实验一 薄透镜焦距的测定

合集下载

实验一 薄透镜焦距的测定

实验一  薄透镜焦距的测定

实验一 薄透镜焦距的测定【实验目的】1. 进一步理解透镜成像的规律;2. 掌握测量薄透镜焦距的几种方法;3. 学会光具座上各元件的共轴调节方法。

【实验仪器】光具座、凸透镜、凹透镜、平面镜、像屏、物屏、光源。

【实验原理】1、薄透镜焦距的测定透镜的厚度相对透镜表面的曲率半径可以忽略时,称为薄透镜。

薄透镜的近轴光线成像公式为:fs s 111'=+ (3—1—1)式中s 为物距,s '为像距,f 为焦距。

其符号规定如下:实物时s 取正,虚物s 取负;实像时s '取正,虚像时s '取负;f 为透镜焦距,凸透镜取正,凹透镜取负 。

(1) 位移法测定凸透镜焦距 (贝塞尔法又称共轭成像法)如图1所示,如果物屏与像屏的距离A 保持不变,且A > 4f ,在物屏与像屏间移动凸透镜,可以两次看到物的实像,一次成倒立放大实像,一次成倒立缩小实像,两次成像透镜移动的距离为L 。

据光线可逆性原理可得:s 1= s 2′,s 2= s 1′,则2s '21L A s -==,2'12L A s s +==, 将此结果代入式(3—1—1)可得:AL A f 422-= (3—1—2)只要测出A 和L 的值,就可算出f 。

(2) 自准直法测凸透镜焦距光路图如图2所示。

当物体AB 处在凸透镜的焦距平面时,物AB 上各点发出的光束,经透镜后成为不同方向的平行光束。

若用一与主光轴垂直的平面镜将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。

所成像是一个与原物等大的倒立实像A ′B ′(此时物到透镜的距离即为焦距)。

所以自准直法的特点是:物、像在同物像像屏屏图2 自准直法测凸透镜焦距一焦平面上。

自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。

(3) 物距—像距法测凹透镜焦距(利用虚物成实像求焦距) 如图3所示,先用凸透镜L 1使AB 成实象A 1B 1,像A 1 B 1便可视为凹透镜L 2的物体(虚物)所在位置,然后将凹透镜L 2放于L 1和A 1B 1之间,如果O 2A 1<∣f 2∣,则通过L 1的光束经L 2折射后,仍能形成一实象A 2B 2。

薄透镜焦距的测量实验原理

薄透镜焦距的测量实验原理

薄透镜焦距的测量实验原理引言:薄透镜是光学实验中常用的元件之一,它具有将光线聚焦或发散的作用。

测量薄透镜的焦距是实验室中常见的实验之一,通过测量薄透镜的物距和像距,可以准确地计算出薄透镜的焦距。

本文将介绍薄透镜焦距的测量实验原理以及具体的操作步骤。

一、实验原理薄透镜焦距的测量实验基于薄透镜成像公式,该公式可以表示为:1/f = 1/v - 1/u其中,f为透镜的焦距,v为像距,u为物距。

实验中,我们通过测量透镜的物距和像距,然后代入公式,求解焦距。

二、实验装置及材料1. 凸透镜:选择一个焦距已知的凸透镜。

2. 光源:可以使用点光源或平行光源。

3. 物体:可以使用一个尺子或标尺作为物体。

4. 屏幕:用于接收透镜成像后的光线。

三、实验步骤1. 准备工作:a. 将光源放置在透镜的一侧,确保光线能够通过透镜。

b. 将屏幕放置在透镜的另一侧,并与透镜保持一定的距离。

2. 实验操作:a. 将物体放置在透镜的一侧,并与透镜保持一定的距离。

b. 调整透镜的位置,使得光线通过透镜后能够在屏幕上形成清晰的像。

c. 测量物距u和像距v,并记录下来。

3. 数据处理:a. 将测得的物距u和像距v代入薄透镜成像公式。

b. 根据公式计算出透镜的焦距f。

四、注意事项1. 测量物距和像距时,应尽量保证测量的准确性,可以使用尺子或标尺进行测量,并尽量测量多组数据取平均值。

2. 在调整透镜位置时,应观察屏幕上的像是否清晰,如有需要可以适当调整透镜的位置,直至获得清晰的像。

3. 实验过程中要注意安全,避免光线直接照射眼睛。

结论:薄透镜焦距的测量实验原理是基于薄透镜成像公式,通过测量透镜的物距和像距,然后代入公式,可以计算出透镜的焦距。

实验中需要准备透镜、光源、物体和屏幕等实验装置及材料,按照一定的步骤进行操作。

在实验过程中,需要注意测量准确性和安全性。

通过这个实验,我们可以更加深入地了解薄透镜的性质和特点,同时也可以巩固和应用薄透镜成像公式的知识。

薄透镜焦距的测定物理实验报告

薄透镜焦距的测定物理实验报告

薄透镜焦距的测定物理实验报告一、实验目的1、加深对薄透镜成像原理的理解。

2、学习几种测量薄透镜焦距的方法。

3、掌握光学实验中的基本测量技术和数据处理方法。

二、实验原理1、薄透镜成像公式当光线通过薄透镜时,遵循薄透镜成像公式:$\frac{1}{u} +\frac{1}{v} =\frac{1}{f}$,其中$u$ 为物距,$v$ 为像距,$f$ 为焦距。

2、自准直法当物屏上的物点发出的光线经透镜折射后,变成平行光,若在透镜后面垂直于光轴放置一个平面反射镜,此平行光将沿原路返回,再次通过透镜后仍成像于物屏上的物点处。

此时,物屏与透镜之间的距离即为透镜的焦距。

3、物距像距法当物距和像距分别为$u$ 和$v$ 时,通过测量物距和像距,代入薄透镜成像公式可求得焦距$f$ 。

4、共轭法移动透镜,在物屏和像屏之间分别得到放大和缩小的清晰像。

根据光路可逆原理,两次成像时物距和像距互换,利用公式$\frac{u + v}{4}$可计算出焦距。

三、实验仪器光具座、凸透镜、凹透镜、物屏、像屏、平面反射镜、光源等。

四、实验内容与步骤1、自准直法测凸透镜焦距(1)将凸透镜固定在光具座的一端,在凸透镜的另一侧放置物屏,使物屏上的十字叉丝清晰可见。

(2)在凸透镜后面垂直于光轴放置平面反射镜。

(3)沿光具座移动物屏,直到在物屏上再次看到清晰的十字叉丝与原物大小相等、方向相反。

(4)记录此时物屏与凸透镜的位置,两者之间的距离即为凸透镜的焦距。

(5)重复测量三次,计算焦距的平均值。

2、物距像距法测凸透镜焦距(1)将凸透镜固定在光具座的中间位置。

(2)在凸透镜的一侧放置物屏,另一侧放置像屏。

(3)移动物屏和像屏,直到在像屏上得到清晰的像。

(4)记录物屏和像屏的位置,分别得到物距$u$ 和像距$v$ 。

(5)代入薄透镜成像公式计算焦距,并重复测量三次,计算平均值。

3、共轭法测凸透镜焦距(1)将物屏固定在光具座的一端,凸透镜放在光具座中间附近。

实验一 薄透镜焦距的测定实验讲义

实验一  薄透镜焦距的测定实验讲义

实验五薄透镜焦距的测定一、目的1.学会调节光学系统共轴,并了解视差原理的实际应用。

二、仪器和用具光具座、会聚透镜、发散透镜、物屏、白屏、平面反射镜、尖头棒、指针、光源.三、原理透镜会分为发散透镜和会聚透镜两类,当透镜厚度与焦距相比甚小时,这种透镜称为薄透镜,如图1-1所示,设薄透镜的像方焦距为f’,物距为p,对应的像距为p’,在近轴光线的条件下,薄透镜成像的高斯公式为:1/p’-1/p=1/f’ (1-1)故f’=pp’/p-p’ (1-2)应用上式时必须注意各物理量所适用的符号法则.一般文献和标准规定:距离自参考点(薄透镜光心)量起,与光线行进方向一致时为正,反之为负。

运算时已知量须添加符号,未知量则根据求得结果中的符号判断其物理意义。

1.测量会聚透镜的方法(1)用实物成像求焦距用实物作光源,其发出的光线经会聚透镜后在一定条件下成像,可以用白屏接取实像加以观察,通过测定物距和像距,利用(1-2)即可算出f’。

(2)由透镜两次成像测求焦距当物体与白屏的距离L大于4f’时,保持其相对位置不变,则会聚透镜置于物体与白屏之间,可以找到两个位置,在白屏上都能看到清晰的像。

如图1-2所示,透镜两位置之间的距离的绝对值为d,运用物像的共轭对称性质,容易证明f’=L^2-d^2/4L (1-3)上式表明,只要测出d和L就可以算出f’。

由于通过透镜两次成像而求的f’的,这种方法称为二次成像法或贝塞尔法,这种方法中不需要考虑透镜本身的厚度,因此用这种方法测出的焦距一般较为准确。

(3)由自准直确定如图1-3所示,当尖头棒P放在透镜L的物方焦面上时,由P发出的光经过透镜后成为平行光,如果在透镜后放一与透镜光轴垂直的平面反射镜M,则平行光经M反射后仍为平行光,沿原来的方向反方向行进,并成像P’于物平面上,P 与L之间的距离就是像方焦距,这个方法是利用调节实验装置本身使之产生平行光以达到调焦的,所以又称之为自准直法。

2.测定发散透镜焦距的方法(1)虚物成实像求焦距如图1-4所示,设物P发出的光经辅助透镜L1后成实像P’,当加上待测焦距的发散透镜L后使成像P’’,则P’和P’’相对于L来说是虚物体和实像,分别测出L到P’和P’’的距离,根据(1-2)即可算出L的像方焦距f’。

薄透镜焦距的测定的实验报告

薄透镜焦距的测定的实验报告

薄透镜焦距的测定的实验报告实验名称:薄透镜焦距的测定实验目的:通过实验测量薄透镜的焦距。

实验原理:对于一个薄透镜,当物体距离透镜足够远(即射线与光轴成很小角度时),可以近似认为射线是平行于光轴的,此时通过透镜的射线在焦点处会汇聚成一点。

因此,我们可以通过测量在不同位置摆放的物体所成像的位置来计算薄透镜的焦距。

实验器材:薄透镜、光屏、白炽灯、物体(可以使用光滑和尺寸适宜的小物体)。

实验步骤:1. 将薄透镜和光源放置在同一光轴上,如图所示。

将光屏放在透镜的另一侧,调整距离使得光屏上能看到透镜清晰的像。

2. 向透镜前摆放一物体(如实验器材所述),同时在光屏上观察到物体的清晰像。

记录物体和透镜之间的距离为S1,物体和其像之间的距离为S2。

3. 移动物体位置,改变物体和透镜之间的距离,再次调整光屏位置,观察到物体在光屏上的清晰像。

记录此时物体和透镜之间的距离为S1’,物体和其像之间的距离为S2’。

4. 重复步骤3,测量不同物体和透镜之间的距离,记录数据。

5. 根据公式:1/f = 1/S1 + 1/S21/f = 1/S1’ + 1/S2’(其中f为薄透镜的焦距)计算所得的焦距,求出其平均值,作为实验结果。

实验注意事项:1. 实验环境应保证良好的光线照明条件,以免影响测量结果。

2. 操作时应注意安全,避免身体或者设备的受伤。

3. 实验期间避免震动和摇晃设备,保证数据的准确性。

实验结果与分析:我们根据实验步骤所述,通过实验测量了多组物体和透镜之间距离的数值,根据公式计算了各组所得的焦距。

最终,我们得到的平均值为10cm(保留两位小数)。

结合实验原理中所述的焦距的概念,我们可以得出,在物体距透镜足够远的情况下,通过测量不同物体与其成像之间距离变化,我们可以比较准确地计算薄透镜的焦距。

同时,从实验结果中我们也可以看出,焦距的数值是一个比较稳定的值,不受物体之间的变化和测量位置的影响,这也说明了焦距是透镜的一个固有特性。

大学物理实验薄透镜焦距的测定

大学物理实验薄透镜焦距的测定

光学实验 薄透镜焦距的测定一、[实验目的]1.明确光学实验室规则,训练相应的实验规范行为; 2.认识光学实验平台,学会调节光学系统使之共轴; 2.掌握薄透镜焦距的3种常用测定方法。

二、[实验仪器] 1.光学平台2.凸透镜(f70 ) ;凸透镜(f190)(待测物) 凹透镜(f-100)(待测物) 3.光源、物屏、像屏、平面镜 三、[实验原理]本实验中仅考虑透镜厚度比球面曲率半径小得多的透镜,此时,透镜的两个主平面与透镜中心面可看作是重合的。

因此,物距u 、像距v 、焦距f 可视为是物、像、焦点与透镜中心的距离。

1.由自准直法测凸透镜焦距2.用物距像距法测透镜焦距设薄透镜的焦距f ,物距为u ,对应的像距为v ,则透镜成像的公式:fv u 111=+ 即 vu uvf +='-------------------(1) 通过物距、像距的测定,求薄透镜的焦距。

3.用两次成像法测凸透镜焦距在下图中,取物、屏之距L > 4f ,且在实验过程中保持不变。

置凸透镜于物、屏之间,移动透镜的座驾观察二次成像的图案,则凸透镜有两个位置Ⅰ与Ⅱ (二者相距为 d )可使物成像于屏上,其中一个是放大、倒立的实像,另一个是缩小、倒立的实像。

Ld L f 422-='-------------------------(2)分别测量L 和d ,代入上式即可求得凸透镜焦距。

4.测定凹透镜的焦距薄凹透镜是一种发散透镜。

实物经过凹透镜的折射无法形成实像,因此测量焦距的方法一般要加一块凸透镜。

先将实物发出的光经凸透镜折射后形成会聚光束,然后利用会聚光束来测定凹透镜的焦距。

光路图如下图。

先用一块凸透镜(本实验选f70)把光源形成一个汇聚点(实像可以在接受屏上找到成像位置),然后加上待测的凹透镜,则会聚光束经凹透镜发散,形成一个新汇聚点(仍然是实像)。

测出两个汇聚点(实像)到凹透镜中心的距离,就可以知道物距u (负号)和像距v 。

实验1 薄透镜焦距的测定

实验1  薄透镜焦距的测定

实验1 薄透镜焦距的测定注意: 白光源不能长时间发光, 请同学们在记录数据的时候关闭白光源。

第一部分用实物成实像法测薄凸透镜焦距【实验目的】1.掌握简单光路的分析和调整方法。

2.掌握实物成实像测凸透镜焦距的原理及方法。

【实验仪器】WSZ-1A 18-10 光学平台1.带有毛玻璃的白炽灯光源S2.品字形物屏P: SZ-143.凸透镜L: f=190mm(f=150mm)4.二维调整架: SZ-075.白屏H: SZ-136.通用底座: SZ-047、二维底座: SZ-028、通用底座: SZ-049、通用底座: SZ-04【实验原理】对凸透镜而言, 用实物作为光源, 其发出的光线经会聚透镜后, 在一定条件下成实像, 可用白屏接取实像加以观察, 通过测定物距和像距, 再利用空气中的薄透镜的高斯公式即可计算出焦距。

【实验内容与步骤】1.把全部光学器件按实验器件图的顺序摆放在光学平台上, 靠拢后目测调至共轴2.调节透镜L的位置, 调节白屏H使品字形物屏P在H上成一清晰的放大像, 记下品字形物屏P的位置a、透镜L的位置b及白屏H的位置c。

3、移动透镜L的位置, 再调节白屏H的位置使其上再次得到P的清晰像, 记录a、b、c 的位置, 再重复一次。

4.比较实验值和真实值的差异并分析其原因。

【数据处理】Δ='+'=__________f__cmff第二部分用位移法测薄凸透镜焦距f【实验目的】1.掌握简单光路的分析和调整方法。

2.掌握位移法测凸透镜焦距的原理及方法。

【实验仪器】WSZ-1A 18-10 光学平台1.带有毛玻璃的白炽灯光源S2.品字形物屏P: SZ-143.凸透镜L: f=190mm(f=150mm)4.二维调整架: SZ-075.白屏H: SZ-136.通用底座: SZ-047、二维底座: SZ-028、通用底座: SZ-04【实验原理】对凸透镜而言, 当物和像屏间的距离大于4倍焦距时, 在它们之间移动透镜, 则在屏上会出现两次清晰的像, 一个为放大的像, 一个为缩小的像。

薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告实验目的,通过实验测量薄透镜的焦距,掌握测量薄透镜焦距的方法和技巧。

实验仪器,凸透镜、光具架、物镜、白纸、尺子、平行光源。

实验原理,薄透镜的焦距是指平行光线经过透镜后汇聚或者看似汇聚的位置。

对于凸透镜来说,焦距为正,对于凹透镜来说,焦距为负。

焦距的计算公式为1/f = 1/v + 1/u,其中f为焦距,v为像距,u为物距。

实验步骤:1. 将凸透镜固定在光具架上,调整光具架使得凸透镜与平行光源垂直放置。

2. 在凸透镜的一侧放置一张白纸,调整白纸的位置使得凸透镜的像清晰可见。

3. 测量凸透镜与白纸的距离,即像距v。

4. 移动白纸,使得凸透镜与白纸的距离变化,再次测量像距v。

5. 测量物距u。

实验数据记录与处理:实验一:像距v1 = 20cm,像距v2 = 18cm,取平均值v = (20+18)/2 = 19cm。

物距u = 25cm。

代入公式1/f = 1/v + 1/u,得到焦距f = 47.5cm。

实验二:像距v1 = 15cm,像距v2 = 14cm,取平均值v = (15+14)/2 = 14.5cm。

物距u = 20cm。

代入公式1/f = 1/v + 1/u,得到焦距f = 40cm。

实验结果分析:通过两次实验测量得到的焦距分别为47.5cm和40cm,两次实验结果相差不大,说明实验数据比较准确。

实验中可能存在的误差主要来自于测量距离的精度以及光线的折射等因素。

实验结论:通过本次实验,我们掌握了测量薄透镜焦距的方法和技巧,同时也加深了对薄透镜焦距的理解。

在实际应用中,我们可以通过测量薄透镜的焦距来确定透镜的性质,为光学系统的设计和调试提供重要参考。

总结:本实验通过测量薄透镜的焦距,加深了对光学原理的理解,同时也提高了实验操作的技能。

在今后的学习和科研中,我们将更加熟练地运用光学知识,为科学研究和工程技术的发展贡献自己的力量。

实验 薄透镜焦距的测定

实验    薄透镜焦距的测定

好处在凹透镜上沿。移动带痕玻片并仔细观察凹透镜内虚像的
顶端和凹透镜外玻片刻痕间的相对位置有无变化。当相对位置 不变,即无视差时,记录下此时玻片刻痕的位置。重复测量三次,
将数据填于表3-8-4中, 求出f。
2) 自准法 先对光学系统进行共轴调节,然后把凸透镜放在稍大于 两倍焦距处。移动凹透镜和平面反射镜 , 当物屏上出现与 原物大小相同的实像时 ,记下凹透镜的位置读数。然后去掉
图 3 - 8 - 5 自准法测凹透镜焦距光路图
四、实验内容
1. 光学系统的共轴调节 薄透镜成像公式仅在近轴光线的条件下才成立。对于几个 光学元件构成的光学系统进行共轴调节是光学测量的先决条件, 对几个光学元件组成的光路,应使各光学元件的主光轴重合,才 能满足近轴光线的要求。习惯上把各光学元件主光轴的重合称 为同轴等高。本实验要求光轴与光具座的导轨平行, 调节分两 步进行: (1) 粗调。将安装在光具座上的所有光学元件沿导轨靠拢 在一起, 仔细观察, 使各元件的中心等高, 且与导轨垂直。
立实像A′B′。此时, 物屏到透镜之间的距离就等于透镜的焦距f。
图 3 - 8 - 1 自准法测薄透镜焦距光路图
2) 物距像距法(u>f) 物体发出的光线经凸透镜会聚后, 将在另一侧成一实像, 只
要在光具座上分别测出物体、透镜及像的位置, 就可得到物距
和像距。将物距和像距代入式(3 - 8 - 1)中, 得
实验
薄透镜焦距的测定
一、 实验目的 (1) 了解薄透镜的成像规律。 (2) 掌握光学系统的共轴调节。
(3) 测定薄透镜的焦距。
二、 实验仪器
光具座、薄透镜、光源、像屏、观察屏和平面反射镜等。
三、 实验原理
1. 薄透镜成像公式 当透镜的厚度远比其焦距小得多时 , 这种透镜称为薄透镜。 在近轴光线的条件下,薄透镜成像的规律可表示为

薄透镜焦距测量实验

薄透镜焦距测量实验

薄透镜焦距测量实验薄透镜焦距测量【实验⽬的】1. 学习光学仪器的使⽤和维护规则,学会调节光学系统使之等⾼共轴。

2. 掌握测量薄会聚透镜和发散透镜焦距的⽅法。

3. 观察透镜成像,并从感性上了解透镜成像公式的近似性。

【实验仪器】光具座,底座及⽀架,薄凸透镜,薄凹透镜,平⾯镜,物屏(有透光箭头的铁⽪屏),像屏(⽩⾊,有散光的作⽤)。

【实验原理】透镜是光学仪器中最基本的元件,焦距是反映透镜特性的重要物理量。

为了正确使⽤光学仪器,必须掌握透镜成像规律,学会光路调节技术和焦距测量⽅法。

1.⾃准直法测量凸透镜焦距如图1-1和图1-2所⽰,当物P在焦点处或焦平⾯上时,经透镜L 后光是平⾏光束,经平⾯镜反射再经透镜后成像于原物P处。

因此,P 点到透镜L中⼼点的距离就是透镜的焦距f。

图1-1:⾃准直法测量焦距原理图1当实物(具体实验中为狭缝光源)刚好在凸透镜焦点时,会在实物处呈现倒⽴等⼤的实像。

实物和凸透镜之间的距离即是焦距的值。

图1-2:⾃准直法测量焦距原理图2光的可逆性原理:当光线的⽅向返转时,它将逆着同⼀路径传播。

这个⽅法是利⽤调节实验装置本⾝,使之产⽣平⾏光以达到调焦的⽬的,所以称⾃准直法。

2.物距与像距法测量凸透镜焦距由于对实物,凸透镜可成实像,所以直接测量凸透镜的物距u、像距v,就可以⽤⾼斯公式(⾼斯公式的普遍形式:),求出凸透镜的焦距,如图2-1所⽰。

图2-1:物距与像距法测量焦距原理图3.共轭法(⼆次成像法)测量凸透镜焦距如图3-1,取物体与像屏之间的距离L⼤于4倍凸透镜焦距f,即L>4f,并保持L不变。

沿光轴⽅向移动透镜,则在像屏上必能两次成像。

图3-1:⼆次成像法测量焦距原理图当透镜在位置 I时屏上将出现⼀个放⼤清晰的像(设此物距为u,像距为v);当透镜在位置 II 时,屏上⼜将出现⼀个缩⼩清晰的像(设此物距为u′,像距为v′),设透镜在两次成像时位置之间的距离为 C,根据透镜成像公式,可得u= v′,u′=v⼜从图3-1可以看出上式称为透镜成像的贝塞尔公式。

大物实验之薄透镜焦距的测量

大物实验之薄透镜焦距的测量

A
BF f
P
B' F
P A'
(3)自准法
如图所示,在透镜L的一侧放置
被光源照亮的物屏AB,在另一侧放 置一块平面镜M。移动透镜的位置
A
L
M
即可改变物距的大小。当物距等于
透镜的焦距时,物屏AB上任一点发

出的光,经透镜折射后成为平行光;
再经平面镜反射,反射光经透镜折 射后重新会聚。由透镜成像公式可

凹透镜位置读
次数

d1/cm
位置读数 d2/cm
虚物物距 像距/cm S2=d1-S0 S2’=d1-d2
/cm
1
2
3
4
5
1.凸透镜的焦距测量
(1)粗测法: 当物距趋向无穷大时,由(1)式可得: f P ,即无穷
远处的物体成像在透镜的焦平面上。用这种方法测得的结 果一般只有1~2位有效数字。由于这种方法误差较大,大 都用在实验前作粗略估计,如挑选透镜等。
(2)公式法 根据(1)式,则薄透镜焦距为 f PP P P
f
B
知,会聚光线必在透镜的焦平面上
图1
成一个与原物大小相等的倒立的实
像。此时,只需测出透镜到物屏的
距离,便可得到透镜的焦距。该方
法的测量主要是透镜与物屏之间距
离的测量,其结果可以有三位有效
数字。
(4)二次成像法(共轭法)
若保持物屏与像屏之间的距离D不 变且D>4f,沿光轴方向移动透镜,可 以在像屏上观察到二次成像:一次成 放大的倒立实像,一次成缩小的倒立 实像。如图2所示。在这种情况下, 透镜的两个位置对于物与像屏连线中 点来说是对称的。物距为P1时,得到 放大的像;物距为P2时,得到缩小的 像,在二次成像时透镜移动的距离为 L。则

实验一 薄透镜焦距的测定实验报告

实验一  薄透镜焦距的测定实验报告

实验一 薄透镜焦距的测定实验目的1.学会调节光学系统使之共轴,并了解视差原理的实际应用;2.掌握薄透镜焦距的常用测定方法;实验仪器和用具光具座,会聚透镜,物屏,白屏,光源实验原理 详细见P39-41. 实验内容一 成像透镜法测透镜焦距 1 测量数据表1 物距、像距测量数据 单位:cm2 像方焦距标准不确定度的分析f ′的A 类标准不确定度为: )5=n (cm 15.0=)1-n (n )f ′-f ′(=)f ′(U ∑2iAB 类不确定度:cm 03.03cm05.03Δ=)f ′(U B ==仪;f ′的总标准不确定度为: cm 15.0=)f ′(U +)f ′(U =)f ′(U 2B 2A C 故测得的透镜的像方焦距为:cm )15.0±94.14(=f ′. 二 透镜两次成像法测焦距 1 测量数据表2 物屏距离L 、透镜移动距离d 的测量数据 单位:cm2 像方焦距的标准不确定度的分析 f ′的A 类标准不确定度为: )5(02.0)1-()-()(∑2==''='n cm n n f f f U iAB 类不确定度:cm 03.03cm05.03Δ=)f ′(U B ==仪(测量均匀分布取3=C );f ′的总标准不确定度为: cm 04.0=)f ′(U +)f ′(U =)f ′(U 2B 2AC 故,测得透镜的像方焦距为:cm )04.0±04.15(=f ′.实验结论误差主要来源于:一,光线并非严格的满足傍轴条件;二,存在视差,成最清晰像的位置很难测准;三,透镜、光屏支架的底座和平行轨道之间的接合不够光滑,接合处较松动,位置读数误差较大.采用多次测量求平均值可以减少误差,由测量的不确定度可以确定测量的误差在允许的范围之内.。

薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告

一、实验目的1. 掌握测量薄透镜焦距的基本方法。

2. 学会调节光学系统的基本方法。

3. 了解调节系统共轴的重要性及方法。

4. 通过实验加深对透镜成像原理的理解。

二、实验原理薄透镜的焦距是指透镜的光心到焦点的距离。

根据薄透镜成像公式,当物距u大于2倍焦距2f时,透镜成倒立、缩小的实像;当物距u等于2倍焦距2f时,成倒立、等大的实像;当物距u介于f和2f之间时,成倒立、放大的实像;当物距u等于焦距f时,不成像。

本实验采用以下方法测量薄透镜焦距:1. 自准直法:利用透镜的光学特性,通过调节物距和像距,使物体通过透镜成像在透镜的另一侧,从而确定焦距。

2. 物距像距法:通过测量物距和像距,根据薄透镜成像公式计算焦距。

3. 贝塞尔法:通过移动透镜,使物体成像在像屏上两次,分别得到放大像和缩小像,根据像距和物距的关系计算焦距。

三、实验仪器1. 薄透镜2. 平面反射镜3. 物屏4. 狭缝板5. 光具座6. 刻度尺7. 计算器四、实验步骤1. 共轴调节:将光源、狭缝板、透镜、平面反射镜依次放置在光具座上,调整各元件的位置,使它们共轴。

2. 自准直法测量焦距:a. 将物屏放置在透镜的一侧,调整物距,使物体通过透镜成像在另一侧的像屏上。

b. 移动透镜,使像清晰,记录物距和像距。

c. 重复上述步骤,测量多组数据。

3. 物距像距法测量焦距:a. 将物屏放置在透镜的一侧,调整物距,使物体通过透镜成像在另一侧的像屏上。

b. 记录物距和像距。

c. 重复上述步骤,测量多组数据。

4. 贝塞尔法测量焦距:a. 将物屏放置在透镜的一侧,调整物距,使物体通过透镜成像在另一侧的像屏上。

b. 移动透镜,使像清晰,记录物距和像距。

c. 再次移动透镜,使像清晰,记录物距和像距。

d. 重复上述步骤,测量多组数据。

五、数据处理1. 自准直法:根据测量数据,计算物距和像距的平均值,代入薄透镜成像公式计算焦距。

2. 物距像距法:根据测量数据,代入薄透镜成像公式计算焦距。

薄透镜焦距的测定物理实验报告

薄透镜焦距的测定物理实验报告

薄透镜焦距的测定物理实验报告实验目的:本实验的目的是通过测定薄透镜的焦距,研究薄透镜的成像规律,并掌握焦距的测定方法。

实验原理:薄透镜是由凹凸两个球面所组成,其中一面的曲率半径较大,称为凸面,另一面的曲率半径较小,称为凹面。

薄透镜的厚度相对于焦距来说是非常小的,因此可以近似认为是无厚度的。

光线在透镜中的传播可以利用折射定律来描述,即入射角和折射角满足sinθ₁/sinθ₂=n₂/n₁,其中n₁和n₂分别为透镜两边的折射率。

对于薄透镜来说,其折射率可以由透镜材料的折射率来近似表示。

对于平凸透镜,在透镜的两边分别有一个焦点,分别称为前焦点和后焦点。

当物体距离透镜远时,物体距离透镜一侧焦点足够远,光线近似于平行光线,此时透镜会将光线聚焦到另一侧焦点上,成像为实像。

当物体距离透镜一侧焦点足够近时,透镜会将光线发散,成像为虚像。

根据薄透镜成像规律可以推导出薄透镜的公式:1/f=1/v-1/u,其中f为焦距,v为像距,u为物距。

实验器材:1.薄透镜2.物体3.尺子或测微尺4.白纸实验步骤:1.将薄透镜平放在桌面上。

2.选择一个物体放置在透镜的前方,距离透镜一段距离。

3.在透镜的后方放置一张白纸,以便观察成像情况。

4.调整透镜与物体的距离,直到在白纸上观察到清晰的成像。

5.测量物距u和像距v。

6.重复以上步骤几次,以取得更多的数据。

实验数据处理与分析:根据薄透镜焦距公式1/f=1/v-1/u,可以将实验数据代入计算焦距f 的值。

根据实验数据绘制焦距与物距的图像,通过拟合直线来确定焦距的值。

实验结论:通过本次实验,我们成功测定了薄透镜的焦距,并验证了薄透镜成像规律。

实验结果与理论值吻合较好,实验步骤简单易行,可以有效地测定薄透镜的焦距。

实验中可能存在的误差:1.在实验中,由于测量误差和人为因素的影响,测量得到的数据可能存在一定的误差。

2.实际上,薄透镜的焦距可能会受到透镜本身的质量和形状的影响,这也可能导致测量数据与理论值存在一定的偏差。

薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告薄透镜焦距的测量实验报告一、引言透镜是光学仪器中的重要组成部分,其焦距是透镜的重要光学参数之一。

透镜焦距的准确测量对于光学仪器的设计和制造具有重要意义。

本实验旨在通过薄透镜焦距的测量,掌握透镜焦距的测量方法,了解透镜成像的原理和规律,加深对光学仪器中透镜的认识和理解。

二、实验原理薄透镜焦距的测量可以通过物距-像距法来实现。

当物体位于透镜前方时,光线经过透镜后会形成一个清晰的实像。

此时,可以通过测量物体到透镜的距离(物距)和实像到透镜的距离(像距),并根据透镜成像公式计算出透镜的焦距。

透镜成像公式为:1/f=1/u+1/v,其中f为透镜焦距,u为物距,v为像距。

当物体位于透镜前方时,物距u为正数,像距v也为正数;当物体位于透镜后方时,物距u为负数,像距v也为负数。

因此,在计算透镜焦距时,需要考虑物距和像距的符号。

三、实验步骤1.搭建实验光路:将光源、光具座、透镜和光屏依次放置在实验台上,并调整它们的高度,使光线能够垂直通过透镜。

2.测量物距和像距:将物体放置在透镜前方,移动光屏,直到在光屏上观察到清晰的实像。

此时,测量物体到透镜的距离(物距)和实像到透镜的距离(像距)。

3.计算焦距:根据透镜成像公式,计算出透镜的焦距。

为了减小误差,需要进行多次实验,并求出焦距的平均值。

4.绘制光路图:根据实验数据,绘制出物体、透镜和实像之间的光路图。

四、实验结果与分析表1 实验数据记录表有一定的可行性和精度。

在本实验中,通过多次测量并计算焦距的平均值,可以得到较为准确的实验结果。

然而,由于实验过程中存在误差和不确定性,如光源和光屏的调整误差、测量误差等,因此实验结果仍存在一定的误差。

为了提高实验精度,可以采用更精确的测量仪器和方法,如使用显微镜观察实像的位置等。

根据实验数据绘制的光路图如下所示:图1 光路图五、结论本实验通过物距-像距法测量了薄透镜的焦距,掌握了透镜焦距的测量方法,了解了透镜成像的原理和规律。

薄透镜焦距的测定实验报告

薄透镜焦距的测定实验报告

薄透镜焦距的测定实验报告薄透镜焦距的测定实验报告引言:薄透镜是光学实验中常用的光学元件之一,它具有将光线聚焦或发散的作用。

测定薄透镜焦距是光学实验中的一项基础实验,通过该实验可以了解薄透镜的光学特性和性能。

本实验旨在通过使用透镜公式和实验方法,测定薄透镜的焦距,并探讨实验误差的来源和解决方法。

实验材料与方法:实验所需材料包括一块薄透镜、一支光源、一块白纸、一把尺子和一台测距仪。

实验步骤如下:1. 将光源放置在透镜的一侧,确保光线垂直射向透镜。

2. 在光源的另一侧放置一块白纸,用于观察透镜成像。

3. 调整光源和白纸的位置,使得透镜成像清晰可见。

4. 使用尺子测量透镜与白纸之间的距离,并记录下来。

5. 移动光源和白纸的位置,再次测量透镜与白纸之间的距离,并记录下来。

6. 重复以上步骤多次,取平均值作为最终的测量结果。

实验结果与分析:根据实验所得的数据,我们可以使用透镜公式来计算薄透镜的焦距。

透镜公式为:1/f = 1/v - 1/u其中,f表示焦距,v表示像距,u表示物距。

通过实验测得的数据,我们可以计算出焦距的近似值。

在计算过程中,我们需要注意单位的一致性,确保计算结果的准确性。

由于实验误差的存在,我们可以通过多次实验取平均值的方法来减小误差的影响。

在实验中,我们还需要注意光线的均匀性和透镜的清洁程度。

不均匀的光线会导致成像模糊,影响实验结果的准确性。

而脏污的透镜表面会降低透镜的透光性,同样会影响实验结果。

实验误差的来源主要有两个方面:仪器误差和操作误差。

仪器误差是由实验仪器的精度和测量方法的限制所引起的,而操作误差则是由实验者在操作过程中不可避免的误差所导致的。

为了减小误差的影响,我们可以采取以下措施:1. 使用具有较高精度的测距仪和尺子,以提高测量的准确性。

2. 在实验过程中,尽量减少操作上的不确定性,保持实验条件的一致性。

3. 进行多次实验并取平均值,以减小随机误差的影响。

结论:通过本次实验,我们成功地测定了薄透镜的焦距,并通过透镜公式进行了计算和分析。

实验一薄透镜焦距的测定解析

实验一薄透镜焦距的测定解析

实验一薄透镜焦距的测定实验目的1•学会调节光学系统使之共轴。

2•掌握测量薄会聚透镜和发散透镜焦距的方法。

3•验证透镜成像公式,并从感性上了解透镜成像公式的近似性。

实验仪器CXJ —1型光具座,底座及支架,薄凸透镜,薄凹透镜,平面镜,物屏(可调狭逢组、有透光箭头的铁皮屏或一字针组),像屏(白色,有散射光的作用)。

重点难点:1、按实验操作规程规范操作。

2、动手操作能力培养。

德育渗透:1、培养学生爱护仪器,保护国家财产的意识。

2、培养学生互相帮助,团结协作的精神教学方法1、讲授法。

2、演示法。

3、学生分组实验法布置作业:1、数据处理。

2、误差分析3、独立完成实验报告。

4、预习下一个实验实验原理1•共轭法测量凸透镜焦距利用凸透镜物、像共轭对称成像的性质测量凸透镜焦距的方法,叫共轭法。

所谓“物象共轭对称”是指物与像的位置可以互移,如图5—1—1 (a )所示。

其中(a )图中处于物点s0的物体Q经凸透镜L在像点p处成像P,这时物距为u,像距为v。

若把物点S)移到图5—1 —1 ( a )中p的点,那么该物体经同一凸透镜L成像于原来的物点,即像点p将移到图5 —1 —1( a )中的s0点。

于是,图5—1—1 ( b )中的物距u'和像距v'分别是图5 —1—1 ( a )中的像距v和物距u ,即物距u' v ,像距v' u。

这就是“物像共轭对称”。

设u v u' v' D (物屏Q和像屏P之间的距离为D )。

根据上面的共扼法,如果物与像的位置不调换,那么,物放在S0处,凸透镜L放在X1处,所成一倒立放大实像在p处;将物不动,凸透镜放在X2处,所成倒立缩小的实像也在p处,如图5—1—2所示。

由图可知,u' u d或v u d。

于是可得方程组u v,v u,解方程D 12 3 4d 24D(5 —1 — 1)该式是共轭法测量凸透镜焦距的公式。

由于 f'是通过移动透镜两次成像而求得的,所以,这种方法又称二次成像法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 薄透镜焦距的测定
【实验目的】
1. 进一步理解透镜成像的规律;
2. 掌握测量薄透镜焦距的几种方法;
3. 学会光具座上各元件的共轴调节方法。

【实验仪器】
光具座、凸透镜、凹透镜、平面镜、像屏、物屏、光源。

【实验原理】
1、薄透镜焦距的测定
透镜的厚度相对透镜表面的曲率半径可以忽略时,称为薄透镜。

薄透镜的近轴光线成像
公式为:f
s s 1
11'=+ (3—1—1)
式中s 为物距,s '为像距,f 为焦距。

其符号规定如下:实物时s 取正,虚物s 取负;实像时s '取正,虚像时s '取负;f 为透镜焦距,凸透镜取正,凹透镜取负 。

(1) 位移法测定凸透镜焦距 (贝塞尔法又称共轭成像法)
如图1所示,如果物屏与像屏的距离A 保持不变,且A > 4f ,在物屏与像屏间移动凸透镜,可以两次看到物的实像,一次成倒立放大实像,一次成倒立缩小实像,两次成像透镜移动的距离为L 。

据光线可逆性原理可得:s 1= s 2′,s 2= s 1′,则2s '
21L A s -=
=,2
'
12L A s s +==, 将此结果代入式(3—1—1)可得:
A
L A f 42
2-= (3—1—2)
只要测出A 和L 的值,就可算出f 。

(2) 自准直法测凸透镜焦距
光路图如图2所示。

当物体AB 处在凸透镜的焦距平面时,物AB 上各点发出的光束,经透
镜后成为不同方向的平行光束。

若用一与主光轴垂直的平面镜将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。

所成像是一个与原物等大的倒立实像A ′B ′(此时物到透镜的距离即为焦距)。

所以自准直法的特点是:物、像在同





S 1
S 2
S 1

S 2

图1 位移法测透镜焦距
A
L
M 反 射 镜
A B
B ′ A ′
L
f
图2 自准直法测凸透镜焦距
一焦平面上。

自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。

(3) 物距—像距法测凹透镜焦距(利用虚物成实像求焦距) 如图3所示,先用凸透镜L 1使AB 成实象A 1B 1,像A 1 B 1便可视为凹透镜L 2的物体(虚物)所在位置,然后将凹透镜L 2放于L 1和A 1B 1之间,如果O 2A 1<∣f 2∣,则通过L 1的光束经L 2折射后,仍能形成一实象A 2B 2。

物距s = O 2A 1,像距s ′ = O 2A 2,代入公式(3—1—1),可得凹透镜焦距。

2、光具座上的共轴调节
由于应用薄透镜成像公式时,需要满足
近轴光线条件,因此必须使各光学元件调节到同轴。

所谓光学的共轴,是指各透镜的光轴重合,物面中心处在光轴上,并且物面、屏面垂直于光轴,照明光束也大体沿光轴方向。

本实验中还必须使光轴与光具座的导轨严格平行。

具体方法可分两步进行。

①粗调:先将透镜等元器件向光源靠拢,调节高低、左右位置,凭目视使光源、物屏上的透光孔中心、透镜光心、像屏的中央大致在一条与光具座导轨平行的直线上,并使物屏、透镜、像屏的平面与导轨垂直。

②细调:利用透镜二次成像法来判断是否共轴,并进一步调至共轴。

当物屏与像屏距离大于4f 时,沿光轴移动凸透镜,将会成两次大小不同的实像。

若物的中心P 偏离透镜的光轴,则所成的大像和小像的中心P ′和P ″将不重合,但小像位置比大像更
靠近光轴(如图4所示)。

就垂直方向而言,如果大像中心P ′高于小像中心P ″,说明此时透镜位置偏高(或物偏低),这时应将透镜降低(或把物升高)。

反之, 如果P ′低于P ″,便应将透镜升高(或将物降低)。

调节时,以小像的中心位置为参考,调节透镜(或物)的高低,逐步逼近光轴位置。

当大像中心P ′与小像中心P ″重合时,系统即处于共轴状态。

当有两个透镜需要调整(如测凹透镜焦距)时,必须逐个进行上述调整,即先将一个透镜(凸)调好,记住像中心在屏上的位置,然后加上另一透镜(凹),再次观察成像的情况,对后一个透镜的位置上下、左右的调整,直至像中心仍旧保持在第一次成像时的中心位置上。

注意,已调至同轴等高状态的透镜,在后续的调整、测量中绝对不允许在变动。

S
S ′
图3 物距—像距法测凹透镜焦距
P ′
P ″ P
>4f
图4 共轴调节
【实验内容】
1.用位移法测定凸透镜焦距
将光源、物、待测透镜、屏放置在光具座上。

调节各元件使之共轴。

对公式(3—1—2)中未知量进行测量。

测三次,求出每次测量的焦距值和平均值。

2.用自准直法测定凸透镜的焦距
用平面反射镜替换屏,根据自准直法原理测量透镜焦距。

3.用物距—像距法测定凹透镜焦距
(1)按图3所示,使物经凸透镜成缩小的像于屏上。

(2)在凸透镜与屏之间放入凹透镜,量出凹透镜与屏的距离S 。

(3)凸透镜、凹透镜不动,移动屏直至成一清晰的实像,量出凹透镜与屏的距离S '。

(4)重复测量三次,用公式(3—1—1)计算出凹透镜焦距和平均值。

数据处理:
次 数 物 透镜位置1 透镜位置2
像屏 A (cm )
L (cm )
f (cm )
1 2 3
焦距的平均值
次数 A 'B '位置
A ″
B ″位置
L 2位置
S (cm )
S '(cm )
f (cm )
1 2 3
焦距的平均值
自准直法
次数 物 透镜 f (cm )
1 2 3
焦距的平均值
【实验步骤】
1.调节系统共轴
(1)粗调:
先将透镜等元器件向光源靠拢,调节高低、左右位置,凭目视使光源、物屏上的透光孔中心、透镜光心、像屏的中央大致在一条与光具座导轨平行的直线上,并使物屏、透镜、像屏的平面与导轨垂直。

(2)细调:
使物与屏的距离足够远,移动透镜能够看到两次成像。

将透镜放在成小像的位置上,调节屏,使像的中心与屏上十字线的中心重合。

再将透镜放在成大像的位置上,调节透镜,使像的中心与屏上十字线的中心重合。

再将透镜放在成小像的位置上,重复以上步骤,直到大像中心与小像中心重合。

2.用位移法测定凸透镜的焦距
将光源、物、屏的位置固定,移动透镜成两次像,量出物屏的距离A和两次成像透镜移动的距离L,用公式3-1-2计算出透镜的焦距。

改变屏的位置,重复上述步骤。

测三次,求出焦距的平均值。

3.用自准直法测定凸透镜焦距
在透镜后面放上平面反射镜,移动透镜,使得在物平面上看到清晰、等大的反射像,量出物与镜的距离。

重复三次求焦距的平均值。

4.用物距—像距法测定凹透镜焦距
(1)按图3-1-3所示,使物经凸透镜成缩小的像于屏上;
(2)在凸透镜与屏之间放入凹透镜,量出凹透镜与屏的距离s;
(3)凸凹透镜均不动,移动屏直至成一清晰的实像D´,并调节凹透镜使像的中心与屏上十字线的中心重合,量出凹透镜与屏的距离s´;
(4)用公式3-1-1计算出凹透镜焦距;
(5)重复三次,求出焦距的平均值。

思考题:
1.实验中,用什么测量方法确定清晰像的位置?
能够正确判断成像的清晰位置是光学实验获得准确结果的关键,为了准确地找到像的最清晰位置,可采用左右逼近法读数。

先使像屏从左向右移动,到成像清晰为止,记下像屏位置,再自右向左移动像屏,到像清晰再记录像屏位置,取其平均作为最清晰的像位。

2.为什么位移法中,要求A >4f ?
由s=A-s '代入公式3-1-1得:0'2
'=+-Af As s 要使该方程由两个解(s '有两个根),需
()014A 2>⨯⨯--Af
即A>4f 。

3.使用1字物屏、平面反射镜、凸透镜、白屏各一块,设计一个用自准直法测量凹透镜的实验,作出光路图,写出实验原理。

如图10-5所示,将物点A 置于凸透镜L 1的主光轴上,测出其成像位置B 。

将待测凹透镜L 2和一个平面反射镜M 置于L 1和B 之间。

移动L 2,使由M 反射回去的光线经L 2、L 1后,仍成像于A 点。

此时,从凹透镜到平面镜上的光将是一束平行光,B 点就是由M 反射回去的平行光束的虚像点,也就是L 2的焦点。

测出L 2的位置,间距B O 2就是待测凹透镜的焦距。

4.物距—像距法测定凹透镜焦距中,应选用凸透镜成小像时测定凹透镜的焦距,为什么?
首先让凸透镜成一个缩小(或等大)实像,因为成缩小实像时,像的位子容易确定,对于凹透镜来说,就是物的位置变化小,这样物距引起的误差就小。

相关文档
最新文档