数学建模综合实验种群竞争

合集下载

生物群体(两物种群体系统) 数学建模课件

生物群体(两物种群体系统) 数学建模课件
阻滞作用相同
单位数量的A和B消耗供养给A的食物量的比值为1:σ1,单 位数量的A和B消耗供养给B的食物量的比值为σ2:1,阻滞 作用相同则意味着1:σ1 = σ2:1,即 σ1σ2 =1。
数学建模与模拟
模型求解
讨论σ1和σ2相互独立的情况
为了研究两个种群相互竞争的结局,即 t→∞ 时,x1(t), x2(t) 的发展趋向,不必要求解种群增长方程组 (4.1) ,只需 要对其平衡点进行稳体模型
——两物种群体系统
北京邮电大学
问题
在自然环境中,生物种群丰富多彩,它 们之间通常存在着或是相互竞争,或是 相互依存,或是弱肉强食等这样的三种 基本关系。 接下来,我们将从稳定状态的角度,对 具有如上提及的某种关系的两个种群的 数量演变过程进行讨论。
数学建模与模拟
§1. 种群竞争
数学建模与模拟
建立模型
根据假设,两个种群在同一自然环境生存时,其 种群增长方程组如下:
x1
r1 x1 s1
xs12
r2 x2 s2
1 x1 / N1 1 x2 / N2
s2 12 x1 / N1 x2 / N2
这里可以看出σ1的意义是:单位数量的B消耗的供养A的食物量为单 位数量的A消耗的供养A的食物量的σ1倍。 σ2的意义类似。

r r2 1x x1 2((1 1 x1 2/N x1 1/ N 11 x x2 2//N N 2 2))
0 0
可得该模型的四个平衡点:
P1(0, 0), P2(N1, 0), P3(0, N2) , P41 111 2N1,1 1 1 22N2
数学建模与模拟
讨论平衡点 P1(0, 0) 的稳定性 将微分方程 x x 1 2 r r2 1x x 1 2((1 1 x 1 2/N x 1 1/ N 1 1 x x 2 2//N N 2 2)) (4.1)

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

A 题 飞机的降落曲线在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线。

根据经验,一架水平飞行的飞机,其降落曲线是一条S 形曲线。

如下图所示,已知飞机的飞行高度为h ,飞机的着陆点为原点O ,且在整个降落过程中,飞机的水平速度始终保持为常数u 。

出于安全考虑,飞机垂直加速度的最大绝对值不得超过g /10,此处g 是重力加速度。

(1)若飞机从0x x 处开始下降,试确定出飞机的降落曲线; (2)求开始下降点0x 所能允许的最小值。

B 题 铅球的投掷问题众所周知,铅球的投掷运动是运动员单手托住7.264kg(16磅)重的铅球在直径为2.135m 的投掷圆内将铅球掷出并且使铅球落入开角为45o 的有效扇形区域内。

以铅球的落地点与投掷圆间的距离度量铅球投掷的远度,并以铅球投掷远度的大小评定运动员的成绩。

在铅球的训练和比赛中,铅球投掷距离的远与近是人们最关心的问题。

而对于教练和运动员最为关心的问题是如何使铅球掷得最远。

影响铅球投掷远度的因素有哪些?建立一个数学模型,将预测的投掷距离表示为初始速度和出手角度的函数。

最优的出手角度是什么?如果在采用你所建议的出手角度时,该运动员不能使初始速度达到最大,那么他应该更关心出手角度还是出手速度?应该怎样折中?哪些是影响远度的主要因素?在平时训练中,应该更注意哪些方面的训练?试通过组建数学模型对上述问题进行分析,给教练和运动员以理论指导。

参考数据资料如下:实验报告:一、问题分析在研究飞机下落过程中,需要分析飞机下降的降落曲线,根据经验应该是一条五次多项式。

以降落点为原点O建立直角坐标系。

种间竞争模型

种间竞争模型

种间竞争模型概念种间竞争模型是描述群体内成员们互相竞争冲突,而不关注单个成员本身的内部群体模型。

它侧重于investigating种群中的某种竞争作用。

模型背景种间竞争模型的重要背景是正如科学家约瑟夫科尔劳克所指出的,植物的物种组成受限于个体成长环境中各种竞争,如氮摩尔定理在实证植物组成中的应用。

竞争的概念这启发研究者们思考种间竞争模型和它的竞争重要性。

种间竞争可分为有害竞争和无害竞争,有害竞争表明有某一物种成长会影响另一物种的生长,而无害竞争则是某物种增长时,影响其他物种生长的能力有限,两种竞争都可以改变群体结构。

竞争的结果种间竞争的结果可以是相互抵抗或相对平衡,有害竞争的结果往往是一种物种占优势,同时另一物种会面临消失,而无害竞争则可以形成一种轮回现象,每个物种都会持续在一定水平附近反复循环。

实证研究种间竞争模型已经在多个实证研究当中被应用,很多研究表明种间竞争参与者,不限于植物,对群体动态和多样性具有重要影响。

营养限制学习实验表明种间竞争会增强植物的营养效应和限制,同时也能增强植物在固氮料素和总碳水化合物累积方面的能力。

另外,也有研究表明,种间竞争能影响植物的立足力,而影响植物的立足力又会改变植物群落的多样性和数量。

结论总之,种间竞争模型是用于描述群体内其他成员展现出的竞争行为,及其结果。

它可能会影响人们最关心的生态系统,从而影响群体动态和多样性,还可能影响植物耐受性,生物多样性和群落结构。

因此,种间竞争模型可以帮助我们控制自然环境中的营养平衡,促进生物多样性平衡,抑制病原植物的发展,并防止种间竞争中的突变。

数学建模实验报告

数学建模实验报告

《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。

先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。

(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。

实例 动物种群的相互竞争与相互依存的模型

实例 动物种群的相互竞争与相互依存的模型

实例动物种群的相互竞争与相互依存的模型实例2 动物种群的相互竞争与相互依存的模型在生物的种群关系中,一种生物以另一种生物为食的现象,称为捕食.一般说来,由于捕食关系,当捕食动物数量增长时,被捕食动物数量就逐渐下降,捕食动物由于食物来源短缺,数量也随之下降,而被捕食动物数量却随之上升.这样周而复始,捕食动物与被捕食动物的数量随时间变化形成周期性的震荡.田鼠及其天敌的田间种群消长动态规律也是如此.实验调查数据表明:无论是田鼠还是其天敌的数量都呈周期性的变化,天鼠与天敌的作用系统随时间序列推移,田鼠密度逐渐增加,其天敌随之增加,但时间上落后一步.由于天敌密度增加,则田鼠密度降低,而田鼠密度的降低,则其天敌密度亦减少,如此往复循环,从而形成一定的周期.试用数学模型来概括这一现象,并总结出其数量变化的近似公式.一问题分析及模型的建立设x(t)和y(t)分别表示t时刻田鼠与其天敌的数量,如果单独生活,田鼠的增长速度正比于当时的数量,即dx=λx dtdy=-μy dt而田鼠的天敌由于没有被捕食对象,其数量减少的速率正比于当时的数量,即现在田鼠与其天敌生活一起,田鼠一部分遭到其天敌的消灭,于是以一定的速率α减少,减少的数量正比于天敌的数量,因此有dx=(λ-αy)x dt类似地,田鼠的天敌有了食物,数量减少的速率μ减少β,减少的量正比于田鼠的数量,因此有dy=-(μ-βx)y dt上述公式,最后两个方程联合起来称为Volterra-Lot方程,这里α,β,λ,μ均为正数,初始条件为x(0)=x0,y(0)=y0现在通过实验调查所得到的数据如表,此数据为每隔两个月田间调查一次,得到的田鼠及其天敌种群数量的记录,数量的单位经过处理.试建立合理的数学模型.表田鼠种群数量记录29.7 33.1 32.5 69.1 134.2 236.0 269.6 162.2 69.6 39.8 34.0 20.7 22.0 37.6 57.6 124.6 225.0 272.7 195.7 94.5 41.9 25.7 10.9 22.5 33.5 48.2 92.5 183.3 268.5 230.6 115.5表田鼠天敌种群数量记录1.6 1.3 1.1 1.2 1.1 1.3 1.82.2 2.4 2.2 1.9 1.5 1.5 1.2 0.91.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.0 0.9 1.1 1.3 1.9 2.3二模型的求解Volterra-Lotok方程的解析解即x,y的显示解难求出,因此公式的参数方程不宜直接用Matlab函数来拟合解,可用如下的方法来求其近似解.Volterra-Lotok可转化为⎧dlnx=(λ-αy)dt ⎧dlny=(-μ+βx)dt⎧在区间[ti-1,ti]上积分,得lnxi-lnxi-1=λ(ti-ti-1)-αS1ilnyi-lnyi-1=-μ(ti-ti-1)+βS2i这里,S1i=⎧titi-1ydt,S2i=⎧xdt, i=1, ,m ti-2ti于是得到方程组⎧A1P1=B1 ⎧ AP=B2⎧22这里⎧t1-t0 t-tA1= 21t-t⎧mm-1-S11⎧⎧t1-t0⎧ -S12⎧ t2-t1A= 2 ⎧ ⎧ t-t-Sim⎧m-1⎧⎧m-S⎧⎧-S22⎧ ⎧⎧-S2m⎧⎧⎧-μ⎧⎧λ⎧ ⎧ P=P1= 2 β⎧⎧ α⎧⎧⎧⎧⎧B1=(lnxyx1y, ,lnm)T B=(ln1, ,lnm)T x0xm-1y0ym-1T-1TA2B2 因此方程组参数的最小二乘解为 T-1T P=(AA)A1B1 P=(A2A2)111由于x(t)和y(t)均为未知,因此S1i,S2用数值积分方法的梯形公式解S1i=⎧⎧titi-1ydt≈ti-ti-1(yi+yi-1) 2 S2=titi-1xdt=ti-ti-1(xi+xi-1) 2这样就可求得参数的近似值.模型参数求解的程序为clear all,clcX=[29.7 33.1 32.5 69.1 134.2 236.0 269.6 162.2 69.6 39.8 ...34.0 20.7 22.0 37.6 57.6 124.6 225.0 272.7 195.7 94.5 41.9 25.7 ... 10.9 22.5 33.5 48.2 92.5 183.3 268.5 230.6 115.5];Y=[1.6 1.3 1.1 1.2 1.1 1.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.2 0.9 ...1.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.0 0.9 1.1 1.3 1.9 2.3];N=[X;Y];T=[0:2:60];for i=1:30A(i,1)=T(i+1)-T(i);A(i,[2 3])=((T(i+1)-T(i))/2)*[-(N(1,i+1)+N(1,i)),-(N(2,i+1)+N(2,i))];B(i,[1 2])=[log(N(1,i+1)/N(1,i)),log(N(2,i+1)/N(2,i))];end;A1=A(:,[1 3]);P1=inv((A1'*A1))*A1'*B(:,1)A2=A(:,[1 2]);P2=inv((A2'*A2))*A2'*B(:,2)上述结果代入Volterra-Lotok方程,用MATLAB函数ode45求方程在时间[0,60]的数值解.作图可看到田鼠及其天敌数量的周期震荡.求方程Volterra-Lotok的数值解的程序为定义函数vlok为[vlok.m]function dydt=vlok(T,Y)dydt=[(0.8765-0.5468*Y(2))*Y(1);(-0.1037+0.0010*Y(1))*Y(2)];clear all, clcX=[29.7 33.1 32.5 69.1 134.2 236.0 269.6 162.2 69.6 39.8 ...34.0 20.7 22.0 37.6 57.6 124.6 225.0 272.7 195.7 94.5 41.9 25.7 ... 10.9 22.5 33.5 48.2 92.5 183.3 268.5 230.6 115.5];Y=[1.6 1.3 1.1 1.2 1.1 1.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.2 0.9 ...1.1 1.3 1.62.3 2.4 2.2 1.7 1.8 1.5 1.2 1.0 0.9 1.1 1.3 1.9 2.3]; N=[X,Y];T=[0:2:60];[t,Y]=ode45(@vlok,[0:0.5:60],[29.7 1.6]);plot(t,Y(:,1)/100,'k');hold on;plot(t,Y(:,2),'-.k');title('田鼠及其天敌的Volterra-Lotok模型拟合曲线');xlabel('时间');ylabel('数量(只/每百)');gtext('田鼠');gtext('天敌');legend('田鼠','天敌');legend('田鼠','天敌');图田鼠及其天敌的模拟曲线实线和虚线分别为田鼠和天敌的实际值,田鼠的数量为y坐标乘以100.。

种群相互竞争模型

种群相互竞争模型

数学实验设计课题:两种群相互竞争模型如下:()1(11)12()2(12)12x y x t r x s n n x y y t r y s n n ⎧=--⎪⎪⎨⎪=--⎪⎩其中x (t ),y(t)分别是甲乙两种群`的数量,r1,r2为它们的固有增长率,n1,n2为它们的最大容量。

s1的含义是,对于供养甲的资源而言,单位数量乙(相对n2)的消耗量为单位数量甲(相对n1)消耗的s1倍,对于s2也可做相应的解释。

分析:这里用x (t)表示甲种群在时刻t 的数量,即一定区域内的数量。

y(t)表示乙种群在时刻t 的数量。

假设甲种群独立生活时的增长率(固有增长率)为r1,则x (t)/ x=r1,而种群乙的存在会使甲的增长率减小,且甲种群数量的增长也会抑制本身数量的增长,即存在种间竞争。

这里,我们设增长率的一部分减少量和种群乙的数量与最大容纳量的比值成正比,与s1(s1表示最大容纳量乙消耗的供养甲的资源是最大容纳量甲消耗该资源的s1倍)成正比。

另一部分的减少量和种群甲的数量与甲的最大容纳量的比值成正比。

则我们可以得到如下模型:x(t)=r1*x*(1-x/n1-s1*y/n2)同样,我们可以得到乙种群在t时刻的数量表达式:y(t)=r2*y*(1-s2*x/n1-y/n2)如果给定甲、乙种群的初始值,我们就可以知道甲、乙种群数量随时间的演变过程。

对于上述的模型,我们先设定好参数以后,就可以用所学的龙格库塔方法及MATLAB 软件求其数值解;问题一:设r1=r2=1,n1=n1=100,s1=0.5,s2=2, 初值x0=y0=10,计算x(t),y(t),画出它们的图形及相图(x,y),说明时间t充分大以后x(t),y(t)的变化趋势(人民今天看到的已经是自然界长期演变的结局)。

编写如下M文件:function xdot=jingzhong(t,x)r1=1;r2=1;n1=100;n2=100;s1=0.5;s2=2; xdot=diag([r1*(1-x(1)/n1-s1*x(2)/n2),r 2*(1-s2*x(1)/n1-x(2)/n2)])*x;然后运行以下程序:ts=0:0.1:10;x0=[10,10];[t,x]=ode45(@jingzhong,ts,x0);[t,x]plot(t,x),grid,gtext('\fontsize{12}x(t)'),gtext('\fontsize {12}y(t)'),pause,plot(x(:,1),x(:,2)),grid, xlabel('x'),ylabel('y')得到10年间甲、乙两种群数量变化的图象为:123456789100102030405060708090100相图为:1020304050607080901000510152025xy结论:当t 充分大时,x 和y 的数量悬殊变大,最终是一方灭绝,一方繁荣。

高中生物有关数学模型问题分析

高中生物有关数学模型问题分析

高中生物有关数学模型问题分析高中生物有关数学模型问题分析1 高中生物教学中的数学建模数学是一门工具学科,在高中的物理与化学学科中广泛的应用。

由于高中生物学科以描述性的语言为主,学生不善于运用数学工具来解决生物学上的一些问题。

这些需要教师在平时的课堂教学中给予提炼总结,并进行数学建模。

所谓数学建模(Mathematical Modelling),就是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。

在生物学科教学中,构建数学模型,对理科思维培养也起到一定的作用。

2 数学建模思想在生物学中的应用2.1 数形结合思想的应用生物图形与数学曲线相结合的试题是比较常见的一种题型。

它能考查学生的分析、推理与综合能力。

这类试题从数形结合的角度,考查学生用数学图形来表述生物学知识,体现理科思维的逻辑性。

例1:下图1表示某种生物细胞分裂的不同时期与每条染色体DNA含量变化的关系;图2表示处于细胞分裂不同时期的细胞图像。

以下说法正确的是( )A、图2中甲细胞处于图1中的BC段,图2中丙细胞处于图1中的DE段B、图1中CD段变化发生在减数Ⅱ后期或有丝分裂后期C、就图2中的甲分析可知,该细胞含有2个染色体组,秋水仙素能阻止其进一步分裂D、图2中的三个细胞不可能在同一种组织中出现解析:这是一道比较典型的数形结合题型:从图2上的染色体形态不难辨别甲为有丝分裂后期、乙为减Ⅱ后期和丙为减Ⅱ中期;而图1中的AB段表示的是间期中的(S期)正在进行DNA复制的过程,BC段表示的是存在姐妹染色单体(含2个DNA分子)的染色体,DE 段表示的是着丝点断裂后的只含1个DNA的染色体。

此题的答案是B。

2.2 排列与组合的应用排列与组合作为高中数学的重要知识。

在减数分裂过程中,减Ⅰ分裂(中期)的同源染色体在细胞中央的不同排列方式,在细胞两极出现不同的染色体组合,最终形成不同基因组成的配子,这是遗传的分离定律与自由组合定律细胞学证据。

数学建模-种群相互依存模型

数学建模-种群相互依存模型

种群相互依存模型1) 问题的提出自然界中处于同一环境下两个种群相互依存而共生的现象是很普遍的。

比方植物与昆虫,一方面植物为昆虫提供了食物资源,另一方面,尽管植物可以独立生存,但昆虫的授粉作用又可以提高植物的增长率。

事实上,人类与人工饲养的牲畜之间也有类似的关系。

我们关心两个相互依存的种群,它们之间有着类似于在农业社会中人和牛的关系。

其发展和演进有着一些什么样的定性性质呢? 2)模型假设以)(1t x 、)(2t x 表示处于相互依存关系中甲、乙二种群在时刻t 的数量, 1. 种群数量的增长率)2,1)((=i t x i 与该种群数量)2,1)((=i t x i成正比,同时也与有闲资源)2,1)((=i t s i 成正比;2. 两个种群均可以独立存在,而可被其直接利用的自然资源有限,均设为“1”,)2,1(=i N i 分别表示甲、乙二种群在单种群情况下自然资源所能承受的最大种群数量;此外,两种群的存在均可以促进另一种群的发展,我们视之为另一种群发展中可以利用的资源,)2,1(=i i σ为二折算因子,21/N σ表示一个单位数量的乙可充当种群甲的生存资源的量,12/N σ表示一个单位数量的甲可充当种群乙的生存资源的量; 3. )2,1(=i r i 分别表示甲、乙二种群的固有增长率。

3) 模型建立根据模型假设,可得如下数学模型:⎪⎪⎩⎪⎪⎨⎧-⋅+=⋅+-=⋅⋅=⋅⋅=22112222111122221111//1//1N x N x s N x N x s s x r x s x r x σσ经化简,得:=⎩⎨⎧-⋅+⋅⋅=⋅+-⋅⋅=)//1()//1(2211222222111111N x N x x r x N x N x x r x σσ 4)模型求解与种群竞争模型相同,我们只求解模型方程的平衡点,并讨论其稳定性,从而对两种群的变化趋势作出判断。

为此,令⎩⎨⎧=-⋅+⋅⋅=⋅+-⋅⋅0)//1(0)//1(22112222211111N x N x x r N x N x x r σσ,求得该模型的四个平衡点:)0,0(1P 、)0,(12N P 、),0(23N P 、⎪⎪⎭⎫ ⎝⎛⋅⋅-+⋅⋅-+22121211411,11N N P σσσσσσ。

两种群竞争系统的稳定性及其数值仿真

两种群竞争系统的稳定性及其数值仿真

首 先 , 解相轨 线 , 求 即求
d y d

y a ( ) *x 1 *x 2 , *x 2 +d* 一[ *x 1 一b ( ) ( ) 一c ( )
( 3) …
( b X a y )

x 1 *x 2 ] ( ) ( ) ;
分离 变量 , : 得
关键 词 : 两种群 竞 争 系统 ; 稳定 性 ; 相轨 线 ; 仿真 中图分类 号 : 7 . 9 O1 5 2 文献 标识 码 : A 文章 编号 :6 29 8 2 1 ) 40 O 一3 1 7 -4 X(0 2 0 - 1 1O
St b lt f A a iiy o Two s c e m p ttv y t m nd I s Nu r c lS m u a i n — pe i s Co e ii e S s e a s r jco y h e t r fisp a e tae t r .Un e h ie e fp r mee au sa d i i a au ,t i a tceu e d rt egv n s to a a trv le n nt l l e h s ril s s i v
衡 点 的稳定性进 行 了研 究 、 析 了相 轨 线 的特 征 、 给定 几 组 参 数值 和 初 值 下 , 用 Malb软 件 分 在 利 t a 对模 型进 行 了数值 仿真 并给 出图形 结果. 果 表 明: 型存 在 着 一个 稳定 的平 衡 点 和 一个 不 稳 定 结 模
的平衡 点 , 系统呈 周期 性变 化 , 在初 值 附近 波动 , 在 着一条 闭轨 线. 存
LiXi o a a k ng
( p r me fM a he a is De a t nto t m tc ,Sh nx a iUni .ofTe h l gy,H a z ng 7 3 0,Chi ) v c no o n ho 2 00 na

种群增长和竞争的数学模型

种群增长和竞争的数学模型

种群增长和竞争的数学模型摘 要:本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的Volterra 模型,最后介绍了多种群的Gause-Lotka-Volterra 和三种群的RPS 博弈模型,对其做了比较和分析,得出了一些有益的启示。

为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。

本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的V olterra 模型,最后介绍了三种群的Gause-Lotka-V olterra 和RPS 博弈模型。

一般生态系统的分析可以通过一些简单模型的复合来研究,根据生态系统的特征建立相应的模型。

种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的误差将是十分微小的。

1.1 马尔萨斯(Malthus )模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r 基本上是一常数,(r =b -d , b 为出生率,d 为死亡率),既: 1dN r N dt = 或 dNrN dt= (1)其解为0()0()r t t N t N e -=(2)其中N 0=N (t 0)为初始时刻t 0时的种群数。

马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。

令种群数量翻一番所需的时间为T ,则有: 002rT N N e =(3)ln 2T r=(4)人口统计数据与Malthus 模型计算数据对比:表1 世界人口数量统计数据表2 中国人口数量统计数据比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6亿(即3.06×1010),人口增长率约为2%,人口数大约每35年增加一倍。

查1700年至1961年共260年的人口实际数量,发现两者几乎完全一致,且按马氏模型计算,人口数量每34.6年增加一倍,两者也几乎相同。

数学模型_种群的相互竞争

数学模型_种群的相互竞争

的根
0
若从P0某邻域的任一初值出发,都有 lim x 1 ( t ) x 1 , t
lim x 2 ( t ) x 2 , 称P0是微分方程的稳定平衡点 t
0
模型
x1 x2 x 1 ( t ) r1 x 1 1 1 N1 N2
x1 x 2 x 2 ( t ) r2 x 2 1 2 N1 N 2
种群的相互竞争
• 一个自然环境中有两个种群生存,它们之间的 关系:相互竞争;相互依存;弱肉强食。 • 当两个种群为争夺同一食物来源和生存空间相 互竞争时,常见的结局是,竞争力弱的灭绝, 竞争力强的达到环境容许的最大容量。 • 建立数学模型描述两个种群相互竞争的过程, 分析产生这种结局的条件。
模型假设 • 有甲乙两个种群,它们独自生存
t 时 x 1 ( t ), x 2 ( t )的趋向
(平衡点及其稳定性)
(二阶)非线性 x 1 ( t ) f ( x 1 , x 2 ) 的平衡点及其稳定性 (自治)方程 x ( t ) g ( x , x ) 2 1 2
平衡点P0(x10, x20) ~ 代数方程
f ( x1 , x 2 ) 0 g ( x1 , x 2 ) 0
时数量变化均服从Logistic规律;
x 1 ( t ) r1 x 1 (1 x1 N1 )
x 2 ( t ) r2 x 2 (1
x2 N2
)
• 两种群在一起生存时,乙对甲增长的阻滞作 用与乙的数量成正比; 甲对乙有同样的作用。
模型
x1 x2 x2 x1 x 2 ( t ) r2 x 2 1 2 x 1 ( t ) r1 x 1 1 1 N1 N1 N 2 N2

种群生态学的数学建模与研究

种群生态学的数学建模与研究

种群生态学的数学建模与研究
本文以《种群生态学的数学建模与研究》为标题,旨在讨论种群生态学中应用数学建模和研究的应用价值。

种群生态学是一门涉及生物学和生态学的综合性分支学科,是研究种类的数量、多样性和分布的一门学科。

随着生态系统的复杂性和不断变化,种群生态学的研究也面临着越来越多的挑战。

而数学建模和研究的应用则可以更好地把握某一种或多种物种的变化趋势,更深入地分析种类的繁殖方式和发展趋势,从而更好地控制以及保护物种种群。

首先,我们必须明白数学建模和研究在种群生态学中起到的作用。

首先,数学建模和研究可以更加准确地把握物种变化趋势,更好地开展种群动态、物种数量变化、繁殖方式和生活空间的研究,更好地控制物种的变化趋势。

其次,数学建模和研究可以更好地分析不同的生态系统的物种变化趋势,更准确地预测不同物种在未来的发展趋势,从而设计出更好的保护策略。

其次,必须明白种群生态学的数学建模和研究在现实环境中的应用价值。

在实际应用中,数学建模和研究可以帮助我们更好地评估和控制物种变化,及时发现物种数量及其更替、物种繁殖方式及其演变和流行病的发生及变化趋势,从而有针对性地保护某一物种或物种种群。

此外,数学建模和研究还可以用于研究不同地域生态系统之间的差异性,以了解和计算跨境区域物种的分布和数量以及相应的生物多样性。

综上所述,种群生态学的数学建模和研究在现实环境中具有十分
重要的作用。

它不仅可以帮助我们更加准确地把握物种变化趋势,而且还可以帮助我们更好地认识和把握不同生态系统的物种数量及其变化趋势,并利用这些信息来设计有效的保护策略,以减少和控制物种的损失,实现环境安全和生物多样性的建设。

种内竞争与种间竞争数学模型实例分析

种内竞争与种间竞争数学模型实例分析

种内竞争与种间竞争数学模型实例分析1.1问题提出问题一:甲和乙两类群均能独立生存,比方将鲤鱼群放生,其在水中和卿鱼间的相互作用。

问题二:甲可以独自存活,但乙却只能依存甲而生活,这两者在一起能相互促进,令甲乙都得到存活,比方,植物能独自存活,但以花粉为食的昆虫却放须依靠其生存,而昆虫同时会帮助植物授粉推动其繁殖。

问题三:甲乙双方都无法独立生存,只能依靠彼此获得共生。

1.2问题分析(1)在某自然环境下只存在单类生物群体(即生态学中的种群)生存的情况下,人们往往通过Logistic 模型描述该种群数量产生的演变,公式为:)1()(N x rx t x -=')(t x 为种群为时刻t 的数量,r 代表固有增长率,N 代表环境资源下所能接受的最大种群量。

其中)1(N x -反应了一些种群对有限资源的消耗造成的影响其自身增长的作用,N x 代表着相对于N 来讲,单位数量中某个种群所消耗的食量(假设总量=1)(2)若同一自然环境内存在2个或多个种群,即其会产生竞争或依存关系,又或是供应链的关系,以下我们会由稳定转态角度展开对其依存关系的探讨。

1.3模型假设甲乙两种群各种独立于某个环境生存时,其数量产生的演变将遵守Logisti 规律。

设)(),(21t x t x 为两个种群数量,21,r r 为其固有增长率,21,N N 是它们的最大容量。

于是对于甲种群有:)1()(11111N x x r t x -=' 同理对于乙种群有 )1()(22221N x x r t x -=' 1.4模型建立与稳定性分析对于问题一:1、建立模型:)1()(22111111N x N x x r t x σ+-=' ④ )1()(11222222N x N x x r t x σ+-=' ⑤ 1σ的含义:单位数量乙(相对于2N )提供给甲的食量为单位数量(相对于1N )消耗食量的1σ2σ的含义:单位数量甲(相对于1N )提供给乙的食量为单位数量乙(相对于2N )消耗食量的1σ2、稳定性分析:3、数学建模过程与结果:根据数学实验以及数学建模的相关知识,利用数学软件Matlab 分别求解微分方程的图形和相轨线图形:Matlab 模型:function xdot=sheir(t ,x)n1=16;n2=1;r1=25;r2=18;q1=05;q2=16;xdot=[r1*x(1)*(1-(x(1)/n1)+q1*(x(2)/n2));r2*x(2)*(1-(x(2)/n2)+q2*(x(1)/n1))];>> ts=0:01:15;>> x0=[01,01];>> [t,x]=ode45('sheir',ts,x0);[t,x],>> plot(t,x),grid,gtext('x(t)'),gtext('y(t)'),>> plot(t,x),grid,gtext('x1(t)'),gtext('x2(t)'),>> ts=0:01:15;>> x0=[01,01];>> [t,x]=ode23('sheir',ts,x0);[t,x],>> plot(t,x),grid,gtext('x1(t)'),gtext('x2(t)'),相轨线:4、由上图可知:甲乙可以彼此立生存。

基于 Matlab 的秃杉种群竞争数学模型仿真分析

基于 Matlab 的秃杉种群竞争数学模型仿真分析

基于 Matlab 的秃杉种群竞争数学模型仿真分析李骄;许彦红;吉灵波【摘要】利用Matlab建模平台,建立基于Lotka-Volterras生态学种群竞争的秃杉数学模型,并对其进行Simulink仿真模拟。

以云南省腾冲县秃杉林为研究对象,分析林分内秃杉种群与其他树种种群竞争的关系,并进行数值模拟与Logisitic回归诊断分析,得出3种不同的平衡点竞争模式。

分析结果表明:最理想竞争平衡模式下,林分内秃杉种群在树龄17年之后占据优势地位,达到了营林的预期目标;激烈竞争平衡模式下,幼龄林处于第一组平衡的均势模式;最差竞争平衡模式下,秃杉林在树龄20年之后处于劣势地位。

本研究改进了传统竞争指数的计算方法,从宏观上对秃杉林种群竞争进行建模仿真分析,并根据研究结果对秃杉林后期经营提出了应对策略及建议,为计算机建模仿真技术在林学领域提供了广阔的应用空间。

【期刊名称】《江苏农业科学》【年(卷),期】2014(000)007【总页数】4页(P175-178)【关键词】秃杉;Matlab;种群竞争模型;Simulink仿真【作者】李骄;许彦红;吉灵波【作者单位】西南林业大学林学院,云南昆明650224;西南林业大学林学院,云南昆明650224;西南林业大学林学院,云南昆明650224【正文语种】中文【中图分类】S718.54+1秃杉(Taiwania flousiana)属裸子植物杉科台湾杉属,是中国特有的世界珍稀植物,现为我国一级保护植物,天然分布于我国湖北省西南部、贵州省东南部及云南省西部等地,垂直分布海拔高度800~2 500 m[1]。

目前国内对于秃杉林竞争研究只是简单地通过Hegyi单木竞争方程计算其竞争指数,并未从宏观上对秃杉林与不同伴生树种间的种群竞争进行数学建模与分析,无法直观得出相应的竞争干扰程度结果,从而不能准确地对秃杉林进行经营策略指导。

本研究引入 Lotka-Volterra生态学数学竞争模型对秃杉林种群建模并进行Simulink仿真分析,采用系统、科学、客观的分析方法,利用Matlab平台对实地调查所得的原始数据进行因子指标分类,然后回归诊断分析得出秃杉与其竞争种群间在不同竞争平衡模式下的内在联系,为进一步确定合理的秃杉林经营密度,制定合理的经营管理措施,提高秃杉林经营管理水平提供科学的理论依据,对秃杉人工林的可持续经营具有十分重要的意义。

种群增长和竞争的数学模型

种群增长和竞争的数学模型

2013年06月05日 15:31:35在地中海中每平方米就有30至40只水母,种群增长和竞争的数学模型摘 要:本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的Volterra 模型,最后介绍了多种群的Gause-Lotka-Volterra 和三种群的RPS 博弈模型,对其做了比较和分析,得出了一些有益的启示。

为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。

本文首先简要介绍Malthus 和Logistic 两种单种群增长模型,然后详细介绍双种群竞争的V olterra 模型,最后介绍了三种群的Gause-Lotka-V olterra 和RPS 博弈模型。

一般生态系统的分析可以通过一些简单模型的复合来研究,根据生态系统的特征建立相应的模型。

种群的数量本应取离散值,但由于种群数量一般较大,为建立微分方程模型,可将种群数量看作连续变量,甚至允许它为可微变量,由此引起的误差将是十分微小的。

1.1 马尔萨斯(Malthus )模型马尔萨斯在分析人口出生与死亡情况的资料后发现,人口净增长率r 基本上是一常数,(r =b -d , b 为出生率,d 为死亡率),既: 1dN r N dt = 或 dNrN dt= (1)其解为0()0()r t t N t N e -=(2)其中N 0=N (t 0)为初始时刻t 0时的种群数。

马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。

令种群数量翻一番所需的时间为T ,则有: 002rT N N e =(3)ln 2T r=(4)人口统计数据与Malthus 模型计算数据对比:表1 世界人口数量统计数据表2 中国人口数量统计数据比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6亿(即3.06×1010),人口增长率约为2%,人口数大约每35年增加一倍。

种间竞争实验报告

种间竞争实验报告

实验名称:种间竞争实验实验日期:2023年11月15日实验地点:XX大学生态实验室实验目的:1. 了解种间竞争的基本概念和原理。

2. 观察不同物种在资源有限条件下的竞争行为。

3. 分析种间竞争对物种生存和繁衍的影响。

实验材料:1. 不同物种的植物种子(如小麦、玉米、大豆等)。

2. 实验容器(如培养皿、花盆等)。

3. 肥料、土壤、水分等。

实验方法:1. 将不同物种的植物种子分别播种于培养皿中,确保每皿播种同种植物。

2. 将培养皿置于相同的光照、温度和湿度条件下培养。

3. 分别对每种植物施以不同浓度的肥料,模拟资源竞争环境。

4. 观察植物的生长状况,记录植物的生长速度、叶片数量、高度等指标。

5. 定期对植物进行水分补充,保持土壤湿润。

实验步骤:1. 播种:将不同物种的植物种子分别播种于培养皿中,每皿播种同种植物50粒。

2. 培养:将培养皿置于光照强度为1000勒克斯、温度为25℃、湿度为60%的条件下培养。

3. 施肥:在第7天,对每种植物施以不同浓度的肥料(0.1g/L、0.5g/L、1.0g/L),模拟资源竞争环境。

4. 观察:每隔3天观察植物的生长状况,记录植物的生长速度、叶片数量、高度等指标。

5. 水分补充:在实验过程中,定期对植物进行水分补充,保持土壤湿润。

实验结果与分析:1. 植物生长速度:在实验过程中,不同浓度的肥料对植物的生长速度产生了显著影响。

随着肥料浓度的增加,植物的生长速度逐渐加快。

在0.1g/L肥料浓度下,植物的生长速度较慢;而在1.0g/L肥料浓度下,植物的生长速度明显加快。

2. 叶片数量:在实验过程中,不同浓度的肥料对植物的叶片数量产生了显著影响。

随着肥料浓度的增加,植物的叶片数量逐渐增多。

在0.1g/L肥料浓度下,植物的叶片数量较少;而在1.0g/L肥料浓度下,植物的叶片数量明显增多。

3. 高度:在实验过程中,不同浓度的肥料对植物的株高产生了显著影响。

随着肥料浓度的增加,植物的株高逐渐增加。

数学建模生物种群模型

数学建模生物种群模型

y种群以外的自然资源时, a1; 而0 x种群仅以y种群
的生物为食时, 。a1 0 反映b1x的,c是2 y各种群内部的密
度制约因素,即种内竞争,故
。b1 0,c2 0
b2,的c1 正负要根据这两种群之间相互作用的形 式而定,一般分为以下三种情况。
1.相互竞争型:两种群或者互相残杀,或者竞争同
y(r2
2 x)
1,2, r1, r2 0
模型分析
平衡点
O(0,0),
R( r2 , r1 )
2 1
按照判断平衡点稳定性的方法,发现不能判 断平衡点R是否稳定,下面用分析相轨线的方法 来解决这个问题。
相轨线
dy y(r2 2x) dx x(r1 1 y)
积分得 r2 ln x 2x r1 ln y 1y c1
r1 x(1
x k1
1
y k2
)
dy dt
r2 y(1
2
x k1
y k2
)
四、三种群模型
三种群相互作用的情况要比二种群作用的情况 复杂,但建立模型的规律基本上相同,既要考虑 种内的增长,也要考虑种间的相互作用。建立模 型时,考虑各种群的相对增长率,然后假设线性 的相互作用关系,就可得三种群相互作用的伏特 拉模型。设x(t)、y(t)、z(t)分别表示t时 刻三种群的数量,则一般形式的伏特拉模型
y k2
)
dy dt
r2
y(1 2
x k1
y k2
)
稳定性分析:
由微分方程的稳定性理论,方程组的平衡点
r1 x(1
x k1
1
y k2
)
0
r2
y(1
2
x k1

数学建模-生物种群问题

数学建模-生物种群问题
(2) t0<=ts,即 γX/(X-xs)>=Cα+ β 这 (时 因猪 为应t0时在刻t*猪=ts还=X未/ 长α l到n(Xxs-,x0只)/(X好-x养s)到时t售s时出刻才
能出售,只要(4)式得到满足,还是可以获 利。)
假定某品种的猪, X=200(kg),xs=75(kg),α=0.5(kg/天),C=6(元 /kg),γ=1.5(元/天),β=1(元/天),x0=5(kg).根据所给 参数,用数学软件编程计算. Mathematica
x(t0)=x0,则t到t+t时间的人口增量为
x(t t) x(t) rx(t) t
设x(t)可微,令t0, 得人口增长的马尔萨斯模型:
dx rx dt x(t0 ) x0
模型求解:用解析方法可以得到解 x(t)=x0er(t-t0) ,t>t0
模型检验:马尔萨斯模型在19世纪以前的欧洲的 一些地区吻合很好,但19世纪以后差异较大。 原因:假设人口的增长率r是常数对人口少资源多 的情况是可以的,但在资源一定时,人口就不能 无限增长了。做改进,得另一人口增长模型
种群生态学模型
研究某一(某些)生物群体的数量或密度的变化规律
单种群模型 研究一个生物群体的数量或密度的变化规律 多种群模型
单种群模型
研究一个生物群体的数量或密度的变化规律
设 x(t)表示t时刻某范围内一种群体的数量或密度,当 数量较大时, x(t)可以看作t的连续函数,它只与出生、 死亡、迁入和迁出等因素有关
4.通过调查C(x)随x的变化幅度并不大,故可将C(x)视 为常数,设其C。
问题分析与模型建立
由假设可得方程组: ❖ dx/dt=(1-x/X) ❖ dy/dt=-(1-x/X) ❖ x(0)=x0 ❖ y(0)=0

种群竞争图像

种群竞争图像

1. 已知微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dtdy y x dt dx 满足初始条件0|,1|00====t t y x .(1)求上述微分方程组初值问题的特解(解析解),并画出解函数()y f x =的图形. (2) 分别用 ode23、ode45 求上述微分方程组初值问题的数值解(近似解),求解区间为[0,0.5]t ∈.利用画图来比较两种求解器之间的差异.3、设想自然界有两个种群为了争夺有限的同一食物来源和生活空间时,从长远的眼光来审视,其最终结局是它们中的竞争力弱的一方首先被淘汰,然后另一方独占全部资源而以单种群模式发展;还是存在某种稳定的平衡状态,两个物种按照某种规模构成双方长期共存?试建立两种群相互竞争的数学模型,并讨论该模型是否有解析解?若无解析解,就用数值方法求解模型,通过改变各种参数进行讨论和结果解释。

模型建立:两种群相互竞争模型如下:11122221(1)(1)dx x y r x s dt n n dy y x r y s dt n n =--=--其中x(t),y(t)分别为甲乙两种群的数量,1r ,2r 为它们的固有增长率,1n ,2n 为它们的最大容量。

1s 的含义是,对于供养甲的资源来说,单位数量的乙(相对2n )的消耗为单位数量甲(相对1n )消耗的1s 倍,对2s 可以作相应解释。

经过计算,该模型无解析解,故用数值方法研究,为此提出以下问题:(1) 设r1=r2=1,n1=n2=100,s1=0.5,s2=2,初值x0=y0=10,计算x(t),y(t),画出它们的图形及图(x,y ),说明时间t 充分大了以后x(t),y(t)的变化趋势。

(2)改变r1,r2,n1,n2,x0,y0,但s1,s2不变(或保持s1<1,s2>1),计算并分析所得结果,若s1=1.5(>1),s2=0.7(<1),再分析结果。

由此可以得到什么结论,请作出解释。

种群的相互竞争模型

种群的相互竞争模型










滞作 用,
x1
/
N

1
理 解 为 相 对 于N1
而 言, 数 量 为x1时 供 养 甲 的 食 物 量(设 食 物 总 量 为1).
于是对种群甲我们有
x1(t )
r1 x1 (1
x1 N1
)



子1
x1
/
N

1








源的













滞作 用,
x1
/
N

)
,
N 2 (1 2 1 1 2
)
)
r1(1 1 ) r2 (1 2 ) 1 1 2
r1r2 (1 1 )(1 2 ) 1 1 2
P4 (0,0)
(r1 r2 )
r1r2
1 1, 2 1
不稳定
注意到平衡点的定义我们可以看出,它是一个局部的
性质.对于非线性方程(4)所描述的种群竞争,我们更
x1 N1
1
x2 N2
( x1 , x2 )
12
x1 N1
x2 N2
x2 N 2 • P2
N2 /1
(2)1 1, 2 1
P2(0, N2 )全局稳定
0
0
O
N1
N1 / 2 x1
x2
N2 /1
N2
P3

0
(3)1 1, 2 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 已知微分方程组
⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dt
dy y x dt dx 满足初始条件0|,1|00====t t y x .
(1) 求上述微分方程组初值问题的特解(解析解),并画出解函数
()y f x =的图形.
(2) 分别用 ode23、ode45 求上述微分方程组初值问题的数值解(近似
解),求解区间为[0,0.5]t ∈.利用画图来比较两种求解器之间的差
异.
2.分别用Euler 折线法和四阶 Runge-Kutta 法求解微分方程初值问题

⎨⎧=-=1)0(,cos 'y x e y y x 的数值解(步长h 取0.1),求解范围为区间[0,3] .
3、设想自然界有两个种群为了争夺有限的同一食物来源和生活空间时,从长远的眼光来审视,其最终结局是它们中的竞争力弱的一方首先被淘汰,然后另一方独占全部资源而以单种群模式发展;还是存在某种稳定的平衡状态,两个物种按照某种规模构成双方长期共存?
试建立两种群相互竞争的数学模型,并讨论该模型是否有解析解?若无解析解,就用数值方法求解模型,通过改变各种参数进行讨论和结果解释。

模型建立:
两种群相互竞争模型如下:
1112
2221(1)(1)dx x y r x s dt n n dy y x r y s dt n n =--=--
其中x(t),y(t)分别为甲乙两种群的数量,1r ,2r 为它们的固有增长率,1n ,2n 为它们的最大容量。

1s 的含义是,对于供养甲的资源来说,单位数量的乙(相对
2n )的消耗为单位数量甲(相对1n )消耗的1s 倍,对2s 可以作相应解释。

经过计算,该模型无解析解,故用数值方法研究,为此提出以下问题:
(1) 设r1=r2=1,n1=n2=100,s1=0.5,s2=2,初值x0=y0=10,计算x(t),y(t),画出
它们的图形及图(x,y ),说明时间t 充分大了以后x(t),y(t)的变化趋
势。

(2) 改变r1,r2,n1,n2,x0,y0,但s1,s2不变(或保持s1<1,s2>1),计算并分
析所得结果,若s1=1.5(>1),s2=0.7(<1),再分析结果。

由此可以得到
什么结论,请作出解释。

(3) 试验当s1=0.8,s2=0.7时会有什么结果,当s1=1.5,s2=1.7时,又会有
什么结果。

模型求解:
程序如下:
fun.m:
function dx=fun(t,x,r1,r2,n1,n2,s1,s2)
dx=[r1*x(1)*(1-x(1)/n1-s1*x(2)/n2);r2*x(2)*(1-s2*x(1)/n1-x(2)/n2)];
p3.m:
h=0.1;%所取时间点间隔
ts=[0:h:30];%时间区间
x0=[10,10];%初始条件
opt=odeset('reltol',1e-6,'abstol',1e-9);%相对误差1e-6,绝对误差1e-9
[t,x]=ode45(@fun,ts,x0,opt,1,1,100,100,0.5,2);%使用5级4阶龙格—库塔公式计算 %后面的参数传给fun,分别是r1,r2,n1,n2,s1,s2
[t,x]%输出t,x(t),y(t)
plot(t,x,'.-'),grid%输出x(t),y(t)的图形
gtext('x(t)'),gtext('y(t)'),pause
plot(x(:,1),x(:,2),'.-'),grid,%作y(x)的图形
gtext('x'),gtext('y');
运行结果[t,x]为:
ans =
0 10.0000 10.0000
0.1000 10.8805 10.7120
0.2000 11.8235 11.4454
0.3000 12.8309 12.1962
0.4000 13.9044 12.9595
0.5000 15.0453 13.7295
……
29.4000 100.0000 0.0000
29.5000 100.0000 0.0000
29.6000 100.0000 0.0000
29.7000 100.0000 0.0000
29.8000 100.0000 0.0000
29.9000 100.0000 0.0000
30.0000 100.0000 0.0000
最后数值稳定在x=100,y=0上,即物种甲达到最大值,物种乙灭绝。

改变参数进一步讨论:
下面在保持s1,s2不变的基础上,分别改变r1,r2;n1,n2;x0,y0观察变化趋势:
(1)改变r1,r2:
r1=r2=0.3
先不同的是变化速度减缓了,这是由于自然增长率r1,r2变小的缘故(相当于变化率减小)。

(2)改变n1,n2:
下面的情况证明了这一点:
(3)改变x0,y0:
量最大且乙物种灭绝的结果。

下面再改变s1,s2观察变化趋势:
(1)s1>1,s2<1
乙相反),这从方程的对称性上可以求证。

现在得出结论,由s1,s2的物理意义,当某个s1或者s2大于1时(另一个小于1),它将严重消耗其作用的物种的生存资源,最终的结果是致使此物种灭绝。

(2)s1<1,s2<1
s1=1.5,s2=1.7
综上所述,s1,s2小于1时消耗生存资源的严重程度较轻,所以甲乙物种可以共存,但两者都达不到最大值;当其中之一大于1时,对应作用的物种就会由于生存资源的过度消耗而灭绝;当s1,s2都大于1时,两物种竞争激烈,最后s1,s2中更大者对应作用的物种灭绝。

所谓物尽天择,自然资源是有限的,需要更少资源就能生存的物种在竞争中将占有优势。

还有一种情况,当s1,s2都大于1但相等时,由于方程的对称性,甲乙两物种都能生存下来,但都不能达到最大值。

相关文档
最新文档