓶20个,小瓶30个。
2、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。
已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。
利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。
根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。
这样每辆小卡车能装144÷9=16(吨)。
由此可求出这批钢材有多少吨。
解:4×36÷(45-36)×45=720(吨)。
答:这批钢材有720吨。
例3 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。
问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。
实际上只得到115.5元,少得120-115.5=4.5(元)。
搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。
因此共打破花瓶4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
【思维拓展训练三】
1、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。
已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×(2+3)=60(下)。
可求出小乐每分钟跳
(780——60)÷(2+3+3)=90(下),
小乐一共跳了90×3=270(下),因此小喜比小乐共多跳
780——270×2=240(下)。
【课堂巩固训练题】
1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。
问:象棋与跳棋各有多少副?
3.班级购买活页簿与日记本合计32本,花钱74元。
活页簿每本1.9元,日记本每本3.1元。
问:买活页簿、日记本各几本?
4.龟、鹤共有100个头,鹤腿比龟腿多20只。
问:龟、鹤各几只?
5.小蕾花40元钱买了14张贺年卡与明信片。
贺年卡每张3元5角,明信片每张2元5角。
问:贺年卡、明信片各买了几张?
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。
问:这几天中共有几个雨天?
7.振兴小学六年级举行数学竞赛,共有20道试题。
做对一题得5分,没做或做错一题都要扣3分。
小建得了60分,那么他做对了几道题?
8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。
已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。
现有三种小虫共18只,有118条腿和20对翅膀。
问:每种小虫各有几只?
10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
问:鸡、兔各几只?。