理论力学 摩擦

合集下载

理论力学第四章-摩擦解析

理论力学第四章-摩擦解析
FNB
下面判断系统是否处于静平衡
脚端A 与B 的最大静摩擦力分别为 :
y
C
FA fs A FNA 0.2 375 75 N
G
FB
f s B FNB
0.6 125
75 N
FSA A
FSA FSB 72.17 N
2d sin
Wr
f
cos
P
2d sin
Wr
f
cos
用摩擦角表示得:
Wr cos
d sin
P
Wr cos
d sin
[例]图示一折叠梯放在地面上,与地面的夹角 60o 。脚端A 与B和地面的摩擦因数分别为 fsA 0.2, fsB 0.6 。在折叠 梯的AC侧的中点处有一重为500N的重物。不计折叠梯的重量 ,问它是否平衡?如果平衡,计算两脚与地面的摩擦力。
y C G
A
B
x
(a)
处理此类问题时首先假定系
统为平衡。由于系统不一定处
于静摩擦的临界情况,可通过
平衡方程求得这些未知的静摩
擦力。所得的结果必须与最大
y
静摩擦力进行比较,以确认上
C
述系统平衡的假定是否成立。
G
A
B
x
(a)
以整体为对象,受力如图
MA 0
bFNB
bG 4
0
FNB 0.25G 125 N
无润滑
有润滑
0.15
0.1~0.12
0.3
0.15
0.1~0.15
0.18
0.3~0.5
0.15
0.4~0.6
0.1
动摩擦系数
无润滑
有润滑
0.09

第五章摩擦_理论力学

第五章摩擦_理论力学

即自锁条件是:斜面的倾角小于或等于摩擦角。 § 5-3 考虑滑动摩擦的平衡问题 考虑滑动摩擦的平衡问题与前几章所述大致相同,但有如下特点:
1.受力分析时必需考虑接触面的摩擦力 ;
2.除平衡方程外,还必须列写补充方程,
,补充方程数等于摩擦力的个数;
3.平衡问题的解是一个范围,称为平衡范围。
例 5-1 物块重
。轮半径为 ,杆长为 ,当
时,
。求当 D 处静摩擦系数
分别为 0.3 和 0.15 时,维持系统平衡需作用于轮心 的最小水平推力。 解:本题属 求极限值问题,但有两种临界平衡状态,两处摩擦,应分别判断、讨论。由图(a)可知, 若推力 太大,轮将向左滚动;而推力太小,轮将向右滚动。后者在临界平衡状态下的水
。如圆柱向下滚动,由图(b)可知,
如图 5-8(a)所示。在滚轮中心上作用一不大的水平推力 ,则轮有滚动趋势。由于接触处
变形,作用于轮上的约束力为一分布力系。此力系向 A 点简化得一力 及矩为 M 的力偶,
Байду номын сангаас
称为滚动摩阻力偶(简称滚阻力偶),如图(b)所示。该力偶与图(c)所示的力偶( , ) 平衡,其转向与轮的滚动趋势相反,其矩称为滚阻力偶矩。
摩擦角为全反力与接触面法线间夹角的最大值有物体平衡时全反力与法线间夹角的变化范围为当主动力的合力作用线在摩擦角之内无论主动力多大物体保持平衡的现象称为摩擦动摩擦定律动摩擦力大小与接触面法向反力成正比即滚动摩擦为两物体有相对滚动趋势或有相对滚动时在接触部分产生的对滚动的阻碍作用
第五章 摩 擦
知识点
1.
0.8
0.5
木材-木材
0.4~0.6
0.1
0.2~0.5
0.07~0.15

理论力学第四章摩擦问题

理论力学第四章摩擦问题

x F2max N1
F2max f N2
Pmax
sin cos
f cos f sin
Q
3、综上得出:要维持物体平衡时,力P的值应满足的条件是
:
sin f cos Q P sin f cos Q
cos f sin
cos f sin
例4-3 杆AB的A端置于光滑水平面上,AB与水平面夹角 为20°,杆重为P=50 KN。B处有摩擦。当杆在此处临界平衡时 ,试求B处摩擦角。
m f 从何而来?分析滚动摩擦,必须考 虑变形的影响。物体接触面上受力情况较复杂。
将这些力系向A点简化,得到一个主矢 FR 和一个主矩 m f ,主矢 FR 分解成支反力N和滑动摩擦力Ff (此处Ff
< F max ). 主矩 m f 称为滚动摩擦力偶矩, 简称为滚阻力偶。
N
G
F
O
AB
R
GG
F
OO
AB Ff Ff
解: 以AB为研究对象,画受 力图,N为B处的正压力。
Fx 0
N tgΦm. cosθ=N sinθ
tgΦm = tgθ
∴ Φm =θ=20°
x y
NA
FSmax m N
例4-4 * 已知: b , d , fs ,
不计凸轮与挺杆处摩擦,不计挺杆质量;
求:挺杆不被卡住之a 值。
解:取挺杆为研究对象,设挺杆处于卡住临界 状态。
F 0 X
FAx FBx 0
注意BC杆是二 力杆。
(休止角)沙堆滑塌、山体滑坡现象。
§4-3 考虑滑动摩擦时物体的平衡问题
仍为平衡问题,平衡方程可用,求解步骤与前面基本相同。 几个新特点 1 、画受力图时,必须考虑摩擦力; 2 、严格区分物体处于临界、非临界状态;

理论力学第五章 摩擦(Y)

理论力学第五章 摩擦(Y)

0 Fs Fs,max
——平衡
0 f
f Fs Fs ,max ——临界平衡状态 摩擦角 f —— 物体处于临界平衡状态时全反力与
法线之间的夹角。
tan f
Fs ,max FN
f s FN fs FN
摩擦角的正切等于静滑动摩擦系数——几何意义。
当物体平衡时(包括平衡的临界状态)全约束反力 的作用线一定在摩擦角之内
摩擦轮传动——将左边轴的转动传给右边的轴
摩擦的分类:
摩擦


滑动摩擦
滚动摩擦

静滑动摩擦 ——仅有相对运动趋势 动滑动摩擦 ——已有相对运动 静滚动摩擦 动滚动摩擦
干摩擦 ——由于接触表面之间没有液体时产生的摩擦。 湿摩擦 ——由于物体接触面之间有液体。
摩擦
一、滑动摩擦
研究滑动摩擦规律的实验:
MB 0
l sin 30 0 M P cos 30 0 FND l cos 30 0 0 FSD 2
3 P 3l
(1 FSD
FSD f s FND
3 2 3 M M min Pl 8
(1)当M较大时,BD杆逆时针转动。 分别以OA、 BD杆为研究对象, 画受力图。 l 0 FND l cos 30 P 0 对于OA杆: M O 0 2
Y 0
Fs,max f s FN
(库仑摩擦定律)
(2)最大静摩擦力的方向:沿接触处的公切线,与相对 滑动趋势反向;
Fs,max f s FN f s ——静滑动摩擦系数——静摩擦系数
与两接触物体表面情况(粗糙度,干湿度,温度等) 和材料有关,与两物体接触面的面积无关。

理论力学教程(第四章)

理论力学教程(第四章)

静滑动摩擦力的特点
1 方向:沿接触处的公切线,
与相对滑动趋势反向;
2 大小:
3
(库仑摩擦定律)
④静摩擦系数的测定方法(倾斜法)
两种材料做成物体
和可动平面测沿下面滑
动时的 。
p
F=mgsin =fmgcos
2)、动滑动摩擦
tg f
两物体接触表面有相对运动时,沿接触面产生的切向 阻力称为动滑动摩擦力。
1)、静滑动摩擦
① 定义 两相接触物体虽有相对运动趋势,但仍保持相对静止F时,
给接触面产生的切向阻力,称为静滑动摩擦力或简称静摩 擦力。
满足
0 F Fmax (最大静摩擦力)
当 F Fmax时,则物体处于临界平衡状态
F
P Fmax f N (库仑静摩擦定律)
若物体静止,则 F P
摩擦的现象和概念
在大学物理已经讲到什么是摩擦:当物体与另一物体 沿接触面的切线方向运动或有相对运动的趋势时,在两物 体的接触面之间有阻碍它们相对运动的作用力,这种力叫 摩擦力。接触面之间的这种现象或特性叫“摩擦”。这里 来作更深入的研究,首先来看它的分类:滑动摩擦和滚动 摩擦。
滑动摩擦:相对运动为滑动或具有滑动趋势时的摩擦。
第四章 摩擦
欢迎加入湖 工大考试资
料群:
引言
前几章我们把接触表面都看成是绝对光滑的,忽略了物体 之间的摩擦,事实上完全光滑的表面是不存在的,一般情况下 都存在有摩擦。 [例]

平衡必计摩擦 3
摩擦
☆§4–1 滑动摩擦 ☆§4–2 摩擦角和自锁现象 ☆§4–3 考虑摩擦时物体的平衡问题 ☆§4–4 滚动摩阻的概念
性质:当物体静止在支承面时,支承面的总反力的偏角

理论力学(大学)课件10.2 考虑摩擦的平衡问题(几何法)

理论力学(大学)课件10.2 考虑摩擦的平衡问题(几何法)
2、考虑摩擦的平衡问题 (几何法)
摩擦角及滚动摩阻
利用摩擦角求解临界平衡问题
临界平衡问题中,摩擦力为最大静滑动摩擦力,此时全约束力与法线间的 夹角为摩擦角,利用全约束力以及摩擦角的几何关系,可以方便地求解这 类问题。我们将这种方法称之为几何法。
例1 凸轮挺杆机构滑道尺寸为d,宽度为b,挺杆与滑道间静滑动摩擦系数 为fs,不计凸轮与挺杆处摩擦,不计挺杆质量; 求:挺杆不被卡住之尺寸a 值.
Fmax1
1
NA
f
FNA
jf FBA
= P tan(q - jf )
FR1 q - jf
FR1 θ FNA
F
F1
摩擦角及滚动摩阻
设力F大于临界值F2时,楔块A向左运动 取楔块A为研究对象,取临界状态,画受力图 忽略楔块A的大小,三个汇交力平衡,画封闭的力三角形。
Fmax2
FBA jf
F2
FR2
θ
FNA
解:显然a越小越不容易被卡住,取刚好要卡住 还没有卡住的临界状态,分析挺杆受力。
将FNA和FAmax用全约束力FRA代替,它与法 线间的夹角为φf 。同理得到FRB。
FAmax A d FFNRAA
b FNBFRB
jf
jf
B
F
FBmax
由几何关系
b
=
(a极限
+
d 2
)
tan
jf
+
(a极限
-
d 2
) tanjf
M
= 2a极限 tan j f = 2a极限 f S
a极限a e
a极限
=
b 2 fS
故挺杆不被卡住时: a
<

同济大学理论力学摩擦实验报告

同济大学理论力学摩擦实验报告

理论力学摩擦实验报告一、实验原理1、滑道倾角的调节滑道倾角可通过两种方式调节,即电机快速调整和手动慢速微调。

其中,电机快速调整由电机传递动力,经电机减速部分减速后输出,通过电磁离合器带动蜗杆转动,由此带动蜗轮传动,蜗轮轴输出使滑道转轴运动,实现滑道的倾角变化。

将电线插头插入交流220V,50HZ电源插座,按下实验装置操作面板上总电源开关、机动电源开关,转动滑道升降开关。

向左旋转滑道升起,倾角增大。

向右旋转滑道倾角减小,直至为零。

在使用手轮作慢速微调之前,需按下手动电源开关,向左旋转手轮滑道升起,倾角增大。

向右旋转手轮滑道倾角减小。

2、角度的显示通过角度传感器和显示仪表即时反映滑道倾角的变化值。

当转轴带动滑道转动时,角度传感器将测得数据传送到显示器,即可反映出滑道的倾斜角度,角度显示精度值为0.01度,大大提高测量精度,减少实验角度测量的误差。

该部分电源在总电源开通时开通。

在使用本实验装置前,须将工作台作水平调整,以免引起滑道倾角的累计误差。

3、计时通过光电门来实现。

二、实验装置MC50摩擦实验装置是由滑板倾角调整机构、角度显示机构和数字测时器三部分组成。

通过滑块在不同材质的滑道上运动,可以测定静、动摩擦系数及物体的加速度。

并可以进行在不同情况下物体滑动、翻倒的演示。

三、实验内容测定木材与铁轨之间的静、动摩擦系数,以及了解当滑块高度较大时,不同载荷下滑块翻倒和滑动的情况。

(1)改变滑板的倾角,测量不同材料之间的静摩擦系数。

(2)通过测量两点之间的平均加速度,测量不同材料之间的动摩擦系数。

(3)当滑块高度较高,加载不同载荷时,其在自重作用下,测定滑块向下翻倒和滑动的最大倾角以及滑块向上翻倒和滑动的最大倾角角。

四、实验步骤1、静摩擦系数实验(a) 调整好滑道倾角角度,使滑块放到滑道上不下滑为准;(b) 旋转手动微调按钮,将滑道的倾角慢慢调大,直到滑块达到将滑未滑时停止,记下此时滑道倾角,即摩擦角;(c) 将所测得的倾角代人静摩擦系数公式,即可得木块与铁之间的静摩擦系数。

理论力学第4章 摩擦

理论力学第4章 摩擦
所以增大摩擦力的途径为:①加大正压力N, ②加大摩擦系数f
4
3、 特征: 大小:0 F Fmax (平衡范围)满足 X 0
静摩擦力特征:方向:与物体相对滑动趋势方向相反
定律:Fmax f N ( f 只与材料和表面情况有 关,与接触面积大小无关。)
二、动滑动摩擦力:(与静滑动摩擦力不同的是产生了滑动)
所以物体运动:此时
F '动 N f '100.11N
(物体已运动)
25
[练习2] 已知A块重500N,轮B重1000N,D轮无摩擦,E 点的摩擦系数fE=0.2,A点的摩擦系数fA=0.5。
求:使物体平衡时块C的重量Q=? 解:① A不动(即i点不产
生 平移)求Q 由于
T 'F1 f AN1 0.5500250N
14
此力系向 A点简化
d'
滚阻力偶与主动力偶(Q,F)相平衡
①滚阻力偶M随主动力偶(Q , F)的增大而增大;
② 0 M Mmax
有个平衡范围;
滚动 摩擦 ③ M max 与滚子半径无关;
④滚动摩擦定律: M max d N,d 为滚动摩擦系数。
15
滚动摩擦系数 d 的说明:
①有长度量纲,单位一般用mm,cm; ②与滚子和支承面的材料的硬度和温度有关。
19
四、例题 [例1] 作出下列各物体
的受力图
20
[例2] 作出下列各物体的受力图
① P 最小维持平衡 ② P 最大维持平衡
状态受力图;
状态受力图
21
[例3] 构件1及2用楔块3联结,已知楔块与构件间的摩擦系数f=0.1,
求能自锁的倾斜角 。
解:研究楔块,受力如图

理论力学教学PPT摩擦教学课件PPT

理论力学教学PPT摩擦教学课件PPT

4
(2)临界平衡状态:
FS
Fmax
Fmax :最大静摩擦力
静摩 擦力有一个范围:0 Fs Fmax
Fmax
有限约束力
实验表明:Fm
的大小与接触面上法向反力
ax
FN
的大小成正比,方向与物体相对滑动趋势的方向相反.
P
Fmax
A
FN
Fmax = fs FN f s ----- 静摩擦系数
静滑动摩擦定律 T
49.61N m MC 70.39 N m
40
例5-14 已知: 力 P 角 ,不计自重的 A , B 块间的
静摩擦系数为 f s ,其它接触处光滑;
求:使系统保持平衡的力 F的值.
41
解: 取整体 Fy 0 FNA P 0 FNA P
设力 F小于 F1时,楔块 A 向右运动, 取楔块 A ,F1 FNA tan( ) P tan( )
解得 Fs 866 N FN 4500 N d 0.171m
而 Fmax fs FN 1800 N
因 Fs Fmax , 木箱不会滑动;
又 d 0 , 木箱无翻倒趋势.
木箱平衡
(2)设木箱将要滑动时拉力为 F1 Fx 0 Fs F1 cos 0 Fy 0 FN P F1 sin 0
画两杆受力图.
(a)
(b)
38
对图 (a) , M A 0 FN1 AB M A 0
对图 (b) , M C 0 M C1 FN1 l sin 60o Fs1 l cos 60o 0 又 Fs1 Fs1 fs FN1 fs FN1
解得 MC1 70.39N m
设 M C M C2 时,系统有顺时针方向转动趋势,

理论力学实验报告总结(3篇)

理论力学实验报告总结(3篇)

第1篇一、实验背景理论力学是研究物体在力的作用下运动规律和平衡条件的学科,是力学的基础学科。

本实验报告旨在通过对理论力学实验的总结,加深对理论力学基本原理和方法的理解,提高实验操作技能,培养严谨的科学态度。

二、实验目的1. 掌握理论力学实验的基本操作技能;2. 理解理论力学基本原理和方法;3. 培养实验数据处理和结果分析能力;4. 提高团队合作意识。

三、实验内容本实验报告主要总结了以下三个实验:1. 摩擦实验2. 重心实验3. 合力与分力实验1. 摩擦实验实验目的:研究滑动摩擦力与正压力、摩擦系数的关系。

实验原理:滑动摩擦力F与正压力N、摩擦系数μ的关系为F=μN。

实验步骤:(1)将实验装置组装好,调整实验台面水平;(2)测量正压力N,并记录;(3)改变摩擦系数μ,重复步骤(2);(4)测量滑动摩擦力F,并记录;(5)绘制F-N、F-μ关系图。

实验结果:滑动摩擦力F与正压力N、摩擦系数μ成正比。

2. 重心实验实验目的:研究不规则物体的重心位置。

实验原理:不规则物体的重心位置可以通过悬吊法和称重法确定。

实验步骤:(1)将不规则物体悬挂在实验装置上,调整悬挂点位置,使物体保持平衡;(2)记录悬挂点位置,即为重心位置;(3)使用称重法测量物体重量,并记录;(4)计算重心位置。

实验结果:不规则物体的重心位置可以通过悬吊法和称重法确定。

3. 合力与分力实验实验目的:研究力的合成与分解。

实验原理:力可以分解为若干个分力,也可以合成一个合力。

实验步骤:(1)将实验装置组装好,调整实验台面水平;(2)测量已知力的大小和方向,并记录;(3)使用分力实验装置,将已知力分解为两个分力;(4)测量两个分力的大小和方向,并记录;(5)使用合力实验装置,将两个分力合成一个合力;(6)测量合力的大小和方向,并记录。

实验结果:力可以分解为若干个分力,也可以合成一个合力。

四、实验总结1. 通过本次实验,我们对理论力学基本原理和方法有了更深入的理解,提高了实验操作技能;2. 在实验过程中,我们学会了如何使用实验装置,掌握了实验数据处理和结果分析的方法;3. 通过团队合作,我们提高了沟通能力和协作精神。

理论力学-摩擦

理论力学-摩擦

F
Fs
物块仍保持平衡,因为有
一个接触面障碍物块向右水平
P
ห้องสมุดไป่ตู้
运动的切向力——静摩擦力。
Fs = F
静摩擦力Fs的大小随着主动力F的增大而增大。
最大静滑动摩擦力
当 F 的大小达到某一数值时,物块处于平衡的
临界状态,这时的Fs 达到最大值—最大静摩擦力, 以 Fmax 表示。
0 ≤ Fs ≤ Fmax 由库仑定理
摩擦力的三要素:
1、作用于两物体的相互接触处 2、方向与相对滑动的趋势或相对滑动的
方向相反 3、大小由主动力决定(摩擦力为被动力)
滑动摩擦
根据研究物体的相对滑动趋势、平衡的临界状态和 滑动这三种情况,摩擦力可分为静滑动摩擦力、最 大静滑动摩擦力和动滑动摩擦力。
静滑动摩擦力
N
在物块上作用一个
大小可变的水平拉力F
N
F max = f s N
F
f s —— 静摩擦系数
Fs
f s需通过实验测定,影响其
P
的因素很复杂。
常用摩擦系数表
动滑动摩擦力
N
F Fs
P
当滑动摩擦力已经达到最大值,若再增大主动
力F,接触面之间将出现相对滑动。
动摩擦力
Fd = f N 一般情况下,
f 为动摩擦系数 f < fs
Thank you
第四章 摩擦
4-1 滑动摩擦 4-2 摩擦角和自锁现象 4-3 考虑摩擦时物体的平衡问题 4-4 滚动摩阻的概念
本章将讨论与研究物体的接触面不是光滑 的情况
按接触物间的相对运动情况:
滑动摩擦
按接触物间是否有润滑剂
干摩擦 湿摩擦
滚动摩擦

理论力学第七版第四章摩擦资料

理论力学第七版第四章摩擦资料

F
施以水平阻力时,可能出现两种情况:
30
• 阻力较小,摩擦力阻止其向下运动 • 阻力较大,摩擦力阻止其向上运动
第一种情况
合力作用线
G
如右图,建立参考基,利用 静力平衡关系
y
Fm i n
Fm
x FN
n
Fix 0
i1
Fmin cos Fm Fg sin 0
m
(a)
n
Fiy 0
i1
第一类 问 题
F F max,,物体处于静止 状态,已知主动力求约束力, 与一般平衡问题无异。
第二类 问 题
平衡问题—临界运动趋势 不平衡问题—滑动或翻倒
F = F max
[ 确定平衡位置; 确定各主动力之间的关系。
考虑摩擦时 的平衡问题
例 题1
已知:三角块和矩 形块的质量分别为20 kg和10kg;各部分之 间的摩擦因数均为f s = 0.4 。
§5-3摩擦平衡问题
一、两种运动趋势与临界运动状态
1、滑动(slip)
WW W WW
FPFPFPFPFP
FmFamxFaxmFaxmFamx ax
FNFNFNFNFFNRFRFRFRFR
2、翻 倒(tip over)
FFFPPPFFP P
WWWWW
FFFFssss
FFFFFNNNNN
二、两类摩擦平衡问题
静止状态
运动状态
45° O
FP
F Fmax Fd
临界状态
静止状态
运动状态
O
FP
静止状态 — F=FP<F max
运动状 临态界状态
— F=Fd — F=F max = fs FN
一般静摩擦力的值: 0 ≤ F≤Fmax

华南理工大学理论力学第四章摩擦

华南理工大学理论力学第四章摩擦
19
②求保持木箱平衡的最大拉力。 设木箱临界滑动时拉力为F1。列平衡方程
F F
x y
0, 0,
Fs F1 cos 0 FN P F1 sin 0
(d) (e)
且 Fs Fmax f s FN
(f)
fs P 得 F1 1.876kN cos f s sin
• 摩擦角的正切等于静摩擦因数。

摩擦锥 -空间问题中,当滑动趋势方向改变时 时,全约束力作用线绕法线旋转一周, 构成的以接触点为顶点的锥面。
8

自锁现象
-当作用于物体的全部主动力的合力 FR 的作用线在摩擦
角之内,则无论该力多大,物体必保持静止的现象。
•自锁条件
0 f
f
f , 而 f
(2)能保持木箱平衡的最大拉力。
•分析:平衡满足两个条件 ①不发生滑动。
Fs Fmax f s FN
②不绕A点翻到。 法向约束力FN作用线在木箱内
18
•解:①研究木箱受力如图。列平衡方程
F F
x y
0, 0,
Fs F cos 0 FN P F sin 0
•当作用于物体的全部主动力的合力 FR 的作用线在摩擦
角之外,则无论该力多小,物体必滑动。
9
• 自锁应用举例
•摩擦系数的测定 -物块临界下滑 •螺纹自锁 -斜面的自锁条件
f s tg f tg
f
•千斤顶
f s 0.1
10
f 5 43
4 ~ 430
第4 章
(没动,F 等于外力) P 1N 时,由 Fx 0, F P 1N

(完整版)理论力学---第四章摩擦

(完整版)理论力学---第四章摩擦

sin q cosq
fs cosq fs sinq
P
F
sin q cosq
fs cosq fs sinq
P
F1
22
第四章 摩擦
用几何法求解 解: 物块有向上滑动趋势时
F1max P tan(q )
23
第四章 摩擦
物块有向下滑动趋势时
F1min P tan(q )
P tan(q ) F P tan(q )
力偶矩的大小
A
M O
B
P
25
第四章 摩擦
已知:b , d , fs , 不计凸轮与挺杆处摩擦,不计挺杆质量;
求: 挺杆不被卡住之值. a
26
第四章 摩擦
解: 取挺杆,设挺杆处于刚好卡住位置.
Fx 0 FAN FBN 0
Fy 0 FA FB F 0 M A 0
FN
(a
d 2
)
FBd
利用三角公式与 tan fs ,
P sinq fs cosq F P sinq fs cosq
cosq fs sinq
cosq fs sinq
24
第四章 摩擦
无重杆OA AB.其中OA长度L与水平线的倾角
为q
AB 水平.将重为P的物块放在斜面上,斜面
倾角 大于接触面的摩擦角 f
问若想在OA 杆上加一主动力偶使物块静止 在斜面上,转向?
19
第四章 摩擦
已知: P ,q , fs .
求: 使物块静止,
水平推力
F的大小.
20
第四章 摩擦
解:
使物块有上滑趋势时,推力为
F1
画物块受力图
F 0, x
F1 cosq P sinq Fs1 0

理论力学第七章 摩擦

理论力学第七章  摩擦

补充方程:Fmax fs FN
再求F1的最小值。物体的受力如图(b)所示。
F1 sin W cos 0 FN sin f s cos fs FN F1min W 补充方程: Fmax cos f s sin
y
F F
x
0 0
0 F1 cos W sin Fmax
第七章 摩擦
7.1 摩擦力与摩擦角 一、摩擦力与摩擦角 本章主要分析刚体在考虑摩擦时的力学行为。
>>摩擦力与摩擦角
d
MO cos FR
Fx 0, F Fx 0
Fx F FN W
Fx F arctan F W N
Fy 0, W FN 0
态。在此情形下,摩擦力Fs沿斜面向下, 并达到最大值Fmax。物体共受4个力作用, 如图(a)所示。列平衡方程
>> 考虑摩擦时物体系统的平衡
F F
x y
0 0
F1 cos W sin Fmax 0 FN F1 sin W cos 0
sin f s cos F1max W cos f s sin
还可以看出,即使不增加外力F的大小,只要增加hf,d的数值
也可以增加,也有可能达到,进而可以使物体运动(翻倒)。
>>摩擦力与摩擦角
和d一样,角度也随着外力F的大小增加而增大。自然地, 随着外力F增大,物体达到滑动临界状态时,全约束反力与 公切面的法线夹角 也将达到最大值 m,该角度称为物体与 接触面之间的摩擦角。
(c)
求解可得:
FNB W cos 2 sin W cos Fs 2 sin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)P较大时,物块有上滑趋势, 摩擦力向下
P W tan(a m )
(3)总结以上:
W tan(a m ) P W tan(a m )
例2 已知:梯子长L,重100N,与地 面夹角a=75度,地面摩擦系数 为fsB=0.4,墙面光滑。求:重为 P=700N的人,能否爬到梯子顶 端A,而不致使梯子滑倒?地面 对梯子的摩擦力FB=?
∴ W sin a P cosa f (W cosa P sin a )
P sin a f cosa , cosa f sin a
f
tanm
P
W
sin a cosm cosa sin m cosa cosm sin a sin m
W
tan(a
m )
与简化中心无关。
2.已知F1 、 F2 、 F3 、 F4 为作用 于刚体上的平面共点力系,其力系 关系如图所示,由此可知:
j力系可合成为一个力偶 k力系可合成为一个力 l力系简化为一个力和一个力偶 m力系的合力为零,力系平衡。
习题课
3.带有不平行二槽的矩形平板 上作用一力偶M,今在槽内插入 两个固定于地面的销钉,若不 计摩擦则:
tan f
Fmax FN

fs FN FN
fs
全约束力和法线间的夹角的正切等于静 滑动摩擦系数.
摩擦锥
0 f
2 自锁现象
3 测定摩擦系数的一种简易方法,斜面与螺纹自锁条件
tan tanf fs 斜面自锁条件 f
螺纹自锁条件
f
考虑滑摩擦的平衡问题
解:本题属于考虑摩擦的平衡问 题:判断平衡,求解摩擦力。
假设平衡,研究对象:人-梯, 受力如图所示。
列平衡方程:
假设平衡,研究对象:人-梯, 受力如图所示。
列平衡方程:
Fy 0
FNB P1 P2 0
M A(F) 0
FNBL cosa FB L sin a P1L / 2sin a 0
例2 P 100N, FB 50N, fsC 0.4
a 60o , AC CB l
2 当D处静摩擦系数分别为0.5和0.1时,
求维持系统平衡需作用于轮心的最小
水平推力。
解:假设C处的静摩擦力达到最大 值,取AB为研究对象。
M A(F) 0
FNC
l 2
பைடு நூலகம்
FBl

0
FC FC max fsC FNC
例1 已知: 倾角a, 静滑动摩擦系数 f,
块重W。 求:平衡时P力的范围。
解:(1)P较小时,物块有下滑趋势, 摩擦力向上。 由平衡条件:
Fx 0 F P cosa W sin a 0
Fy 0 N Psin a W cosa 0
补充条件: F fN
0 Fs Fmax
0 M M max
M max FN --最大滚动摩阻(擦)力偶
滚动摩阻(擦)系数,长度量纲 的物理意义
静力学部分习题课
1.力系简化时若取不同的简化中心,则 j力系的主矢、主矩都会改变 k力系的主矢不会改变,主矩一般都会改变 l力系的主矢会改变、主矩一般不改变 m力系的主矢、主矩都不会改变,力系简化时
足F≤Fmax这一关系,说明物体接触面能提供足够的摩擦
力,因而物体能处于平衡。实际摩擦力就是已求得的摩 擦力。否则就不会平衡,此时,实际摩擦力就是最大静 摩擦力或动摩擦力。
考虑摩擦的平衡问题
(2)求解物体的平衡范围。
一般先分别确定平衡范围的两个极限值。此时物体处于平衡 的临界状态,摩擦力是最大静摩擦力。通常两极值之间就是 物体的平衡范围(个别情况根据具体条件个别处理)。平衡 范围既可以是力的变化范围,也可以是求距离或角度---平 衡位置的变化范围。
FD FC' 40N Fmin 26.6 N
FND 100 40 sin 60 100 cos 60 184 .6 N
FDmax fsD FND 55.39 N
滚动摩阻(擦)的概念
Fmax fs FN
Fx 0
F Fs 0
MA 0
M FR 0
平衡条件确定;
0≤FS ≤Fmax (物体平衡范围)
2)只有当物体处于将动未动的平衡临界状态时,静滑
动摩擦力FS 达到最大值,即 FS =Fmax=f FN
f — 静滑动摩擦系数;
FN— 法向反力(一般也由平衡条件决定)。
摩擦角和自锁现象
1 摩擦角
FRA ---全约束力
物体处于临界平衡状态时,全约束 力和法线间的夹角---摩擦角
代入已知数据求解上述方程,可得: FNB 800N, FB 201N
以上结果是在“假设平衡”的条件下求得,实际 情况是否平衡(即不滑),需进一步校核验证。 校核:
FBmax FNB fsB 320N
FB FBmax
梯子能平衡(即不会滑倒) 此时,地面对梯子的摩擦力为: FB 201N
FNC 100N FC 40 N
取轮为研究对象
M O (F ) 0 FC' r FDr 0
Fx 0 FN' C sin 60 FC' cos60 Fmin FD 0
Fy 0 FN' C cos 60 FC' sin 60 P FND 0
摩擦
滑动摩擦力:相互接触的两物体,彼此间有相对滑动或 有相对滑动的趋势时,在接触的公切面内将产生阻碍相 对滑动的作用力,称为滑动摩擦力。 滑动摩擦力又可分为:静滑动摩擦力和动滑动摩擦力。
当仅有滑动趋势时,产生的摩擦力,称为静滑动摩擦力
静滑动摩擦力性质
1)静滑动摩擦力FS 的方向与滑动趋势相反,大小由
仍为平衡问题,平衡方程照用,求解步骤与前面基本 相同.
几个新特点 1 画受力图时,必须考虑摩擦力; 2 严格区分物体处于临界、非临界状态;
3 因 0 Fs Fmax ,问题的解有时在一个范围内.
考虑摩擦的平衡问题
(1)判断物体是否平衡,并求滑动摩擦力。
先假设物体处于平衡,根据平衡方程求出物体平衡时需 要的摩擦力以及相应接触面间的正压力。再根据摩擦定 律求出相应于正压力的最大静摩擦力并与之比较。若满
相关文档
最新文档