平面图形面积公式推导过程
对角线互相垂直的四边形的面积计算公式
四边形是平面几何中常见的图形,而对角线互相垂直的四边形更是其中一类特殊的四边形。
在本篇文章中,我将深入探讨对角线互相垂直的四边形的面积计算公式,并通过具体的例子和推导过程,帮助读者更好地理解和掌握这一知识点。
1. 对角线互相垂直的四边形介绍对角线互相垂直的四边形是指四边形的两条对角线相互垂直的情况。
这种四边形具有一些特殊的性质,其中面积计算公式便是我们本文重点要讨论的内容。
2. 面积计算公式的推导对角线互相垂直的四边形可以分成两个相等的直角三角形,通过这一性质,我们可以得出面积计算公式。
假设四边形的对角线长度分别为d1和d2,我们可以利用这两条对角线将四边形分成两个相等的直角三角形。
而直角三角形的面积计算公式是S=1/2*底边长*高,其中底边长是对角线的一半,高是对角线之间的距离。
通过这一公式,我们可以得到对角线互相垂直的四边形的面积计算公式为S=1/2*d1*d2。
3. 举例说明为了更好地理解这一面积计算公式,我们举一个具体的例子来说明。
假设对角线长度分别为6cm和8cm,代入公式S=1/2*d1*d2,可以得到S=1/2*6*8=24cm²。
通过这一例子,我们可以清晰地看到如何应用面积计算公式来求解对角线互相垂直的四边形的面积。
4. 总结回顾通过本文的讨论,我们深入探究了对角线互相垂直的四边形的面积计算公式。
通过推导过程和具体例子的分析,我们更好地理解了这一知识点。
需要注意的是,对角线互相垂直的四边形也包括了正方形和菱形,这一面积计算公式同样适用于这些特殊的四边形。
在实际问题中,我们可以通过这一公式来快速求解这类四边形的面积,帮助我们更好地理解和应用几何知识。
5. 个人观点和理解在我看来,几何知识中的面积计算公式是十分重要的,它不仅是理论知识,更是可以应用到实际问题中的数学工具。
对角线互相垂直的四边形的面积计算公式就是其中的一个典型例子,通过深入理解和掌握这一公式,我们可以更好地解决实际生活和工作中的问题。
平面图形的推导过程及公式
周长:圆、椭圆或其他闭合的曲线的周界长度。
面积:物体的表面—平面图形的大小,叫做它们的面积。
圆面积推导过程:1、把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/2·2r=πr22、把圆16等份分割后可拼插成近似的等腰三角形。
三角形的底相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr23、把圆分割后,可拼成近似的等腰梯形。
梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2。
4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。
说明在求圆的面积时,都要知道半径。
三角形面积推导过程:1:把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。
2:把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。
这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。
3:把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷24:把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2梯形面积推导过程:1、用两个完全一样的梯形通过旋转拼成了一个长方形,观察后发现:梯形的上下底之和相当于长方形的长、梯形的高相当于长方形的宽、梯形的面积=长方形的面积÷2(或梯形的面积等于长方形的面积的一半),根据拼成图形的面积公式是:长方形的面积=长×宽,所以:梯形的面积=(上底+下底)×高÷22、梯形的上下底之和相当于平行四边形的底,梯形的高相当于平行四边形的高,梯形的面积相当于平行四边形面积的一半。
平面图形的推导过程及公式
平面图形的推导过程及公式Prepared on 22 November 2020周长:圆、椭圆或其他闭合的曲线的周界长度。
面积:物体的表面—平面图形的大小,叫做它们的面积。
圆面积推导过程:1、把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/2·2r=πr22、把圆16等份分割后可拼插成近似的等腰三角形。
三角形的底相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr23、把圆分割后,可拼成近似的等腰梯形。
梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2 。
4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。
说明在求圆的面积时,都要知道半径。
三角形面积推导过程:1:把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。
2:把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。
这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。
3:把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷24:把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2梯形面积推导过程:1、用两个完全一样的梯形通过旋转拼成了一个长方形,观察后发现:梯形的上下底之和相当于长方形的长、梯形的高相当于长方形的宽、梯形的面积=长方形的面积÷2(或梯形的面积等于长方形的面积的一半),根据拼成图形的面积公式是:长方形的面积=长×宽,所以:梯形的面积=(上底+下底)×高÷22、梯形的上下底之和相当于平行四边形的底,梯形的高相当于平行四边形的高,梯形的面积相当于平行四边形面积的一半。
平面图形的面积推导过程
圆:把一个圆平均分成若干份后,拼成一个近似的长方形。长方形的长相当于圆周长的一半,宽相当于圆的半径。
平面图形的面积推导过程
名称面积公式的推导过程
长方形:用数方格的方法推导
。ห้องสมุดไป่ตู้
正方形:把正方形看作长和宽相等的长方形。
平行四边形:通过割补、平移转化成长方形。
梯形:把两个完全相同的梯形,通过旋转、平移转化成平行四边形。这个平行四边形的底等于梯形的上底+下底,高于梯形的高相等。梯形面积是拼成的平行四边形面积的一半。
梯形推导圆的面积公式
梯形推导圆的面积公式以梯形推导圆的面积公式为题,我们首先来看一下梯形的定义和性质。
梯形是一个四边形,其中两边是平行的,而另外两边不平行。
接下来,我们将探讨如何利用梯形来推导出圆的面积公式。
我们需要了解圆的性质。
圆是一个平面上所有点到一个固定点的距离都相等的图形。
圆的面积公式是πr²,其中r表示圆的半径。
现在,让我们来构造一个以圆的直径为底边的梯形。
首先,我们需要找到梯形的上底和下底的长度。
由于圆的直径是两个半径的长度之和,所以梯形的上底和下底分别是2r和2r。
接下来,我们需要找到梯形的高。
梯形的高是两条平行边的距离,也就是圆的半径r。
所以,梯形的高为r。
现在,我们可以使用梯形的面积公式来计算这个梯形的面积。
梯形的面积公式是上底加下底乘以高的一半。
代入我们找到的梯形的上底、下底和高,我们可以得到梯形的面积公式为(2r+2r)×r/2,简化为4r²/2。
继续简化这个表达式,我们可以得到梯形的面积公式为2r²。
现在,我们注意到这个表达式与圆的面积公式πr²相似。
实际上,当我们将梯形的上底和下底长度无限地增加时,梯形的面积将无限接近于圆的面积。
根据这个推导过程,我们可以得出结论:圆的面积公式πr²可以通过梯形的面积公式2r²来推导得出。
这个推导过程告诉我们,圆的面积公式与梯形的面积公式有着密切的关系。
这种关系不仅仅是一种数学上的联系,更是一种几何上的直观理解。
通过将圆转化为梯形,我们可以更好地理解圆的面积公式的本质。
通过上述推导,我们可以看到梯形推导圆的面积公式的过程非常简洁明了。
这个推导过程不仅仅是一种数学技巧,更是一种对几何形体性质的深入理解。
通过这种推导,我们不仅能够得到圆的面积公式,还能够更好地理解圆的性质和特点。
在实际应用中,我们可以利用梯形推导圆的面积公式来解决一些问题。
例如,当我们需要计算一个圆形区域的面积时,我们可以将这个圆形区域划分为多个小的梯形,然后利用梯形的面积公式计算每个小梯形的面积,最后将它们加起来得到整个圆形区域的面积。
第四讲-平面图形的面积(一)
第四讲-平面图形的面积(一)第四讲平面图形的面积(一)在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。
——毕达哥拉斯(古希腊数学家)【知识对对碰】基本概念:本讲中的平面图形面积计算主要指多边形及其组合图形面积的计算。
基本思路:1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4.采用割、补、分解、代换等方法,可将复杂问题变得简单。
关键问题:将一般多边形及其组合图形“转化”为基本图形。
公式: (1)三角形面积=底×高÷2 (2)平行四边形面积=底×高(3)梯形面积=(上底+下底)×高÷2 (4)长方形面积=长×宽(5)正方形面积=边长 2【名题典中典】模块一、等高的三角形、平行四边形和梯形。
【例1】已知平行四边形的面积是28平方厘米,求阴影部分的面积。
28÷4=7(厘米)7-5=2(厘米)S=ah ÷2=2×4÷2=4(平方厘米)答:面积是4平方厘米。
【思路导航】4厘米既是平行四边形的高,也是阴影三角形的高,平行四边形的面积是28平方厘米,它的底为28÷4=7(厘米),平行四边形的底减去5厘米就是三角形的底,7-5=2(厘米)。
根据三角形的面积公式直接求出阴影部分的面积。
画龙点睛:求阴影部分的面积最直接的方法是利用面积计算公式直接求阴影面积;还可以用总面积减去空白面积求得阴影部分面积。
这两种是最常用最简便的方法。
(tips :解图形题时,最好能把关键数据在图中标出,以方便观察。
如边长、高、底等。
)【我能行】1、已知平行四边形的面积是18平方分米,求阴影部分的面积。
2下面的梯形中,阴影部分的面积是150平方厘米,求梯形的面积。
3、下图中,大梯形的面积是多少?(单位:厘米)模块二:三角形的面积画龙点睛:“等积变换”是解决图形题中经常用的一种方法。
长方形面积计算公式推导过程
长方形面积计算公式推导过程长方形是一种常见的几何形状,它具有独特的特点。
我们可以通过计算长方形的面积来衡量它的大小。
面积是一个非常重要的概念,它用于描述一个平面图形所占据的空间大小。
下面,我们将会推导出长方形的面积计算公式,以便更好地理解这个概念。
首先,让我们来回顾一下长方形的定义。
长方形是一个有四条边的四边形,其中相对的两边长度相等,另外两边长度也相等,并且所有角都是直角。
长方形的两条边被称为长边和短边,且相邻的两条边长度相等。
现在,我们要推导出长方形的面积计算公式。
假设长方形的长边的长度为a,短边的长度为b。
为了计算出长方形的面积,我们可以先把长方形分成两个等腰直角三角形,再计算出这两个三角形的面积,最后将两个三角形的面积相加。
首先,我们取其中一个等腰直角三角形,可以看到它的底边长度为a,高度为b。
根据三角形的面积公式S=1/2×底边长度×高度,我们可以得到这个三角形的面积为S1=1/2×a×b。
接下来,我们再取另外一个等腰直角三角形,同样底边长度为a,高度为b,它的面积也是S1=1/2×a×b。
由于两个等腰直角三角形的面积相等,所以将它们的面积相加即可得到长方形的面积S=S1+S1=2×S1。
综上所述,长方形的面积S等于两个等腰直角三角形的面积之和,即S=2×S1。
将之前求得的S1=1/2×a×b代入公式,我们得到长方形的面积公式S=2×S1=2×(1/2×a×b)=a×b。
因此,长方形的面积计算公式为S=a×b,其中a是长边的长度,b 是短边的长度。
这个推导过程是非常直观和易懂的。
它通过将长方形划分成等腰直角三角形,再利用三角形的面积公式得出长方形的面积计算公式。
这个推导过程不仅对于理解长方形的面积概念有着重要指导意义,而且也展示了数学中的逻辑推理和运用公式的方法。
平面面积计算公式
平面面积计算公式咱来聊聊平面面积的计算公式哈!要说这平面面积的计算,那可是数学世界里相当重要的一部分。
从小学开始,咱们就慢慢接触各种图形的面积计算,然后一路学到高中,知识越来越深入,也越来越复杂。
就拿常见的长方形来说吧,它的面积计算公式简直是基础中的基础,那就是长乘以宽。
这就好比我家的小花园,那是一个标准的长方形。
我之前想在花园里铺上草坪,就得先算算面积。
我拿尺子一量,长是 5 米,宽是 3 米,那面积就是 5×3 = 15 平方米。
您瞧,这多简单直接!再来说说正方形,它其实就是一种特殊的长方形,四条边都相等,所以面积就是边长乘边长。
我记得有一次去朋友家玩,他家客厅铺的地砖是正方形的,边长 80 厘米。
朋友好奇这客厅的地砖面积有多大,我们就用 0.8×0.8 = 0.64 平方米算出来了。
三角形的面积计算稍微复杂一点,是底乘以高除以 2。
我曾经帮邻居家的小朋友做数学作业,有道题就是求三角形的面积。
那三角形的底是 6 厘米,高是 4 厘米,我们按照公式 6×4÷2 = 12 平方厘米,很快就得出答案啦。
还有平行四边形,面积就是底乘以高。
有一回我在路上看到工人在安装一块平行四边形的广告牌,我就在心里默默算了算它的面积。
量了量底是 3 米,高是 2 米,3×2 = 6 平方米,这面积一下子就清楚了。
圆形的面积计算用到的是π乘以半径的平方。
有次我去面包店买蛋糕,看到一个圆形的蛋糕模具,我就琢磨着这模具的面积。
假如半径是 10 厘米,那面积就是 3.14×10×10 = 314 平方厘米。
梯形的面积是(上底 + 下底)乘以高除以 2 。
我曾经参加过一个装修活动,要计算梯形窗户的面积,上底 2 米,下底 3 米,高 2 米,(2 + 3)×2÷2 = 5 平方米,这样就能准确算出需要多少窗帘布料啦。
在学习和生活中,这些平面面积的计算公式真的太有用了。
第24讲 , 平面图形的面积
第24讲平面图形的面积【探究必备】日常生活中我们经常计算各种图形的面积。
以前我们学习过长方形和正方形面积的计算,对于平行四边形、三角形和梯形我们可以用转化的方法把它们分别转化成已经学过的图形,从而推导出它们的面积公式。
计算平行四边形和三角形的面积时,关键是要找准底和高,计算它们的面积时底和高必须对应,即用于计算面积的底和高是互相垂直的。
三角形、梯形与平行四边形的关系:1. 两个完全相同的三角形或梯形可以拼成一个平行四边形。
2. 三角形或梯形的面积等于与它等底等高平行四边形面积的一半,平行四边形的面积等于与它等底等高的三角形或梯形面积的2倍。
3. 面积相等、高相等的三角形的底是平行四边形的2倍;面积相等、底相等的三角形的高是平行四边形高的2倍。
组合图形是由两个或两个以上的简单平面图形,通过拼合、重叠或位移变换后,组合成的较复杂的图形。
正确求出组合图形的面积要注意以下几点:1. 切实掌握有关简单图形的概念、公式、牢固建立空间观念。
2. 仔细观察,认真思考,看清组合图形由哪些基本图形组合而成的。
3. 常用的解题方法有分解法和割补法。
对于较复杂的组合图形,还要用到图形转换,把其中一部分图形进行平移、翻折、旋转、对称变换,使问题化难为易。
常需要画出辅助线,标出图形各部分之间的关系。
【王牌例题】例1、一个平行四边形的底是9分米,高是底的2倍,它的面积是多少平方分米?分析与解答:平行四边形的面积=底×高,要求平行四边形的面积关键是先求出平行四边形的高,因为高是底的2倍,所以它的高为9×2=18(分米),故它的面积是9×18=162(平方分米)。
例2、一个平行四边形的停车场,底是63米,高是25米。
平均每辆车占地15平方米,这个停车场可以停车多少辆?分析与解答:这是一道关于平行四边形面积的应用问题。
要求这个停车场可以停车多少辆,由于平均每辆车占地15平方米,首先应求出这个停车场有多少平方米,也就是求它的面积,即它的面积为63×25=1575(平方米),由于由于平均每辆车占地15平方米,因此这个停车场可以停车1575÷15=105(辆)。
平面图形和立体图形的计算公式
平面图形和立体图形的计算公式1、正方形C:周长S:面积a:边长周长=边长×4 C=4a 面积=边长×边长 S=a×a=2a 2、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长 V=a×a×a=3a3、长方形C:周长S:面积a:边长周长=长+宽×2 C=2a+b面积=长×宽 S=ab4、长方体V:体积s:面积a:长b: 宽h:高1表面积长×宽+长×高+宽×高×2 S=2ab+ah+bh2体积=长×宽×高 V=abh5、三角形s:面积a:底h:高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形s:面积a:底h:高面积=底×高 s=ah7、梯形s:面积a:上底b:下底h:高面积=上底+下底×高÷2 s=a+b× h÷28、圆形S:面积C:周长лd=直径r=半径1周长=直径×л=2×л×半径 C=лd=2лr2面积=半径×半径×л=π2r9、圆柱体v:体积h:高s:底面积r:底面半径c:底面周长1侧面积=底面周长×高=ch2лr或лd 2表面积=侧面积+底面积×2 3体积=底面积×高 4体积=侧面积÷2×半径10、圆锥体v:体积h:高s:底面积r:底面半径体积=底面积×高÷3。
小学图形面积周长公式推导
三角形
平行四边形
底
高
高
底
等底等高
转化 两个完全相同的三角形
三角形面积= 平行四边形面积 ÷ 2
底×高
梯形
上底
高
下底
上底
高
下底
上底
高
下底
梯形
两个完全相同的梯形
高
拼
成
下底
上底
底
平行四边形的底 = 上底 + 下底
一个平行四边形
平行四边形的高 = 梯形的高
梯形面积 =(上底平+行下四底边)形面积 ÷ 2
底×高
圆的周长
3倍多一些
圆的周长是直径的3倍多一些。
固定的数
圆周率
圆的周长 圆的周长是直径的3倍多一些。
C ÷d = C = d × = d C = 2r × = 2r
圆的面积 把圆平均分成32份
圆的面积 把圆平均分成32份
圆的面积 把圆平均分成32份
圆的面积 把圆平均分成32份
新人教版六年级图形总复习
平面图形面积推导
数学是思维的体操!
马楼镇后秦小学 孙颜红
长方形
长 宽
长方形周长= (长+宽)×2 长方形面积= 长 × 宽
正方形Βιβλιοθήκη 边长长 边长 宽 长 = 宽
正方形面积= 边长长 × 边宽长 正方形周长= 边长×4
平行四边形 把平行四边形转化为长方形
高 =宽 底 =长
平行四边形面积= 长底 × 宽高
圆的面积
圆的面积
圆的面积
圆的面积
圆的面积
圆的面积
圆的面积
C 2
=πr
r
长等于圆周长的一半 宽等于圆的半径
第2讲 参数方程、极坐标表示的平面图形的面积
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
例7 = 求由 r s= inθ , r cosθ 所围图形 A 的面积.
∫ ∫ = 解 S( A)
1 2
π
4 sin2 θ dθ
+
1
0
2
π
2 π
cos2
θ
dθ
4
y
A
O
x
∫ ∫ 1
2
π 4
1−
cos 2θ
dθ
+
1
0
2
2
π
2 π
4
1
+
cos 2θ
a(1 − cos t)
t ∈[0, 2π] 与 x 轴
所围图形的面积.
y
2a
a
A
O
2πa x
∫ 解
S
(
A)
=
2π
|
a(1
−
cos
t
)[a(t
−
sin
t
)]′
|
dt
0
∫ =
a2
2π
(1
−
cos
t
2
) dt
=
3
π
a
2
.
0
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
O
2a x
= 3 πa2. 2
数学分析 第十章 定积分的应用
高等教育出版社
§1 平面图形的面积
直角坐标方程表示的平面图形 的面积
参数方程表示的 平面图形的面积
极坐标表示的平 面图形的面积
平面图形面积计算公式
平面图形面积计算公式数列公式是数学中常考的内容,下面本店铺高中本店铺跟大家分享一些关于平面图形面积计算公式,希望能为同学们提供这方面知识的良好指导。
平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πrX(a/360)S=πr2X(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高r-球半径a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)生活中出处充满数学的趣味,在这里本店铺整理了平面图形面积计算公式,希望同学们能在学习快乐中了解数学,学习进步。
《平面图形的周长与面积》总复习
三、再现面积公式推导过程
把三角形和梯形都转化成平行四边形
三、再现面积公式推导过程
把圆转化成一个近似的长方形。
三、平面图形面积推导网络图
长方形的面积计算公式是最基础的,我们 通过转化的方法得到其它图形的面积公式。
五、联系生活,综合应用 1、算一算,相框的长度和玻璃的面积
54cm
玻璃: 长60cm 宽50cm
S=ah S=(a+b)h ÷2
圆
C=2πr或 C=πd
S= πr2
三、再现面积公式推导过程
长方形
通过数单位面积的小正方形得到。
三、再现面积公式推导过程
正方形的有关公式是在长方形 的基础上推导出来的。
因为:正方形是特殊的长方形。
三、再现面积公式推导过程
把平行四边形转化成长方形, 再利用长方形的面积公式导出平行 四边形的面积公式。
64cm
五、联系生活,综合应用
2、请你做个公正的法官:
(1)三角形的面积等于平行四边形面积的一半。(×) (2)半径是2dm的圆,它的周长和面积相等。 (3)等底等高的所有三角形的面积都相等。 (×) (√ )
五、联系生活,综合应用
小明家有个很大的院子,小明和爸爸想美化一下, 围成一个扇形来做金鱼池,一个正方形留给小明饲养 小动物,一个长方形用来做花圃。请你帮小明算一算, 金鱼池的墙要砌多长?要围成一个长方形和一个正方 形一共要用多少篱笆?
14cm巴一老爷让阿凡提为他养羊羊群关在一个长巴一老爷让阿凡提为他养羊羊群关在一个长10米宽57米的长方形的羊圈里随着时间一天天过去米的长方形的羊圈里随着时间一天天过去羊越长越大羊圈里很拥挤小气的巴一老爷不给阿凡提材料但要阿凡提把羊圈放大你们说阿凡提该怎么办
平面图形的推导过程及公式
平面图形的推导过程及公式Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】周长:圆、椭圆或其他闭合的曲线的周界长度。
面积:物体的表面—平面图形的大小,叫做它们的面积。
圆面积推导过程:1、把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/2·2r=πr22、把圆16等份分割后可拼插成近似的等腰三角形。
三角形的底相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr23、把圆分割后,可拼成近似的等腰梯形。
梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2 。
4、小结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。
说明在求圆的面积时,都要知道半径。
三角形面积推导过程:1:把一个等腰三角形对折,然后从中间剪开拼成了一个长方形,这个长方形的底是三角形的底的一半,高是三角形的高,因为长方形的面积是长×宽,长方形的面积等于三角形的面积,所以三角形的面积是底×高÷2。
2:把一个直角三角形的上面对折下来,然后剪开,把它补在一边,拼成了一个长方形。
这个长方形的长是三角形的底,高是三角形高的一半,所以也能推出三角形的面积是底×高÷2。
3:把一个三角形沿着两边的重点对折,然后又把底边的重点这样对折,折成了一个长方形,这个长方形的底是三角形底的一半,宽是三角形高的一半,再乘以2,也可以推出三角形的面积是底×高÷24:把一个长方形沿对角线折叠,因为长方形的面积是长×宽,长方形是两个三角形拼成的,所以,三角形的面积是底×高÷2梯形面积推导过程:1、用两个完全一样的梯形通过旋转拼成了一个长方形,观察后发现:梯形的上下底之和相当于长方形的长、梯形的高相当于长方形的宽、梯形的面积=长方形的面积÷2(或梯形的面积等于长方形的面积的一半),根据拼成图形的面积公式是:长方形的面积=长×宽,所以:梯形的面积=(上底+下底)×高÷22、梯形的上下底之和相当于平行四边形的底,梯形的高相当于平行四边形的高,梯形的面积相当于平行四边形面积的一半。
数学分析10.1平面图形的面积
第十章 定积分的应用 1 平面图形的面积公式1:连续曲线y=f(x)(≥0),以及直线x=a, x=b(a<b)和x 轴所围曲边梯形面积为:A=⎰b a f(x )dx=⎰ba y dx.若f(x)在[a,b]变号,则所围图形的面积为:A=⎰b a |f(x )|dx=⎰ba |y |dx.公式2:上下两条连续曲线y=f 2(x)与y=f 1(x)以及两条直线x=a 与x=b(a<b)所围的平面图形面积为:A=⎰ba 12(x )]-f (x )[f dx.例1:求由抛物线y 2=x 与直线x-2y-3=0所围图形的面积A. 解法一:A 等同于由抛物线y=x 2与直线y=2x+3所围图形的面积. 解方程组:⎩⎨⎧=+= x y 32x y 2,得⎩⎨⎧==9y 3x , ⎩⎨⎧=-=1y 1x . ∴A=⎰-+312)x -3(2x dx=[32-(-1)2]+3[3-(-1)]-3(-1)-333=332. 解法二:如图,图形被x=1分为左右两部分, A 左=⎰--10)]x (x [dx=3⎰10x dx=34. A 右=⎰⎪⎭⎫ ⎝⎛-9123-x x dx=312-9233-41-922+21)-(93⨯=328. A= A 左+ A 右=34+328=332.公式3:设曲线C 为参数方程x=x(t), y=y(t), t ∈[α,β],在[α,β]上y(t)连续,x(t)连续且可微且x ’(t)≠0(类似地可讨论y(t)连续可微且y ’(t)≠0的情形). 记a=x(α), b=x(β), (a ≠b),则由曲线C 及直线x=a, x=b 和x 轴所围的图形,其面积计算公式为:A=⎰'βα(t)x )t (y dt.例2:求由摆线x=a(t-sint), y=a(1-cost) (a>0)的一拱与x 轴所围平面图形的面积.解:摆线的一拱可取t ∈[0,2π],又x ’=a(1-cost), ∴A=⎰-2π022)t cos 1(a dt=3πa 2.公式4:若参数方程所表示的曲线是封闭的,即有x(α)=x(β), y(α)=y(β), 且在(α,β)内曲线自身不再相交,则由曲线自身所围图形面积为: A=⎰'βα(t)dt x )t (y 或A=⎰'βα(t)dt y )t (x .例3:求椭圆22a x +22by =1所围的面积.解:化为参数方程:x=asint, y=bcost, t ∈[0,2π], 又x ’=acost , ∴A=⎰2π02tdt abcos =πab.公式5:设曲线C 为极坐标方程r=r(θ), θ∈[α,β],且r(θ)在[α,β]上连续, β-α≤2π.由曲线C 与两条射线θ=α, θ=β所围成的平面图形,通常也称为扇形,此扇形的面积为:A=⎰βα2d θ)θ(r 21. 证:如图,对区间[α,β]作任意分割T :α=θ0<θ1<…<θn-1<θn =β, 射线θ=θi (i=1,2,…,n-1)把扇形分成n 个小扇形.∵r(θ)在[α,β]上连续,∴当T 很小时,在每一个△i =[θi-1, θi ]上r(θ)的值变化也很小,任取ξi ∈△i ,便有r(θ)≈r(ξi ), θ∈△i , i=1,2,…,n.这时,第i 个小扇形的面积△A i ≈21r 2(ξi)△θi , ∴A ≈∑=n1i 21r 2(ξi )△θi .当T →0时,两边取极限,就有A=⎰βα2d θ)θ(r 21.例3:求双纽线r 2=a 2cos2θ所围平面图形的面积. 解:如图,∵r 2≥0,∴θ∈[-4π,4π]∪[43π,45π],由图形的对称性可得: A=4·⎰4π02θdθ2cos a 21=a 2 sin2θ|4π0=a 2 .习题1、求由抛物线y=x 2与y=2-x 2所围图形的面积.解:求得两曲线交点为(-1,1), (1,1). ∴所围图形的面积为: A=⎰-1122)x -x -(2dx=38.2、求曲线y=|lnx|与直线x=101, x=10, y=0所围图形的面积. 解:所围图形的面积为: A=⎰10101|lnx |dx=-⎰1101lnx dx+⎰101lnx dx =-(xlnx|1101-⎰1101x dlnx)+ xlnx|101+⎰101x dlnx=-(101ln10-109)+10ln10-9=1099ln10-1081.3、抛物线y 2=2x 把圆x 2+y 2=8分成两部分,求这两部分面积之比. 解:问题等同于抛物线y=21x 2把圆x 2+y 2=8分成两部分,求面积比. 它们的交点为(2,2),(-2,2). 记两部分的面积为A 1,A 2,则A 1=⎰--2222)x 21x -8(dx=8⎰-4π4π2θcos d θ-38=2π+34;A 2=8π-A 1=6π-34.∴21A A =34-6π34+2π=2 -9π2 +3π.4、求内摆线x=acos 3t, y=asin 3t (a>0)所围图形的面积. 解:如图,所围图形面积为: A=4⎰'2π033dt |)t t(asin cos a |=12a2⎰2π024tdttsin cos=12a 2⎰2π024tdt tsin cos =83πa 2.5、求心形线r=a(1+cos θ) (a>0)所围图形的面积. 解法一:根据心形线的对称性,得A=2·⎰+π022d θ)θcos 1(a 21=a 2⎰++π02d θ)θcos θcos 21(=23πa 2.解法二:化为参数方程:x=a(1+cos θ)cos θ, y=a(1+cos θ)sin θ, θ∈[0,2π], A=|⎰'++2π0d θ]θsin )θcos θ[a(1cos )θcos a(1| =a 2|⎰-+2π0234θ)dθθsin cos θcos 2θcos (2|=23πa 2.6、求三叶形曲线r=asin3θ (a>0)所围图形的面积.解:根根三叶形曲线的形态特点,所围图形由相同的三部分组成,即 A=3⎰32π3π223θsin a 21d θ=⎰32π3π223θsin a 21d3θ=4πa 2.7、求曲线a x +by =1 (a,b>0)与坐标轴所围图形的面积. 解:曲线与x 轴的交点为(a,0),∴所围图形的面积为: A=b ⎰⎪⎪⎭⎫ ⎝⎛+-a0a x a x 21dx=6ab.8、求曲线x=t-t 3, y=1-t 4所围图形的面积.解:当t=-1,1时,x=0,y=0,∴曲线在t ∈[-1,1]围成封闭图形,即 A=|⎰'-11-43)t -)(1t t (dt|=4|⎰-11-46)t t (dt|=3516.9、求二曲线r=sin θ与r=3cos θ所围公共部分的面积. 解法一:化为圆的方程:x 2+(y-21)2=41, (x-23)2+y 2=43. 它们的交点为O(0,0)与P(43,43),∴所围公共部分的面积为: A=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+---⎪⎭⎫ ⎝⎛-4302223y 4321-y 41dy=⎰-6π2π2t cos 41dt+⎰3π02t cos 43dt -833 =323+12π+3233+8π-833=245π-43. 解法二:由sin θ=3cos θ, 得tan θ=3,∴二曲线相交于θ=3π.A=⎰3π02θsin 21d θ+⎰2π3π2θcos 23d θ=-)1(cos2θ413π0-⎰d θ+⎰+2π3π1)(cos2θ43d θ =-163+12π+8π-1633=245π-43.(参考解法)如图:求得P(43,43) S 阴=S P OO 1扇形+S P OO 2扇形-S P OO 1∆ -S P OO 2∆ =3πOO 12+6πOO 22-21·43·OO 1-21·43·OO 2=12π+8π-163-1633=245π-43.10、求两椭圆22a x +22b y =1与22b x +22ay =1(a>b>0)所围公共部分的面积.解:两椭圆在第一象限的交点为:⎪⎪⎭⎫⎝⎛++2222b a abb a ab ,. 根据图形的对称性,可得:A=8⎰+⎪⎪⎭⎫ ⎝⎛--22baab022x a x 1b dx=4abarcsin 22b a b +-2222b a b 4a +.。
高等数学课件 第六章(6-1平面图形的面积)
从而面积元素为
于是得面积
《高等数学》第六章第一节
1. 直角坐标系 例1 求由曲线 及 所围成平面图形的面积.
Байду номын сангаас
解 面积元素 (如图) , 在积分区间 [0, 2] 上作定积分, 即所求的面积是
《高等数学》第六章第一节
思考题: 求由星形线 所围成图形的面积.
《高等数学》第六章第一节
2.极坐标情形
线 所围成的曲边扇形,求其面积公式.
问题:设平面图形 是由曲线 ( )与射
, 且当x由0变到a时, 由
变到0, 则有
可得
一般地,当曲边梯形的曲边 y = f (x) ( f (x) 0 , x[a, b] )
由参数方程 给出时, 若
(1) 在 (或 )上具有连续导数,且
《高等数学》第六章第一节
(2) 连续,
则曲边梯形的面积为
《高等数学》第六章第一节
例4 求摆线第一拱 与
轴围成的面积.
解 上图为摆线形成的过程,所求面积为:
《高等数学》第六章第一节
应用定积分来计算平面图形面积, 对于 在不同坐标系下的情况我们分别加以介绍.
6.1.2 平面图形面积
《高等数学》第六章第一节
1.直角坐标情形
问题: 设曲边形由两条曲线 及直线
《高等数学》第六章第一节
思考题:求由 围成的面积.
如果平面区域是由曲线 , 及 直线 所围成 ,它的面积是定积分
解 由于椭圆关于两个坐标轴都对称 , 故椭圆面积为 A = 4A1, 其中A1为椭圆在第一象限的面积, 因此
利用椭圆的参数方程
, 0 2,
x
y
a