模糊决策方法
模糊多准则决策方法
模糊多准则决策方法综述
1965年Zadeh提出模糊集理论,1970年Bellman和Zadeh 将模糊集理论引入多准则决策中,提出了模糊决策分析的概念 和模型,用于解决实际决策中的不确定性问题。自此,模糊多 准则决策(FMCDM)取得了众多研究成果。模糊数的提出 使得利用模糊数可以较好地描述多准则决策中的模糊性,这样 基于模糊数的MCDM就成为FMCDM的一个重要方向。
31
模糊多准则决策方法
32
模糊多准则决策方法
33
模糊多准则决策方法
34
模糊多准则决策方法
35
模糊多准则决策方法
36
Fuzzy多准则决策VIKOR方法
37
Fuzzy多准则决策VIKOR方法
39
Fuzzy多准则决策VIKOR方法
40
Fuzzy多准则决策VIKOR方法
模糊多准则决策方法综述
1993年,Gau和Buehrer提出了Vague集[31],它 是模糊集的一种扩展。Vague集具有比模糊集 更好的表达不确定性的能力,已引起众多学者的 关注,被广泛应用于人工智能、决策分析、模式 识 别 和 智 能 信 息 处 理 等 领 域 。 虽 然 1996 年 Bustince和Burillo证明了Vague集是直觉模糊 集,但还有不少研究人员在研究基于Vague集 的FMCDM问题,提出了相应决策模型与方法。
对权系数确定或为模糊数且准则值为模糊数的MCMD或群决策问题 的研究较多,这些研究主要集中在利用一个集成函数将各准则的模糊数 和准则权系数集成起来,再利用某一模糊数的比较方法,得到方案的排序 或分类。在这些方法中,重要的一步是对准则值进行规范化处理,但规范 化处理存在一定缺陷,它不能反映决策者的偏好,而且可能影响决策结 果。
第七章模糊决策方法
第七章模糊决策方法模糊决策方法是一种通过模糊数学理论来处理决策问题的方法。
在传统的决策理论中,决策者需要准确地确定问题的各种参数和变量,然后根据这些确定的参数来进行决策。
然而,在实际情况中,很多参数和变量都是模糊的,难以精确确定,而模糊决策方法则可以在这种情况下进行决策。
模糊决策方法的核心思想是引入模糊数学中的模糊集合和模糊逻辑。
模糊集合可以用来描述模糊的参数和变量,而模糊逻辑则可以用来处理模糊的推理和决策过程。
在模糊决策方法中,首先需要建立模糊集合,并对参数和变量进行模糊化处理。
这一过程通常需要借助于专家知识和经验来确定模糊集合的隶属函数。
随后,需要建立规则库,其中包含一系列的规则,用来描述决策的逻辑关系。
这些规则通常以“如果……,那么……”的形式给出。
最后,通过模糊推理方法,根据输入的模糊参数和变量,以及规则库中的规则,来得到模糊决策的结果。
模糊决策方法具有以下几个特点:首先,模糊决策方法是一种灵活的方法。
在模糊决策方法中,参数和变量可以用模糊集合来描述,而不需要准确地确定具体的数值。
这样,模糊决策方法可以更好地适应实际情况的不确定性和复杂性。
其次,模糊决策方法是一种直观的方法。
在模糊决策方法中,通过对参数和变量的模糊化处理,可以更好地反映真实世界的模糊性和不确定性。
这样,决策者可以在直观上理解和评估模糊决策的结果,更加容易接受这种决策方法。
再次,模糊决策方法是一种高效的方法。
在模糊决策方法中,通过建立规则库和使用模糊推理方法,可以在较短的时间内得到模糊决策的结果。
这样,决策者可以更快地做出决策,并在不同的决策方案之间进行比较和评估。
最后,模糊决策方法是一种可行的方法。
在实际应用中,模糊决策方法已经得到了广泛的应用,并取得了良好的效果。
例如,在工程领域中,模糊决策方法可以用来进行生产计划的制定和控制;在经济领域中,模糊决策方法可以用来进行市场预测和投资决策等。
总之,模糊决策方法是一种适应不确定性和模糊性的决策方法。
火灾危险评估中的模糊决策方法有哪些
火灾危险评估中的模糊决策方法有哪些火灾是一种极其危险的灾害,给人们的生命财产安全带来了巨大的威胁。
为了有效地预防和控制火灾,对火灾危险进行准确的评估至关重要。
在火灾危险评估中,模糊决策方法因其能够处理不确定性和模糊性信息而得到了广泛的应用。
一、模糊综合评价法模糊综合评价法是一种基于模糊数学的综合评价方法。
它将多个因素对评价对象的影响进行综合考虑,通过建立模糊评价矩阵和确定权重,最终得出综合评价结果。
在火灾危险评估中,首先需要确定评价因素,如火源特性、可燃物分布、建筑结构、消防设施等。
然后,对每个评价因素划分不同的等级,并赋予相应的模糊隶属度。
例如,火源特性可以分为强、中、弱三个等级,分别对应不同的模糊隶属度。
接下来,通过专家打分或实际数据统计等方式确定各评价因素的权重。
最后,利用模糊运算规则计算出综合评价结果,从而判断火灾危险的程度。
这种方法的优点是能够全面考虑多个因素的影响,并且可以处理评价因素的模糊性和不确定性。
但它也存在一定的局限性,例如权重的确定可能存在主观性,评价结果的准确性依赖于评价因素和等级的划分是否合理。
二、模糊层次分析法模糊层次分析法是将层次分析法与模糊数学相结合的一种方法。
层次分析法通过将复杂问题分解为多个层次和因素,并进行两两比较,确定各因素的相对重要性。
而模糊层次分析法则在此基础上,引入了模糊数来表示两两比较的结果,从而更好地处理不确定性。
在火灾危险评估中,运用模糊层次分析法可以构建火灾危险评估的层次结构模型,包括目标层、准则层和指标层。
目标层即为火灾危险程度的评估;准则层可以包括火灾发生的可能性、火灾的危害程度等;指标层则是具体的评估指标,如火源类型、人员密度等。
通过专家判断或问卷调查等方式,对各层次因素进行两两比较,并用模糊数表示比较结果。
然后,利用模糊数的运算规则计算出各因素的权重。
最后,综合各因素的权重和评价结果,得出火灾危险的评估值。
模糊层次分析法在处理复杂系统的多因素决策问题时具有较好的效果,能够有效地降低主观因素的影响,但计算过程相对较为复杂。
模糊多准则决策方法
31
模糊多准则决策方法
32
模糊多准则决策方法
33
模糊多准则决策方法
34
模糊多准则决策方法
35
模糊多准则决策方法
36
Fuzzy多准则决策VIKOR方法
37
Fuzzy多准则决策VIKOR方法
38
Fuzzy多准则决策VIKOR方法
39
Fuzzy多准则决策VIKOR方法
40
Fuzzy多准则决策VIKOR方法
模糊多准则决策方法综述
在MCDM问题中,如果准则值或/和准则权系数为直觉 模糊数,称这类问题为基于直觉模糊集的MCDM问题。 由于没有实数与直觉模糊集的运算,使得求解这类决策 变得困难。基于直觉模糊数的TOPSIS方法、VIKOR 方法、规划方法及基于证据推理的求解方法被提出。 但相对基于模糊数的MCDM方法来说,基于直觉模糊 数的MCDM方法还显得太少。
模糊多准则决策方法综述
模糊集概念有多个扩展,其中重要的一个是直觉模糊 集(Intuitionstic fuzzy set)。直觉模糊集由 Atanassov 提出,它是对传统模糊集的一种扩充和发 展。直觉模糊集增加了一个新的属性参数:非隶属度 函数,能够更加细腻地描述和刻划客观世界的模糊性本 质,因而引起众多学者的研究和关注。 自从直觉模糊集被提出以来,很多学者对直觉模糊集 进行了研究,并将其应用于决策中,如Szmidt和 Kacprzyk将直觉模糊集应用于有不精确信息的群体 决策中, De等将其用于医学诊断决策中。
模糊多准则决策方法综述
许多准则权系数和准则值确定的MCDM方法纷纷推广到 FMCDM问题中,提出了众多FMCDM方法,如模糊TOPSIS方 法、模糊ELECTRE方法和模糊PROMETHEE方法等。
几种模糊多属性决策方法及其应用
几种模糊多属性决策方法及其应用一、本文概述随着信息时代的快速发展,决策问题日益复杂,涉及的属性越来越多,决策信息的不确定性也越来越大。
在这种背景下,模糊多属性决策方法应运而生,成为解决复杂决策问题的重要工具。
本文旨在探讨几种典型的模糊多属性决策方法,包括模糊综合评价法、模糊层次分析法、模糊集结算子等,并分析它们在实际应用中的优势和局限性。
本文首先介绍了模糊多属性决策方法的基本概念和理论基础,为后续研究提供必要的支撑。
接着,详细阐述了三种常用的模糊多属性决策方法,包括它们的原理、步骤和应用范围。
在此基础上,通过案例分析,展示了这些方法在实际应用中的具体运用和取得的效果。
通过本文的研究,读者可以深入了解模糊多属性决策方法的原理和应用,掌握其在实际问题中的使用技巧,为解决复杂决策问题提供有力支持。
本文也为进一步研究和改进模糊多属性决策方法提供了参考和借鉴。
二、模糊多属性决策方法概述模糊多属性决策(Fuzzy Multiple Attribute Decision Making,FMADM)是一种处理不确定性、不精确性和模糊性的决策分析方法。
在实际问题中,由于信息的不完全、知识的局限性或环境的动态变化,决策者往往难以获取精确的属性信息和权重信息,这使得传统的多属性决策方法难以应用。
模糊多属性决策方法通过引入模糊集理论,能够更好地处理这种不确定性和模糊性,为决策者提供更合理、更可靠的决策支持。
模糊多属性决策方法的核心思想是将决策问题中的属性值和权重视为模糊数,利用模糊集理论中的运算法则进行决策分析。
根据不同的决策目标和背景,模糊多属性决策方法可以分为多种类型,如模糊综合评价、模糊多目标决策、模糊群决策等。
这些方法在各自的领域内都有着广泛的应用,如企业管理、项目管理、环境评估、城市规划等。
在模糊多属性决策方法中,常用的模糊数有三角模糊数、梯形模糊数、正态模糊数等。
这些模糊数可以根据实际问题的需要选择合适的类型,以更好地描述属性值的不确定性和模糊性。
模糊多准则决策方法
模糊集理论 1 Fuzzy 数(1) 区间数定义1:设R 是实数域,称闭区间],[11b a 为区间数,其中1a 为区间数的下确界,1b 为区间数的上确界,1111,,b a R b a ≤∈。
设],[],,[222111b a y b a y ==是任两个区间数,则区间数的基本运算定义为:(1)],[222121b b a a y y ++=+; (2)],[122121b a b a y y --=-; (3)],[212121b b a a y y =⨯; (4)],[122121b a b a y y =÷; (5)],[111kb ka y k =; (6)]1,1[1121a a y =。
定义2:设],[],,[222111b a y b a y ==是两个闭区间,则它们的距离为:|)|||)1(),(212121b b a a y y d -+--=λλλ。
其中]1,0[∈λ表示决策者的风险态度,当5.0>λ时,称决策者是追求风险的,当5.0<λ时,称决策者是厌恶风险的,当5.0=λ时,称决策者是风险中性的,此时有:|)||(|21),(212121b b a a y y d -+-=。
定义3:两区间数的比较22],[],[21212121b b a a b b a a +>+⇔>。
22],[],[21212121b b a a b b a a +=+⇔=。
(2)Fuzzy 数定义4:一个模糊数是实数集上一个正规的凸模糊集。
对模糊数A ,它的隶属函数可表示为:⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤≤=其它0 )( 1 )(d x c x f cx b b x a x f f R A L A A其中)(x f L A为连续的单调递增函数,)(x f RA 为连续的单调递减函数,分别称作左基准函数和右基准函数。
为方便起见,记为),,,(d c b a A =。
模糊数A 的α-截集})(|{αα≥=x f x AA (]1,0[∈α)是R 的闭区间,记为],[αααR LA A A = 。
几种模糊多属性决策方法及其应用
几种模糊多属性决策方法及其应用随着社会的不息进步和进步,人们在决策过程中面临的问题也越来越复杂。
面对多属性决策问题,传统的决策方法往往无法有效处理模糊性和不确定性。
模糊多属性决策方法应运而生,它能够更好地处理决策问题中存在的模糊性和不确定性,援助决策者做出更科学、合理的决策。
本文将介绍几种常见的模糊多属性决策方法及其应用,旨在援助读者了解这些方法,并在实际应用中发挥其作用。
二、几种常见的模糊多属性决策方法1. 人工智能模糊决策方法人工智能模糊决策方法是基于模糊集合理论和人工智能技术的决策方法,其核心优势在于可以更好地处理模糊性和不确定性的多属性决策问题。
其中,模糊综合评判方法是最常用的一种人工智能模糊决策方法。
该方法通过建立评判矩阵,运用模糊数学理论计算评判矩阵的权重,从而对多属性决策问题进行评判和排序。
2. 层次分析法层次分析法是一种将问题层次化、分解的多属性决策方法。
该方法通过构建决策模型的层次结构,将决策问题划分为若干个层次。
然后,通过对每个层次的评判和权重计算,最终得到决策问题的最优解。
层次分析法对于处理多属性决策问题具有很好的适用性,因为它能够充分思量到不同层次因素的权重干系。
3. 灰色关联分析法灰色关联分析法是一种基于灰色系统理论的多属性决策方法。
该方法主要通过灰色关联度的计算来评判和排序决策方案。
它能够将不同属性之间的关联度思量在内,从而得到较为客观合理的结果。
灰色关联分析法在处理模糊多属性决策问题方面具有较好的效果,主要用于较为复杂的决策问题。
三、模糊多属性决策方法的应用1. 经济决策在经济决策中,往往存在多个因素需要综合思量而做出决策。
模糊多属性决策方法可以援助决策者在不确定性和模糊性的状况下,找到最优的决策方案。
例如,在投资项目评估中,可以利用模糊综合评判方法对不同项目进行评判和排序,从而选择最具优势的投资项目。
2. 环境决策环境决策中存在许多模糊不确定性的因素,传统的决策方法无法很好地处理这些问题。
第7章模糊决策方法
7.1.3 隶属函数确定方法
(3)借用已有的“客观”尺度
在经济管理、社会科学中,可以直接借用已有的尺度 (经济指标)作为模糊集的隶属度。
(4)二元对比排序法
对于有些模糊集,很难直接给出隶属度,但通过两两 比较,容易确定两个元素相应隶属度的大小。先排序,再 用数学方法加工得到隶属函数。
隶属程度的思想是模糊数学的基本思想,应用模糊数 学方法的关键在于建立符合实际的隶属函数。
L.A.扎德教授多年来致力于“计算机”与“大 系统”的矛盾研究,集中思考了计算机为什么不能像 人脑那样进行灵活的思维与判断问题。
“常规数学方法的应用对于本质上是模糊系统的 分析来说是不协调的,它将引起理论和实际之间的很 大差距。”因此,必须寻找到一套研究和处理模糊性 的数学方法。这就是模糊数学产生的历史必然性。
PPT文档演模板
第7章模糊决策方法
7.1 模糊理论的基本概念
7.1.1 模糊集与隶属函数
定义7.1.1 设 是论域,称映射
确定了 上的模糊子集 。映射 称为 的隶属函数,
称
为 对 的隶属程度。
隶属度与隶属函数的思想是模糊数学的基本思想。
PPT文档演模板
第7章模糊决策方法
7.1 模糊理论的基本概念
(2)指派方法
指派隶属函数的方法普遍被认为是一种主观方法,它 把人们的实践经验考虑进去。若模糊集定义在实数集上, 则模糊集的隶属函数便被称为模糊分布。指派方法,就是 根据问题的性质套用现成的某些形式的模糊分布,然后根 据测量数据确定分布中所含的参数。
PPT文档演模板
第7章模糊决策方法
7.1 模糊理论的基本概念
7.1.1 模糊集与隶属函数
模糊集的表示方法(以有限论域为例) (1)扎德表示法:
模糊决策与分析方法
模糊决策与分析方法
模糊决策与分析方法
模糊决策与分析方法
模糊决策与分析方法
模糊决策与分析方法
模糊决策与分析方法
模糊决策与分析方法
对称的三角模糊数
模糊决策与分析方法
模糊决策与分析方法
模糊决策与分析方法
x12345678 π(x) 1 1 1 1 0.8 0.6 0.4 0.2 P(x) 0.1 0.8 0.1 0 0 0 0 0
模糊决策与分析方法
模糊决策与分析方法
第四节 模糊层次分析法(FAHP)
一、普通层次分析法(AHP) 层次分析法(The Analytic Hierarchy Process)
是20世纪70年代中期由美国匹兹堡大学教授 T.L.Saaty提出的一个多准则决策方法,自提出以 来,得到迅速普及和广泛应用。
[0.6029, 0.7010]
C3 [2,3] [1/4,1/2] [1,1] 0.2408 0.2450
[0.2235, 0.2619]
模糊决策与分析方法
模糊决策与分析方法
模糊决策与分析方法
第五节 模糊统计决策
模糊决策与分析方法
模糊状态
行动
F1
A1
800
A2
500
F2
-300 200
模糊决策与分析方法
四、模糊层次分析法(FAHP) 1、普通层次分析法(AHP) 2、基于模糊(互补)一致矩阵的FAHP 3、基于三角模糊数(互补)一致矩阵的FAHP 4、基于区间数判断矩阵的FAHP
模糊决策与分析方法
•五、模糊统计决策 • 1、普通统计决策(贝叶斯决策) • 2、模糊统计决策(模糊贝叶斯决策) •六、模糊矩阵对策 • 1、普通矩阵对策 • 2、模糊矩阵对策 •七、模糊数据包络分析 • 1、普通数据包络分析 • 2、模糊数据包络分析 •八、应用
模糊决策的三种方法
模糊决策的三种方法模糊决策是一种基于模糊理论的决策方法,其目标是针对现实生活中的不确定性和模糊性进行决策。
模糊决策的核心思想是将决策问题中的模糊信息和不确定性进行数学建模和分析,以求得合理的决策结果。
常见的模糊决策方法有模糊集合理论、模糊数学和模糊逻辑。
下面将详细介绍这三种方法。
1.模糊集合理论模糊集合理论是模糊决策的基础,它通过引入模糊概念来描述现实世界中的模糊性和不确定性。
在模糊集合理论中,一个元素可以同时属于多个集合,并以一些隶属度来描述其在各个集合中的程度。
这使得模糊集合能够更好地处理复杂的、模糊的决策问题。
在模糊集合理论中,最常用的模糊决策方法是模糊综合评价和模糊层次分析。
模糊综合评价通过将决策问题转化为模糊评价问题,然后利用模糊集合运算来对待选方案进行评价和排序。
模糊层次分析将决策问题转化为多层次的模糊子问题,然后通过对每个子问题进行模糊比较和模糊一致性检测来确定权重和评价方案。
2.模糊数学模糊数学是将模糊理论应用于数学方法和技术的一门学科,它通过引入模糊集合和模糊逻辑等概念,对模糊决策问题进行建模和分析。
在模糊数学中,模糊数是一种介于0和1之间的数值,用来描述元素在一些模糊集合中的隶属度。
对于模糊决策问题,模糊数学提供了一系列有效的方法,如模糊规划、模糊优化和模糊最优化等。
模糊规划通过引入模糊目标和模糊约束,对决策变量进行模糊处理,从而求解满足一定模糊要求的最优方案。
模糊优化通过引入模糊目标函数和模糊约束条件,以及模糊偏导数和模糊梯度等概念,对决策变量进行模糊处理和优化,以求得最优解。
模糊最优化是模糊优化的一种特殊情况,它在模糊目标函数和模糊约束条件下求解最优解。
3.模糊逻辑模糊逻辑是一种能够处理模糊命题和模糊推理的逻辑系统,它通过引入模糊命题和模糊规则,对决策问题进行描述和推理。
在模糊逻辑中,命题的真值不再是0或1,而是一个介于0和1之间的模糊数,用来表示命题的隶属度。
对于模糊决策问题,模糊逻辑提供了一系列有效的方法,如模糊推理、模糊控制和模糊识别等。
模糊决策与分析方法
X
A A
f ( A) f ( A)
Y
y
f ( A) y
f ( x)
x1
x2
A
x
分析合理的定义:当f 为单射, 可 A ( x) f ( A) ( y ); 当f 为非单射,如图,f ( x1 ) f ( x2 ) y, 但 A ( x1 ) 0, A ( x2 ) 1,显然应有: f ( A) ( y ) 1。 因此应有: f ( A) ( y ) A ( x)
1 在区间[8,10] 例4:证明 f ( x ) x ( x 7 ) 6 x ( x 4) 30 上没有根。
解:把x=[8,10]代入函数f,可得:
f([8,10])=[8,10]([8,10]-[7,7])-[6,6]„„=[1.5,23.9], 0
[1.5,23.9].
A
x
例2:设X 1, 2,„„, 6,Y a,b,c,d , 2, 3 a,x 1, f ( x) b,x 4, 5 c,x 6 1 0.2 0.1 0.9 A 1 3 5 6 求f ( A) sup 1, 0, 0.2 sup 0, 0.1 0.9 解:f ( A) a b c 1 0.1 0.9 a b c
1
A
A
1
A
A
证明:要证两个集合相等,应证其隶属函数相等。
[ 0, 1]
A
( x) ( A ( x))
[0, 1]
[ ( A ( x))] [ ( A ( x))]
A ( x)
A ( x)
(3)模糊数的运算 两个模糊数I 和J的运算I J 仍是一个模糊数 ( ,,, ),其隶属函数定义为
《模糊多属性决策方法与风险的研究及其在项目选择中的应用》范文
《模糊多属性决策方法与风险的研究及其在项目选择中的应用》篇一一、引言随着经济全球化和市场竞争的日益激烈,企业在面临各种投资和项目选择时,必须考虑到决策的复杂性和不确定性。
模糊多属性决策方法作为一种有效的决策工具,能够在不确定性和模糊性环境下,为决策者提供科学的决策支持。
本文旨在研究模糊多属性决策方法及其在项目选择中的应用,并探讨其与风险的关系。
二、模糊多属性决策方法概述模糊多属性决策方法是一种基于模糊数学和多元统计分析的决策方法,它能够处理具有模糊性、不确定性和不完整性信息的问题。
该方法将决策问题中的各种因素和属性进行量化,并通过一定的数学模型和算法进行综合评估和决策。
模糊多属性决策方法主要包括模糊集理论、模糊综合评价、模糊决策树等。
三、模糊多属性决策方法的研究在模糊多属性决策方法的研究中,学者们主要关注以下几个方面:1. 模糊集理论的完善和发展。
模糊集理论是模糊多属性决策方法的基础,学者们通过研究模糊集的运算、性质和扩展,为决策方法提供了更丰富的数学工具。
2. 模糊综合评价模型的构建。
学者们通过研究不同行业的实际问题和需求,构建了各种模糊综合评价模型,如层次分析法、物元分析法等,这些模型能够更好地反映决策问题的复杂性和不确定性。
3. 算法优化和改进。
为了解决复杂问题和提高决策精度,学者们对现有算法进行了优化和改进,如遗传算法、神经网络等,这些算法在处理大规模数据和复杂问题时具有较高的效率和准确性。
四、模糊多属性决策方法在项目选择中的应用在项目选择中,企业需要考虑到多个因素,如投资成本、市场需求、技术难度、风险等。
模糊多属性决策方法能够有效地处理这些因素的不确定性和模糊性,为项目选择提供科学的决策支持。
具体应用包括:1. 建立项目评价指标体系。
根据项目的实际情况和需求,建立包括成本、效益、风险等多个维度的评价指标体系。
2. 数据采集和量化。
通过调查、分析和预测等方法,获取各指标的数据并进行量化处理,为后续的决策分析提供数据支持。
第四章模糊决策
M (, ) -加权平均型
b j (ai rij ) ( j 1,2,, m );
i 1
n
该模型依权重的大小对所有因素均衡兼顾,比较适用 于要求总和最大的情形。
模型Ⅳ
M ( , )-取小上界和型
b j min{1, (ai rij )} ( j 1,2,, m );
u4
1 1 1
Ф u1 u2 u3 u4 A=“美”
u1 1
u2
u3
u4
1 1 1
思想:
方法二:模糊二元对比决策 二元排序
困难: 三种二元对比方式:
优先关系
排序方法:
相似优先比
λ截法
相对比较
方式一:优先关系
优先关系矩阵
优先关系排序步骤(1、λ截法;2、行取最大下确界)
例1:班上最帅气的男生
u1 ,u2 ,u3 ,u4
C u1 u2 u3 u4 u1 u2 u3 u4
方式二:相似优先比
思想:
二元比较级
二元相对比较矩阵
相似优先比矩阵
步骤:
方式三:相对比较
思想:
二元比较级
相对比较函数
相及矩阵
Hale Waihona Puke 步骤:例2:班上最美的女生
u1 ,u2 ,u3 ,u4
其评判结果只取决于在总评价中起主要作用的那个因 素, 其余因素均不影响评判结果, 此模型比较适用于单 项评判最优就能作为综合评判最优的情况。
模型Ⅱ
M (, ) -主因素突出型
b j max{(ai rij ),1 i n} ( j 1,2,, m);
它与模型 M ( , )相近,但比模型 M ( , ) 精细些,不仅 突出了主要因素, 也兼顾了其他因素。 此模型适用于模 型 M ( , )失效(不可区别) ,需要“加细”的情况。
模糊决策的三种方法
模糊决策的三种方法一、引言在实际应用中,我们常常遇到决策问题,而往往情况会变得比较复杂,以至于难以明确地定出一个最优的方案。
此时,我们可以采用模糊决策方法来解决问题。
模糊决策指的是一种将不确定性因素考虑进决策过程的方法,它可以克服传统决策方法中的某些不足之处。
本文将就模糊决策方法的三种基本应用(模糊综合评价、模糊决策树和模糊规划)进行介绍和探讨。
相信本文会对读者更好地掌握模糊决策方法有所帮助。
二、模糊综合评价模糊综合评价是模糊决策中最常用的方法之一,它是一种通过将几个指标综合起来,来评价某对象的方法。
在实际生活中,我们经常遇到需要选择一种方案或产品的情形。
如果我们将每种方案的各项指标都计算出来,再来比较它们,这会非常繁琐,更不用说万一还存在一些没有计算到的指标,那就更加困难了。
如果我们采用模糊综合评价方法,不仅可以将各项指标综合起来,同时还能够考虑到指标之间的相互影响,避免了单纯的加权平均的计算方法的不足之处。
模糊综合评价的主要步骤如下:1. 系统建模:将要评价的对象和各项指标构建成一个评价系统模型。
2. 确定评价指标:如果某些指标的量化方式不明确,我们可以通过专家调查等方法来得出其隶属函数,再利用模糊逻辑中的“隶属度”概念来描述各项指标的程度。
3. 评估各项指标的重要性:各项指标在不同情况下所占的重要性是不同的,需要根据实际情况进行量化处理。
4. 确定评价方法:根据所得到的各项指标的隶属函数,可以选择相应的模糊综合评价方法进行计算。
5. 得出评价结果:通过计算,得出各对象的评价结果,从而进行选择。
三、模糊决策树模糊决策树是一种将决策问题表示成树形结构的方法,它可以有效地处理一些复杂的决策问题。
模糊决策树的核心是将决策树中的各个节点及其分支上的条件都用模糊集合来刻画,这就能够更好地考虑到各种因素的不确定性和可能性。
模糊决策树的建立过程包括以下几个步骤:1. 明确决策目标:决策目标是建立模糊决策树的基础。
第7章模糊决策方法
第7章模糊决策方法模糊决策方法是一种能够处理不确定性和模糊性问题的决策方法。
在现实生活中,很多决策问题都存在一定的不确定性,而传统的决策方法往往无法很好地解决这些问题。
模糊决策方法通过引入模糊数学理论,将决策问题中的模糊性描述为模糊集合,从而更好地处理不确定性并作出决策。
模糊决策方法的基本思想是将决策问题中的模糊性信息转化为数学模型,通过模糊数学的运算和推理,得出决策的最优方案。
在模糊决策方法中,通常使用模糊规则和模糊推理等技术。
模糊规则是指一种将模糊条件映射为模糊结果的数学表达式,而模糊推理则是根据已知的模糊规则和已有的模糊信息,推导出新的模糊结果的过程。
在模糊决策方法中,常用的模糊决策方法包括模糊层次分析法(Fuzzy AHP)、模糊关联分析法(Fuzzy Association Analysis)、模糊贝叶斯网络(Fuzzy Bayesian Network)等。
这些方法各有特点,适用于不同的决策问题。
以模糊层次分析法为例,它是一种通过构建模糊层次结构来评价和选择方案的方法。
模糊层次结构是一种将决策问题中的准则和方案按照层次结构进行划分的方法,其中每个层次都有相应的判据和权重。
通过对每个层次的判据和权重进行模糊数学运算,可以得出评估和选择方案的结果。
模糊层次分析法的步骤如下:首先,确定决策问题的目标和准则,将其按照层次结构进行划分。
然后,确定每个层次的判据和权重。
判据是指用于评估和选择方案的指标,权重是指每个判据在整个层次结构中的重要程度。
接下来,构建模糊判据矩阵和模糊权重向量。
模糊判据矩阵是指将每个判据的取值映射为模糊集合的矩阵,模糊权重向量是指将每个权重值映射为模糊数的向量。
然后,进行模糊数学运算,得到每个方案的模糊评价值。
模糊评价值是指根据已知的模糊判据矩阵和模糊权重向量,通过模糊推理,得到每个方案的评价结果。
最后,根据模糊评价值,选出最优方案。
总之,模糊决策方法是一种处理不确定性和模糊性问题的有效手段。
几类模糊多属性决策方法及其应用分析
几类模糊多属性决策方法及其应用分析由于全球信息化程度日益加速、客观环境的复杂性以及决策者自身知识的有限性,决策者往往面临极大的模糊性和不确定性,需要合理实用的决策方法对备选方案进行评估,但目前采用的定量方法中忽略了指标的不确定性,不断发展的模糊理论为处理这种问题提供了有力的工具,采用定性和定量相结合的决策方法来研究模糊多属性决策问题,能很好地解决属性指标的不确定性问题和模型中参数难于估计等情况。
本文研究以下几个方面内容:(1)、基于Pythagorean模糊变量的决策方法针对属性权重已知的情况,基于阿基米德T模和阿基米德S模,提出了Pythagorean模糊环境下几种特殊的阿基米德T模和阿基米德S模,比如:代数T模和代数S模、Hamacher T模和Hamacher S模、Frank T模和Frank S模等。
针对Hamacher T模和Hamacher S模,定义了Pythagorean模糊环境下的Hamacher算子的运算规则,提出了几种Pythagorean模糊Hamacher信息集结算子,同时提出了两种不同的决策方法来解决决策问题。
针对Frank T模和Frank S 模,定义了在Pythagorean模糊环境下的Frank算子的运算规则、提出了几种Pythagorean模糊Frank信息集结算子。
同时提出两种不同决策方法来研究属性权重已知且属性值以Pythagorean 模糊值形式给出的决策问题。
针对属性权重未完全已知的情况,基于LINMAP法和TOPSIS法解决Pythagorean模糊环境中的多属性决策问题。
(2)、基于犹豫Pythagorean模糊语言变量的决策方法基于犹豫模糊集和Pythagorean模糊语言集,定义了犹豫Pythagorean模糊语言集。
针对属性相互独立且属性值为犹豫Pythagorean模糊语言集的决策问题,定义了几种犹豫Pythagorean模糊语言信息集成算子。
模糊决策方法
第七章模糊决策方法引例:你某时到某地去接一个“大胡子.高个子. 长头发. 戴宽边黑色眼镜的中年男子”,尽管提供的只有一个精确的信息——男人,而其它的信息——大胡子.高个子. 长头发. 戴宽边黑色眼镜. 中年男人都是模糊的,但你对这些模糊概念经过头脑的综合分析判断就可以接到这个人。
人脑较之精确计算机,就是能在信息不完整不精确的情况下,作出判断与决策,模糊性常常是信息浓缩所致,目的是为了提高交换的概率,所以不是毫无用处,而是积极的特性。
sy1天气冷热雨的大小风的强弱人的胖瘦年龄大小个子高低幻灯片 2sy1 sheng yu, 2016/5/27Lotfi A. ZadehEurasian Academy.https:///wiki/Lotfi_A._Zadeh模糊数VS灰数P162随机性的不确定性,也就是概率的不确定性,主要与事件的”,掷一粒骰子出现6点”等,它们的发生是一种偶然现象,具有不确定性在这里事件本身(“有雨”,“出现6点”)是确定的,而事基于模糊推理的ERP安全供货库存预测2013/5/20 来源:万方数据作者:邵江霞张美风L.A.Zadeh, 1921--)教年发表了题为《模糊集合论》(《Fuzzy 》)的论文,从而宣告模糊数学的诞生。
扎德教授多年来致力于“计算机”与“大系统”的矛盾研究,集中思考了计算机为什么不能像人脑那样进行灵活的思“当系统的复杂性日趋增长时,我们做出系统特性的精确然而有意义的描述的能力将相应降低,直至达到这样一个阈值,一旦超过它,精确性和有意义性将变成两个几乎互相排斥的特“常规数学方法的应用对于本质上是模糊系统的分析来说是不协调的,它将引起理论和实际之间的很大差距。
”因此,必须寻找到一套研究和处理模糊性的数学方法。
这就是模糊数学产例2在标志年龄(0〜100)的数轴上,标出“年老”、“年轻”的区间。
这里需要考虑…40岁,…50岁,…60岁,…属于“年轻”还是“年老”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章
模糊决策方法
引例:你某时到某地去接一个“大胡子.
高个子. 长头发. 戴宽边黑色眼镜的中年
男子”,尽管提供的只有一个精确的信
息——男人,而其它的信息——大胡子.
高个子. 长头发. 戴宽边黑色眼镜. 中年男
人都是模糊的,但你对这些模糊概念经
过头脑的综合分析判断就可以接到这个
人。
人脑较之精确计算机,就是能在信息不完整不精确的情况下,作出判断与决策,模糊性常常是信息浓缩所致,目的是为了提高交换的概率,所以不是毫无用处,而是积极的特性。
sy1
天气冷热雨的大小风的强弱人的胖瘦年龄大小个子高低
幻灯片 2
sy1 sheng yu, 2016/5/27
Lotfi A. Zadeh
Eurasian Academy.
https:///wiki/Lotfi_A._Zadeh
模糊数VS灰数P162
随机性的不确定性,也就是概率的不确定性,主要与事件的
”,
掷一粒骰子出现6点”等,
它们的发生是一种偶然现象,具有不确定性
在这里事件本身(“有雨”,“出现6点”)是确定的,而事
基于模糊推理的ERP安全供货库存预测
2013/5/20 来源:万方数据
作者:邵江霞张美风
L.A.Zadeh, 1921--)教
年发表了题为《模糊集合论》(《Fuzzy 》)的论文,从而宣告模糊数学的诞生。
扎德教授多年来致力于“计算机”与“大系统”的矛盾研究,集中思考了计算机为什么不能像人脑那样进行灵活的思
“当系统的复杂性日趋增长时,我们做出系统特性的精确然而有意义的描述的能力将相应降低,直至达到这样一个阈值,一旦超过它,精确性和有意义性将变成两个几乎互相排斥的特
“常规数学方法的应用对于本质上是模糊系统的分析来说是不协调的,它将引起理论和实际之间的很大差距。
”因此,必须寻找到一套研究和处理模糊性的数学方法。
这就是模糊数学产
例2在标志年龄(0〜100)的数轴上,标出“年老”、“年轻”的区间。
这里需要考虑…40岁,…50岁,…60岁,…
属于“年轻”还是“年老”。
从“长”到“短”,从“年轻”到“年老”。
经历了一个从量变到质变的连续过渡过程。
“长”“短”“年轻”“年老”这些模糊概念无法用特征函数来刻画。
Zadeh把特征函数的值域由{0,1}扩张到[0,1],引入了隶属函数,定义的模糊集合,使模糊概念的数学表达成为可能。
两点说明:
运算
)
(,Y X F S R 设);,(),( ,),(y x S y x R Y X y x S R );
,(),( ,),(y x S y x R Y X y x S R ),(),(),)((y x S y x R y x S R 包含:相等:并:倒置
倒置
倒置
模糊关系的性质:模糊关系的表示-模糊矩阵
模糊矩阵-Example
▪设有四种物品,苹果、乒乓球、书、花组成的论域,x2,…,x n表示,它们的相似程度可以用模糊关系用x
1
示:
的“恒等关系”,表示恒等关系I的矩阵为单位
模糊矩阵的运算性质
(6)0-1律:A∪O=A, A∩O=O;
E∪A=E,E∩A=A;
相比较,没有什么优越,记r
=0,x
ii
两者的优越成分合在一起
有长处而未发现x
比x
j
相比若不分优劣
模糊优先关系排序决策-例
▪例:已知“子女像父亲”模糊优先关系
0 0.9 0.2
模糊相似优先比决策-例 多种菊花的排序(p214)
幻灯片 188
ly2 Liu Yang, 2013/5/17。