3一次函数应用教案1
浙教版八年级数学上册教学优质课件53一次函数
浙教版八年级数学上册教学优质课件53一次函数一、教学内容本节课,我们将深入探讨浙教版八年级数学上册第五章第三节内容,重点学习一次函数定义、图像、性质及其应用。
具体涉及教材第五章节“一次函数图像”、“一次函数性质”以及“一次函数应用”三个部分。
二、教学目标通过本节课学习,使学生能够:1. 理解并掌握一次函数定义及性质;2. 能够准确绘制一次函数图像;3. 学会运用一次函数解决实际问题。
三、教学难点与重点教学难点:一次函数图像绘制及性质理解。
教学重点:一次函数定义掌握及其在实际问题中应用。
四、教具与学具准备教具:黑板、粉笔、多媒体设备。
学具:直尺、圆规、铅笔、橡皮、练习本。
五、教学过程1. 实践情景引入通过展示一辆汽车以恒定速度行驶情景,引导学生思考速度和时间关系,引出一次函数概念。
2. 例题讲解讲解一次函数定义,举例说明如何根据给定条件求解一次函数表达式。
如:已知汽车行驶速度和时间,求行驶路程。
3. 随堂练习(1)已知某物体匀速直线运动速度和时间,求路程;(2)已知两个点坐标,求过这两个点一次函数表达式。
4. 课堂互动六、板书设计1. 一次函数定义2. 一次函数图像绘制方法3. 一次函数性质4. 一次函数在实际问题中应用七、作业设计1. 作业题目(1)已知一次函数表达式,求其图像上某一点坐标;(2)已知两个点坐标,求过这两个点一次函数表达式;(3)已知一次函数图像上两点,求该函数斜率和截距。
2. 答案(1)点(x,y)坐标为(x,f(x));(2)y=kx+b,其中k为斜率,b为截距;(3)斜率k=(y2y1)/(x2x1),截距b=ykx。
八、课后反思及拓展延伸1. 反思:本节课学生对一次函数定义、图像、性质掌握程度,以及在实际问题中应用能力。
2. 拓展延伸:引导学生探索一次函数与其他函数(如二次函数、指数函数等)关系,为后续学习打下基础。
重点和难点解析:一、教学难点与重点在教学过程中,我需要特别关注一次函数图像绘制及性质理解,这是本节课难点。
一次函数的图象和性质教案人教版
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教材分析
本节课的教学内容是“一次函数的图象和性质”,所使用的是人教版教材。该章节内容主要涉及一次函数的图象特点、斜率与截距的概念、以及一次函数的性质。学生在学习本节课之前,应已掌握一次函数的基本概念,如函数、自变量、因变量等。
- 自主阅读预习资料:按照预习要求,自主阅读预习资料,理解一次函数的基本概念。
- 思考预习问题:针对预习问题,进行独立思考,记录自己的理解和疑问。
- 提交预习成果:将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
- 自主学习法:引导学生自主思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
三、学习者分析
1. 学生已经掌握了哪些相关知识:在开始本节课之前,学生应该已经学习了初中阶段的一次函数、直线方程等相关知识,对于函数的基本概念、自变量与因变量的关系有一定的了解。他们应该能够理解函数的基本性质,如单调性、连续性等,并能够运用这些知识解决一些简单的问题。
2. 学生的学习兴趣、能力和学习风格:学生的兴趣可能在于通过观察和实验来发现一次函数的图象和性质,他们可能对通过实际例子来理解数学概念感兴趣。在学习能力方面,学生可能需要通过具体的例子和实践活动来理解和掌握一次函数的图象和性质。他们的学习风格可能偏向于动手操作和合作学习。
3. 实践评价:通过实践活动,了解学生对一次函数的应用能力,及时发现问题并进行解决。教师可以通过设计实践活动,如小组讨论、实验等,了解学生对一次函数的应用能力,针对存在的问题进行针对性教学。
4. 期末评价:通过期末考试,了解学生对一次函数的图象和性质的掌握程度,及时发现问题并进行解决。期末考试是对学生学习成果的一次全面检验,教师应认真分析考试结果,针对存在的问题进行针对性教学。
4.4.3一次函数的应用第3课时(教案)
三、教学难点与重点
1.教学重点
-理解一次函数表达式y=kx+b中的k和b在实际问题中的意义,如速度与时间关系中的斜率k代表速度,截距b代表初始位置。
-学会通过给定条件或图表信息建立一次函数模型,如根据距离和时间的关系确定物体运动的速度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b是常数,它描述了两个变量之间的线性关系。一次函数在生活中的应用非常广泛,如速度与时间的关系、单价与总价的关系等。
2.案例分析:接下来,我们来看一个具体的案例。假设小华骑自行车以每小时10公里的速度行驶,我们如何根据时间来计算他行驶的距离。这个案例展示了如何建立一次函数模型来解决实际问题。
4.4.3一次函数的应用第3课时(教案)
一、教学内容
《4.4.3一次函数的应用第3课时》
1.理解并掌握一次函数在实际问题中的建模过程。
2.应用一次函数解决实际生活中的问题,如速度与时间、单价与总价等关系。
3.通过实例,使学生能够:
a.确定问题中的变量关系,建立一次函数模型。
b.利用一次函数模型进行问题求解,并解释结果的实际意义。
c.能够根据图表或实际情境,分析一次函数的增减性及其在实际问题中的应用。
4.教材案例:结合教材中关于一次函数应用的问题,如“小明骑自行车行驶,速度与时间的关系”、“某商品打折后的价格与原价的关系”等,进行深入讲解与练习。
二、核心素养目标
1.培养学生的模型建构能力:通过实际问题,让学生学会运用一次函数建立数学模型,提高解决实际问题的能力。
一次函数的图像和性质教案3篇
一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。
二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。
三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。
教学重点:一次函数图象的性质。
教学难点:通过图形探求性质以及分析图形的位置特征。
课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。
教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。
【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。
同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。
因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。
过(1,-)、(0,-3)两点画直线y=-x-3。
师:很好。
还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。
师:大家说说看,哪一种取法更好呢?众:乙的方法好。
师:对。
我们可以针对函数中不同的k和b的值,灵活取值。
教师要求学生画出这两函数的图象。
【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。
(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。
图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。
一次函数教案【优秀10篇】
一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
《一次函数》数学教案
《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。
2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。
3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。
二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。
2. 重点:一次函数的概念、图象和性质。
3. 难点:一次函数的应用。
三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。
2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。
3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。
4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。
四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。
2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。
3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。
五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。
2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。
六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。
4.4 一次函数的应用(3)教案(公开课)
一次函数的应用(3)教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用教学难点从函数图象中正确读取信息教学过程:1.如图,l 1反映了某公司产品的销售收入与销售量之间的关系,l 2反映了该公司产品的销售成本与销售量之间的关系,根据图意填空:(1)当销售量为2吨时,销售收入=元,销售成本=元;(2)当销售量为6吨时,销售收入=元,销售成本=元;(3)当销售量等于时,销售收入等于销售成本;(4)当销售量时,该公司赢利(收入大于成本);当销售量时,该公司亏损(收入小于成本);(5) l 1对应的函数表达式是,l 2对应的函数表达式是。
2.例我边防局接到情报,近海处有一可疑船只正向公海方向行驶.边防局迅速派出快艇追赶(如图),下图中,分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.A B 1l 2l s t根据图象回答下列问题:(1)哪条线表示到海岸的距离与时间之间的关系?(2),哪个速度快?(3)15 min 内能否追上?(4)如果一直追下去,那么能否追上?(5)当逃到离海岸海里的公海时,将无法对其进行检查.照此速度,能否在逃到公海前将其拦截?3. 如图,与分别表示步行与骑车同一路上行驶的路程与时间的关系.(1)出发时与相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇?课时小结本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。
有关八年级数学一次函数的应用教案4篇
有关八年级数学一次函数的应用教案4篇【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。
原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。
过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。
情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。
教学难点:在理解的基础上结合数学思想分析、解决问题。
【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
因此我选用了以下教学方法:1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。
八年级数学下册 18.3 一次函数教学设计1 华东师大版 教案
18.3.1 一次函数复习导入、解读目标(复习谈话式切入)通过前面的学习,同学们了解了什么是函数,学会了函数图象的画法,初步感受了函数图象在解决实际问题时的作用.并且知道了函数的三种表示方法,(列表法、图像法、解析式法)在此基础上,从这节课起我们将对一些函数进行具体的学习和研究.这节课我们研究的是函数家庭中最简单、最基础的函数——一次函数。
(板书课题) 本节课的目标为:1、理解一次函数和正比例函数的概念;掌握一次函数和正比例函数之间的关系。
2、能根据已知条件,写出简单的一次函数表达式,进一步发展学生的数学应用能力。
3、通过本节课的学习激发学生对现实生活中的问题进行探索的兴趣。
并强调本节课的重点是:一次函数,正比例函数的概念;难点是:能写出一次函数关系式及自变量的取值范围。
培养学生的抽象思维能力。
自主学习、合作探究1、自学指导:用5分钟左右的时间,先阅读课本P 39---40页,再勾画一次函数的概念,完成本节课后的练习题。
如果你有困难,可以先标记下来,以备和同学交流。
2、合作探究:【基础知识探究】(重点)探究点一:一次函数和正比例函数概念探究下列问题:(探究过程:独立组学——小组交流——代表汇报——教师点拨)(1)磁悬浮列车自上海浦东站出发,运行1000米后,便以110米/秒的速度匀速行驶.如果从运行1000米后开始计时,请写出该列车离开浦东站的距离s (米)与时间t (秒) 之间的函数关系式.(2)小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款y 与从现在开始的月份x 之间的函数关系式. 问题1.请分别列出上面两题的函数关系式 解:(1)()01000110≥+=t t s(2)()的整数05012≥+=x x y问题2.上述函数关系式有哪些共同特点?它们的一般形式可以概括为什么?答:函数的解析式都是用自变量的一次整式表示的,我们称它们为一次函数.一次函数通常可以表示为y kx b =+的形式,其中k 、b 是常数,k ≠0.特别地,当0b =时,一次函数y kx =(常数k ≠0)也叫做正比例函数.正比例函数也是一次函数,它是一次函数的特例.探究点二:概念应用(学以致用)1、下列函数哪些是y 关于x 的一次函数?哪些是y 关于x 的正比例函数?系数k 和常数项b 的值各是多少?解:(1)(3)(6)是一次函数;(1)(3)是正比例函数。
一次函数数学教案优秀5篇
一次函数数学教案优秀5篇推文网精心整理一次函数数学教案,希望这份一次函数数学教案优秀5篇能够帮助大家,给予大家在写作上的思路。
更多一次函数数学教案资料,在搜索框搜索一次函数数学教案(精选篇1)教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感、态度与价值观培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.重、难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一、范例点击,应用所学例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间_(单位:•分)变化的函数关系式,并画出函数图象.y=例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D•两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少?解:设总运费为y元,A城往运C乡的肥料量为_吨,则运往D乡的肥料量为(-_)吨.B城运往C、D乡的肥料量分别为(240-_)吨与(60+_)吨.y与_的关系式为:y=•20_+25(-_)+15(240-_)+24(60+_),即y=4_+10040(0≤_≤).由图象可看出:当_=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D•乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?二、随堂练习,巩固深化课本P119练习.三、课堂,发展潜能由学生自我本节课的表现.四、布置作业,专题突破课本P120习题14.2第9,10,11题.板书设计14.2.2一次函数(4)1、一次函数的应用例:练习:一次函数数学教案(精选篇2)一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。
一次函数应用大单元备课
一次函数应用大单元备课一、学情分析学生在初中阶段已经初步接触了一次函数,对于一次函数的图像和性质有了一定的了解。
但是,对于一次函数在实际问题中的应用,学生可能还比较陌生。
因此,本单元的教学重点应该放在引导学生理解一次函数在实际问题中的应用,并掌握相关的数学模型和解题方法。
二、教学目标1. 理解一次函数在实际问题中的应用,掌握相关的数学模型和解题方法。
2. 能够运用一次函数解决实际问题,提高分析和解决问题的能力。
3. 培养学生的数学思维和数学应用能力,增强数学学习的兴趣和信心。
三、教学内容与过程1. 引入新课通过生活中的实际问题,引导学生思考一次函数的应用,如速度、时间、距离等问题。
让学生认识到数学与实际生活的紧密联系,激发学习的兴趣。
2. 知识讲解通过具体的实例,讲解一次函数在实际问题中的应用。
如一次函数的图像和性质、一次函数在实际问题中的建模方法和解题步骤等。
让学生了解并掌握一次函数在实际问题中的运用。
3. 实践操作提供一些实际问题,让学生自行建模和解题。
通过实际操作,提高学生的实际应用能力和解决问题的能力。
同时,让学生体验到数学学习的成就感。
4. 总结与反思对本单元的学习内容进行总结和反思,强调一次函数在实际问题中的重要性和应用价值。
引导学生对学习过程进行反思,提高学习效果和数学思维能力。
四、教学方法与手段1. 实例教学通过具体的实例,引导学生理解一次函数在实际问题中的应用,帮助学生掌握相关的数学模型和解题方法。
2. 互动教学通过小组讨论、互动问答等方式,鼓励学生积极参与教学过程,提高学生的学习积极性和主动性。
《一次函数的应用(3)》教案新部编本1
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《一次函数的应用(3)》教案教学内容北师大版数学八年级上册《一次函数的应用(3)》P93-94.教学目的1、进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题.2、在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.3、在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4、在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用.教学难点从函数图象中正确读取信息,能够与实际问题联系起来.教学过程一、情境引入一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y 与x 之间的关系.(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?通过与上一课时相似的问题,回顾旧知,导入新知识.二、问题解决内容1:如图,1l 反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,根据图意填空:(1)当销售量为2吨时,销售收入=_______元,销售成本=________元;(2)当销售量为6吨时,销售收入=________元,销售成本=________元;(3)当销售量为_______时,销售收入等于销售成本;(4)当销售量________时,该公司赢利;当销售量________时,该公司亏损.(5)1l对应的函数表达式是______________;2l对应的函数表达式是_______________.内容2:深入探究例2我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与时间之间的关系?解:观察图象,得当0=t时,B距海岸0nmile,即0=S,故1l表示B到海岸的距离与追赶时间之间的关系.(2)A,B哪个速度快?解:从0增加到10时,2l的纵坐标增加了2,而1l的纵坐标增加了5,即10min内,A行驶了2海里,B行驶了5nmile,所以B的速度快.(3)15min内B能否追上A?解:可以看出,当15=t时,1l上对应点在2l上对应点的下方.(4)如果一直追下去,那么B能否追上A?解:如图1l,2l相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)当A逃到离海岸2l海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?解:从图中可以看出,1l与2l交点P的纵坐标小于2l,这说海岸公海AB明在A逃入公海前,我边防快艇B能够追上A.活动目的:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.说明:学生在教师的引导下,逐步形成了良好的识图能力.三、反馈练习内容:观察甲、乙两图,解答下列问题:1、填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节.2、根据1中所填答案的图象填写下表:项目主人公(龟或兔)到达时间(分)最快速度(米/分)平均速度(米/分)红线绿线3、根据1中所填答案的图象求:(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围).(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?4、甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y甲(棵),乙班植树的总量为y乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时),y甲、y乙分别与x之间的部分函数图象如图所示.(1)当06x≤≤时,分别求y甲、y乙与x之间的函数关系式.(2)如果甲、乙两班均保持前6h的工作效率,通过计算说明,当8x=时,甲、乙两班植树的总量之和能否超过260棵.(3)如果6h后,甲班保持前6h的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当8x=时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.线型y甲y乙y(棵)120四、课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.意图:引导学生自己小结运用一次函数解决实际问题的主要方法.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.五、作业布置习题4.7。
一次函数的教案市公开课一等奖教案省赛课金奖教案
一次函数的教案一、教学目标1. 理解什么是一次函数;2. 掌握一次函数的图像特征和性质;3. 学会用一次函数解决实际问题;4. 开发学生的数学思维和实际应用能力。
二、教学内容和方法1. 了解一次函数的定义和表达形式,如y = mx + b;2. 教师通过讲解一次函数的图像特征,引导学生理解函数图像与函数的关系;3. 利用具体的实例,引导学生归纳和总结一次函数的性质;4. 通过课堂练习和问题解决,培养学生应用一次函数解决实际问题的能力;5. 采用多媒体教学、小组合作学习和讨论等方法,激发学生的学习兴趣。
三、教学步骤1. 介绍一次函数的概念和定义,引导学生理解函数的含义。
2. 讲解一次函数的表达形式和图像特征,如斜率和截距的作用。
3. 引导学生通过观察一次函数图像的趋势和变化,总结并归纳一次函数的性质。
4. 给学生一些具体的实例,让他们用一次函数解决问题。
5. 分组讨论,学生们在小组内分享自己的解决方案,并让其他小组评价和提出改进建议。
6. 汇总各组的思路和解决方法,培养学生的合作意识和团队精神。
7. 引导学生运用一次函数解决其他实际问题,如寻找最优解、预测未来变化趋势等,提高他们的应用能力。
8. 总结本节课的重点内容和要点,巩固学生的学习成果。
9. 布置相关练习作业,以巩固和拓展学生的知识。
四、教学评价与反馈1. 课堂期间教师通过观察学生的讨论和解答问题的能力,进行及时的评价和反馈。
2. 以小组形式进行互相评价,激发学生的思维和创造力。
3. 教师布置相关练习作业,通过作业的批改和讲解,评估学生对一次函数的掌握程度。
4. 鼓励学生积极参与课堂互动,及时纠正错误和改进不足。
五、教学资源和材料1. 教师准备幻灯片或其他多媒体资料,以图文结合的方式对一次函数进行讲解。
2. 准备一些有关一次函数的练习题目,以培养学生的应用能力。
3. 提供一些实际问题的案例,供学生进行解答和讨论。
六、教学拓展和延伸1. 引导学生探究二次函数和其他函数的特征和性质,拓展学生的数学知识。
高中数学必修一 《3 1 函数的概念及其表示》优秀教案教学设计
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
一次函数的图象和性质教案设计
一次函数的图象和性质教案设计一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
二、教学重点:1. 一次函数的图象和性质。
2. 运用一次函数解决实际问题。
三、教学难点:1. 一次函数的图象和性质的理解和运用。
2. 实际问题的解决。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。
2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。
五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。
2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。
3. 案例分析:给出实际问题,让学生运用一次函数解决。
4. 巩固练习:设计相关练习题,让学生巩固所学知识。
6. 课后作业:布置相关作业,巩固所学知识。
教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
二、教学重点:1. 一次函数的图象和性质。
2. 运用一次函数解决实际问题。
三、教学难点:1. 一次函数的图象和性质的理解和运用。
2. 实际问题的解决。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数的图象和性质。
2. 采用案例分析法,让学生通过实际问题理解一次函数的运用。
五、教学过程:1. 导入新课:通过生活中的实例,引导学生认识一次函数的图象和性质。
2. 探究新知:引导学生通过探究活动,发现一次函数的图象和性质。
3. 案例分析:给出实际问题,让学生运用一次函数解决。
4. 巩固练习:设计相关练习题,让学生巩固所学知识。
6. 课后作业:布置相关作业,巩固所学知识。
教案内容:一、教学目标:1. 让学生理解一次函数的图象和性质,能够运用一次函数解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
二、教学重点:1. 一次函数的图象和性质。
2. 运用一次函数解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4一次函数的应用(1)教案
主备:徐红石审核:席美丽时间:2009年12月21日
教学目标:
1.能根据实际问题中变量之间的关系,确定一次函数关系式.
2.能将简单的实际问题转化为数学问题(建立一次函数模型),从而解决实际问题.
3.在应用—次函数解决问题的过程中,体会数学的抽象性和应用的广泛性.
教学重点:一次函数图象的应用
教学难点: 培养学生用“数形结合”的思想方法解决数学问题的能力.
学习过程:
一、自学质疑:
2.自学课本157——158,思考:
(1)157页的例题中s是t的函数吗?s=175相当于函数里的什么问题?
可以用方程知识解决吗?
(2)158页的交流可以用方程知识解决吗?
二、交流展示:
(1)一次函数知识解决例题:
(2)交流的解法:
①
②
三、互动探究:
一次函数知识解决问题和方程知识解决有什么区别和联系?
用函数知识解题:(1)依据题意设出自变量和函数;(2)列出函数关系式;(3)求相应的函数和自变量的值。
四、精讲点拨:
1.某校办工厂现年产值是30万元,如果每增加1000元,投资一年可增加2500元产值。
那么总产值y (万元)与增加的投资额x (万元)之间的函数关系式为3025y x =+。
2.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y (元)是1吨水的价格(元) 的一次函数.
⑴根据下表提供的数据,求y 与x 的函数关系式.当水价为每吨10元时,10吨水生产出的饮
⑵为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨20元收费.已知该厂日用水量不少于20吨.设该厂日用水量为t 吨,当日所获利润为W 元,求W 与t 的函数关系式。
(1.204y x =-+;2.20020
184(20)w t =??=184320t +)
五、纠正反馈:
⑴课本第158页练习1、2.
⑵某种储蓄的月利率是0.8%,存入100元本金后,本息和y (元)与所存月数x 之间的函数关系式是1000.8y t =+;
六、迁移应用:
某市出租车计费标准如下: 行程不超过3千米,收费8元;超过3千米部分,按每千米1.60元计算.求车费y 元和行驶路程x 千米之间的函数关系式,并分别求出当路程为2.5千米和7千米时应付的车费。
(()838 1.6(3)(3)
x y x x ì£ïï=í
ï+->ïî;8,14.4)
随堂练习:
1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点。
用s 1,s 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是 (D )
2.图中的射线ABC ,表示甲地向乙地打长途电话所需付的电话费 y (元)与通话时间t (分钟)之间的函数关系式的图象。
当 t ≥2时,该图象的解析式为0.6y t =-;从图象中
可知,通话2分钟需付电话费 1.4 元;,通话7分钟需付电 话费 6.4元。
3.按照我国税法规定:个人月收入不超过800元,免缴个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1 300元之间的人应缴纳的税金 y (元)和月收入x (元)之间的函数关系式。
(5%(800)y x =-)
4
⑴从表中可以看出卖7斤鱼得8.49 元钱.
⑵若设所卖鱼的斤数为自变量x ,所得钱数为y ,请你列出函数关系式,并求出自变量的取值 范围。
( 1.220.05y x =-)。