2.5有理数的加法与减法(1)(教案)

合集下载

七年级数学上册有理数有理数的加法与减法教学课件苏科版本

七年级数学上册有理数有理数的加法与减法教学课件苏科版本

1.计算:
(1)10-24-15+26-24+18-20;
(2) 0.5
1 3
1 4Βιβλιοθήκη 1 6;(3)14-28-32-16+18+32.
2.某公路养护小组乘车沿南北公路巡护维护.某天早晨从A地 出发,晚上最后到达B地,约定向北为正方向,当天的行驶 记录如下(单位:千米): +18,-9,-7,-14,-6,+13,-6,-8,B地在A地何方?相距 多少千米?若汽车行驶每千米耗油a升,求该天共耗油多少 升?
计算:(1) (11) 8 (14);
(2) 8 (2) (4) 1 (3);
(3) (4) (3) (4) 3;
(4) 0.35+(-0.6)+0.25+(-5.4);
(5) ( 3) ( 2) ( 1) 2; 4 3 43
(6) (2) ( 1) 1 ( 1). 23 6
谈谈你这一节课有哪些收获.
(a b) c a (b c).
例1 计算: (1)(-23)+(+58)+(-17); (2)(-2.8)+(-3.6)+(-1.5)+3.6.
符号相同 的先结合
解:(1)原式=(-23)+(-17)+(+58)
=-40+58
互为相反数 的先结合
=18.
(2)原式=(-2.8)+(-1.5)+3.6+(-3.6)
2.计算:
(1)( – 3) – ( –5); (3)( – 3) – 5 ; (5) 3 – 5 ; (7)(-14)-(+15); (9)(+12)-(-28); (11)(-23.9)-(-21.3); (13)3-[(-3)-12] ;

有理数的加减法教案

有理数的加减法教案

《有理数的加减法》教案一教学目标1.知识与技能 :在有理数加、减法混合运算的教学过程中,掌握计算方法,培养学生的运算能力.2.数学思考:通过观察,比较,归纳等得出有理数加减混合运算的方法。

3.解决问题 :能运用有理数加、减法法则解决混合运算和实际问题。

4.情感与态度 :认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二教学重点:省略加号、括号,得到简单的书写方式,再进行加法运算三教学难点:培养学生良好的思维习惯(先准确判断加减法的类型后计算) 三教学模式:启发式四教学过程设计(一 ) 知识要点回顾1 有理数加法法则2 运算律(1) 加法交换律(2) 加法结合律3 有理数减法法则例1计算下列各式1 )-23+(-12) 2) -16+293)(-2008)+2008 4 ) 0+(-7)例2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升? 课堂练习1抢答(1) 5+(-6)(2) -(-7)+(-2)(3) (-4)+(-5)(4)-4+(-6);(5)15+(-17)(6)-3+3(7) (+9)+(-7)+(+10)+(-3)+(-9)2 计算(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131) 例3 计算(1) 3-(-3)=_______; (2) (-11)-2=_______;(3) 0-(-6)=_______; (4) (-7)-(+8)=_______;(5) -12-(-5)=________;例4把下列两个式子写成省略括号的和的形式.把它读出来,并计算出结果.(1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07);(2)4 35-(+213)-(-4.8)+(-323)-(+4.6)课堂练习1.计算:(1)(3.1+4.2)-(4.2-1.9);(2)(-2.4)-0.6-1.8;(3)(-41)-83+169; (4)(-71)-(-72)-173; (5)(-1)-(+331)-(-132); (6)(-9)-(+9)-(-18)-9.三 综合应用1 .如果|a|=7,|b|=5,试求a-b 的值.思路解析:本题中对a 、b 分成四种取值情况进行讨论.解:∵|a|=7,|b|=5,∴a=±7,b=±5.因此,有四种可能:(1)当a=7,b=5时,a-b=2;(2)当a=7,b=-5时,a-b=12;(3)当a=-7,b=5时,a-b=-12;(4)当a=-7,b=-5时,a-b=-2.四作业1 .有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克):97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?3.计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).思路解析:本题是有理数的减法运算,根据有理数减法法则,把减法全部转化为加法再进行计算,同时也可运用加法运算律使计算简便.解:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+15,-4,+13,―10,―12,+3,―13,―17.(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?思路解析:要求出小王距出车地点的距离,就是求所给的数据的代数和;要求出汽车耗油多少升,就要先求出汽车的行程,而汽车的行程是所给数据的绝对值的和解:(1)(+15)+(-4)+(+13)+(―10)+(―12)+(+3)+(―13)+(―17)=-25.所以最后一名老师送到目的地时,小王在出车地点的西方,距离是25千米.(2)|+15|+|-4|+|+13|+|―10|+|―12|+|+3|+|―13|+|―17|=87.0.4× 87 = 34.8.所以这天下午汽车共耗油34.8升.5 .已知a=-12,b=-14,c=13,求下列各式的值.(1)a-b+c;(2)a-b-c.思路解析:用数字去代替代数式中相应的字母时,必须用括号将数字和它前面的性质符号在一起,然后再进行运算.解:(1)a-b+c=(-12)-(-14)+13=-12+14+13=112;(2)a-b-c=(-12)-(-14)-13=-12+14-6 .如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?思路解析:求两点间的距离就是用表示这两点的数相减,由于求的是“距离”,所以结果应是正数,因此,将相减的式子求绝对值即可.解:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。

2.5《有理数的加减混合运算》北师大版七年级数学上册示范教案

2.5《有理数的加减混合运算》北师大版七年级数学上册示范教案

第二章有理数及其运算2.6 有理数的加减混合运算第3课时一、教学目标1.能将生活中的问题转化为有理数的加减混合运算,使问题简单明了;2.使学生熟练地进行有理数的加减混合运算,解决实际问题.二、教学重点及难点重点:准确迅速地进行有理数的加减混合运算;难点:减法直接转化为加法及混合运算的准确性.三、教学准备多媒体课件四、相关资多媒体五、教学过程【复习巩固】合作交流,引入新课(1)2-7;(2)(-2)-7;(3)(-2)-(-7);(4)2+(-7)(5);(6);(7)解:设计意图:通过计算,回顾计算中的技巧,培养学生计算速度和准确率,为本节课做准备.【新知讲解】合作交流,探索新知下图是流花河的水文资料(单位:米).问题1.取河流的警戒水位作为0,那么图中其他数据可以分别记作什么?解:取河流的警戒水位(33.4 m)作为0点,那么图中的最高水位(35.3 m)可记作+1.9 m,平均水位(22.6 m)可记作-10.8 m,最低水位(11.5 m)可记作-21.9 m.问题2.下表是小明记录的今年雨季流花河一周内的水位变化情况(上周末的水位达到警戒水位).星期一二三四五六日水位变化/米+0.2+0.81-0.35+0.03+0.28-0.36-0.01注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天流花河的水位最高?哪一天水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少?(2)与上周末相比,本周末流花河水位是上升了还是下降了?(3)请完成下面的本周水位记录表:星期一二三四五六日水位记录(米)33.6(4)以警戒水位为0点,用折线统计图表示本周的水位情况.师生活动:通过老师指导,学生之间的交流,讨论,思维水平及思维方法灵活多样,促进思维的提高,培养学生的“数感”.解:(1)星期二的水位最高,星期一的水位最低,它们都位于警戒水位之上,与警戒水位的距离分别是:1.01 m,0.2 m.(2)因为0.20+0.81-0.35+0.03+0.28-0.36-0.01=0.6(m).所以本周末河流水位与上周末相比上升了.(3)填表如下:星 期一二 三 四 五 六 日 水位记录(米) 33.634.4134.0634.0634.3734.0134(4)如图所示.设计意图:通过读本题的分析,让学生感受数学知识在生活中的应用,培养学数学、用数学的意识.(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?解析:(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.解:(1)7-(-10)=17(辆);(2)100×7+(-1+3-2+4+7-5-10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆,比原计划减少了4辆.【典型例题】1.一辆公共汽车上原有20人,到站后下去了5人,又上来了8人,下一站下去6人,再上来9人,现在公共汽车上有______人.262.黄山主峰一天早晨气温为-1 ℃,中午上升了8 ℃,夜间又下降了10 ℃,那么这天夜间黄山主峰的气温是_________. -30.20.40.60.81.0星期3.已知有理数a 、b 、c 在数轴上对应点分别为A 、B 、C ,点A 、B 在数轴上的位置如图所示,若|b |=4,AC =2,则a +b -c = 解:由数轴可知,a >0,c >0,b <0,∵|b |=4,AC =2,∴b =-4,c -a=2,∴a +b -c =b +(a -c )=b-(c -a )=-4-2=-6.故答案为-6.4.矿井下A 、B 、C 三处的高度分别是-37.4m ,-129.8m ,-71.3m ,A 处比B 处高多少米?C 处比B 处高多少米?A 处比C 处高多少米?解:A 处比B 处高:-37.4-(-129.8)=92.4(m ),C 处比B 处高:-71.3-(-129.8)=58.5(m ),A 处比C 处高:-37.4-(-71.3)=33.9(m ).【随堂练习】1.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数).那么本周星期几水位最低( ) CA .星期二B .星期四C .星期六D .星期五2.一个数减去-5与2 的和,所得的差是6,求该数的相反数.解:根据题意知这个数为6+(-5+2)=6+(-3)=3,所以这个数的相反数为-3.3.光明中学七(1)班学生的平均身高是160 cm .(1)下表给出了该班6名学生的身高情况(单位:cm ).试完成下表:姓名小明小彬小丽小亮小颖小山身高159154165身高与平均身高的差值-1+2+3(2)这6名学生中谁最高?谁最矮?(3)最高与最矮的学生身高相差多少?星期一二三四五六日水位变化/米0.12-0.02-0.13-0.20-0.08-0.020.32解:(1)如下表:姓名小明小彬小丽小亮小颖小山身高159162160154163165身高与平均身高的差值-1+20-6+3+5(2)小山最高,小亮最矮.(3)最高与最矮的学生身高相差:165-154=11(cm).4.有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?解:(1)第一次操作后增加的新数是6,-1,则6+(-1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(-10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.六、课堂小结谈谈你的收获:1.通过学习本节内容,要能将生活中的问题转化为有理数的加减混合运算,使问题简单明了.2.要特别注意正、负号的含义,含义不同,计算的过程和结果也都不相同.3.计算时要注意:减法统一成加法时减号要变加号,减数变成相反数,统一成加法后才可以用加法的交换律和结合律.七、板书设计:。

有理数加减及混合运算教案

有理数加减及混合运算教案

有理数的加法(1)20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。

可是上述问题不能得到确定答案,因为问题中并未指出行走方向。

二、讲授新课:1.发现、总结:我们必须把问题说得明确些,并规定向东为正,向西为负。

(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50, 即这位同学位于原来位置的东方50米处。

这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处, 写成算式就是: (―20)+(―30)=―50。

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。

即这位同学位于原来位置的( )方( )米处。

后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不仿仍可看作运动的方向和路程):你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(―3)=( ); (+3)+(―10)=( ); (―5)+(+7)=( ); (―6)+ 2 = ( )。

再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。

我们不难得出它们的结果。

2.概括:综合以上情形,我们得到有理数的加法法则: 1. 同号两数相加,取相同的符号,并把绝对值相加;2. 绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;4. 一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。

2.5有理数的加法与减法(1)(教案)

2.5有理数的加法与减法(1)(教案)

有理数的加法与减法(1)(教案)【教学目标】1、了解有理数加法的意义,理解有理数加法法则的合理性;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,感受数学学习的方法.【教学重点】1、有理数的加法法则的生成过程;2、能运用有理数加法法则正确进行有理数加法运算.【问题导学】1、通过实例引导学生理解有理数加法法则的算理。

2、利用数形结合理解有理数加法法则的算理。

3、引导学生对有理数加法法则中的不同类型进行合理分类。

4、能准确地有理数加法计算。

【教学过程】一、情境创设小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?二、探索活动活动一、甲、乙两队进行足球比赛•如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.你能把上面比赛的过程及结果用有理数的算式表示出来吗?做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:注意:先写净胜球数,再写算式,最后写“=”号.【学生活动】由学生完成这份表格,在填写过程中,引导学生用生活情境化的语言来表述问题的结果,这样有助于学生对加法法则后面的算理的理解。

活动一、.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“2”的位置上.用数轴和算式可以将以上过程及结果分别表示为:-S -5 -3 -1 0 1 2 3 4 5算式: ___________________________2 .把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“ 1”的位置上.用数轴和算式可以将以上过程及结果分别表示为:3.把笔尖放在数轴的原点,沿数轴先向左移动 3个单位长度,再向左移动 2个单位长度,这时笔尖的位置表示什么数?请用数轴和算式分别表示以上过程及结果:-S --5 -3 -1 0 1 2 3 4 5算式: ___________________________对照上述两组算式,讨论:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定? 【学生活动】请学生表述,在表述过程中老师要渗透,同号两数表示相同性质的两个量相 加,结果是量叠加的,异号两数表示性质相反的两个量相加,结果是相抵消的,这样的一 个基本思想意识。

有理数加减教案初中数学

有理数加减教案初中数学

有理数加减教案初中数学教学目标:1. 理解有理数的加减法的概念和规则。

2. 能够熟练地进行有理数的加减法运算。

3. 能够解决实际问题,运用有理数的加减法进行计算和分析。

教学重点:1. 有理数的加减法的概念和规则。

2. 有理数的加减法运算的技巧和方法。

教学准备:1. 教学课件或黑板。

2. 练习题和答案。

教学过程:一、导入(5分钟)1. 引入有理数的加减法,解释有理数的加减法的概念和意义。

2. 通过举例说明有理数的加减法的实际应用。

二、讲解(20分钟)1. 讲解有理数的加法规则,包括同号相加、异号相加和零的加法。

2. 讲解有理数的减法规则,包括减去一个数等于加上它的相反数。

3. 通过示例和练习,让学生理解和掌握有理数的加减法的规则。

三、练习(15分钟)1. 分组练习题,让学生进行有理数的加减法运算。

2. 提供一些实际问题,让学生运用有理数的加减法进行计算和分析。

四、总结(5分钟)1. 对本节课的内容进行总结,强调有理数的加减法的概念和规则。

2. 提醒学生注意运算的符号和顺序。

五、作业布置(5分钟)1. 布置一些有关有理数的加减法的练习题,让学生巩固所学知识。

2. 鼓励学生进行自主学习,查找有关有理数的加减法的更多信息。

教学反思:本节课通过引入实际问题和示例,让学生理解和掌握有理数的加减法的概念和规则。

通过练习和总结,让学生巩固所学知识,并能够运用有理数的加减法进行计算和分析。

在教学过程中,要注意引导学生掌握运算的符号和顺序,避免出现错误。

同时,也要鼓励学生进行自主学习,提高他们的学习兴趣和能力。

有理数的加减混合运算的教案设计

有理数的加减混合运算的教案设计

有理数的加减混合运算的教案设计有理数的加减混合运算教学目标1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;2.通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;3.通过加法运算练习,培养学生的运算能力。

教学建议(一)重点、难点分析本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算.由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。

了解运算符号和*质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.(二)知识结构(三)教法建议1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.2.关于去括号法则,只要学生了解,并不要求追究所以然.3.任意含加法、减法的算式,都可把运算符号理解为数的*质符号,看成省略加号的和式。

这时,称这个和式为代数和。

再例如-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。

代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4.先把正数与负数分别相加,可以使运算简便。

5.在交换加数的位置时,要连同前面的符号一起交换。

如12-5+7应变成12+7-5,而不能变成12-7+5。

教学设计示例一有理数的加减混合运算(一)一、素质教育目标(一)知识教学点1.了解:代数和的概念.2.理解:有理数加减法可以互相转化.3.应用:会进行加减混合运算.(二)能力训练点培养学生的口头表达能力及计算的准确能力.(三)德育渗透点通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.(四)美育渗透点学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.二、学法引导1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.2.学生写法:练习寻找简单的一般*的方法练习巩固.三、重点、难点、疑点及解决办法1.重点:把加减混合运算算式理解为加法算式.2.难点:把省略括号和的形式直接按有理数加法进行计算.四、课时安排1课时五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.七、教学步骤(一)创设情境,复习引入师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:-9+(+6);(-11)-7.师:(1)读出这两个算式.(2)+、-读作什么?是哪种符号?+、-又读作什么?是什么符号?学生活动:口答教师提出的问题.师继续提问:(1)这两个题目运算结果是多少?(2)(-11)-7这题你根据什么运算法则计算的?学生活动:口答以上两题(教师订正).师小结:减法往往通过转化成加法后来运算.。

2.5有理数的加法与减法教案(4课时定稿)

2.5有理数的加法与减法教案(4课时定稿)

§2.5有理数的加法与减法(第一课时)一、教学目标目的与要求:了解加法的意义,会用有理数的加法法则进行运算。

知识与技能: 渗透数形结合和转化的数学思想,培养运用这种思想解决实际问题的能力。

情感、态度与价值观:感知数学知识来源于生活,并应用于生活;利用转化思想,渗透事物间的普遍联系。

二、教学重难点重点:能运用有理数加法法则,正确进行有理数加法运算;难点:经历探索有理数加法法则的过程,感受数学学习的方法。

三、教学过程情境创设:小明在一条东西方向的跑道上,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少米?你能把所有情况设想完整吗?自主探究(+3)+(-5)= (-3)+(+5)= (+3)+(+5)=(-3)+(-5)= (-3)+ 0 = 0 +(-5)=例题剖析例1、计算:(1)(+17)+(+4)(2)(-9)+(-4)(3)(+4)+(-6)(4)(-30)+(+110)(5)(+123)+(-123)(6)(-3.2)+0例2、下列说法中正确的有()个①两个有理数的和为正数时,这两个数都是正数②两个有理数的和为负数时,这两个数都是负数③两个有理数的和可能等于其中一个加数④两个有理数的和可能等于零A、1 B、2 C、3 D、4例3、一个水利勘察队,第一天沿江向上游走了20千米,第二天向下游走了45千米,问此时勘察队在出发点的上游还是下游,距出发点多远?(利用有理数的加法列式解答)例4、如果a<0,b>0,且a+b<0,借助于数轴比较a、b、-a、-b的大小(用“<”连接)随堂演练 1、填空(+3)+(+4)= ; (-4)+(-6)= ;(-112)+(+114)= ; 413+(-3)= ;(-2.2)+(+125)= ; (-300)+0= 。

2、选择(1)如果两个数的和是正数,那么下面对这两个加数的判断正确的是( ) A 、这两个加数都是正数 B 、这两个加数一正一负 C 、一个加数为正,另一个加数为零 D 、必属于上面三种情况之一 (2)下列说法中,正确的是 ( ) A 、同号两数相加,其和比加数大B 、异号两数相加,其和比两个加数都小C 、两数相加,等于它们的绝对值相加D 、两个正数相加和为正数,两个负数相加和为负数 3、计算:(1)-|-3.75|+(-6.25) (2)-|-3|+(-5.4) (3)-(-4)+(-27)4、有理数a,b 之间的关系如图所示,借助于数轴和加法法则判断下列各式计算结果与0的大小:(1)a+b 0 (2)a+(-b) 0(3)(-a)+b 0 (4)(-a)+(-b) 05、列式并解答:(1)-个数与-5的差为-8,求这个数; (2)-个数与9的差为-5,求这个数.6、能力提升小明在一条东西方向的跑道上运动,从A 点出发,沿跑道先走了20米,然后又走了30米,问此时小明在距离A 点什么位置?(要求利用有理数的加法列式解答)四、本课小结五、作业布置: 完成学案六、教学反思ba§2.5有理数的加法与减法(第二课时)一、教学目标目的与要求 进一步熟悉有理数加法法则的基础上探索加法的运算律。

苏教版七年级数学上册2-5有理数的加法与减法1导学案

苏教版七年级数学上册2-5有理数的加法与减法1导学案

数学学科第二章第5节2.5《有理数的加法与减法1》学讲预案一、自主先学1.某校七年级举行了一次足球联赛,一班第一场赢了2个球,第二场输了3个球,该班两场比赛的净胜球为多少个?2.计算:()()(3)22+--+-()-++()()(1)43(2)25()-++(5)38(4)04+-()()二、合作助学3.在课本上填写表中的净胜球数和相应的算式.4.完成课本上的数学实验,再仿照书上的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.()()++-=()()++-=()50-+=4433+++=()()355.有理数加法法则:(1)同号两数相加,取的符号,并把绝对值.(2)异号两数相加,绝对值相等时,和为;绝对值不等时,取绝对值的加数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数与相加,仍得这个数.6.填表:7.计算:(1)(-180)+(+20)(2)(-15)+(-3)(3)5+(-5)(4)0+(-2)三、拓展导学8. 一个水利勘察队,第一天沿江向上游走了20千米,第二天向下游走了45千米,问此时勘察队在出发点的上游还是下游,距出发点多远?(利用有理数的加法列式解答)9.如果a<0,b>0,且a+b<0,借助于数轴比较a、b、-a、-b的大小(用“<”连接).四、检测促学10.一个正数与一个负数的和是()A.正数B.负数C.零D.以上三种情况都有可能11.两个有理数的和()A.一定大于其中的一个加数B.一定小于其中的一个加数C.大小由两个加数符号决定D.大小由两个加数的符号及绝对值而决定12.判断(1)两个有理数相加,和一定比加数大.()(2)绝对值相等的两个数的和为0.()(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( ) 13.计算:(1)(+2)+(—3) (2)(—2)+(—3) (3)(—13)+25(4)(—23)+0 (5)4.5+(—4.5) (6)1132⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭五、反思悟学14.有理数a 、b 之间的关系如图所示,借助于数轴和加法法则判断下列各式计算结果与0的大小:(1)a +b 0,(2)a +(-b ) 0,(3)(-a ) +b 0,(4)(-a ) +(-b ) 0. (第14题)考点综合专题:一元二次方程与其他知识的综合◆类型一 一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x 2-4x +3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .102.(广安中考)一个等腰三角形的两条边长分别是方程x 2-7x +10=0的根,则该等腰三角形的周长是( )A .12B .9C .13D .12或93.(罗田县期中)菱形ABCD 的一条对角线长为6,边AB 的长是方程x 2-7x +12=0的一个根,则菱形ABCD 的周长为( )A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x +15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限10.(葫芦岛中考)已知k、b是一元二次方程(2x+1)(3x-1)=0的两个根,且k>b,则函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y=(5-m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.12.(甘孜州中考)若函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,则k的取值范围是..◆类型三一元二次方程与二次根式的综合13.(达州中考)方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为()A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m <0,∴m <-1,∴m +1<1-1,即m +1<0,m -1<-1-1,即m -1<-2,∴一次函数y =(m +1)x +m -1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k ≠013.B 14.k ≥1。

苏科版数学七年级上册2.5.1《有理数的加法与减法》教学设计

苏科版数学七年级上册2.5.1《有理数的加法与减法》教学设计

苏科版数学七年级上册2.5.1《有理数的加法与减法》教学设计一. 教材分析《有理数的加法与减法》是苏科版数学七年级上册第2章第5节的内容。

本节课主要介绍有理数的加法和减法运算规则。

教材通过具体的例子引导学生理解并掌握有理数加法和减法的基本法则,为学生提供丰富的数学活动,使他们在实践中感悟数学思想,培养运算能力。

二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数学运算有一定的认识。

但他们在进行有理数加法和减法运算时,容易受到实数加减法的影响,出现计算错误。

因此,在教学过程中,教师需要关注学生的认知特点,引导学生正确理解有理数加法和减法的运算规则,克服运算中的困难。

三. 教学目标1.理解有理数加法和减法的运算规则,能正确进行计算。

2.培养学生的运算能力,提高他们解决实际问题的能力。

3.引导学生感悟数学思想,激发学习兴趣,增强自信心。

四. 教学重难点1.重点:有理数的加法和减法运算规则。

2.难点:理解并掌握有理数加法和减法运算的实质,能灵活运用运算规则解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入有理数加法和减法,让学生在实际情境中感受数学运算的重要性。

2.讲授法:讲解有理数加法和减法的运算规则,引导学生理解运算实质。

3.实践操作法:让学生通过自主探究、合作交流,总结加法和减法运算规则。

4.巩固练习法:设计有针对性的练习题,让学生在实践中掌握运算规则。

六. 教学准备1.教学PPT:制作含有丰富实例和练习题的PPT,辅助教学。

2.教学素材:准备相关的生活实例和练习题,用于引导学生进行实践操作。

3.教学用品:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用生活实例引入有理数加法和减法,激发学生的学习兴趣。

例如,小红买了一支铅笔花了3元,又买了一支钢笔花了5元,问小红一共花了多少钱?2.呈现(10分钟)讲解有理数加法和减法的运算规则,引导学生理解运算实质。

利用PPT展示具体例子,让学生在实践中感悟数学思想。

有理数的加法与减法(1)

有理数的加法与减法(1)

第三届全国中小学“教学中的互联网搜索”优秀教案评选活动课题:苏科版义务教育课程标准实验教科书数学七年级(上)有理数的加法与减法(1)单位:江苏省镇江市第二中学作者:韩伟邮编:212002邮箱:love_1609@[教案背景]1、面向学生:□√中学□小学2,学科:数学3、课时:1课时[教学课题]苏科版义务教育课程标准实验教科书数学七年级(上)有理数的加法与减法(1) [教材分析]有理数的加法是小学算术加法运算的拓展,是初中数学运算最重要、最基础的内容之一。

熟练掌握有理数的加法运算是学习有理数其它运算的前提。

同时,也为后继学习实数、代数式运算等知识奠定基础,有理数的加法运算是建构在生产、生活实例上,有较强的生活价值,体现了数学来源于实践,又反作用于实践。

就本章而言,有理数的加法是本章的重点之一,学生能否接受和形成有理数范围内进行的各种运算的思考方式,关键在于这一节的学习。

[教学目标]知识与技能:1.通过学生经历探索有理数加法法则的过程,理解有理数加法的意义2.掌握有理数加法法则,并能正确运用法则进行有理数加法的运算。

3.了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算过程与目标:通过对有理数加法法则的探索,向学生渗透分类讨论、归纳、转化等数学思想方法。

情感态度与价值观:在合作学习与解决问题的过程中,体会与同伴合作交流的重要性。

[教学重点、难点]教学重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.教学难点:有理数加法中的异号两数如何进行运算[教学方法]情境教学[教学准备]课件、投影和可连接互联网的计算机。

[教学设计]一、情境导入教师:引入负数后,数的范围扩大了,那么,在有理数范围内如何进行加法运算呢?观看足球比赛视频:[百度视频]/v_show/id_XMTgxMjcwMDg4.html二、自主探究甲、乙两队进行足球比赛,如果甲队在主场以4:1赢了3球,在客场以1:3输了2球,那么两场累计,甲队净胜1球。

2.5 有理数的加法与减法(1)教案

2.5 有理数的加法与减法(1)教案

2.5有理数的加法与减法(1)教学目标:(1)知识与技能:了解加法的意义,会用有理数的加法法则进行运算。

(2)过程和方法:渗透数形结合和转化的数学思想,培养运用这种思想解决实际问题的能力。

(3)情感、态度与价值观:感知数学知识来源于生活,并应用于生活;利用转化思想,渗透事物是普遍联系的观点;培养依据法则做题的良好习惯。

教学重点:有理数加法法则的理解和应用教学难点:准确应用有理数加法法则教学过程一、情境创设引入小明在一条东西方向的跑道上,(1)先向东走了20米,又向东走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少米?(2)若先向西走了20米,又向东走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少米?你能把“先走了20米,又走了30米”的所有情况设想完整吗?二、自主探索我们先看一个简单的问题:甲乙两队进行足球比赛,如果甲队在主场以4∶1蠃了3球,在客场以1∶3输了2个球,那么两场累计净胜1球。

若蠃3球记作“+3”,输2球记作“-2”,则累计得球用数学表达式表示为:(+3)+(-2)=+1对于情境问题,可讨论如下:设向东为正,则向西为负(1)若两次都是向东走,通过实验我们知道他一共向东走了50米。

可表示为:(+20)+(+30)=+50,即小明在原来的位置的东方50米处。

(2)若两次都是向西走,由实验可知,小明位于西方50米。

可表示为:(-20)+(-30)=-50,(3)若第一次向东,第二次向西,通过实验可知,小明位于原来位置的西方10米处。

可表示为:(+20)+(-30)=-10(4)若第一次向西,第二次向东,通过实验可知,小明位于原来位置的东方10米处。

可表示为:(-20)+(+30)=+10总结与归纳:(1)(2)是同号两数相加,(3)(4)是异号两数相加。

同学们,能探索出两数相加的法则吗?有理数加法(addition)法则同号两数相加,取相同的符号,并把它们的绝对值相加。

2.5 有理数的加法与减法 (原卷版)

2.5 有理数的加法与减法 (原卷版)

2.5有理数的加法与减法【推本溯源】1.小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法与减法运算呢?2.有理数加法法则:(1)同号两数相加,取符号,并把相加;(2)异号两数相加,绝对值相等时,和为;绝对值不等时,取的加数的符号,并用减去;(3)一个数与0相加,仍得.利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).小试牛刀:(1)(-180)+(+20)(2)(-15)+(-3)(3)(+10)+(-1)(4)(+105)+(101)3.加法的交换律和结合律,在有理数范围内仍适用.加法的交换律:加法的结合律:小试牛刀:(1)【8+(-5)】+(-4)(2)【(-22)+(-27)】+(+27)4.有理数减法法则注意:减号变为加号;减数变为它的.小试牛刀:(1)15-(-7)(2)(-8.5)-(-1.5)(3)6-(4-9)-|-4| (4)(-3)-(-1.5)-(-4.5)-(+6)5.根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算.有理数加减混合运算可以看成有理数的加法的运算,其中负数前面的加号省略.小试牛刀:(1)-26+43-24+13-46 (2)9-5-23(3)(+17)-(-32)-(+23)(4)5.4-2.3+1.5-4.2【解惑】线路的部分路段,西起A站,东至L站,途中共设12个上下车站点.某天,小明参加该路线上的志愿者服务活动,从C站出发,最后在某站结束服务活动.如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):5+,3-,4+,5-,8+,2-,1+,3-,4-,1+.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米,求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?【摩拳擦掌】(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)图2的方格中填写了一些数和字母,要使它能构成一个三阶幻方,求值,并将空格补充完整.且0a b +<,求a b -的值.【知不足】1.(2022秋·河南新乡·七年级校考期末)把()()()()5372+-+--+-写成省略括号的和的形式是( )A .5372--+-B .5372---C .5372-+-D .5372+--2.(2020秋·吉林长春·七年级校考期中)定义运算()()11a a b a b b a b ì-³ïÄ=í-<ïî,则()()25-Ä-的结果为( ).A .5-B .3-C .2-D .33.(2023·天津东丽·统考一模)计算()88--的值是( )A .16-B .0C .16D .644.(2023秋·河南南阳·七年级统考期末)有理数a 、b 在数轴上的对应点如图所示,则下面式子中正确的是( )A .0b a >>B .0a b >>C .0a b +>D .0a b ->5.(2023秋·重庆秀山·七年级统考期末)把()()()()1243--+--+-统一为加法运算,正确的是( )A .()()()()1243-+++-+-B .()()()()1243-+-+++-C .()()()()1243-++++++D .()()()()1243-+-+-++6.(2022秋·广西南宁·七年级南宁三中校考期中)将()()()5372---++-中的减法【一览众山小】14.(2022秋·广东惠州的负倒数是______.15.(2022秋·黑龙江哈尔滨11111++++=______ 26122030。

七年级数学上册第2章有理数及其运算2.5有理数的减法教案1(新版)北师大版

七年级数学上册第2章有理数及其运算2.5有理数的减法教案1(新版)北师大版

2.5 有理数的减法1.经历探索有理数减法法则的过程,理解有理数的减法法则.2.能熟练进行有理数的减法的运算,并灵活应用有理数减法解决实际问题,培养运算能力,增强应用数学的意识.3.通过把减法运算转化为加法运算,向学生渗透转化思想.一、情境导入下图是2015年1月30日北京天气预报网上的北京天气情况,从下图我们可以得知北京从周五到下周二的最高温度为6℃,最低温度为-8℃.那么它的温差怎么算?6-(-8)=?二、合作探究探究点一:有理数的减法运算计算:(1)(-3)-(+7); (2)13-12; (3)0-(-10).解析:每个小题均是两个数的差,直接利用有理数的减法法则,先把减法转化为加法,再计算.解:(1)(-3)-(+7)=(-3)+(-7)=-10;(2)13-12=13+(-12)=-16; (3)0-(-10)=0+10=10.方法总结:进行有理数的减法运算时,将减法转化为加法,再根据有理数加法的法则进行运算.要特别注意减数的符号,这是易错点,同时统一成加法后还应注意选择合适的运算律,使运算简便.探究点二:有理数减法的应用在1986~2014年(即第10~17届)的八届亚运会中,我国运动员取得了骄人的成绩.将我国运动员夺得的奖牌数以2002年的308枚为基准,超过的枚数记为正数,不足的枚数记为负数,记录情况如下表:问奖牌最多的一届比最少的一届多多少枚?解析:观察表格发现,奖牌最多的是2010年,最少的是1986年,所以108-(-86)=194(枚).即奖牌数最多的一届比最少的一届多194枚.解:由题可知108-(-86)=194,即奖牌最多的一届比最少的一届多194枚.方法总结:找出奖牌最多的数量与最少的数量是解题的关键.探究点三:应用有理数减法法则判定正负性已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.解析:判断a-b的符号,可能不好理解,不妨把它转化为加法a-b=a+(-b),利用加法法则进行判定.解:因为a<0,b<0,所以-b>0.又因为a-b=a+(-b),所以a与-b是异号两数相加,那么它们和的符号由绝对值较大的加数的符号决定,因为|a|>|b|,即|a|>|-b|,所以取a的符号,而a<0,因此a-b的符号为负号.方法总结:此类问题如果是填空或选择题,可以采用“特殊值”法进行判断,若是解答题,可以通过运算法则来解答.三、板书设计本课时在学习了有理数加法法则的基础上,探索有理数的减法法则.教学过程中,强调学生自主探索和合作交流,经历观察、归纳、积累等思维过程,体验从特殊到一般的数学思想方法,培养学生的转化思想,同时升华学生的情感态度和价值观.。

2_5有理数的加法与减法(1) (1)

2_5有理数的加法与减法(1) (1)

高等教育自学考试特殊儿童早期干预试题答案及评分参考一、单项选择题(每小题 1 分,共 20 分)1.C2.A3.B4.C5.A6.C7.A8.C9.A 10.D11.C 12.A 13.D 14.C 15.C 16.B 17.D 18.D 19.C 20.C二、判断题 (每小题 2 分,共 10 分)21. ×;孤独症儿童的问题不光是沟通障碍,其他方面如注意力等也有异常。

22. ×;区别强化就是采用强化物对某一组行为反应进行强化,但是对其他行为反应则不给予强化。

23. ×;游戏治疗一般来说是不需要限制的,但是当涉及到儿童学习负应有的责任或者面对现实环境的需要时会设下限制。

24. ×;智商高是判断一个儿童是否是超常的主要标准,但不是唯一,例如还应该考虑非智力因素。

25. √三、名词解释 (每小题 3 分,共 15 分)26.手指语又称指语,是用指式(手指的格式变化)代表拼音字母,连接若干个指式可以拼成任何语言的词句。

27.是一个相对的具有历史性和地域性的概念,它泛指各种各样心理发展和生活适应困难,尤其是教育上有特殊需求的儿童。

28. 注意能将某个刺激从许多刺激中挑选出来,帮助人们减少同一时间内的刺激量,而注意障碍就是注意的选择功能出现障碍,这样的儿童在同一时间对过多的刺激做出反应,表现为总是在动、注意力分散、不能持续足够长的时间来完成学习任务,也不能有目的地直接注意周围的事物。

29. 是指儿童与父母分离或离开家时出现与年龄不适当的、过度的焦虑。

30. 又称儿童期恐怖性焦虑障碍,是指儿童显著而持久地、对日常生活中的事物或情境产生过分的、毫无理由的恐惧情绪,并出现回避或退缩行为,其程度严重影响了儿童的日常生活和社会功能。

五、简答题 (每小题 2 分,共 25 分)31.一、职业能力的调查;二、职业训练;三、就业指导;(注:每点应略加阐释,答对一点得2分,直至得满分)。

七年级数学教案:有理数的加法与减法(全4课时)

七年级数学教案:有理数的加法与减法(全4课时)
(单位:千米)
已知该出租车这天上午共耗油9.6升.
(1)小东爸爸上午收工时距离出发点多远?在出发点的何处?
(2)小东爸爸的出租车每千米的耗油量是多少升?
三、交流展示
1.什么样的两个数之和为0?为正数?为负数?
2.已知 ,(1)求a+b; (2)若有a>b,求a+b.
3.计算:(1)
(2)
四、拓展提高:
教学重点
1.学会把知识运用于实践,灵活、合理地运用加法运算律简化运算;
2.有理数加法中运算律的探索,概括有理数加法交换律和结合律.
课时
教学难点
学会把知识运用于实践,灵活、合理地运用加法运算律简化运算;
教学方法
教具准备
教学课件
教学过程
个案补充
一.自主先学:
1.阅读课本P28-30,回答下列问题
有理数加法运算律交换律:
活动:计算:
(1) 7-(-4)+(- 5)
(2) (-21)-12+33-67
(3)
(4)(+ )-( )-(-3.2)
三.交流展示
1.有理数减法没有独立的法则,而是“把减法转化为加法”,这种“化减为加”
的转化思想是我们认识世界的重要方法.
2.“化减为加”的本质是“两变”:
一是减号变加号;二是减数变符号(减数变相反数)
(2)3+5-10可以看成是、、三个数相加.
二.探究交流
问题一:你会快速准确的进行有理数加减混合运算吗?
活动:计算.
(1)
(2)
(3)(-8)-(+4)+(-6)-(-1)
(4)14-(-10)+(-25)-16
问题二:如何应用有理数加减法解决实际问题?补充栏

七年级数学有理数的减法教案3篇

七年级数学有理数的减法教案3篇

七年级数学有理数的减法教案3篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!七年级数学有理数的减法教案3篇七年级数学有理数的减法教案1七年级上2.5有理数的减法(一)教案教学目标:1、经历探索有理数减法法则的过程。

《有理数的加法与减法》PPT课件 (公开课获奖)2022年苏科版 (20)

《有理数的加法与减法》PPT课件 (公开课获奖)2022年苏科版 (20)

当两个加数绝||对值不等时 ,和 的符号与绝||对值较大的加数的符号 相同 ,和的绝||对值等于加数中较大的 绝||对值减去较小的绝||对值.
(3) (2) 5
异 (1) (2) 3 号 (3) (2) 1
(3) (5) 2

(4) (4) 0 加 0 (3) 3
当两个加数绝||对值相等时 , 两个加数互为相反数 ,和为零.

① 水井


0 +〔-3〕=-3
议一议
任意两个有理数相加 ,和是多少 ? 你能找到有理数相加的一般方法吗 ?
探究归纳
(3) (2) 5 同号相加
(1) (2) 3
(3) (2) 1 异号相加 (3) (5) 2
(4) (4) 0
0 (3) 3
一个数与0相加
从加数的符号入手 , 有理数加法可以分成三种情况.
赢球数 主场 客场
3 -2 -3 2
32 -3 -2
30 0 -3
净胜球数
1 1
5 5
3 3
算式
(3) (2) 1 (3) (2) 1 (3) (2) 5 (3) (2) 5
(3) 0 3 0 (3) 3
通过思考 ,你能举出一些应用有理数加法 的实际例子吗 ?
数学实验室
1.把笔尖放在数轴的原点 ,沿数轴先向左移动5个单 位长度 ,再向右移动3个单位长度 ,这时笔尖停在 "-2 〞的位置上 ,请用数轴和算式分别表示以上过程及结 果.
第三年 +42
〔1〕该公司前两年盈利了多少万元 ?
〔2〕该公司三年共盈利多少万元 ? -24 +15.6 +42
= -8.4 +42
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5有理数的加法与减法(1)(教案)
【教学目标】
1、了解有理数加法的意义,理解有理数加法法则的合理性;
2、能运用有理数加法法则,正确进行有理数加法运算;
3、经历探索有理数加法法则的过程,感受数学学习的方法.
【教学重点】
1、有理数的加法法则的生成过程;
2、能运用有理数加法法则正确进行有理数加法运算.
【问题导学】1、通过实例引导学生理解有理数加法法则的算理。

2、利用数形结合理解有理数加法法则的算理。

3、引导学生对有理数加法法则中的不同类型进行合理分类。

4、能准确地有理数加法计算。

【教学过程】
一、情境创设
小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?
二、探索活动
活动一、甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.
你能把上面比赛的过程及结果用有理数的算式表示出来吗?
做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:
赢球数
净胜球数算式
主场客场
3 -2 1 3+(-2)=1
-3 2
3 2
-3 -2
3 0
0 -3
【学生活动】由学生完成这份表格,在填写过程中,引导学生用生活情境化的语言来表述问题的结果,这样有助于学生对加法法则后面的算理的理解。

活动一、.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个
”的位置上.
单位长度,这时笔尖停在“2
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________
2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.
用数轴和算式可以将以上过程及结果分别表示为:
算式:________________________
3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?
请用数轴和算式分别表示以上过程及结果:
算式:________________________ 对照上述两组算式,讨论:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定? 【学生活动】请学生表述,在表述过程中老师要渗透,同号两数表示相同性质的两个量相加,结果是量叠加的,异号两数表示性质相反的两个量相加,结果是相抵消的,这样的一个基本思想意识。

总结与归纳:
有理数加法法则:
同号两数相加,_________________________________________________. 异号两数相加,_____________________________________________________________.
一个数与0相加,_________________________. 法则的理解:
(1)同号两数相加,包括同正两数相加和同负两数相加两种情形.同正得正,同负得负,并把绝对值相加;
(2) 异号两数相加,包括绝对值相等和绝对值不等两种情形.绝对值相等时,即两个互为相反数的和为0;绝对值不等时和的符号由绝对值较大的加数确定并用较大的绝对值减去较小的绝对值;
(3)任何有理数与0相加仍得这个数.
另外,由法则应知道,无论是哪种情形的两个有理数相加,都分成两个步骤: 第一步确定结果的符号,第二步确定结果的绝对值.
【学生活动】在规定有理数加法法则时,是如何进行分类的?先按什么来分?再按什么来分?这样的层次和顺序能变化吗?如果能,你会怎样变化?如果不能,为什么?如果变化了,那一种方式更好? 三、例题教学 例1、计算:
(1)(+5)+(+24) (2)(-15)+(-3) (3)(-43)+(-4
1
)
(4)(-180)+(+20) (5)(—7)+10 (6)7.2+(-6.4)
(7)5+(-5) (8)(—7.8)+7.8 (9)(-53
)+(+0.6)
(10)0+(-2) (11)0+(—1.5) (12)(—3
4
)+0
例2、已知.7,3==b a
(1)若有b a <,求b a + (2)求b a +.
例3、请你给算式(-15)+(+7)=-8编写一个现实的情境.
【学生活动】老师解题示范,学生板书练习,学生互相评价,归纳解题的规范与注意点。

四、课堂小结
【学生活动】归纳总结,老师引导学生有条理地表达,注意总结的层次性与系统性,小结应当有:1、有理数加法的算理,2、有数数加法的法则,3、有理数加法计算的注意点与步骤。

相关文档
最新文档