四年级奥数——鸡兔同笼问题

合集下载

四年级奥数举一反三-用假设法解题鸡兔同笼

四年级奥数举一反三-用假设法解题鸡兔同笼
用假设法解题
你知道吗?
大约一千五百年前,我国古代数学 名著《孙子算经》中记载了一道数 学题,这就是著名的“鸡兔同笼” 问题。
中国古代《孙子算经》中有云:
问 鸡 兔 各 几 何
下 有 九 十 四 足
上 有 三 十 五 头
腿?
例 1:
今有鸡、兔共居一笼,已知鸡头 和兔头共35个,鸡脚与兔脚共 94只。问鸡、兔各有多少只?
同步奥数
P89:1、
P90:4、5
假设全是鸡
脚:35x2=70(只)
相差:94-70=24(只)
兔:24÷( 4-2)=12(只) 鸡:35-12=23(只)
假设全是兔
举一反三
1,鸡与兔共有30只,共有脚70只。 鸡与兔各有多少只?
举一反三
2、面值是2元、5元的人民币共27张,
全计99元。面值是2元、5元的人民 币各有多少张?

小学四年级 数学鸡兔同笼问题(奥数题剖析)

小学四年级 数学鸡兔同笼问题(奥数题剖析)

小学四年级数学鸡兔同笼问题(奥数题剖析)1、基本公式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)鸡兔同笼问题例题透析一有若干只鸡和兔子,它们共有66个头,222只脚,鸡和兔各有多少只?解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是222÷2=111(只).在111这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从111减去总头数66,剩下的就是兔子头数111-66=45,有45只兔子.当然鸡就有21只.答:有兔子45只,鸡21只.上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数.上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说此题.如果设想66只都是兔子,那么就有4×66只脚,比222只脚多了66×4-222=42(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(66×4-222)÷(4-2)= 21(只).说明我们设想的66只“兔子”中,有21只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想66只都是“鸡”,那么共有脚2×66=132(只),比244只脚少了222-132=90(只).每只鸡比每只兔子少(4-2)只脚,90÷2=45(只).说明设想中的“鸡”,有45只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.鸡兔同笼问题例题透析二红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8×(11+19)=240.比280少40.40÷(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3。

鸡兔同笼解题方法四年级下册

鸡兔同笼解题方法四年级下册

鸡兔同笼解题方法四年级下册例:鸡兔同笼,上有40个头,下有100只足。

鸡兔各有多少只。

1、极端假设解法一:假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。

这是把兔看作鸡的缘故。

而把一只兔看成一只鸡,足数就会少4-2=2(只)。

因此兔有20÷2=10(只),鸡有40-10=30(只)。

解法二:假设40个头都是兔,那么应有足4×40=160(只),比实际多160-100=60(只)。

这是把鸡看作兔的缘故。

而把一只鸡看成一只兔,足数就会多4-2=2(只)。

因此鸡有60÷2=30(只),兔有40-30=10(只)。

解法三:假设100只足都是鸡足,那么应有头100÷2=50(个),比实际多50-40=10(个)。

把兔足看作鸡足,兔的只数(头数)就会扩大4÷2倍,即兔的只数增加(4÷2-1)倍。

因此兔有10÷(4÷2-1)=10(只),鸡有40-10=30(只)。

解法四:假设100只足都是兔足,那么应有头100÷4=25(个),比实际少40-25=15(个)。

把鸡足看作兔足,鸡的只数(头数)就会缩小4÷2倍,即鸡的只数减少1-1÷(2÷4)=1/2。

因此鸡有15÷1/2=30(只),兔有40-30=10(只)。

2、任意假设解法五:假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。

这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。

那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。

解法六:假设100只足中,有鸡足80只(0至100中的任意整数,最好是2的倍数),则兔足有100-80=20(只),那么它们一共有头80÷2+20÷4=45(个),比实际多45-40=5(个)。

小学四年级奥数之鸡兔同笼

小学四年级奥数之鸡兔同笼

鸡兔共100只,共有腿280条,问鸡兔各有几只?
解法一: 假设都是兔子, 应有腿400条, 增加腿数为 400-280=120(条) 所以有小鸡 120÷2=60(只) 有小兔 100-60=40(只)
解法二: 假设都是小鸡, 应有腿200条, 减少腿数为 280-200=80(条) 所以有小兔 80÷2=40(只) 有小鸡 100-40=60(只)
解:假设100人全部是教师,每个学生栽1棵小树 苗,则每位教师可以栽9棵小树苗。 学生人数为(100×9-100×3)÷(9-1)=75(人) 教师人数为100-75=25(人)
练习(2):一辆汽车运实验仪器360个,每个运费5元, 若损坏一个仪器不但不能获得运费,还要赔50元,结 果司机只收到1250元运费,问损坏了几个仪器?
一只鸡变兔子增加两条腿
增加的腿数:30×4-88=32(条)
还有没有
小鸡的数量:32÷2=16(只) 别的想法
兔子的数量:30-16=14(只)
吗?
笼子里有鸡和兔共30只,总共有88条腿。 问鸡和兔各有几只?
一只兔子变鸡减少两条腿
减少的腿数:88-30×2=28(条) 兔子的数量:28÷2=14(只) 小鸡的数量:32-14=16(只)
换个情境
(2)四(5)班学生共44人,春 游划船时共租用8条船,每条大 船坐6人,每条小船坐4人,刚好
坐满。求租用的大船、小船各多 少只?
解法一:
解法二:
假设都租小船,
假设都租大船,
则乘坐32人,
则乘坐48人,
少坐了44-32=12(人)
多出了48-44=4(人)
所以有大船12÷2=6(只) 所以有小船4÷2=2(只)
解析:假设将鸡和兔像变形金刚一样进行合体,合 体后的动物就是每只6条腿。 所以这样的合体动物就有(122+106)÷(2+4)=38(只) 又因为兔子比鸡多了(122-106)÷2=8(只) 所以鸡有(38-8)÷2=15(只) 兔子有15+8=23(只)。

小学奥林匹克数学之鸡兔同笼问题

小学奥林匹克数学之鸡兔同笼问题
鸡兔同笼
第一讲
知识引导
“鸡兔同笼”问题,是讲诉了一个笼子里 有鸡和兔两种动物,只告诉你它们头的总 个数和腿的总条数,计算出鸡和兔各有多 少只的问题。
“鸡兔同笼”问题,是ห้องสมุดไป่ตู้国古代著名的数 学趣题之一。在小学数学竞赛中,关于此 类问题比较常见。
解题思维
鸡兔同笼问题也叫置换问题,顾名思义就是将 鸡的量置换成兔的量,或者将兔的量置换成鸡 的量。 解题步骤: 1. 以兔(或鸡)去置换鸡(或兔),从而推算出 鸡或兔的只数。 2. 基本公式: 3. (实际足数-鸡足数×总头数)÷每只鸡兔足 数差=兔数 4. (兔足数×总头数-实际足数)÷每只鸡兔足 数差=鸡数
练练手
鸡兔同笼有8只,腿20条,笼中鸡和兔各有 多少只?
例题二
鸡兔同笼,共20个头,50条腿。笼中鸡兔 各多少只?
这么多 怎么画
运用公式 兔数=(实际足数-鸡足数×总头数)÷每只鸡兔足数差
解: 兔子数: (50-2×20)÷(4-2) =(50-40)÷2 = 10 ÷2 = 5(只) 鸡数: 20-5=15(只) 答:笼中的鸡有15只,兔子有5只。
提升练习
马路边上有一些自行车和三轮车,一共有8 辆车,18个轮子,算一算,自行车和三轮 车各有多少辆?
一只青蛙4条腿,一只蛐蛐6条腿。现在有 青蛙和蛐蛐共11只,腿54条。青蛙和蛐蛐 各有多少只?
妈妈买了螃蟹和鸽子共10只,共68条腿。 螃蟹和鸽子各多少只?
I’m a superman.
Thank you!
例题一
鸡和兔在一个笼子里,一共有3个头,8条 腿,请你算出,笼子里有鸡和兔各多少只 ?
你会算吗?
思维向导
一只鸡有_2_条腿,一只兔子有_4_条腿,它们腿的 条数不一样,所以给我们解题带来了麻烦。假如 兔子把它的前面两条腿藏起来,那么这只兔子也 就是_2_条腿,这样就和鸡的腿数一样。

四年级奥数.应用题.鸡兔同笼

四年级奥数.应用题.鸡兔同笼

假设法一、鸡兔同笼这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法一两个量的“鸡兔同笼”问题——变例【例 1】某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【例 2】张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共得208分,其中张明比李华多64分,则张明射中___________发。

四年级奥数鸡兔同笼问题

四年级奥数鸡兔同笼问题

鸡兔同笼问题学会鸡兔同笼问题的解决方法,并尝试用不同方法解决鸡兔同笼问题。

这句话表达什么意思,你能帮帮图中的小朋友回答老师给出的问题吗?鸡兔同笼”问题的解题方法1、假设法总结:鸡兔同笼问题的基本公式:(1)如果假设全是兔,那么则有鸡数=(每只兔的腿数×鸡兔总数—实际腿数)÷(每只兔子腿数—每只鸡的腿数)兔数=鸡兔总数-鸡数(2)如果假设全是鸡,那么则有兔数=(实际腿数—每只鸡的腿数×鸡兔总数)÷(每只兔子腿数—每只鸡的腿数)鸡数=鸡兔总数-兔数2、方程法设鸡的只数为X,则另一只的只数为(总数-X),再分别乘以它们的腿数,就是总的腿数。

一、鸡兔同笼应用题例题1、已知总头数和总脚数,求鸡兔各多少只;笼子里有若干只鸡和兔.从上面数,有8个头,从下面数,有26只脚.鸡和兔各有几只?牛刀小试1:清华小学有30间宿舍,其中大宿舍每间住6人,小宿舍每间住4人。

如果这些宿舍一共可以住168人,那么有几间大宿舍?牛刀小试2:有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?牛刀小试3:鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?例题2.鸡兔互换问题;有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。

鸡兔各是多少只?牛刀小试小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?3.拓展题型鸡兔同笼,兔子比鸡多10只,兔子和鸡的腿数总和为100,鸡和兔子各有几只?牛刀小试1:灯泡厂生产灯泡的工人,按得分的多少给工资。

每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。

某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?牛刀小试2:货运公司运送50箱玻璃仪器,合同规定每箱运费20元,但如果有损坏,被损坏的那一箱不仅不给运费,还要赔偿60元,货运公司最后只得到了760元,请求出损坏了多少箱?1.三轮车和小汽车共5辆,18个轮子.小汽车有()辆.A.3B.4C.52.有5元和10元的人民币共20张,一共是175元,5元的人民币有()张.A.5B.10C.153.36人去划船,一共租了8只船,每只大船坐5人,每只小船坐3人,那么一共租了()只小船.A.6B.2C.34.有面值为5角和8角的邮票共35张,总价值是25元,两种邮票各有多少张?5.盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克.盒中大钢珠、小钢珠各有多少个?6.实验小学“环保卫士”小分队12人参加植树活动.男同学每人栽了3棵,女同学每人栽了2棵,一共栽了32棵.男、女同学各有多少人?7.鸡和兔放在一只笼子里,上有12个头,下有40只脚.笼中有鸡兔各多少只?8.10人参加智力竞赛,每人必须回答24个问题,答对一题得5分,答错一题扣3分,结果得分最低的人得8分,且每个人的得分都不相同,那么第一名至少得______分.9.12张乒乓球桌上一共有34个同学在比赛,你知道正在单打和双打的乒乓球各有几张?10.笼中共有鸡兔10只,鸡和兔的腿共有32条.求笼中鸡和兔各有几只?方法1:按照顺序列表计算.方法2:假设10只全是鸡,就有腿______条,比32条少______条;要使腿达到32条,就要给其中______只各添上2条腿.这说明兔有______只,鸡有______只.方法3:假设10只全是兔,就有腿______条,比32条多______条;要使腿减少到32条,就要将其中______只各减去2条腿.这说明鸡有______只,兔有______只.两种方法解题:假设法和方程法1、李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。

四年级数学奥数鸡兔同笼含答案

四年级数学奥数鸡兔同笼含答案

鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1、鸡兔同笼,共30个头,88只脚。

笼中鸡兔各有多少只?2 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?2、小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?3、小华买了2元和5元的纪念邮票一共34枚,用去98元钱。

小华买了2元和5元的纪念邮票各多少枚?4、小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。

问:两种硬币各多少枚?6、45人去划船,一共乘坐7只船,其中每只大船坐7人,每只小船坐5人。

求大船和小船的只数。

7、46名同学去公园划船,共乘坐9只船,其中大船坐6人,小船坐4人。

大船和小船各有几只?8、六(1)班42个同学向2008年北京奥运会捐款。

其中12人每人捐2元,其余同学每人捐5元或10元,一共捐了229元。

求捐5元和10元的同学各有多少人?鸡兔同笼问题(一)1:(4×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数总只数-兔的只数=鸡的只数2:(总脚数-2×总只数)÷(4-2)=兔的只数1鸡兔同笼,共30个头,88只脚。

笼中鸡兔各有多少只?22 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?3小邮迷郑渊用10元钱正好买了20分和50分的邮票共35枚,这两种邮票各买了多少枚?4小华买了2元和5元的纪念邮票一共34枚,用去98元钱。

小华买了2元和5元的纪念邮票各多少枚?5小明的储蓄罐里共有1角和5角的硬币54枚,小明算了一下,一共有15元。

四年级下册奥数试题-鸡兔同笼问题(含答案)全国通用

四年级下册奥数试题-鸡兔同笼问题(含答案)全国通用

小学奥数:鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

例题:鸡兔同笼,头共有52个,脚共有136只,问鸡和兔各有多少只?根据上面所说的思路,套用公式方法1:把所有的鸡假设成兔子:鸡=(4 × 52 - 136 )÷(4 - 2 )= 36兔= 52 - 36 = 16方法2:把所有的兔子假设成鸡:兔=(136 - 2 × 52 )÷ ( 4 - 2 ) = 16鸡= 52 - 16 = 36特点:公式所得那个种类与假设的种类相反1、某玩具店购进飞机和汽车模型共30个,其中飞机模型每个有3个轮子,汽车模型每个有4个轮子,这些玩具模型共有110个轮子,那么新购进的飞机模型和汽车模型各有多少个?解:假设全为飞机模型全为飞机情况下总轮数:3×30=90 (个)汽车模型数量:20÷1=20(个)与实际总轮子数之差:110-90=20(个)飞机模型数量:30-10(个)每单位轮子数之差:4-3=1(个)公式综合算式:汽车=(110-3×30)÷(4-3)=20(个)2、某商店买了儿童上衣和裤子共30件,其中一件上衣20元,一条裤子15元,一共花了515元,求买了几件上衣和几条裤子?解:假设全为上衣全为上衣情况下总价格:20×30=600(元)裤子数量:85÷5=17(条)与实际总价之差:600-515=85(元)衣服数量:30-17=13(件)每单位价格之差:20-15=5(元)公式综合算式:裤子=(20×30-515)÷(20-15)=17(条)3、一些2角和5角的硬币放在同一个存钱罐里,一共50枚,总钱数是14元8角,求各有多少枚?解:假设全为2角硬币 ,14元8角=148角全为2角时总钱数:2×50=100(角) 5角数量:48÷3=16(枚)与实际钱数之差:148-100=48(角) 2角数量:50-16=34(枚)每单位钱数之差:5-2=3(角)公式综合算式:(148-2×50)÷(5-2)=16(枚)4、现有大油瓶和小油瓶一共35个,其中大油瓶可装5千克,小油瓶可装3千克,一共装了145千克的由,求有大小油瓶各有几个?解:假设全为大油瓶全为大油瓶时总容量:5×35=175(千克)小油瓶数量:30÷2=15(个)与实际容量之差:175-145=30(千克)大油瓶数量:35-15=20(个)每单位容量之差:5-3=2(千克)公式综合算式:(5×35-145)÷(5-3)=15(个)5、亮亮参加数学竞赛,一共20道题,按照规定每答对一道题得5分,答错一道或者不答倒扣2分,一共得了72分,请问答对了几道题?解:假设全为答对的全为答对时总得分数:5×20=100(分)答错题数:28÷7=4(题)与实际得分之差:100-72=28(分)答对题数:20-4=16(题)每单位得分之差:5-(-2)= 5+2=7(分)公式综合算式:(5×20-72)÷(5+2)=4(题)*本题由于答对得5分,答错扣2分,故一共相差为7分*6、鸡和兔子关在同一个笼子里,鸡比兔子多28只,一共有176条腿,求鸡和兔各有几只?解:把兔子数量看做单位数鸡比兔子多28只,除这28只以外,鸡与兔子一样多,兔子的腿数量是鸡的2倍(鸡×2)那么得出脚的数量算式:(鸡+鸡×2+28)×2 = 176等式两边扩大或缩小相同倍数等式不变(鸡×3+28)×2÷2=176÷2鸡×3+28 = 88等式两边增加或减少相同的数等式不变鸡×3+28-28 = 88-28鸡×3=60等式两边扩大或缩小相同倍数等式不变鸡×3÷3=60÷3鸡=20只此得数为单位数,故兔子=20只,鸡=20+28=48只。

鸡兔同笼奥数教案(6篇)

鸡兔同笼奥数教案(6篇)

鸡兔同笼奥数教案(6篇)最新鸡兔同笼奥数教案(精选6篇)教案中需要对教学方法进行详尽的探讨,以使教师能够更好地操作和运用教具资源。

这里给大家分享一些关于最新鸡兔同笼奥数教案,供大家参考学习。

最新鸡兔同笼奥数教案【篇1】教学内容:人教版《数学》四年级下册P103——P104页数学广角——《鸡兔同笼》。

教材分析:“鸡兔同笼”问题是我国民间广为流传的有趣的数学问题,最早出现在《孙子算经》中。

教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

对于四年级的学生来说,解决“鸡兔同笼”问题最好的方法是列表法或假设法。

“假设法”有利于培养学生的逻辑推理能力,列表法可以让学生经历猜测、验证等解决问题的基本策略。

通过两种方法的探究让学生感知解决问题的多样性。

因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

教学目标:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、经历自主探究解决问题的过程,能够用列表、假设的方法解决“鸡兔同笼”问题,使学生感知解决问题的多样性。

3、在解决问题的过程中,培养学生的逻辑推理能力,增强应用意识和实践能力。

教学重点:1、理解掌握解决问题的不同思路和方法。

2、学会用不同的方法解决实际生活中有关“鸡兔同笼”的问题。

教学难点:理解掌握假设法,能运用假设法解决数学问题。

教学具准备:表格教学过程:一、导入师生谈话导入新知(设计理念:通过谈话营造轻松的学习环境,同时引出课题,让学生感知我国古代数学文化的源远流长激发学生的民族自豪感;通过谈话引出问题为下一教学环节做好铺垫。

)二、探究新知1、质疑:提问:(1)一只鸡和一只兔不看外表单从数量上看有什么相同点和不同点?(2)鸡和兔相比:什么比什么多?多多少?(3)出示:如果有4只兔和3只鸡同笼,一共有多少个头和多少只脚呢?(4)尝试解决,交流想法;(5)出示交换已知条件以后的题目。

四年级奥数-鸡兔同笼经典题讲解

四年级奥数-鸡兔同笼经典题讲解

例1:笼子有若干鸡和兔,从上面数,有20个头;从下面数,有54只脚。

问鸡和兔各有多少?分析:鸡兔同笼问题,核心的解法是假设法。

随着难度的加大,会结合转化思想,分组处理等。

本题是最基础的鸡兔同笼问题,我们假设20个头全是鸡,则共有脚20×2=40只。

而实际上有54只脚,两者的差是54-40=14只,因为20只不全是鸡,还有兔子,一只兔子可以补回4-2=2只脚的差,共要14÷2=7只兔子才能补回14只脚的差。

于是鸡有20-7=13只。

例2:实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分。

共有12道题,王刚得了84分,王刚做错了几题?分析:我们假设王刚全做对,则他应该得:12×9=108分,实际只得了84分,有108-84=24分的差,这24分的差,是因为王刚有些题做错了,做错了一道补回3+9=12分,所以做错了:24÷12=2道。

例3:鸡和兔共100只,鸡的脚数比兔子的脚数多80只,问鸡和兔子各有多少只?分析:这是一道稍有难度的鸡兔同笼问题。

鸡兔同笼问题,一般来说会给出动物的头数和、动物的脚数和,但本题在给出动物的头数和时,却只提供了动物的脚数差,稍有不同。

思路还是用假设法,假设100只全是鸡,则鸡的脚数是100×2=200只,兔子的脚数为0,鸡和兔的脚数差是200只,但实际上鸡的脚数别只比兔多80只,这200-80=120只脚的差是把兔子假设成鸡导致的,一只鸡换回一只兔子,可以补回4+2=6只脚的差,要120÷6=20只兔子才能补回,所以鸡有100-20=80只。

例4:鸡兔同笼,鸡比兔多10只,但鸡的脚数比兔子的脚数却少60只,问鸡和兔子各有多少只?分析:这是一道知道头数差、脚数差,求鸡兔数量的问题。

我们假设兔子有2只脚,则鸡比兔多10×2=20只脚,但实际鸡脚却比兔子脚数少60只,鸡脚和兔脚的差是20-(-60)=20+60=80只脚,是因为兔子的脚只算了2只,每只兔子少算了4-2=2只脚,所以有:80÷2=40只兔子,有40+10=50只鸡。

佳一奥数--小学四年级奥数专题之鸡兔同笼问题

佳一奥数--小学四年级奥数专题之鸡兔同笼问题

四年级鸡兔同笼专题鸡兔同笼例题例1、笼子里有若干只鸡和兔。

从上面数,有8个头,从下面数,有26只脚。

鸡和兔各有几只?练习:笼子里有若干只鸡和兔。

从上面数,有35个头,从下面数,有94只脚。

鸡和兔各有几只?举一反三1、龟和鹤共40只,龟的腿和鹤的腿共有112龟、鹤各有几只?2、新星小学“环保卫士”小分队12人参加植树活动。

男生每人栽了3棵树,女生每人栽了2棵树,一共裁了32棵树。

男、女生各有几人?3、盒子里有大、小两种钢珠共30颗,共重266g。

已知大钢珠每颗11g,小钢珠每颗7g。

盒中大、小钢珠各有多少颗?4、全班一共有38人,共租了8条船,每条船都坐满了。

已知:大船6人小船4人,大船小船各租了几条?例2、答对一题加10分,答错一题扣6分(1)3号选手共抢答8题,最后得分64分。

她答对了几题? (2)1号选手共抢答10题,最后得分36分。

他答错了几题? (3)2号选手共抢答16题,最后得分16分。

他答对了几题? 练习:1、2、3、4、鸡兔同笼练习1.鸡和兔共49只,一共有100条腿,问鸡和兔各有多少只?2.有龟和鹤共50只,龟和鹤的腿(腿均健全)共132条,龟和鹤各有几只?3.二元和五元的人民币共40张,面值合计125元,二元和五元的人民币各有多少张?4.一辆汽车参加拉力赛,9天行了5000公里,已知他晴天平均每天行688公里,雨天平均每天行390公里,在这次比赛期间共有几天晴天?几天雨天?5.全班一共有38人,共租8条船(大船每只乘6人,小船每只乘4人),每条船都刚好坐满.大小船个租了几条?6.刘畅同学去参加数学竞赛,共有20道题,做对一道得5分,做错一道题倒扣2分.结果刘畅同学考了72分,问他做对了几道题?例3、鸡兔同笼,鸡和兔一样多,兔子和鸡的腿数总和为30,请问:鸡和兔子各有几只?练习1、鸡兔同笼,鸡和兔子一样多,一共有90条腿.鸡和兔子各有几只?练习2、鸡兔同笼,鸡和兔子一样多,一共有126条腿.鸡和兔子各有几只?例4、鸡兔同笼,兔比鸡多10只,兔子和鸡的腿数总和为100.请问:鸡和兔子各有几只?练习1、鸡兔同笼,兔比鸡多5只,鸡兔共有140条腿,鸡兔各有几只?练习2、鸡兔同笼,鸡比兔多10只,鸡兔共有212条腿,鸡兔各有几只?练习3、六一儿童节。

四年级奥数第17讲鸡兔同笼问题 第18讲盈亏问题

四年级奥数第17讲鸡兔同笼问题 第18讲盈亏问题

第17讲鸡兔同笼问题练习十七1、笼子里有鸡和兔共25只,总共有70条腿。

鸡和兔各有多少只?2、动物园里有百灵鸟和松鼠共15只,总共有48条腿。

百灵鸟和松鼠各有多少只?3、中国有一首民谣:“一队猎手一队狗,二队并着一队走,数头一共三百六,数脚一共八百九。

”这首民谣实际是一道应用题,问:有多少猎手和多少狗?4、小君有2分、5分的硬币共45枚,一共是1元3角5分,那么2分、5分硬币各多少枚?5、将92张图片分给16个小朋友,有的分到3张,有的分到7张,正好分完。

分到3张和7 张的各有多少人?6、智力竞赛共10道题,答对一道得10分,答错一道倒扣4分。

小芸得了72分,她答对、答错各几道题?7、英语竞赛有20道题,做对一道得7分,做错一道倒扣4分,不答得0分。

小钊得了100分,他有几道题没答?几道题答错?8、我国古代有这样一道算题:“一百馒头一百僧,大僧三个便无增,小僧三人分一个,大小和尚各几人?”翻译成现代文是:大和尚与小和尚共100名,分配100个馒头,大和尚每人给3个,小和尚3个人分1个,问大、小和尚各有多少人?9、动物园里有一群鸵鸟和长颈鹿,它们共有30只眼睛和44只脚。

鸵鸟和长颈鹿各有多少只?10、饲养员老王养着一群鹅和猫,鹅比猫多26只,足数共274只。

鹅和猫各多少只?11、甲、乙、丙三种练习簿每本的价钱分别为7角、3角、2角,三种练习簿一共买了47本,付了21元2角,买乙种练习簿的本数是丙种练习簿的2倍。

三种练习簿各买了多少本?12、买来3元、4元、5元的电影票共200张,用去780元,其中4元和5元的张数相等。

5元、4元、3元票各买了多少张?13、已知蜘蛛有8条腿;蜻蜓有6条腿,两对翅膀;蝉有6条腿,一对翅膀。

现在三种动物共47只,共有腿324条,翅膀37对。

这三种动物各有多少只?14、学校现有12间宿舍,可以住80人,大宿舍住8人,中宿舍住7人,小宿舍住5人,已知中、小宿舍的间数相同,问大、中、小宿舍各多少间?15、文化宫电影院有2000张座位票,前排票每张4元,后排票每张3元,已知前排票比后排票的总价少1100元。

30道的鸡兔同笼类型的题

30道的鸡兔同笼类型的题

30道的鸡兔同笼类型的题鸡兔同笼类型的题可有趣啦,下面我就给大家整30道这样的题哦。

1. 鸡和兔在一个笼子里,共有头20个,脚62只,问鸡和兔各有多少只?2. 笼子里有鸡和兔,头共35个,脚共94只,鸡和兔分别多少只呀?3. 一个笼子里鸡兔同笼,鸡兔共有头12个,脚34只,求鸡兔数量。

4. 有个笼子,鸡和兔在里面,总共头有15个,脚有46只,鸡兔各几只呢?5. 鸡兔同笼,头18个,脚50只,这里面鸡和兔各是多少只呢?6. 笼子里鸡和兔,头数为25个,脚数是70只,鸡兔各多少?7. 鸡兔同在一个笼子,头共10个,脚共28只,鸡兔各几只呀?8. 有个笼子装着鸡和兔,头有16个,脚有44只,鸡兔的数量是多少呢?9. 鸡兔同笼,头数是13个,脚数为38只,求鸡兔的数量。

10. 笼子里鸡和兔,头共22个,脚共68只,鸡和兔分别有多少?11. 鸡兔同笼,头11个,脚30只,鸡兔各几只?12. 一个笼子里有鸡和兔,头14个,脚40只,求鸡兔数量。

13. 笼子里鸡和兔,头数23个,脚数66只,鸡兔各多少只?14. 鸡兔同笼,头17个,脚48只,这里面鸡和兔各有多少呢?15. 有个笼子装鸡和兔,头21个,脚60只,鸡兔各几只呀?16. 鸡兔同笼,头9个,脚26只,鸡兔各多少只?17. 笼子里鸡和兔,头19个,脚52只,鸡兔分别多少只?18. 鸡兔同笼,头24个,脚70只,求鸡兔数量。

19. 有个笼子,鸡兔在里面,头10个,脚32只,鸡兔各几只呢?20. 鸡兔同笼,头26个,脚76只,这里面鸡和兔各是多少只呢?21. 笼子里鸡和兔,头数为15个,脚数是42只,鸡兔各多少?22. 鸡兔同笼,头8个,脚22只,鸡兔各几只呀?23. 一个笼子里有鸡和兔,头20个,脚56只,求鸡兔数量。

24. 笼子里鸡和兔,头13个,脚36只,鸡兔各多少只?25. 鸡兔同笼,头16个,脚46只,这里面鸡和兔各有多少呢?26. 有个笼子装着鸡和兔,头23个,脚64只,鸡兔各几只呀?27. 鸡兔同笼,头12个,脚32只,鸡兔各多少只?28. 笼子里鸡和兔,头18个,脚50只,鸡兔分别多少只?29. 鸡兔同笼,头25个,脚72只,求鸡兔数量。

四年级奥数《鸡兔同笼》练习题

四年级奥数《鸡兔同笼》练习题

第二讲《鸡兔同笼》(必做与选做)1.鸡兔同笼,有头76个,有脚133双,鸡、兔各有()只。

A. 19 57B. 20 56C. 22 55D. 23 54解析:鸡与兔一共有头76个,就是鸡与兔76只,鸡与兔一共有133双脚,即有脚133×2=266(只),假设76只都是鸡,现在脚有76×2=152(只),比已知少266-152=114(只)脚,因此用少掉的脚除以每只兔少算的脚得到就是兔子的只数,即114÷(4-2)=57(只),鸡的只数就是76-57=19(只)。

所以选A。

2.幼儿园园长去超市买皮球,大皮球每个5元,小皮球每个3元,共买了39 个皮球,付了129元。

大、小皮球各买了()个。

A. 39 0B. 30 9C. 6 33D. 5 34解析:假设39个都是大皮球,则一共花39×5=195(元),比实际多了195-129=66(元),这66元是将小皮球算成大皮球多算的,所以用66÷(5-3)=33(个),就是小球的个数,则大皮球的个数为39-33=6(个)。

所以选C。

3.蜜蜂采花粉,晴天每天可以采50克花粉,阴天每天可以采36克花粉,8天共采330克花粉,晴天有()天。

A. 3B. 4C. 5D. 6解析:假设这8天都是阴天,则共采花粉36×8=288(克),比实际少采330-288=42(克),少了的原因是晴天也按阴天算,所以用42÷(50-36)=3(天)就是晴天。

所以选A。

4. 芭啦啦小学四年级465名学生去参观科技展览,租用17辆客车刚好坐满,其中每辆大客车限乘50人,每辆小客车限乘15人。

租用了大客车()辆,小客车()辆。

A. 11 6B. 9 8C. 6 11D. 4 13解析:假设17辆车都是大客车,则可坐17×50=850(人),比实际可乘坐的人数多850-465=385(人);多的原因是将小客车乘坐人数也按大客车算,所以385÷(50-15)=11(辆)是小客车的数量,然后用17-11=6(辆)是大客车的数量。

四年级 奥数 鸡兔同笼

四年级  奥数    鸡兔同笼

四年级奥数鸡兔同笼(一)同学们,可能你们一看本题目就会嘀咕,什么是鸡兔同笼?这类题怎样解答?甭急,下面就听老师细细道来。

“鸡免同笼”问题是我国古代著名的数学问题之一。

在我国古代著名的数学专著《孙子算经》中有这样一道广为流传的数学趣题:“个有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?”将这道题译成现代数学语言就是:“现在有鸡兔共居一个笼子,鸡头和兔头一共是35个,鸡脚和兔脚共有94只,问鸡、兔各有几只?”在小学阶段,解答“鸡免同笼”问题,我们常用“假设法”。

先根据题意进行假设,然后把假设的情形和实际情形作比较.得出两种情形下总数的差;而出现这个“差”的原因是因为经过假设后,每份数增加了,因此我们只要用总数的差除以每一份的差就可以求出份数;在我们日常生活中类似鸡兔同笼的问题的确不少,如:两种钱放在一起如何分开、一场考试如何算出答对几题答错几题、运输队打坏玻璃如何赔偿等这些问题,用假设法,也能化难为易。

希望同学们能很好地掌握这类问题的解题方法。

金牌例题例1、现在有鸡、兔共居一笼,鸡头和兔头一共有15个,鸡脚和兔脚共有44只,问鸡、兔各有几只?思路分析:由笼中鸡头、兔头共有15个可知鸡、兔共有15只。

题中还有两个隐含条件:每只鸡有2只脚,每只兔有4只脚。

解答本题可综合运用假设法和图解法。

先假设15只全是鸡。

因为每只鸡有两只脚,15只鸡共有30只脚。

得下图:而根据题意可知,笼中鸡、兔共有脚44只,这样还多出44-30=14(只)脚。

怎么会多出14只脚?这是因为我们在假设时,把兔子也看做了鸡,因此每只兔子便少算了2只脚。

把多出的14只脚补画在上图中,又得下图:图中有四只脚的是兔,因此一共有7只兔。

用算式来表示这一过程就是:14÷2=7(只),意思是求14里面包含了几个2。

解法一:假设笼中全是鸡,则兔的只数为:(44-15×2)÷(4-2)=7(只)鸡的只数为:15-7=8(只)解法二:假设笼中全是兔,则鸡的只数为:(15×4-44)÷(4-2)=8只兔的只数为:15-8=7(只)答:鸡有8只,兔有7只。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6讲鸡兔同笼问题与假设法
鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。

许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

【例题讲解及思维拓展训练题】
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。

问:小梅家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。

因此只要算出12里面有几个2,就可以求出兔的只数。

解:有兔(44-2×16)÷(4-2)=6(只),
有鸡16-6=10(只)。

答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。

我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。

因此只要算出20里面有几个2,就可以求出鸡的只数。

有鸡(4×16-44)÷(4-2)=10(只),
有兔16——10=6(只)。

由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。

因此这类问题也叫置换问题。

【思维拓展训练一】
1、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。

问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。

如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。

现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。

同样,也可以假设100人都是小和尚,同学们不妨自己试试。

在下面的例题中,我们只给出一种假设方法。

2、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。

问:两种文化用品各买了多少套?
分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。

这样,就将买文化用品问题转换成鸡兔同笼问题了。

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以
买普通文化用品 24÷8=3(套),
买彩色文化用品 16-3=13(套)。

例2 鸡、兔共100只,鸡脚比兔脚多20只。

问:鸡、兔各多少只?
分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。

这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。

现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。

解:有兔(2×100——20)÷(2+4)=30(只),
有鸡100——30=70(只)。

答:有鸡70只,兔30只。

【思维拓展训练二】
1、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。

问:大、小瓶各有多少个?
分析:本题与例4非常类似,仿照例4的解法即可。

解:小瓶有(4×50-20)÷(4+2)=30(个),
大瓶有50-30=20(个)。

答:有大瓶20个,小瓶30个。

2、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。

已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。

利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。

根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。

这样每辆小卡车能装144÷9=16(吨)。

由此可求出这批钢材有多少吨。

解:4×36÷(45-36)×45=720(吨)。

答:这批钢材有720吨。

例3 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。

问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。

实际上只得到115.5元,少得120-115.5=4.5(元)。

搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。

因此共打破花瓶4.5÷1.5=3(只)。

解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

答:共打破3只花瓶。

【思维拓展训练三】
1、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。

已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×(2+3)=60(下)。

可求出小乐每分钟跳
(780——60)÷(2+3+3)=90(下),
小乐一共跳了90×3=270(下),因此小喜比小乐共多跳
780——270×2=240(下)。

【课堂巩固训练题】
1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。

问:象棋与跳棋各有多少副?
3.班级购买活页簿与日记本合计32本,花钱74元。

活页簿每本1.9元,日记本每本3.1元。

问:买活页簿、日记本各几本?
4.龟、鹤共有100个头,鹤腿比龟腿多20只。

问:龟、鹤各几只?
5.小蕾花40元钱买了14张贺年卡与明信片。

贺年卡每张3元5角,明信片每张2元5角。

问:贺年卡、明信片各买了几张?
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。

问:这几天中共有几个雨天?
7.振兴小学六年级举行数学竞赛,共有20道试题。

做对一题得5分,没做或做错一题都要扣3分。

小建得了60分,那么他做对了几道题?
8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。

已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。

现有三种小虫共18只,有118条腿和20对翅膀。

问:每种小虫各有几只?
10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。

问:鸡、兔各几只?。

相关文档
最新文档