2019年全国高中数学联赛江苏赛区预赛市选试卷及答案
2019年全国高中数学联赛试题及解答
全国高中数学联合竞赛试题(A 卷)一试一、填空题(本大题共8小题,每小题8分,共64分)1. 若正数,a b 满足()2362log 3log log a b a b +=+=+,则11a b+的值为________.答案:设连等式值为k ,则232,3,6k k ka b a b --==+=,可得答案108分析:对数式恒等变形问题,集训队讲义专门训练并重点强调过2. 设集合3|12b a b a ⎧⎫+≤≤≤⎨⎬⎩⎭中的最大元素与最小你别为,M m ,则M m -的值为______.答案:33251b a +≤+=,33b a a a+≥+≥,均能取到,故答案为5-分析:简单最值问题,与均值、对勾函数、放缩有关,集训队讲义上有类似题 3. 若函数()21f x x a x =+-在[0,)+∞上单调递增,则实数a 的取值范围是______.答案:零点分类讨论去绝对值,答案[]2,0-分析:含绝对值的函数单调性问题,集训队讲义专门训练并重点强调过4. 数列{}n a 满足12a =,()()*1221n n n a a n N n ++=∈+,则2014122013a a a a =+++______. 答案:()1221n n n aa n ++=+,迭乘得()121n n a n -=+,()212232421n n S n -=+⨯+⨯+++,乘以公比错位相减,得2n n S n =,故答案为20152013.分析:迭乘法求通项,等差等比乘积求前n 项和,集训队讲义专门训练并重点强调过5. 正四棱锥P ABCD -中,侧面是边长为1的正三角形,,M N 分别是边,AB BC 的中点,则异面直线MN与PC 之间的距离是________.答案:OB 为公垂线方向向量,故距离为12OB =分析:异面直线距离,也可以用向量法做,集训队讲义专门练并重点强调过6. 设椭圆Γ的两个焦点是12,F F ,过点1F 的直线与Γ交于点,P Q .若212PF F F =,且1134PF QF =,则椭圆Γ的短轴与长轴的比值为________.答案:不妨设焦点在x 轴(画图方便),设114,3PF QF ==,焦距为2c ,224a c =+,可得△2PQF 三边长为7,21,2c c +,过2F 作高,利用勾股可得5c =. 分析:椭圆中常规计算,与勾股定理、解三角形、斯特瓦尔特等有关,集训队讲义训练过相关7. 设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1PI =,则△APB 与△APC 的面积之比的最大值为________.答案:sin sin APB APC S PABS PAC ∠=∠,又两角和为60最大,即AP 与(),1I 切于对称轴右侧2分析:平面几何最值、面积、三角函数、轨迹8. 设,,,A B C D 是空间中四个不共面的点,以12的概率在每对点之间连一条边,任意两点之间是否连边是相互独立的,则,A B 之间可以用空间折线(一条边或者若干条边组成)连结的概率为_______. 答案:总连法64种,按由A 到B 最短路线的长度分类.长度为1,即AB 连其余随意,32种; 长度为2,即AB 不连,ACB 或ADB 连,其余随意,ACB 连8种,故共88214+-=种 (一定注意,ACB ADB 同时连被算了2次,根据CD 是否连有2种情形);长度为3,两种情形考虑ACDB ,ACDB 连、,,AB CB AD 均不连只有1种,故连法为2种;综上,答案483644=分析:组合计数,分类枚举,难度不大但容易算错,集训队讲义训练过类似题目二、解答题(本大题共3小题,共56分)9. (本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上的一个动点,满足条件:过P 可作抛物线24y x =的两条切线,两切点连线P l 与PO 垂直.设直线P l 与直线PO ,x 轴的交点分别为,Q R . (1)证明:R 是一个定点;(2)求PQQR的最小值.答案:(1)设(),P a b ,()()1122,,,A x y B x y ,0,0a b ≠≠,()11:2PA yy x x =+,()22:2PB yy x x =+ 故,A B 两点均适合方程()2by a x =+,利用垂直,可得2a =-,故交点为定点()2,0(2)∵2a =-,故,2PO PR b bk k =-=-,设OPR α∠=,则α为锐角,1tan PQ QR α=,利用两角差 的正切公式,可得282PQ b QR b+=≥. 分析:涉及圆锥曲线切点弦方程、两直线夹角公式、不等式求最值,集训队讲义专门训练并重点过10. (本题满分20分)数列{}n a 满足16a π=,()()*1arctan sec n n a a n N +=∈.求正整数m ,使得121sin sin sin 100m a a a ⋅⋅⋅=. 答案:由反函数值域,知,22n a ππ⎛⎫∈- ⎪⎝⎭,2222132tan sec tan 1tan 3n n n n a a a +-==+==,1212112122311tan tan tan tan tan tan tan sin sin sin sec sec sec tan tan tan tan m m m m m m a a a a a a a a a a a a a a a a a ++⋅⋅⋅=⋅=⋅==故3333m =分析:涉及简单反三角函数、数列通项公式求法,集训队讲义对类似题目进行过训练11. (本题满分20分)确定所有的复数α,使得对任意复数()121212,,1,z z z z z z <≠,均有()()221122z z z z αααα++≠++.答案:转换命题为计算存在12,z z 使得相等时的充要条件存在12,z z 使得相等,记()()2f z z z αα=++,()()()()()1212121220f z f z z z z z z z αα-=++-+-=, 则()()()1212122z z z z z z αα-=-++-,故12122222z z z z a ααα=++≥-->-, 故2α<; 若2α<,令12,22z i z i ααββ=-+=--,其中012αβ<<-,则12z z ≠,122i ααββ-±≤-+<,计算121212,2,2z z z z i z z i αββ+=--=-=-并代入,知()()12f z f z =.综上,满足条件的α为,2Z αα∈≥二试一、(本题满分40分)设实数,,a b c满足1a b c++=,0abc>.求证:14ab bc ca++<.a b c≥≥>,则1a≥1c≤.)ab bc ca c++-+⎭12c-,故有()()111122c c cc cc c⎛---≤-+-⎭⎝⎭由于1110,3333c-≥+≥>310c->,故原不等式成立.方法2:不妨设0a b c≥≥>,则13a≥c,设()()1f b ab bc ca ab c c=++=+-,()f b递增f⇔,()())()1f b ab a b a b⎛'=--=-⎝,()010f b'≥⇔≥⇔≤≥故()f b a;题目转化为21ac+=,a c≥,记()()222212g a a ac a a a=+-=+--()()262621g a a a⎫'=-+=-⎪⎭,由于13a≥1=,得1532a=,115,332a⎛⎫∈ ⎪⎝⎭时g'151,322⎫⎪⎝⎭时()g a在13或12max1124g g⎛⎫==⎪⎝⎭分析:一道偏函数化的不等式题,可以将其放缩为一元函数,也可以拿导数与调整法很快做出来,集训队讲义上两种方法都训练过.二、(本题满分40分)在锐角三角形ABC中,60BAC∠≠,过点,B C分别作三角形ABC的外接圆的切线,BD CE,且满足BD CE BC==.直线DE与,AB AC的延长线分别交于点,F G.设CF与BD交于点M,CE与BG交于点N.证明:AM AN=.答案:设△ABC三边为,,a b c,则BD CE a==,先计算AM,∵,BFD ABC BDF DBC BAC∠=∠∠=∠=∠,∴△BFD∽△CBA.由比例可知acDFb=,故BM BC bBDDF c==,故abBMb c=+,故由余弦定理知()2222cosab abAM c c A Bb c b c⎛⎫=+-⋅+⎪++⎝⎭222cosab abcc Cb c b c⎛⎫=++⎪++⎝⎭,整理可得此式关于,b c对称故可知22AM AN=分析:由于一旦,,a b c三边确定则图形固定,所以通过相似、比例、余弦定理计算的思路比较显然GF ED三、(本题满分50分)设{}1,2,3,,100S =.求最大的整数k ,使得S 有k 个互不相同的非空子集,具有性质:对这k 个子集中任意两个不同子集,若它们的交非空,则它们交集中的最小元素与这两个子集中的最大元素均不相同.答案:一方面,取包含1的、至少含2个元素的所有子集,共9921-个,显然满足题意; 另外归纳证对于{}1,2,3,,S n =,任取()123n n -≥个子集,均存在两个的交集中最小的等于某个中最大的当3n =时,将7个非空子集分为三类:{}{}{}31,32,3,{}{}21,2,{}{}11,2,3.任取四个必有两个同类. 假设n k =时命题成立,当1n k =+时,如果取出的2k 个子集中至少有12k -个不含1k +,利用归纳假设知成 立;如果不含1k +的不足12k -,则至少有121k -+个含有1k +,而S 含有1k +的子集共2k 个,可以配成12k - 对,使得每对中除了公共元素1k +外,其余恰为1到n 的互补子集,这样,如果选出121k -+个,则必有两 个除1k +外不交,故命题成立. 综上,k 的最大值为9921-.分析:集合中的组合最值问题,比较常规的一道题,类似感觉的题集训队讲义在组合中的归纳法中有过四、(本题满分50分)设整数122014,,,x x x 模2014互不同余,整数122014,,,y y y 模2014也互不同余.证明:可将122014,,,y y y 重新排列为122014,,,z z z ,使得112220142014,,,x z x z x z +++模4028互不同余.答案:不妨设()mod 2014i i x y i ≡≡,1,2,,2014i =.下面对i y 序列进行1007次调整从而构成i z 序列:若i i x y +与10071007i i x y +++模4028不同余,则1007,i i y y +不调整;否则,交换1007,i i y y +位置,1,2,,2014i =.下证,进行1007次调整后,得到的i z 序列一定满足条件. 任意挑选一列()1,2,,1007i i x z i +=,只需证其与10071007i i x z +++、()1,2,,1007,j j x z j j i +=≠、10071007j j x z +++模4028不同余即可由i z 构造方法,i i x z +与10071007i i x z +++不同余是显然的,因为不可能调整前后均同余,故只需看另两个; 首先,对于不同的,i j ,2i 与2j 模4028不同余,否则会导致()mod 2014i j ≡.若,i j y y 均未调整,则()2mod 2014i i x z i +≡,()100710072mod 2014j j j j x z x z j +++≡+≡,故成立;若,i j y y 均已调整,则()21007mod 2014i i x z i +≡+,()1007100721007mod 2014j j j j x z x z j +++≡+≡+,故成立; 若只有一个被调整过,不妨设i y 未调整、j y 已调整,则()2mod 2014i i x z i +≡, ()1007100721007mod 2014j j j j x z x z j +++≡+≡+,若()4028|21007i j --,则()1007|i j -,矛盾,故同样成立. 综上,构造的i z 序列满足条件.全国高中数学联赛试题及解答2014高中联赛试题分析从试题类型来看,今年代数、几何、数论、组合4部分所占的比例为:代数37.3%,几何26.7%,数论16.7%,组合19.3%.这方面和历年情况差不多,但具体的知识点差别极大.一试第7题填空题可谓出人意表,虽然解答是用三角函数的方法处理的,对比历年试题,这题毫无疑问也是顶替了三角函数的位置.但本题却是一道彻头彻尾的平面几何题.从图中不难看出,最值情况在相切时取到,剩下的只是利用三角函数处理了一下计算上的问题.其余填空题中,第1~6题和往年出题风格类似,第8题概率计算略显突兀,本题几乎不需要用到计数的技巧,而是用单纯枚举的方法即可解决.放在填空题最后一题的位置不免显得难度不够.一试三道解答题中,第9题和第10题均不太难,所考知识点也和往年类似,无需多说.第11题又再次爆了冷门,考了一道复数问题.联赛已经多年没有考复数的大题了,许多学生都没有准备.可以说,这次一下戳中了学生的罩门.相信本题最终的得分率不容乐观.而本次试题中最特殊的要数加试中的平面几何题了.一反从1997年开始保持到如今的惯例,没有将平面几何题放在加试的第一题.而且本题实则为《中等数学》2012年第12期中的数学奥利匹克高中训练题中的原题,这无疑又让此题失色不少.今年的加试第一题放了一道不等式问题,虽然近几年不等式考察得较少,但是不等式一直是数学竞赛中的热门,在历年联赛中多有出现.考虑到本题难度并不大,放在联赛加试第一题还是非常合适的.加试第三题组合最值问题的出题风格一如既往,可以从很极端的情况下猜出答案,再进行证明.值得全国高中数学联赛试题及解答一提的是本题题干描述有歧义,最后一句“则它们交集中的最小元素与这两个子集中的最大元素均不相同”中,记最小元素为a ,两个最大元素为b 和c .本句话中到底是指a 、b 、c 这3个数互不相同还是指a b ≠且a c ≠,无疑是容易让人误解的.希望今后联赛试题中能避免出现这种情况.加试第四题虽说考察的是数论中的同余知识,但更多考察的是构造法技巧,这也符合联赛加试中试题综合各方面知识的出题思想.从难度上来说本题难度不算太大,只要能从较小的数开始构造并寻找规律,找出2014的构造并不显得困难.但本题的出题背景无疑和以下题目相关:“n 为给定正整数,()122,,,n x x x 和()122,,,n y y y 均为1~2n 的一个排列,则112222,,,n n x y x y x y +++这2n 个数不可能模2n 互不同余.” 总的说来,本次联赛考察的知识点和往年比差别较大,但从试卷难度来说,和前两年是相当的.预计今年联赛的分数线可能比去年略低.。
2019年全国高中数学联赛模拟试题(一)参考答案
中;
……18 '
若 x 672 ,假若 x y ,只有 y 2x ,这种数 y 也已悉数被挖去,即 y X ,因此 X 不
是好集,这种 a 也不合要求. 综上所述, a 的最大值为 671 .
…… 20 '
将 AN 方程与椭圆方程联立,得 b2 a2k 2 x2 2a3k 2 x k 2a2 a2b2 0
xA
xN
2a3k 2 b2 a2k2
, xN
ab2 a3k 2 b2 a2k2
yN
2kab2 b2 a2k2
,
AM
a
1 k 2
…… 9 ' ……12 '
AN
ab2 a3k 2 b2 a2k2
若 X 中存在 x y, x y ,因 x 672 , y 2016 ,则 y 3x ;
若 x 672 ,如果 x y , x y ,只有 y 2x 或者 y 3x ,此时 y 的取值只能是:
y 2 672 1344 , 或 者 y 3 672 2016 ; 由 于
1344 2(672 0), 2016 2(672 336) , 这 说 明 , 这 两 个 数 已 被 挖 去 , 不 在 集 合 X
, AM
a cos
( ) ,…… 6 ' 2
因此
AM
AN
2a2b2 b2 cos2 a2 sin2
,…… 9 '
又据 AN ∥ CD ,则点 C, D 坐标为: C( OD cos, OD sin ) ,
D( OD cos, OD sin ) ,……12'
因为 C, D 在椭圆上,则
点 A, N 的坐标为 A(a, 0), N (a cos , b sin ) ,则直线 AN 方程为
2019年全国高中数学联赛江苏赛区初赛试卷及详解(纯word)
全国高中数学联赛江苏赛区预赛试卷及详解一、填空题(本题共10小题,每小题7分,共70分)1.已知向量()()1,3,3,1AP PB ==-,则向量AP 与AB 的夹角等于 .解一:由题设(1,3)(3,1)0AP PB ⋅=⋅-=,且||||AP PB =,故APB ∆为等腰直角三角形,从而向量AP 与AB 的夹角等于4π. 解二:因为(13,31)AB AP PB =+=-+,所以2cos ,2AB AP <>=,所以向量AP 与AB 的夹角等于4π. 2.已知集合()(){}|10A x ax a x =-->,且,3a A A ∈∉,则实数a 的取值范围是 .解:有题设,知(21)(2)0(31)(3)0a a a a -->⎧⎨--≤⎩所以:122133a a a ⎧><⎪⎨⎪≤≤⎩或所以1132a ≤<或23a <≤3.已知复数2cossin33z i ππ2=+,其中i 是虚数单位,则32z z += . 解:有题设32664413cosisin cos isin i 333322z z ππππ+=+++=-4.在平面直角坐标系xOy 中,设12,F F 分别是双曲线()222210,0x y a b a b-=>>的左,右焦点,P 是双曲线右支上一点,M 是2PF 的中点,且212,34OM PF PF PF ⊥=,则双曲线的离心率为.答案:5.5.定义区间[]12,x x 的长度为21x x -.若函数2log y x =的定义域为[],a b ,值域为[]0,2,则区间[],a b 的长度的最大值与最小值的差为 .答案:3.6.若关于x 的二次方程()()221200mx m x m m +--+=>的两个互异的根都小于1,则实数m 的取值范围是 .答案:37,.4⎛⎫++∞ ⎪ ⎪⎝⎭7.若3tan 43x =,则sin 4sin 2sin sin cos8cos4cos4cos2cos2cos cos x x x xx x x x x x x+++= .答案: 3.8.棱长为2的正方体ABCD -1111A B C D 在空间坐标系O -xyz 中运动,其中顶点A 保持在z 轴上,顶点1B 保持在平面xOy 上,则OC 长度的最小值是 .答案:6 2.- 9.设数列12321,,,,a a a a 满足:()111,2,3,,20n n a a n +-==,1721,,a a a 成等比数列.若1211,9a a ==,则满足条件的不同的数列的个数为 .答案:15099.10.对于某些正整数n ,分数2237n n ++不是既约分数,则n 的最小值是 .答案:17. 二、解答题:(本大题共4小题,每小题20分,共80分) 11.设数列{}n a 满足:①11a =,②0n a >,③2*11,.1n n n na a n N na ++=∈+ 求证:(1)数列{}n a 是递增数列;(2)对如图任意正整数n ,111.nn k a k=<+∑证明:(1)因为2111111,11n n n n n n n na a a a a na na ++++++-=-=++且0n a >, 所以10n n a a +->.所以*1,.n n a a n N +>∈ 所以数列{}n a 是递增数列.(2)因为111111,1n n n n n n a a a a na na n+++++-=<=+所以当2n ≥时,()()()112211111111122111.n n n n n nk a a a a a a a a n n k ---==-+-++-+<+++++--<+∑又1111,a =<+所以对任意正整数n ,111.nn ka k=<+∑12.在平面直角坐标系xOy中,设椭圆()2222:10x y E a b a b+=>>,直线:30.l x y a +-=若椭圆E ,原点O 到直线l 的距离为 (1)求椭圆E 与直线l 的方程;(2)若椭圆E 上三点()(),0,,,0P A b B a 到直线l 的距离分别为123,,d d d , 求证:123,,d d d 可以是某三角形三条边的边长. 解:(1)由题设条件得222,ca b c a =⎪⎪=⎨⎪⎪+=⎪⎪⎩,从而2,1.ab =⎧⎨=⎩故所求的椭圆22:14x E y +=.直线:60.l x y +-=(2)设()2cos ,sin P θθ,则16d -+==其中tan 2.ϕ=1d ≤≤又23d d === 故21.d d >因为231,d d d +=+>≥ 131.d d d ++=>= 所以123,,d d d 可以是某个三角形的三条边的边长.13.如图,圆O 是四边形ABCD 的内切圆,切点分别为,,,,P Q R S OA 与PS 交于点1,A OB 与PQ 交于点1B ,OC 与QR 交于点1C ,OD 与SR 交于点1D . 求证:四边形1111A B C D 是平行四边形.OD 1C 1B 1A 1SRQPDCBA证明:连接,.PR QSBA因为圆O 是四边形ABCD 的内切圆,所以OA 是SAP ∠的平分线,且.AP AS = 在△ASP 中,由三线合一,点1A 是线段PS 的中点. 同理点1B 是线段PQ 的中点,所以11//A B SQ .同理1111//A D B C .所以四边形1111A B C D 是平行四边形. 14.求满足373x x y y -=-的所有素数x 和.y 解:满足题设条件的素数只有5, 2.x y == 假设5,y ≥则()736365365436543265206706152015611.y y y y y y y y y y y y y y y y y y -≥-≥+-≥++->++++++=+ 所以,()633731,x x x y y y >-=->+即()21.x y >+又因为()()()37332|111x x x y y y y y y -=-=-++,且x 为素数, 而()221111,y y y y y x -<<+<+<+<从而()()()32\|111,x y y y y -++ 这与73|x y y -矛盾.所以 5.y <因为y 是素数,所以2,y =或 3.y =当2y =时,3120x x -=,即()()255240,x x x -++=所以 5.x = 当3y =时,343216023 5.x x -==⋅⋅ 所以2,x =或3x =,或 5.x =经检验,2x =,或3x =,或5x =时,34323 5.x x -≠⋅⋅ 所以满足条件的素数只有5, 2.x y ==。
2019全国高中数学联赛试题(含答案)4
一一、填空题(本题共 10 小小题,每小小题 7 分,共 70 分.要求直接将答案写在横线上.)
1.已知集合 A={x|x2-3x+2≥0},B={ x| x-a≥1},且 A∩ B={x|x≥3},则实数
a 的值是
.
答案:2.
解:A={x|x≥2 或 x≤1},B={ x| x≥a+1}.又又 A∩ B={x|x≥3},故 a+1=3,
.
673
答案:1512.
解:由 f(n+4)-f(n)≤2(n+1),得
f(n+12)-f(n)≤f(n+12)-f(n+8)+f(n+8)-f(n+4)+f(n+4)-f(n)
≤2[(n+9)+(n+5)+(n+1)]=6(n+5).
又又 f(n+12)-f(n)≥6(n+5),
所以 f(n+12)-f(n)=6(n+5),故 f(n+4)-f(n)=2(n+1).
A1 B1
E
D1
C1
所以体积
=
.
又又 A1E=2ED1,DF=2FC,所以 CG=1ED1=1, 39
所以
=
=1×1×10×1×1= 5 .
32 9
27
D A
F
B
CG
7.设 f(x)是定义在 Z 上的函数,且对于任意的整数 n,满足足 f(n+4)-f(n)≤2(n+1),
f(n+12)-f(n)≥6(n+5),f(-1)=-504,则 f(2019) 的值是
8
8
10.设 f(x)=2x3+8x2+5x+9,g(x)=2x2+8x+1.当 n∈ N*时,则 f(n) 与 g(n) 的最大大公因数
2019年全国高考试题数学江苏卷附答案详解
2019年全国高考试题数学江苏卷I 卷一、填空题1.已知集合{1,0,1,6}A =-,{|0,}B x x x R =>∈,则A B = .答案:{1,6}2.已知复数(2)(1)a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是 . 答案:23.右图是一个算法流程图,则输出的S 的值是 . 答案:54.函数y =的定义域是 . 答案:{1,7}-5.已知一组数据6,7,8,9,10,则该组数据的方差是 . 答案:536.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 答案:7107.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 .答案:y = 解析:由题知0,11692>=-b b,所以2=b,所以渐近线方程为y = 8.已知*{|()}n a n N ∈是等差数列,n S 是其前n 项和,若2340a a a +=,427S =,则n S 的值是 . 答案:169.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E BCD -的体积是 . 答案:10解析:因为121212131313111=⨯⨯===∆∆-C C EC S S C C S ECS VV ABCD BCD ABCD BCD BCDE10120121121=⨯==-V V BCD E10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点, 则点P 到直线0x y +=的距离的最小值是 .答案:4解析:由题设)4,(xx x P +,0>x 所以424222422|4|=⋅≥+=++=x x x x x x x d11.在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(,1)e --(e 为自然对数的底数),则点A 的坐标是 . 答案:(,1)e12.如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,2BE EA =,AD 与CE 交于点O ,若6AB AC AO EC ⋅=⋅,则ABAC的值是 .13.已知tan 23tan()4απα=-+,则sin(2)4πα+的值是 .答案:10解析: 法一32tan 1)tan 1(tan )4tan(tan -=+-=+αααπαα,解得2tan =α或31-ααααααααπα2222cos sin sin cos cos sin 22)2cos 2(sin 22)42sin(+-+=+=+102tan 1tan 1tan 2222=+-+=ααα 法二 令y x =+=4,παα,则y tan 2tan 3-=α,22)sin(=-x y 则,cos sin 2cos sin 3x y y x -=22sin cos cos sin =-x y x y解得1023sin cos ,52cos sin =-=y x y x 则102sin cos cos sin )42sin(=+=+y x y x πα 14.设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数,当(0,2]x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >,若在区间(0,9]上,关于x 的方程()()f x g x =有8不同的实数根,则k 的取值范围是 .答案:1[3解析:当]2,0(∈x 时,2)1(1)(--==x x f y 等价于)0(1)1(22≥=+-y y x又)(x f 是周期为4的奇函数,可作出)(x f 在(0.9]上的图象 因为当]2,1(∈x 时,21)(-=x g 且)(x g 的周期为2由图可知:当]8,7(]6,5(]4,3(]2,1(⋃⋃⋃∈x 时, )(x f 与)(x g 的图象有2个交点 由已知, )(x f 与)(x g 的图象在区间(0,9]上有8个交点所以当]9,8(]7,6(]5,4(]3,2(]1,0(⋃⋃⋃⋃∈x 时, )(x f 与)(x g 的图象有6个交点 又当]1,0(∈x 时,)2()(+==x k x g y 表示的直线恒过定点)0,2(-A ,且斜率0>k又)(x g 的周期为2及)(x f 的图象可知:当]7,6(]3,2((⋃∈x 时, )(x f 与)(x g 的图象无交点 所以当]9,8(]5,4(]1,0(⋃⋃∈x 时, )(x f 与)(x g 的图象有6个交点 由)(x f 与)(x g 的周期性可知]1,0(∈x 时, )(x f 与)(x g 的图象有2个交点如图,当线段)10)(2(≤<+=x x k y 与圆弧)10,0(1)1(22≤<≥=+-x y y x 相切时8111|3|22=⇒=+=k k k d 又0>k .所以42=k (此时恰有1个交点) 当线段)10)(2(≤<+=x x k y 过点B(1、1)时,31==AB k k (此时恰有2个交点) 结合图形分析可知:k 的取值范围是)42,31[ 二、解答题15.在ABC D 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若3a c =,b =2cos 3B =,求c 的值; (2)若sin cos 2A B a b =,求sin()2B p+的值. 解答:(1)22222222cos 292363b ac ac B c c c c c c=+-?+-创??(2)sin cos cos sin 22A B BB a b ===,sin()cos 2B B p +==16.如图,在直三棱柱111ABC A B C -中,D ,E 分别为BC ,AC 的中点,AB BC =.求证:(1)11//A B 平面1DEC ; (2)1BE C E ^. 解答:(1)证明:“直三棱柱111ABC A B C -,∴四边形11ABB A 是平行四边形,∴11//A B AB又∵D 、E 分别是BC 、AC 的中点,//DE AB ,∴11//A B DE , 又DE Ì平面1DEC ,111A B DEC Ë, ∴11//A B 平面DEC .(2)证明:∵直三棱柱111ABC A B C -,.∴1AA ^平面ABC ,又∵BE Ì平面ABC ,∴1AA BE ^,又∵AB BC =,E 是AC 的中点,∴AC BE ^,∵1AC AA A =I ,AC Ì平面11ACC A ,1AA Ì平面11ACC A , ∴BE ^平面11ACC A ,又1EC Ì平面11ACC A ,∴1BE C E ^.17.如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的焦点为(1,0)F -,2(1,0)F .过2F 作x 轴的垂线l ,在x 轴的上方,l 与圆2222:(1)4F x y a -+=交于点A ,与椭圆C 交于点D .连结AG ,并延长交圆2F 于点B ,连结2BF 交椭圆C 于点E ,连结DF .已知152DF =. (1)求椭圆C 的标准方程; (2)求点E 的坐标.解:(1)设椭圆C 的焦距为2c因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c=1.又因为DF 1=25,AF 2⊥x 轴,所以23221212=-=F F DF DF 因此2a=DF 1+DF 2=4,从而a=2;由b 2=a 2-c 2,得b 2=3因此,椭圆C 的标准方程为13422=+y x (2)解法一 由(1)知,椭圆13422=+y x ,a=2 因为AF 2⊥x 轴,所以点A 的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=±4因为点A 在x 轴上方,所以A(1,4);又F 1(-1,0),所以直线AF 1:y=2x+2由⎩⎨⎧=+-+=16)1(2222y x x y 得5x 2+6x-11=0,解得x=1或511-=x 将511-=x 代入22+=x y ,得 512-=y ,因此)512,511(--B 又F 2(1,0),所以直线BF 2:)1(43--=x y由()⎪⎪⎩⎪⎪⎨⎧=+-=13414322y x x y ,得013672=--x x ,解得1-=x 或713=x ,又因为E 是线段2BF 与椭圆的交点,所以1-=x ,将1-=x 代入)1(43-=x y ,得23-=y ,因此,⎪⎭⎫ ⎝⎛--23,1E解法二 由(1)知,椭圆13422=+y x ,如图,连接1EF 因为a BF 22=,a EF EF 221=+ ,所以EB EF =1,从而.1B E BF ∠=∠因为B F A F 22=,所以B A ∠=∠,所以E BF A 1∠=∠,从而A F EF 21// , 因为x AF ⊥2轴,所以x EF ⊥1轴;因为()0,11-F ,由⎪⎩⎪⎨⎧=+-=134122y x x ,得23±=y ,又因为E 是线段2BF 与椭圆的交点,所以.23-=y 因此得又因为E 是线段BF2与椭圆的交点,所以3因此E(-1,-),由⎪⎭⎫ ⎝⎛--23,1E 18.如图、一个湖的边界是圆心为O 的绩、湖的一侧有一条直线型公路l 、湖上有桥AB (AB 是湖O 的直径)、规划在公路l 上选两个点P 、Q 、并修建两段直线的道路PB 、QA 、规划要求:线段PB 、QA 上的所有点O 的距离不小于圆O 的半径,已知点A ,8到直线l 的距离分为AC 和BD (C ,D 为垂足)(单位:百米)(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明雅由: (3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米),求当d 最小时,P 、Q 两点简的距离. 解答:解法一 (1)过A 作AE⊥B D,垂足为E.由已知条件得,四边形ACDE 为矩形,DE=BE=AC=6,AE=CD=8 因为PB⊥AB,所以os∠PBD=sin∠ABE=54108==,所以15cos =∠=PBDBD PB 因此道路PB 的长为15(百米)(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B.E)到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求若Q 在D 处,连结AD,由(1)知1022=+=ED AE AD ,从而0257AB 2AD cos 222>=⋅-+=∠ BD AB AD BAD所以∠BAD 为锐角所以线段AD 上存在点到点O 的距离小于圆O 的半径,因此Q 选在D 处也不满足规划要求 综上,P 和Q 均不能选在D 处 (3)先讨论点P 的位置当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP≥90°时,对线段PB 上任意一点F,OF≥OB,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求 设1P 为l 上一点,且P 1B⊥AB由(1)知.P 1B=15.此时PD=P 1 B sin P 1BD=P 1Bcos∠EBA=95315=⨯ 当∠OBP>90°时,在△PP 1B 中.PB>P 1B=15 可知,d≥15再讨论点Q 的位置由(2)知,要使得15≥QA ,点Q 只有位于点C 的右侧,才能符合规划要求 当QA=15时,21322=-=AC QA CQ ,此时,线段QA 上所有点到O 的距离均不小于圆O 的半径 综上,当PB⊥AB,点Q 位于点C 右侧,且213=CQ 时,d 最小, 此时PQ 两点间的距离21317+=++=CQ CD PD PQ 因此, d 最小时,PQ 两点间的距离为21317+ (百米) 解法二 (1)如图,过O 作OH⊥l ,垂足为H以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系因为BD=12,AC=6,所以OH=9,直线l 的方程为9=y ,点A.B 的纵坐标分别为3,-3 因为AB 为圆O 的直径,AB=10.所以圆O 的方程为25y x 22=+ 从而A(4,3),B(-4,-3),直线AB 的斜率为43 因为PB⊥AB,所以直线PB 的斜率为34-直线PB 的方程为32534--=x y所以P(-13,9),153)(94)(-1322=+++=PB因此道路PB 的长为15(百米)(2)①若P 在D 处,取线段BD 点一点)0,4(-E ,则EO=4<5,故P 选在D 处不满足规划要求 ②若Q 在D 处,连结AD,由(1)知D(-4,9) A(4,3),所以线段AD:)44(643≤≤-+-=x x y 在线段AD 上取点)415,3(M ,因为543)415(32322=+<+=OM所以线段AD 上存在点到点O 的距离小于圆O 的半径,因此Q 选在D 处也不满足规划要求综上,P 和Q 均不能选在D 处 (3)先讨论点P 的位置当∠OBP<90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP≥90°时,对线段PB 上任意一点F 、OF≥OB,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求设1P 为l 上一点,且P 1B⊥AB ,由(1)知.P 1B=15.此时PD=P 1 B sin P 1BD=P 1Bcos∠EBA=95315=⨯ 当∠OBP>90°时,在△PP 1B 中.PB>P 1B=15 可知,d≥15再讨论点Q 的位置由(2)知,要使得15≥QA ,点Q 只有位于点C 的右侧,才能符合规划要求 当QA=15时,21322=-=AC QA CQ ,此时,线段QA 上所有点到O 的距离均不小于圆O 的半径 综上,当PB⊥AB,点Q 位于点C 右侧,且213=CQ 时,d 最小, 此时PQ 两点间的距离21317+=++=CQ CD PD PQ 因此, d 最小时,PQ 两点间的距离为21317+ (百米) 19.设函数))()(()(c x b x a x x f ---=,)('x f 为()f x 的导函数. (1)若a b c ==,(4)8f =,求a 的值;(2)若a b ¹,b c =,且()f x 和()f x ¢的零点均在集合{3,1,3}-中,求()f x 的极小值; (3)若0a =,01b <?,1c =,且()f x 的极大值为M ,求证:427M <. 解答:(1)易知3()()f x x a =-,由8)4(=f 解得4=a . (2)易知2()()()f x x a x b =--, )32)((3)('ba xb x x f +--= 令0)('=x f 得32,ba xb x +== 由}3,1,3{32,,-∈+b a b a 易知213a b+=,则3a =,3b =-, 则2()(3)(3)f x x x =-+,=)('x f 3(3)(1)f x x x ¢=+-,0)('=x f 得1,3-=x所以()f x 的极小值为(1)32f =-(3)可知()(1)()f x x x x b =--,b x b x x f ++-=)1(23)('2因为10≤<b ,所以03)12(2>+-=∆b所以)('x f 有两个不同的零点,设为)(,,2121x x x x <311,3112221+-++=+--+=b b b x b b b x所以)(x f 的极大值)(1x f M = 法一:121311)1()(bx x b x x f M ++-==9)1(9)1(2)913)()1(23(121121+++-+-++-=-b b x b b b x b x b x322)1(2729)1(27)1)(1(2++++++-=--b b b b b b b322)1(27227)1()1(227)1(+++-++=-b b b b b b27427227)1(≤++≤b b 法二:因为10≤<b ,所以)1,0(1∈x当)1,0(1∈x 时,2)1()1)(()(-≤--=x x x b x x x f 令2)1()(-=x x x g ,)1,0(1∈x ,)1)(31(3)('--=x x x g 由0)('=x g 得31=x所以31=x 时,)(x g 的极大值即最大值274)31()(max ==g x g所以)1,0(∈x 时,274)()(≤≤x g x f ,因此274≤M 法三:①当1b =时,2()(1)f x x x =-, =)('(31)(1)f x x x ¢=--,此时易知14()327M f ==,成立; ②当01b <<时;32()(1)f x x b x bx =-++,=)('x f 2()32(1)f x x b x b ¢=-++,由于(0)0f b ->,031)31('<-=b f ,01)1('>-=b f (1)10f b ¢=->, 则存在121013x x <<<<,0)(')('21==x f x f ,且易知1()M f x =, 由=)('x f 221111132()32(1)021x x f x x b x b x -¢=-++=?-, 则223232111121111111113232()(1)(1)2121x x x x M f x x b x bx x x x x x --==-++=-++--22111(1)12x x x -=-, 令1112(,1)3t x =-?,则22422111(1)12111(2)121616x x t t t t x t t--+==-+-.令211()(2)16g t t t t =-+,1(,1)3t Î,)('t g 2221(31)(1)()(0)16t t g t t --¢=<, 则14()()327g t f <=,则427M <; 综上可知427M <成立,证毕. 20.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列*{}()n a n N Î满足:245a a a =,321440a a a -+=,求证:数列{}n a 为“M 一数列”;(2)已知数列*{}()n b a N Î满足:11b =,1122n n n S b b +=-,其中n S 为数列{}n b 的前n 项和. ①求数列{}n b 的通项公式:②设m 为正整数,若存在“M -数列”*{}()n c n N Î、对任意正整数k 、当k m £时,都有1k kk c b c +#成立,求m 的最大值.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k kq k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立. 因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.本小题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.满分10分. 解:(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A=3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==. B.[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.本小题主要考查解不等式等基础知识,考查运算求解和推理论证能力.满分10分. 解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.本小题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力解:(1)因为0122(1)C C C C 4n n n n n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24n n n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n =02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-. 因为*,a b ∈N,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=⨯-=-=-. 23.(本小题满分10分)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n *==∈N令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).本小题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.解:(1)当1n =时,X的所有可能取值是12.X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法;③若02b d ==,,则AB =≤因为当3n ≥n ≤,所以X n >当且仅当AB ,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法.综上,当X n >时,X22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.。
2019年全国各省高中数学竞赛预赛试题汇编(含答案) 精品
各省数学竞赛汇集高中数学联赛江苏赛区初赛试卷一、填空题(70分) 1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为,则直线的斜率为___12____.6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为____________.8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n -+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明: (1)cos cos b C c B a +=(2)22sin cos cos 2C A Ba bc+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+. (1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.2018年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。
2019年全国高中数学联赛江苏赛区复赛试题Word版含答案
2019年全国高中数学联赛江苏赛区复赛试题一、填空题(每题8分,满分64分,将答案填在答题纸上)1.若数列{}n a 满足*+∈+==N n a a a a n n n ,232,2111,则2017a 的值为 . 2.若函数()()()b ax x x x f ++-=221对于任意R x ∈都满足()()x f x f -=4,则()x f 的最小值是 .3.在正三棱柱111C B A ABC -中,E D ,分别是侧棱11,CC BB 上的点,BD BC EC 2==,则截面ADE 与底面ABC 所成的二面角的大小是 .4.若13cos 2cos cos 3sin 2sin sin =+x x x x x x ,则=x .5. 设y x ,是实数,则9422244+++y x y x 的最大值是 . 6. 设 ,3,2,1,,,2121=+++=∈+++=*m a a a S N n n a m m n ,则201721,,,S S S 中能被2整除但不能被4整除的数的个数是 .7. 在直角平面坐标系xOy 中,21,F F 分别是双曲线()01222>=-b b y x 的左、右焦点,过点1F 作圆122=+y x 的切线,与双曲线左、右两支分别交于点B A ,,若AB B F =2,则b 的值是 .8. 从正1680边形的顶点中任取若干个,顺次相连成多边形,其中正多边形的个数为 .二、解答题9.已知R y x ∈,,且y x y x ≠=+,222,求()()2211y x y x -++的最小值. 10.在平面直角坐标系xOy 中,椭圆13:22=+y x C 的上顶点为A ,不经过点A 的直线l 与椭圆C 交于Q P ,两点,且.0=⋅(1)直线l 是否过定点?若是,求出定点坐标;若不是,说明理由.(2)过Q P ,两点分别作椭圆的切线,两条切线交于点B ,求BPQ ∆面积的取值范围.11.设函数().!1!2112n n x n x x x f ++++= (1)求证:当()*∈+∞∈N n x ,,0时,()x f e n x >;(2)设*∈>N n x ,0,若存在R y ∈使得()()y n n x e x n x f e 1!11+++=,求证:.0x y <<2019年全国高中数学联赛江苏赛区复赛试题参考答案与评分标准加试1. 已知圆O 的内接五边形ABCDE 中AD 与BE 相交于点CF F ,的延长线交圆O 于点P ,且.ED BC CD AB ⋅=⋅求证:.AE OP ⊥2.设y x ,是非负实数,22,+++=+=y x b y x a ,若b a ,是两个不相邻的整数,求b a ,的值,3.平面上n 2个点()N n n ∈>,1,无三点共线,任意两点间连线段,将其中任意12+n 条线段染成红色.求证:三边都为红色的三角形至少有n 个.4.设n 为正整数,nn b a n =++++131211 , 其中n n b a ,为互素的正整数,对素数p ,令集合{}n p a p N n n S ,*∈=, 证明:对每一个素数5≥p ,集合p S 中至少有三个元素.2019年全国高中数学联赛江苏赛区复赛试题答案 1.30261 2. 16- 3. 045 4.Z k k ∈,π 5.146.2527.1 二、解答题9.解:因为222=+y x ,所以()()422=-++y x y x , 所以()()()()()()()222222114111y x y x y x y x y x y x -++⎪⎪⎭⎫ ⎝⎛-++=-++ ().111412=+≥ 当0,2==y x 时,()().11122=-++y x y x 所以()()2211y x y x -++的最小值为.1 10.解:(1) 因为0=⋅,所以.⊥直线AQ AP ,与x 轴平行时,P 或Q 与A 重合,不合题意.设1:+=kx y PA ,则.11:+-=x k y QA 将1+=kx y 代入3322=+y x ,得().063122=++kx x k 所以2262, 1.1313P P k x y k k =-=-++ 同理.361,3622+-=+=k y k k x Q Q所以,直线:P P Q P Q P y y x x l y y x x --=--,即()()()()()()k x k k x k y k y k l Q Q 63163121312131:2222++++=-++-++, 化简得.2141:2--=x k k y l 直线l 纵截距是常数21-,故直线l 过定点.21,0⎪⎭⎫ ⎝⎛- (2)由 (1) ,223116k k k AP ++=,同理,.31622++=k k AQ 所以 ()()()()()()()()222222222222222223313131363131136+++++⋅+=⎥⎥⎦⎤⎢⎢⎣⎡+++⋅+=k k k k k k k k k k PQ()()().3103115151362242462++++++=k k k k k k 不妨设0>k ,令k k t 1+=,则2≥t ,可化得()()22222431236++=t t t PQ , 即 .4312622++=t t t PQ 设()00,y x B ,则切点弦PQ 的方程是3300=+y y x x ,又Q P ,在2141:2--=x k k y l 上,所以20-=y , 从而().21320kk x -= 所以B 到PQ 的距离.122316121213222222+=+⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=t t k k k k d 因此的面积().43294312612232121232222+=++⨯+⨯=⨯⨯=t t t t t t t PQ d S 令t u 1=,则210≤<u ,化得().34293u u S +=当210≤<u 时,u u 343+递增, 所以23403≤+<u u ,即49≥S ,当且仅当21=u ,即1,2==k t 时,等号成立, 故BPQ ∆的面积S 的取值范围是.,49⎪⎭⎫⎢⎣⎡+∞ 11.解: (1) 用数学归纳法证明如下:(ⅰ)当1=n 时,令()()11--=-=x e x f e x f x x ,则()()+∞∈>-=',0,01x e x f x 恒成立, 所以()x f 在区间()+∞,0为增函数,又因为()00=f ,所以()0>x f ,即().1x f e x >(ⅱ)假设k n =时,命题成立,即当()+∞∈,0x 时,()x f e k x >,则1+=k n 时,令()()()⎪⎪⎭⎫⎝⎛++++++-=-=++121!11!1!211k k x k x x k x k x x e x f e x g , 则()()0!1!2112>-=⎪⎭⎫ ⎝⎛++++-='x f e x k x x e x g k x k x ,所以()x g 在区间()+∞,0为增函数, 又因为()00=g ,所以()()+∞∈>,0,0x x g 恒成立,即()()+∞∈>+,0,1x x f e k x ,所以1+=k n 时,命题成立.由(ⅰ)(ⅱ)及归纳假设可知,*∈∀N n ,当()+∞∈,0x 时,().x f e n x > (2)由(1)可知()x f e n x 1+>,即()()()()11!11!11++++>++n n y n n x n x f e x n x f , 所以1>y e ,即0>y ,下证:.x y < 下面先用数学归纳法证明:当().,!1!11!211,012*-∈+-++++<>N n e x n x n x x e x x n n x (ⅰ)当1=n 时,令()xx e xe x F -+=1,则()()+∞∈>=',0,0x xe x F x , 所以()x F 在区间()+∞,0单调增,又()00=F ,故()0>x F ,即.1x x xe e +<(ⅱ)假设k n =时,命题成立,即当()+∞∈,0x 时,().!1!11!21112k k k x e x k x k x x e +-++++<- 则当1+=k n 时,令()()x x k k e e x k x k x x x G -++++++=+12!11!1!211 , ()()()0!11!11!1!211112>+>-++++++='++x k x x k x k e x k e e x k e x k x x x G , 所以()x G 在区间()+∞,0上为增函数,又()00=G ,故()0>x G ,即()()+∞∈++++++<+,0,!11!1!21112x e x k x k x x e x k k x . 由(ⅰ)(ⅱ)及归纳假设,可知当()+∞∈,0x 时,(),!11!1!21112x n n x e x n x n x x e +++++++< 对*∈N n 成立, 所以()()x n n y n n x e x n x n x x e x n x n x x e 1212!11!1!211!11!1!211++++++++<++++++= , 从而x y e e <即x y <,证毕.复赛加试答案1.证明:连接.,PE PA因为五边形ABCDE 内接于圆O ,所以EDF ABF DEF BAF ∠=∠∠=∠,,所以EDF ABF ∆∆~, 所以.FDFB ED AB = ① 同理,BFPF BC PE =, ② .PFDF PA DC = ③ 由①⨯②⨯③得.1=⋅⋅PADC BC PE ED AB 因为ED BC CD AB ⋅=⋅,所以.1=⋅ED DC BC AB 所以PA PE =,即点P 是弧AE 的中点,所以.AE OP ⊥2.解:因为b a ,是不相邻的整数, 所以()()()y y x x y x y x a b -++-+=+-+++=-≤22222 .32222222222<=+≤+++++=y y x x 由于a b -是整数,所以.2=-a b设Z n n b n a ∈+=-=,1,1,即122,1+=+++-=+n y x n y x , 则122,1+=+-+--=--n y x y x n y x y x , 则122,1+-=+-+--=-n y x y x n y x y x , 于是1122,112+-++=+--+-=n y x n x n y x n x , 从而()()()()()()y x n x n y x n x n -++=++-+-=-221212,112, 故()().2121++=+-x n n x n 又因为()().2222=-+x x ① 令x t =,得()1212++-=+n n t n x ,代入①得 ()()01212222=-----n n t n n nt , 于是()()()()()()n n n n n n n n n n n n n n t x 221141281412222-+±-=--+-±-==, ()()()nn n n n n x n y 22111-+±-=--=, 因此,2≥n ,并且()()()211-+≥-n n n n n ,即0122≤--n n ,解之得2121+≤≤-n ,从而212+≤≤n ,且Z n ∈,故.2=n所以.3,1==b a3. 证明:首先证明一定存在红色三角形(三边均为红色的三角形为红色三角形,下同). 设从顶点A 出发的红色线段最多,由A 引出的红色线段为k AB AB AB ,,,21 ,则.1+≥n k若k B B B ,,21 中存在两点,不妨设为21,B B 使线段21B B 为红色线段,则21B AB ∆为红色三角形,若k B B B ,,,21 相互之间没有红色线段相连,则从()k i B i ,,2,1 =出发的红色线段最多有k n -2条,所以这n 2个点红色线段最多有()()[]()().142212221222+<=-+≤-=--+-+n n k n k k n k k n k n k k 与题设矛盾,所以存在以A 为顶点的红色三角形,下面用数学归纳法证明,(1)当2=n 时,平面上有四个点D C B A ,,,中两两连线共有6条,其中有5条为红色,只有一条非红色,设为,AB则ACD ∆与BCD 均为红色三角形,命题成立,(2)假设k n =时,命题成立,即至少存在k 个红色三角形,当1+=k n 时,有22+k 个点,且有()112++k 条红色线段, 一定存在一个红色三角形,设为.ABC ∆考察从C B A ,,引出的红色线段分别记为()()()C d B d A d ,,条,不妨设()()().C d B d A d ≤≤ 若()()22+≤+k B d A d ,则除去点B A ,余下的k 2个点之间至少有()()11211222+=+-++k k k ,由归纳假设可知存在至少k 个红色三角形,再加上ABC ∆至少有1+k 个红色三角形,若()()32+≥+k B d A d ,则()()()53+≥++k C d B d A d ,故从C B A ,,出发向其它12-k 个点引出红色线段至少有13-k 条,因为()().1213k k k =---这()13-k 线段至少有k 对线段有公共点(不包括C B A ,,)故至少存在k 个红色三角形,再加上ABC ∆,则至少有1+k 个红色三角形,所以1+=k n 时命题也成立,由(1)(2)可知,当N n n ∈>,1时,n 2点之间的12+n 条红色线段至少可组成n 个红色三角形.4.证明:引理:设5≥p 为素数,k 为非负整数,令k k s t p kp kp kp =-++++++112111 , 其中k k s t ,为互素的正整数,那么.2k t p引理的证明: 因为()()()∑∑∑-=-=-=-++⋅+=⎪⎪⎭⎫ ⎝⎛-+++=+=111111*********p i p i p i k k i p kp i kp p k i p kp i kp i kp S t , 令()()∑-=-++=111p i i p kp i kp A , 因为素数5≥p ,由Fermat 小定理,以及()()p p k k k mod 0121≡-+++ ,其中 21-≤≤p k ,有()()()()A p kp kp kp p 1121--+++ ()()()()()()()∑∑-=---=--≡-++-+++=1122111121p i p p p i p i p i i p kp i kp p kp kp kp ().mod 01131142p i ip i p p i p ≡-≡-≡∑∑-=--=- 所以()()()()().1211*-∈=-+++N M pM A p kp kp kp p 即()()()()().12121212--++++=p k k p kp kp kp M p k S t 因为()()()()()11212,1=-+++-p p kp kp kp p , 所以k t p 2,引理证毕, 由引理得,12-p a p ,所以1-p a p , 从而()p S p p ∈-1,又∑∑∑∑∑-=---=-=-=-=--+⋅=++==1011101111112121111112p k k k p p p k p i p i p i p p s t b a p i kp i p i b a , 因为k p t p a p 212,-,所以12-p a p从而.12p S p ∈-因为()1112-<-<-p p p p ,所以集合p S 中元素至少有3个.。
2019年全国高中数学联赛江苏赛区预赛市选试题及参考答案
2019年年全国⾼高中数学联赛江苏赛区市级选拔赛参考答案与评分细则⼀一、填空题(本题共10⼩小题,每⼩小题7分,共70分.要求直接将答案写在横线上.)1.已知集合A ={x |x 2-3x +2≥0},B ={x |x -a ≥1},且A ∩B ={x |x ≥3},则实数a 的值是.答案:2.解:A ={x |x ≥2或x ≤1},B ={x |x ≥a +1}.⼜又A ∩B ={x |x ≥3},故a +1=3,解得a =2.2.已知与三条直线x +y =1,x +ay =2,x +2y =3都相切的圆有且只有两个,则所有可能的实数a 的值的和为.答案:3.解:由题意知,这三条直线中恰有两条平⾏行行时符合题意,故a =1或2,从⽽而实数a 的值的和为3.3.从1,2,3,4,5,6,7,8,9中任取3个不不同的数,并从⼩小到⼤大排成⼀一数列列,此数列列为等⽐比数列列的概率为.答案:121.解:满⾜足条件的等⽐比数列列共有4个:1,2,4;1,3,9;2,4,8;4,6,9.故所求概率P =4C 39=121.4.设a ,b ∈[1,2],则a 2+b 2ab的最⼤大值是.答案:52.解:因为a ,b ∈[1,2],所以(2a -b )(a -2b )≤0,展开得a 2+b 2≤52ab ,即a 2+b 2ab ≤52.且当a =1,b =2,或a =2,b =1时,a 2+b 2ab =52,所以a 2+b 2ab的最⼤大值为52.5.在矩形ABCD 中,AC =1,AE ⊥BD ,垂⾜足为E ,则(AD →·AE →)(CB →·CA →)的最⼤大值是.答案:427.解:如图,设∠CAB =θ,AC =1,AE ⊥BD ,AB则AB =cos θ,AD =sin θ,AE =sin θcos θ,于是(AD →·AE →)(CB →·CA →)=sin 2θ·cos 2θ·sin 2θ=12sin 2θ·2cos 2θ·sin 2θ≤12(sin 2θ+2cos 2θ+sin 2θ3)3=427,等号当且仅当sin 2θ=2cos 2θ,即tan θ=2时成⽴立,故最⼤大值为427.6.在棱⻓长为1的正⽅方体ABCD -A 1B 1C 1D 1中,点E 在A 1D 1上,点F 在CD 上,A 1E =2ED 1,DF =2FC ,则三棱锥B -FEC 1的体积是.答案:527.解:如图,过F 作EC 1的平⾏行行线交BC 的延⻓长线于G ,则FG ∥平⾯面BEC 1.从⽽而G 与F 到平⾯面BEC 1的距离相等,所以体积=.⼜又A 1E =2ED 1,DF =2FC ,所以CG =13ED 1=19,所以==13×12×109×1×1=527.7.设f (x )是定义在Z 上的函数,且对于任意的整数n ,满⾜足f (n +4)-f (n )≤2(n +1),f (n +12)-f (n )≥6(n +5),f (-1)=-504,则f (2019)673的值是.答案:1512.解:由f (n +4)-f (n )≤2(n +1),得f (n +12)-f (n )≤f (n +12)-f (n +8)+f (n +8)-f (n +4)+f (n +4)-f (n )≤2[(n +9)+(n +5)+(n +1)]=6(n +5).⼜又f (n +12)-f (n )≥6(n +5),所以f (n +12)-f (n )=6(n +5),故f (n +4)-f (n )=2(n +1).因此f (2019)=(f (2019)-f (2015))+(f (2015)-f (2011))+…+(f (3)-f (-1))+f (-1)=2(2016+2012+…+4+0)-504=2020×504-504=2019×504.所以f (2019)673=1512.8.函数f (x )=x 2+xx 2-3的值域是.A 1C DAEBD 1B FC 1G答案:(32,+∞).解:原函数的定义域是(-∞,-3]∪[3,+∞).当x ∈[3,+∞)时,函数f (x )=x 2+xx 2-3为增函数,所以f (x )≥3;当x ∈(-∞,-3]时,f (x )=x 2+x x 2-3=x (x +x 2-3)=3xx -x 2-3=31+1-3x2,因为x ∈(-∞,-3],所以1≤1+1-3x 2<2,32<31+1-3x 2≤3.故原函数的值域是(32,+∞).9.已知△ABC 中,AC =8,BC =10,32cos(A -B )=31,则△ABC 的⾯面积是.答案:157.解:由正弦定理理,得10sin A =8sin B =2sin A -sin B =18sin A +sin B,由32cos(A -B )=31,可得tanA +B2=9tan A -B 2=9·1-cos(A -B )1+cos(A -B )=9·163=37,所以sin C =sin(A +B )=2tanA +B 21+tan 2A +B2=378,即△ABC 的⾯面积S =157.另解:由题设知,∠BAC >∠B ,作∠BAD =∠B ,D 在线段BC 上.则∠CAD =∠A -∠B .设AD =x ,则BD =x ,DC =10-x ,由余弦定理理,得(10-x )2=x 2+64-2×8x ×3132,解得x =8,则DC =10-x =2,由此可得cos C =18,sin C =378,则△ABC 的⾯面积S =157.10.设f (x )=2x 3+8x 2+5x +9,g (x )=2x 2+8x +1.当n ∈N *时,则f (n )与g (n )的最⼤大公因数(f (n ),g (n ))的最⼤大值为.答案:55.ABC Dx解:(f (n ),g (n ))=(2n 3+8n 2+5n +9,2n 2+8n +1)=(4n +9,2n 2+8n +1)=(4n +9,2n 2-17)=(4n+9,4n 2-34)=(4n +9,-9n -34)=(4n +9,-n -16)=(55,n +16)≤55.当n =39时,(55,n +16)=(55,55)=55.因此(f (n ),g (n ))的最⼤大值为55.⼆二、解答题(本⼤大题共4⼩小题,每⼩小题20分,共80分)11.在平⾯面直⻆角坐标系xOy 中,设椭圆C :x 2a 2+y 2a 2-9=1(a >3).(1)过椭圆C 的左焦点,且垂直于x 轴的直线与椭圆C 交于M ,N 两点,若MN =9,求实数a 的值;(2)若直线l :xa +y a -3=1与椭圆C 交于A ,B 两点,求证:对任意⼤大于3的实数a ,以AB 为直径的圆过定点,并求定点坐标.解:(1)记椭圆C :x 2a 2+y 2a 2-9=1的左焦点为F ,则点F 的横坐标为-3.因为过点F 且垂直于x 轴的直线与椭圆C 交于M ,N 两点,MN =9,所以M (-3,92),N (-3,-92),……………………5分从⽽而9a 2+814(a 2-9)=1.解得a 2=36或a 2=94.因为a >3,所有a =6.……………………10分(2+y a -3=1,+y 2a 2-9=1得A (a ,0),B (-3,a 2-9a).……………………15分从⽽而以AB 为直径的圆的⽅方程为(x -a )(x +3)+y (y -a 2-9a )=0,即(x +y +3)a 2-(x 2+3x +y 2)a-9y =0.由+y +3=0,2+3x +y 2=0,9y =0,=-3,=0.故以AB 为直径的圆过定点(-3,0).……………………20分12.在数列列{a n }中,已知a 1=1p ,a n +1=a n na n +1,p >0,n ∈N *.(1)若p =1,求数列列{a n }的通项公式;(2)记b n =na n .若在数列列{b n }中,b n ≤b 8(n ∈N *),求实数p 的取值范围.解:(1)因为a n +1=a n na n +1,a 1=1p >0,故a n >0,1a n +1=1a n+n ,因此1a n =(n -1)+(n -2)+…+1+p =n 2-n +2p 2,即a n =2n 2-n +2p .因为p =1,所以a n =2n 2-n +2.……………………5分(2)b n =na n =2nn 2-n +2p .……………………10分在数列列{b n }中,因为b n ≤b 8(n ∈N *),所以b 7≤b 8,b 9≤b 8≤828+p,≤828+p ,解得28≤p ≤36.……………………15分⼜又b n =2nn 2-n +2p =2n +2p n -1,且7<56≤2p ≤72<9,所以b n 的最⼤大值只可能在n =7,8,9时取到.⼜又当28≤p ≤36时,b 7≤b 8,b 9≤b 8,所以b n ≤b 8.所以满⾜足条件的实数p 的取值范围是[28,36].……………………20分13.如图,在凸五边形ABCDE 中,已知∠ABC =∠CDE =∠DEA =90°,F 是边CD 的中点,线段AD ,EF 相交于点G ,线段AC ,BG 相交于点M .若AC =AD ,AB =DE ,求证:BM =MG .证明:因为AC =AD ,F 是边CD 的中点,连AF ,则AF ⊥CD .⼜又∠CDE =∠DEA =90°,故四边形AEDF 是矩形.……………………5分ABCDEF MG(第13题图)所以△ACF ≌△ADF ≌△EFD .因此∠EFD =∠ACF ,从⽽而EF ∥AC .……………………10分⼜又因为AB =DE ,所以△ACB ≌△EFD ,因此△ACB ≌△ACF ,故AB =AF ,CB =CF .连BF ,BF 交AC 于N ,AC 垂直平分线段BF ,BN =NF .………15分线段AC ,BG 相交于点M ,因为EF ∥AC ,由平⾏行行截割定理理,BM =MG .……………………20分14.如图,P k (k =1,2,3,…,100)是边⻓长为1的正⽅方形ABCD 内部的点.E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,记d 1=∑100k =1EP k ,d 2=∑100k =1FP k ,d 3=∑100k =1GP k ,d 4=∑100k =1HP k .证明:d 1,d 2,d 3,d 4中⾄至少有两个⼩小于81.证明:如图建⽴立坐标系,以点F ,H 为焦点作经过点A 的椭圆.由对称性,正⽅方形ABCD 为椭圆的内接正⽅方形.P k (k =1,2,3,…,100)在正⽅方形ABCD 内部,则也在椭圆内部.……………………5分椭圆⻓长轴⻓长2a =AH +AF =1+52<1.62,延⻓长HP k 交椭圆于点Q k ,连FQ k ,则HP k +FP k <HP k +P k Q k +FQ k =HQ k +FQ k <1.62,其中k =1,2,3,…,100.………………15分所以d 2+d 4=∑100k =1HP k +∑100k =1FP k =∑100k =1(HP k +FP k )<162,所以min{d 2,d 4}<81.同理理min{d 1,d 3}<81.所以d 1,d 2,d 3,d 4中⾄至少有两个⼩小于81.……………………20分BACDFHG E P 1P 100P k(第14题图)ABCDEF MG(第13题图)N。
2019年高中数学竞赛试题及答案及答案
高中数学竞赛试题及答案一、选择题(本大题共6小题,每小题6分,共36分.每小题各有四个选择支,仅有一个选择支正确.请把正确选择支号填在答题卡的相应位置.)1.集合{0,4,}A a =,4{1,}B a =,若{0,1,2,4,16}A B ⋃=,则a 的值为A .0B .1C .2D .2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能... 是.①长方形;②正方形;③圆;④菱形. 其中正确的是 A .①② B .②③ C .③④ D .①④ 3.设0.50.320.5,log 0.4,cos3a b c π-===,则A .c b a <<B .c a b <<C .a b c <<D .b c a <<4. 平面上三条直线210,10,0x y x x ky -+=-=-=,如果这三条直线将平面划分为六部分,则实数k 的值为A . 1B . 2C . 0或2D . 0,1或2 5.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到()cos 2g x x =的图像,则只要将()f x 的图像A .向右平移6π个单位长度 B .向右平移12π个单位长度 C .向左平移6π个单位长度 D .向左平移12π个单位长度6. 在棱长为1的正四面体1234A A A A 中,记12(,1,2,3,4,)i j i j a A A A A i j i j =⋅=≠,则i j a 不同取值的个数为A .6B .5C .3D .2二、填空题(本大题共6小题,每小题6分,共36分.请把答 案填在答题卡相应题的横线上.) 7.已知)1,(-=m a ,)2,1(-=b ,若)()(b a b a -⊥+,则m = .8.如图,执行右图的程序框图,输出的T= . 9. 已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 则不等式0)()1(<⋅-x f x 的解集为 .10.求值:=+250sin 3170cos 1 . 11.对任意实数y x ,,函数)(x f 都满足等式)(2)()(22y f x f y x f +=+,且0)1(≠f ,则(第5题图)(第8题图)3侧视图正视图2222=)2011(f .12.在坐标平面内,对任意非零实数m ,不在抛物线()()22132y mx m x m =++-+上但在直线1y x =-+ 上的点的坐标为 .答 题 卡一、选择题(本大题共6小题,每小题6分,共36分.)二、填空题(本大题共6小题,每小题6分,共36分.)7. 8. 9. 10. 11. 12.三、解答题(本大题共6小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.) 13.(本小题满分12分)为预防(若疫苗有效已知在全体样本中随机抽取1个,抽到B 组的概率是0.375. (1)求x 的值;(2)现用分层抽样的方法在全部测试结果中抽取360个,问应在C 组中抽取多少个? (3)已知465≥y ,25≥z ,求该疫苗不能通过测试的概率.已知函数x x x f 2sin )12(cos 2)(2++=π.(1)求)(x f 的最小正周期及单调增区间; (2)若),0(,1)(παα∈=f ,求α的值. 15.(本题满分13分)如图,在直三棱柱111C B A ABC -中,21===AA BC AC ,︒=∠90ACB ,G F E ,,分别是AB AA AC ,,1的中点.(1)求证://11C B 平面EFG ; (2)求证:1AC FG ⊥;(3)求三棱锥EFG B -1的体积.ACBB 1A 1C 1FGE已知函数t t x x x f 32)(22+--=.当∈x ),[∞+t 时,记)(x f 的最小值为)(t q . (1)求)(t q 的表达式;(2)是否存在0<t ,使得)1()(tq t q =?若存在,求出t ;若不存在,请说明理由.已知圆22:228810M x y x y +---=和直线:90l x y +-=,点C 在圆M 上,过直线l 上一点A 作MAC ∆.(1)当点A 的横坐标为4且45=∠MAC 时,求直线AC 的方程; (2)求存在点C 使得45=∠MAC 成立的点A 的横坐标的取值范围.18.(本题满分14分)在区间D 上,若函数)(x g y =为增函数,而函数)(1x g xy =为减函数,则称函数)(x g y =为区间D 上的“弱增”函数.已知函数()1f x =-. (1)判断函数()f x 在区间(0,1]上是否为“弱增”函数,并说明理由; (2)设[)1212,0,,x x x x ∈+∞≠,证明21211()()2f x f x x x -<-; (3)当[]0,1x ∈时,不等式xax +≥-111恒成立,求实数a 的取值范围.参考答案一、选择题:C B A D D C二、填空题:7. 2± 8.29 9. ),2()1,0()2,(+∞--∞10.3 11.2201112. 31(,),(1,0),(3,4)22-- 三、解答题:13. (本题满分12分) 解:(1)因为在全体样本中随机抽取1个,抽到B 组的概率0.375,所以375.0200090=+x , ………………2分 即660x =. ………………3分(2)C 组样本个数为y +z =2000-(673+77+660+90)=500, ………………4分 现用分层抽样的方法在全部测试结果中抽取360个,则应在C 组中抽取个数为360500902000⨯=个. ………………7分 (3)设事件“疫苗不能通过测试”为事件M.由(2)知 500y z +=,且,y z N ∈,所以C 组的测试结果中疫苗有效与无效的可能的情况有: (465,35)、(466,34)、(467,33)、……(475,25)共11个. ……………… 9分 由于疫苗有效的概率小于90%时认为测试没有通过,所以疫苗不能通过测试时,必须有9.02000660673<++y, …………………10分即1800660673<++y , 解得467<y ,所以事件M 包含的基本事件有:(465,35)、(466,34)共2个. …………………11分所以112)(=M P , 故该疫苗不能通过测试的概率为211. …………………12分14. (本小题满分12分) 解:x x x f 2sin )62cos(1)(+++=π…………………1分x x x 2sin 6sin2sin 6cos 2cos 1+-+=ππx x 2sin 212cos 231++= ………………… 2分 1)32sin(++=πx . …………………4分(1))(x f 的最小正周期为ππ==22T ; …………………5分 又由]22,22[32πππππ+-∈+k k x , …………………6分得)](12,125[Z k k k x ∈+-∈ππππ, …………………7分 从而)(x f 的单调增区间为)](12,125[Z k k k ∈+-ππππ. …………………8分 (2)由11)32sin()(=++=πααf 得0)32sin(=+πα, …………………9分所以ππαk =+32,62ππα-=k )(Z k ∈. …………………10分又因为),0(πα∈,所以3πα=或65π. …………………12分15. (本题满分13分) 解:(1)因为E G 、分别是AC AB 、的中点,所以BC GE //;……1分 又BC C B //11,所以GE C B //11; …………2分又⊆GE 平面EFG ,⊄11C B 平面EFG ,所以//11C B 平面EFG . …………3分 (2)直三棱柱111C B A ABC -中,因为︒=∠90ACB ,所以⊥BC 平面C C AA 11; ……………4分 又BC GE //,所以⊥GE 平面C C AA 11,即1AC GE ⊥; ……………5分 又因为21==AA AC ,所以四边形11A ACC 是正方形,即11AC C A ⊥; ……………6分 又F E ,分别是1,AA AC 的中点,所以C A EF 1//,从而有1AC EF ⊥, ……………7分 由E GE EF =⋂,所以⊥1AC 平面EFG ,即1AC FG ⊥. ……………8分 (3)因为//11C B 平面EFG ,所以111EFC G EFG C EFG B V V V ---==. ……………10分由于⊥GE 平面C C AA 11,所以GE S V EFC EFC G ⋅=∆-1131,且121==BC GE .…………11分 又由于2321114111111=---=---=∆∆∆∆ECC FC A AEF A ACC EFC S S S S S 正方形,……………12分所以21123313111=⋅⋅=⋅=∆-GE S V EFC EFC G ,即211=-EFG B V . ……………13分16. (本题满分13分)解:(1)t t x x x f 32)(22+--=13)1(22-+--=t t x . ……………1分①当1≥t 时,)(x f 在∈x ),[∞+t 时为增函数,所以)(x f 在∈x ),[∞+t 时的最小值为t t f t q ==)()(;……………3分②当1<t 时,13)1()(2-+-==t t f t q ; ……………5分 综上所述,2(1)()31(1)t t q t t t t ≥⎧=⎨-+-<⎩. ……………6分ACBB 1A 1C 1FGE(2)由(1)知,当0<t 时,13)(2-+-=t t t q ,所以当0<t 时,131)1(2-+-=tt tq . ……………7分 由)1()(t q t q =得:1311322-+-=-+-tt t t , ……………8分即013334=-+-t t t , ……………9分 整理得0)13)(1(22=+--t t t , ……………11分解得:1±=t 或253±=t . ……………12分 又因为0<t ,所以1-=t .即存在1-=t ,使得)1()(tq t q =成立. ……………13分17. (本题满分14分)解:(1)圆M 的方程可化为:2217(2)(2)2x y -+-=,所以圆心M (2,2),半径r=2. ……1分由于点A 的横坐标为4,所以点A 的坐标为(4,5),即AM =……………2分 若直线AC 的斜率不存在,很显然直线AM 与AC 夹角不是45,不合题意,故直线AC 的斜率一定存在,可设AC 直线的斜率为k ,则AC 的直线方程为5(4)y k x -=-,即540kx y k -+-=. ……………3分由于45=∠MAC 所以M 到直线AC 的距离为226||22==AM d ,此时r d <,即这样的点C 存在. ……………4分2=,2=,解得15 5k k =-=或. ……………5分 所以所求直线AC 的方程为0255=-+y x 或0215=+-y x . ……………6分 (2)当r AM 2||=时,过点A 的圆M 的两条切线成直角,从而存在圆上的点C (切点)使得45=∠MAC . ……………7分设点A 的坐标为),(y x ,则有⎪⎩⎪⎨⎧=-+=⋅=-+-09172342)2()2(22y x y x , ……………8分解得⎩⎨⎧==63y x 或⎩⎨⎧==36y x . ……………9分记点)6,3(为P ,点)3,6(为Q ,显然当点A 在 线段PQ 上时,过A 的圆的两条切线成钝角,从而必存在圆上的一点C 使得45=∠MAC ;……当点A 在线段PQ 的延长线或反向延长线上时,过A 的圆的两条切线成锐角,从而必不存在圆上的点C 使得45=∠MAC , …………所以满足条件的点A 为线段PQ 上的点,即满足条件的点的横坐标取值范围是.……14分18.(本题满分14分) 解:(1)由()1f x =-可以看出,在区间(0,1]上,()f x 为增函数. ………………1分 又11()(1f x x x ===3分 显然)(1x f x在区间(0,1]∴ ()f x 在区间(0,1]为“弱增”函数. ………………4分(2)21()()f x f x -===.…6分[)1212,0,,x x x x ∈+∞≠,∴111≥+x ,112≥+x ,21121>+++x x ,即2>,………………8分21()()f x f x ∴-2112x x <-. ………………9分 (3)当0x =时,不等式xax +≥-111显然成立. ………………10分“当(]0,1x ∈时,不等式xax +≥-111恒成立”等价于“ 当(]0,1x ∈时,不等式)111(1xx a +-≤即)(1x f x a ≤恒成立” . ………………11分也就等价于:“ 当(]0,1x ∈时, min )](1[x f xa ≤成立” . ………………12分 由(1)知1()f x x 在区间(0,1]上为减函数, 所以有221)1()](1[min -==f x f x . ……………13分 ∴221-≤a ,即221-≤a 时,不等式xax +≥-111对[]0,1x ∈恒成立. ……………14分。
2019年全国高中数学联赛试卷及答案-10页文档资料
2019年全国高中数学联合竞赛试卷第一试一、选择题本题共有6小题,每题均给出(A )、(B )、(C )、(D )四个结论,其中有且仅有一个是正确的,请将正确答案的代表字母填在题后的括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分。
1. 给定公比为q (q ≠1)的等比数列{a n },设b 1=a 1+a 2+a 3, b 2=a 4+a 5+a 6,…,b n =a 3n -2+a 3n -1+a 3n ,…,则数列{b n } 【答】( ) (A ) 是等差数列 (B ) 是公比为q 的等比数列 (C ) 是公比为q 3的等比数列 (D ) 既非等差数列也非等比数列2. 平面直角坐标系中,纵、横坐标都是整数的点叫做整点,那么,满足不等式(|x |-1)2+(|y |-1)2<2的整点(x ,y )的个数是 【答】( ) (A ) 16 (B ) 17 (C ) 18 (D ) 253. 若(log 23)x -(log 53)x ≥(log 23)y --(log 53)y-,则 【答】( )(A ) x -y ≥0 (B ) x +y ≥0 (C ) x -y ≤0 (D ) x +y ≤0 4. 给定下列两个关于异面直线的命题:命题Ⅰ:若平面α上的直线a 与平面β上的直线b 为异面直线,直线c 是α与β的交线,那么,c 至多与a ,b 中的一条相交;命题Ⅱ:不存在这样的无穷多条直线,它们中的任意两条都是异面直线。
那么 【答】( ) (A ) 命题Ⅰ正确,命题Ⅱ不正确 (B ) 命题Ⅱ正确,命题Ⅰ不正确 (C ) 两个命题都正确 (D ) 两个命题都不正确5. 在某次乒乓球单打比赛中,原计划每两名选手恰比赛一场,但有3名选手各比赛了2场之后就退出了,这样,全部比赛只进行了50场。
那么,在上述3名选手之间比赛的场数是 【答】( ) (A ) 0 (B ) 1 (C ) 2 (D ) 36. 已知点A (1,2),过点(5,-2)的直线与抛物线y 2=4x 交于另外两点B ,C ,那么,△ABC 是(A ) 锐角三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 不确定 【答】( ) 二、填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。
2019年全国高中数学联赛试题及答案详解(B卷)
2019年全国高中数学联合竞赛一试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 已知实数集合{1,2,3,}x 的最大元素等于该集合的所有元素之和,则x 的值为 .答案:3-.解:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0.显然0x <,从而120x ++=,得3x =-.2. 若平面向量(2,1)m a =-与1(21,2)m m b +=-垂直,其中m 为实数,则a 的模为 .答案解:令2m t =,则0t >.条件等价于(1)(1)20t t t ⋅-+-⋅=,解得3t =.因此a=.3. 设,(0,)a b p Î,cos ,cos a b 是方程25310x x --=的两根,则sin sin a b 的值为 .答案:5. 解:由条件知31cos cos ,cos cos 55a b a b +==-,从而222(sin sin )(1cos )(1cos )a b a b =--22221cos cos cos cos a b a b=--+2222437(1cos cos )(cos cos )5525a b a b æöæö÷çç=+-+=-=÷çç÷ççèøè.又由,(0,)a b p Î知sin sin 0a b >,从而sin sin 5a b =. 4. 设三棱锥P ABC -满足3,2PA PB AB BC CA =====,则该三棱锥的体积的最大值为 .答案:3. 解:设三棱锥P ABC -的高为h .取M 为棱AB 的中点,则h PM £==.当平面PAB 垂直于平面ABC 时,h 取到最大值.此时三棱锥P ABC -的体积取到最大值11333ABC S D ⋅==.5. 将5个数2,0,1,9,2019按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为 .答案:95. 解:易知2,0,1,9,2019的所有不以0为开头的排列共有44!96´=个.其中,除了(2,0,1,9,2019)和(2019,2,0,1,9)这两种排列对应同一个数20192019,其余的数互不相等.因此满足条件的8位数的个数为96195-=.6. 设整数4n >,(1)n x +的展开式中4n x -与xy 两项的系数相等,则n 的值为 .答案:51.解:注意到0(1)C 1)nnr n r r nr x x -=+=å.其中4n x -项仅出现在求和指标4r =时的展开式444C 1)n n x-中,其4n x -项系数为44(1)(2)(3)(1)C 24n n n n n ----=.而xy 项仅出现在求和指标1r n =-时的展开式11C 1)n n nx --⋅中,其xy 项系数为12331C C 4(1)(1)2(1)(2)n n n n n n n n ----⋅-=---. 因此有3(1)(2)(3)(1)2(1)(2)24n n n n n n n n ----=---.注意到4n >,化简得33(1)48n n --=-,故只能是n 为奇数且348n -=.解得51n =.7. 在平面直角坐标系中,若以(1,0)r +为圆心、r 为半径的圆上存在一点(,)a b 满足24b a ³,则r 的最小值为 .答案:4.解:由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a £=---=---.即22(1)210a r a r --++£.上述关于a 的一元二次不等式有解,故判别式2(2(1))4(21)4(4)0r r r r --+=-³,解得4r ³.经检验,当4r =时,(,)(3,a b =满足条件.因此r 的最小值为4.8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .答案:5.解:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则 112(1)a d a k d +=+-,即1(2)k d a -=,因此必有2k ¹,且12ad k =-.这样就有1111(1)2n n a a n d a a k -=+-=+-,而此时对任意正整数n ,12111(1)(1)(1)22n n n n n a a a a n d a n a d --+++=+=+-+ 1(1)(1)(2)2n n a n k d æö-÷ç=+--+÷ç÷çèø, 确实为{}n a 中的一项.因此,仅需考虑使12|k a -成立的正整数k 的个数.注意到2019为两个素数3与673之积,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)在椭圆G 中,F 为一个焦点,,A B 为两个顶点.若3,2FA FB ==,求AB 的所有可能值.解:不妨设平面直角坐标系中椭圆G 的标准方程为22221(0)x y a b a b+=>>,并记c =F 为G 的右焦点.易知F 到G 的左顶点的距离为a c +,到右顶点的距离为a c -,到上、下顶点的距离均为a .分以下情况讨论:(1) ,A B 分别为左、右顶点.此时3,2a c a c +=-=,故25AB a ==(相应地,2()()6b a c a c =+-=,G 的方程为2241256x y +=). …………………4分(2) A 为左顶点,B 为上顶点或下顶点.此时3,2a c a +==,故1c =,进而2223b a c =-=,所以AB ==G 的方程为22143x y +=). …………………8分 (3) A 为上顶点或下顶点,B 为右顶点.此时3,2a a c =-=,故1c =,进而2228b a c =-=,所以AB ==G 的方程为22198x y +=).…………………12分 综上可知,AB的所有可能值为5,. …………………16分10. (本题满分20分)设,,a b c 均大于1,满足lg log 3,lg log 4.b a a c b c ì+=ïïíï+=ïî求lg lg a c ⋅的最大值.解:设lg ,lg ,lg a x b y c z ===,由,,1a b c >可知,,0x y z >.由条件及换底公式知3,4z zx y y x+=+=,即34xy z y x +==.…………………5分由此,令3,4(0)x t y t t ==>,则241212z x xy t t =-=-.其中由0z >可知(0,1)t Î. …………………10分因此,结合三元平均值不等式得2lg lg 312(1)18(22)a c xz t t t t t ==⋅-=⋅-33(22)2161818333t t t æöæö++-÷çç£⋅=⋅=÷çç÷ççèèø. 当22t t =-,即23t =(相应的,,a b c 分别为8833100,10,10)时,lg lg a c 取到最大值163. …………………20分11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=.证明:对任意正整数m ,均有123m z z z +++<. 证明:归纳地可知*0()n z n N ¹Î.由条件得2*114210()n n n n z z n z z N ++æöæö÷çç÷++=Îçç÷çç÷èøèø,解得*11()4N n n z n z +-=Î. …………………5分因此1112n n nnz z z z ++===,故*11111()22N n n n z z n --=⋅=Î. ①进而有*11111()22N n n n n n n n z z z z n z ++-+=⋅+==Î. ②…………………10分当m 为偶数时,设*2()N m s s =Î.利用②可得122122122111123sm k k k k k k k k z z z z z z z ¥¥---===+++£+<+==ååå. …………………15分 当m 为奇数时,设21()N m s s =+Î.由①、②可知21212221211112322s k k s s k k s k s z z z ¥¥+---=+=+=<==+⋅åå, 故1221221212113s m k k s k k k k z z z z z z z z ¥-+-==æö÷ç+++£++<+=÷ç÷çèøåå. 综上,结论获证. …………………20分2019年全国高中数学联合竞赛加试(B 卷)参考答案及评分标准说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一、(本题满分40分)设正实数12100,,,a a a 满足101(1,2,,50)i i a a i -³=.记112(1,2,,99)k k kka x k a a a +==+++.证明:29912991x x x £.证明:注意到12100,,,0a a a >.对1,2,,99k =,由平均值不等式知121210kk k k a a a a a a æöç<£çç+++èø, ……………10分 从而有9999299112991111212kk k k k k k k ka k x x x a a a a a a a ++==æö÷ç÷=£ç÷÷ç+++èø . ①………………20分记①的右端为T ,则对任意1,2,,100i =,i a 在T 的分子中的次数为1i -,在T 的分母中的次数为100i -.从而10121005050210121012(101)101101101111ii i i i i i i i i i ia T a a a a -------===æö÷ç÷===ç÷ç÷èø .………………30分又1010(1,2,,50)i i a a i -<£=,故1T £,结合①得29912991x x x T ££. ………………40分二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有4个正约数;(2) 若12k d d d <<< 是n 的所有正约数,则21321,,,k k d d d d d d ---- 构成等比数列.解:由条件可知4k ≥,且3212112kk k k d d d d d d d d -----=--. ………………10分 易知112231,,,k k k n nd d n d d d d --====,代入上式得3222231n n d d d n n d d d --=--, 化简得223223()(1)d d d d -=-. ………………20分由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d 是平方数,故只能23d p =. ………………30分从而序列21321,,,k k d d d d d d ---- 为23212,1,,,k k p p p p p p p ------ ,即123,,,,k d d d d 为21,1,,,k p p p - ,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥. ………………40分三、(本题满分50分)如图,点,,,,A B C D E在一条直线上顺次排列,满足BC CD ==,点P 在该直线外,满足PB PD =.点,K L 分别在线段,PB PD 上,满足KC 平分BKE ,LC 平分ALD .证明:,,,A K L E 四点共圆.(答题时请将图画在答卷纸上)证明:令1,(0)AB BC CD t ===>,由条件知2DE t =.注意到180BKE ABK PDE DEK < = < - ,可在CB 延长线上取一点A ¢,使得A KE ABK A BK ¢¢ = = . ………………10分此时有A BK A KE ∽¢¢D D ,故A B A K BKA K A E KE¢¢==¢¢. ………………20分 又KC 平分BKE ,故211BK BC t KE CE t t t===++.于是有 22112A B A B A K BK AB A E A K A E KE t t AEæö¢¢¢÷ç=⋅===÷ç÷碢¢èø++. …………30分 由上式两端减1,得BE BEA E AE=¢,从而A A ¢=.因此AKE A KE ABK ¢ = = . 同理可得ALE EDL = .而ABK EDL = ,所以AKE ALE = .因此,,,A K L E 四点共圆. ………………50分四、(本题满分50分)将一个凸2019边形的每条边任意染为红、黄、蓝三种颜色之一,每种颜色的边各673条.证明:可作这个凸2019边形的2016条在内部互不相交的对角线将其剖分成2017个三角形,并将所作的每条对角线也染AA (为红、黄、蓝三种颜色之一,使得每个三角形的三条边或者颜色全部相同,或者颜色互不相同.证明:我们对5n ≥归纳证明加强的命题:如果将凸n 边形的边染为三种颜色,,a b c ,并且三种颜色的边均至少有一条,那么可作满足要求的三角形剖分. ………………10分当5n =时,若三种颜色的边数为1,1,3,由对称性,只需考虑如下两种情形,分别可作图中所示的三角形剖分.若三种颜色的边数为1,2,2,由对称性,只需考虑如下三种情形,分别可作图中所示的三角形剖分.………………20分假设结论对(5)n n ≥成立,考虑1n +的情形,将凸1n +边形记为121n A A A + . 情形1:有两种颜色的边各只有一条.不妨设,a b 色边各只有一条.由于16n +≥,故存在连续两条边均为c 色,不妨设是111,n n n A A A A ++.作对角线1n A A ,并将1n A A 染为c 色,则三角形11n n A A A +的三边全部同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.………………30分 情形2:某种颜色的边只有一条,其余颜色的边均至少两条.不妨设a 色边只有一条,于是可以选择两条相邻边均不是a 色,不妨设111,n n n A A A A ++均不是a 色,作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分. ………………40分情形3:每种颜色的边均至少两条.作对角线1n A A ,则1n A A 有唯一的染色方式,使得三角形11n n A A A +的三边全部同色或互不同色.此时凸n 边形12n A A A 的三种颜色的边均至少有一条,由归纳假设,可对其作符合要求的三角形剖分.综合以上3种情形,可知1n +的情形下结论也成立.由数学归纳法,结论获证. ………………50分。
2019年普通高等学校招生全国统一考试数学试题卷江苏卷(附带答案及详细解析)
绝密★启用前2019年普通高等学校招生全国统一考试江苏卷数学试题卷本试卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120 分钟。
★祝考试顺利★注意事项:1.答题前,先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。
写在试卷、草稿纸和答题卡,上的非答题区域均无效。
4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。
.5.考试结束后,请将本试卷和答题卡-并上交。
一、填空题:本大题共14小题,每小题5分,共计70分.(共14题;共70分)1.已知集合A={−1,0,1,6},B={x|x>0,x∈R},则A∩B=________.2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是________.3.下图是一个算法流程图,则输出的S的值是________.4.函数y=√7+6x−x2的定义域是________.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是________.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.=1(b>0)经过点(3,4),7.在平面直角坐标系xOy中,若双曲线x2−y2b2则该双曲线的渐近线方程是________.8.已知数列{a n}(n∈N∗)是等差数列,S n是其前n项和.若a2a5+a8= 0,S9=27,则S8的值是________.9.如图,长方体ABCD−A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.10.在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________.11.在平面直角坐标系 xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________. 12.如图,在 △ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA , AD 与CE 交于点 O .若 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ⋅EC ⃗⃗⃗⃗⃗ ,则 ABAC的值是________.13.已知 tanαtan(α+π4)=−23 ,则 sin(2α+π4) 的值是________.14.设 f(x),g(x) 是定义在R 上的两个周期函数, f(x) 的周期为4, g(x) 的周期为2,且 f(x) 是奇函数.当 x ∈(0,2] 时, f(x)=√1−(x −1)2 , g(x)={k(x +2),0<x ≤1−12,1<x ≤2,其中k >0.若在区间(0,9]上,关于x 的方程 f(x)=g(x) 有8个不同的实数根,则k 的取值范围是________. 二、解答题:本大题共6小题,共计90分.(共6题;共90分) 15.在△ABC 中,角A , B , C 的对边分别为a , b , c . (1)若a =3c , b = √2 ,cos B = 23 ,求c 的值;(2)若sinAa =cosB2b,求sin(B+π2)的值.16.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.如图,在平面直角坐标系xOy中,椭圆C: x2a +y2b=1(a>b>0)的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2: (x−1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1= 52.(1)求椭圆C的标准方程;(2)求点E的坐标.18.如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.19.设函数f(x)=(x−a)(x−b)(x−c),a,b,c∈R、f ′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f ′(x)的零点均在集合{−3,1,3}中,求f(x)的极小值;(3)若a=0,0<b⩽1,c=1,且f(x)的极大值为M,求证:M≤ 427.20.定义首项为1且公比为正数的等比数列为“M-数列”.(1)已知等比数列{a n} (n∈N∗)满足:a2a4=a5,a3−4a2+4a4=0,求证:数列{a n}为“M-数列”;(2)已知数列{b n}满足: b1=1,1Sn =2b n−2b n+1,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M-数列”{c n} (n∈N∗),对任意正整数k,当k≤m时,都有c k⩽b k⩽c k+1成立,求m的最大值.三、数学Ⅱ(附加题)(每题10分)【选做题】本题包括21、22、23三题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.(共3题;共30分)21.A.[选修4-2:矩阵与变换]已知矩阵A=[31 22](1)求A2;(2)求矩阵A的特征值.22.在极坐标系中,已知两点A(3,π4),B(√2,π2),直线l的方程为ρsin(θ+π4)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.23.设x∈R,解不等式|x|+|2x−1|>2.四、【必做题】第24题、第25题,每题10分,共计20分.(共2题;共20分)24.设(1+x)n=a0+a1x+a2x2+⋯+a n x n,n⩾4,n∈N∗.已知a32=2a2a4.(1)求n的值;(2)设(1+√3)n=a+b√3,其中a,b∈N∗,求a2−3b2的值.25.在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},C n={(0,2),(1,2),(2,2),⋯,(n,2)},n∈N∗.令M n=A n∪B n∪C n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).答案解析部分一、填空题:本大题共14小题,每小题5分,共计70分.1.【答案】{1,6}【考点】交集及其运算【解析】【解答】∵集合A={−1,0,1,6},B={x|x>0,x∈R},借助数轴得:A∩B={1,6}【分析】根据已知条件借助数轴,用交集的运算法则求出集合A∩B。
2019年全国高中数学联赛试题及答案详解(B卷)
3 22 s-1
=
¥ k=s+1
3 22k-1
¥
=
k=s+1
z2k-1 + z2k
,
故
å å z1 + z2 ++ zm
£
æçççè
k
s =1
z2k-1 + z2k ÷ö÷÷ø+
z2 s+1
¥
<
k =1
z2k-1 + z2k
=
2
3 3
.
综上,结论获证.
…………………20 分
2019 年全国高中数学联合竞赛加试(B 卷) 参考答案及评分标准
3. 设 a, b Î (0, p) ,cosa, cosb 是方程 5x2 -3x -1= 0 的两根,则 sin asin b 的
值为
.
答案:
7 5
.
解:由条件知 cosa + cosb = 3 , cosa cos b = -1 ,从而
5
5
(sin a sin b)2 = (1-cos2a)(1- cos2 b) = 1- cos2a - cos2 b + cos2a cos2 b
=
(-1)n-32n(n -1)(n
- 2)
.
因此有
n(n
-1)(n 24
2)(n
-
3)
=
(-1)n-3
2n(n
-1)(n
-
2)
.注意到
n
>
4
,化简得
n -3 = (-1)n-3 48 ,故只能是 n 为奇数且 n - 3 = 48 .解得 n = 51.
2019年全国高中数学联赛模拟试卷9套及答案
全国高中数学联赛模拟试题(一)第一试一、选择题:(每小题6分,共36分)1、 方程6×(5a 2+b 2)=5c 2满足c ≤20的正整数解(a ,b ,c )的个数是 (A )1 (B )3 (C )4 (D )52、 函数12-=x x y (x ∈R ,x ≠1)的递增区间是(A )x ≥2 (B )x ≤0或x ≥2 (C )x ≤0(D )x ≤21-或x ≥23、 过定点P (2,1)作直线l 分别交x 轴正向和y 轴正向于A 、B ,使△AOB (O 为原点)的面积最小,则l 的方程为(A )x +y -3=0 (B )x +3y -5=0 (C )2x +y -5=0 (D )x +2y -4=0 4、 若方程cos2x +3sin2x =a +1在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的实数解x ,则参数a 的取值范围是(A )0≤a <1 (B )-3≤a <1 (C )a <1 (D )0<a <15、 数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是(A )42 (B )45 (C )48 (D )516、 在1,2,3,4,5的排列a 1,a 2,a 3,a 4,a 5中,满足条件a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5的排列的个数是(A )8 (B )10 (C )14 (D )16二、填空题:(每小题9分,共54分)1、[x ]表示不大于x 的最大整数,则方程21×[x 2+x ]=19x +99的实数解x 是 .2、设a 1=1,a n +1=2a n +n 2,则通项公式a n = .3、数799被2550除所得的余数是 . 4、在△ABC 中,∠A =3π,sin B =135,则cos C = .5、设k 、是实数,使得关于x 的方程x 2-(2k +1)x +k 2-1=0的两个根为sin 和cos ,则的取值范围是 . 6、数()n2245+(n ∈N )的个位数字是 .三、(20分)已知x 、y 、z 都是非负实数,且x +y +z =1.求证:x (1-2x )(1-3x )+y (1-2y )(1-3y )+z (1-2z )(1-3z )≥0,并确定等号成立的条件.四、(20分)(1) 求出所有的实数a ,使得关于x 的方程x 2+(a +2002)x +a =0的两根皆为整数.(2) 试求出所有的实数a ,使得关于x 的方程x 3+(-a 2+2a +2)x -2a 2-2a =0有三个整数根.五、(20分)试求正数r 的最大值,使得点集T ={(x ,y )|x 、y ∈R ,且x 2+(y -7)2≤r 2}一定被包含于另一个点集S ={(x ,y )|x 、y ∈R ,且对任何∈R ,都有cos2+x cos +y ≥0}之中.第二试一、(50分)设a 、b 、c ∈R ,b ≠ac ,a ≠-c ,z 是复数,且z 2-(a -c )z -b =0.求证:()12=-+-+bac zc a b a 的充分必要条件是(a -c )2+4b ≤0. 二、(50分) 如图,在△ABC 中,∠ABC 和∠ACB 均是锐角,D 是BC 边上的内点,且AD 平分∠BAC ,过点D 分别向两条直线AB 、AC 作垂线DP 、DQ ,其垂足是P 、Q ,两条直线CP 与BQ 相交与点K .求证:(1) AK ⊥BC ;ACBD QK P(2) BCS AQ AP AK ABC△2<=<,其中ABC S △表示△ABC 的面积.三、(50分)给定一个正整数n ,设n 个实数a 1,a 2,…,a n 满足下列n 个方程:∑==+=+ni i n j j j i a 1),,3,2,1(124.确定和式∑=+=ni ii a S 112的值(写成关于n 的最简式子).参考答案 第一试二、填空题:1、38181-或381587; 2、7×2n -1-n 2-2n -3;3、343;4、261235-; 5、{|=2n +或2n -2π,n ∈Z } ;6、1(n 为偶数);7(n 为奇数).三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a 的可能取值有-3,11,-1,9.五、r max =24.第二试一、证略(提示:直接解出()2i42⋅---±-=b c a c a z ,通过变形即得充分性成立,然后利用反证法证明必要性).二、证略(提示:用同一法,作出BC 边上的高AR ,利用塞瓦定理证明AR 、BQ 、CP 三线共点,从而AK ⊥BC ;记AR 与PQ 交于点T ,则BCS ABC△2=AR >AT >AQ =AP ,对于AK <AP ,可证∠APK <∠AKP ).三、()11212++-=n S .全国高中数学联赛模拟试题(二)第一试一、选择题:(每小题6分,共36分)1、 若集合S ={n |n 是整数,且22n +2整除2003n +2004},则S 为(A )空集∅ (B )单元集 (C )二元集 (D )无穷集2、 若多项式x 2-x +1能除尽另一个多项式x 3+x 2+ax +b (a 、b 皆为常数).则a +b等于(A )0 (B )-1 (C )1 (D )23、 设a 是整数,关于x 的方程x 2+(a -3)x +a 2=0的两个实根为x 1、x 2,且tan(arctanx 1+arctan x 2)也是整数.则这样的a 的个数是(A )0 (B )1 (C )2 (D )4 4、 设一个四面体的体积为V 1,且它的各条棱的中点构成一个凸多面体,其体积为V 2.则12V V 为 (A )21 (B )32 (C )常数,但不等于21和32(D )不确定,其值与四面体的具体形状有关5、 在十进制中,若一个至少有两位数字的正整数除了最左边的数字外,其余各个数字都小于其左边的数字时,则称它为递降正整数.所有这样的递降正整数的个数为 (A )1001 (B )1010 (C )1011 (D )10136、 在正方体的8个顶点中,能构成一个直角三角形的3个顶点的直角三点组的个数是(A )36 (B )37 (C )48 (D )49二、填空题:(每小题9分,共54分)1、 若直线x cos +y sin =cos2-sin2(0<<=与圆x 2+y 2=41有公共点,则的取值范围是 .2、 在平面直角坐标系xOy 中,一个圆经过(0,2)、(3,1),且与x 轴相切.则此圆的半径等于 . 3、 若常数a 使得关于x 的方程lg(x 2+20x )-lg(8x -6a -3)=0有惟一解.则a 的取值范围是 .4、 f (x )=82x +x cos x +cos(2x )(x ∈R )的最小值是 .5、 若k 是一个正整数,且2k整除20034006400624006124006040063C 3C 3C C +++++ i i 则k 的最大值为 .6、 设ABCD 为凸四边形,AB =7,BC =4,CD =5,DA =6,其面积S 的取值范围是(a ,b ] .则a +b = .三、(20分)设椭圆的左右焦点分别为F 1、F 2,左准线为l ,点P 在椭圆上.作PQ ⊥l ,Q 为垂足.试问:对于什么样的椭圆,才存在这样的点P ,使得PQF 1F 2为平行四边形?说明理由(答案用关于离心率e 的等式或不等式来表示). 四、(20分)设a 0=1,a 1=2,a n +1=2a n -1+n ,n =1,2,3,….试求出a n 的表达式(答案用有限个关于n 的式子相加的形式表示,且项数与n 无关). 五、(20分)试求出所有的有序整数对(a ,b ),使得关于x 的方程x 4+(2b -a 2)x 2-2ax +b 2-1=0的各个根均是整数.第二试一、(50分)点P 在△ABC 内,且∠BAP =∠CAP ,连结BP 并延长交AC 于点Q .设∠BAC =60°,且PQPC BP 111=+. 求证:P 是△ABC 的内心.二、(50分)设正数a 、b 满足2b a >且使得关于x 的不等式1-x ≥b x a -+1总有实数解.试求f (a ,b )=a 2-3ab +b 2的取值范围. 三、(50分)试求出正整数k 的最小可能值,使得下述命题成立:对于任意的k 个整数a 1,a 2,…,a k(允许相等),必定存在相应的k 的整数x 1,x 2,…,x k (也允许相等),且|x i |≤2(i =1,2,…,k ),|x 1|+|x 2|+…+|x k |≠0,使得2003整除x 1a 1+x 2a 2+…+x k a k .参考答案第一试二、填空题:1、⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡65,323,6ππππ ;2、5615±;3、⎪⎭⎫⎝⎛--21,6163;4、-1;5、2004;6、2102.三、⎪⎭⎫ ⎝⎛∈1,21e .四、a 2n =2n +2-2n -3;a 2n +1=3×2 n +1-2n -4.五、(a ,b )=(2l ―1,l 2―l ―1)(∀l ∈Z )第二试 一、证略(提示:将条件变形为PQPCPB PA PA PC =+⋅1,然后应用正弦定理,进行三角变换,得∠BPC =120°,利用同一法即证);二、(-∞,-1).三、k min =7.1全国高中数学联赛模拟试题(三)第一试一、选择题(每小题6分,共36分):1、函数()aaxxaxf-+-=22是奇函数的充要条件是(A)-1≤a<0或0<a≤1 (B)a≤-1或a≥1(C)a>0 (D)a<02、已知三点A(-2,1)、B(-3,-2)、C(-1,-3)和动直线l:y=kx.当点A、B、C到直线l的距离的平方和最小时,下列结论中,正确的是(A)点A在直线l上(B)点B在直线l上(C)点C在直线l上(C)点A、B、C均不在直线l上3、如图,已知正方体ABCD-A1B1C1D1,过顶点A1在空间作直线l,使l与直线AC和BC1所成的角都等于60°.这样的直线l可以做(A)4条(B)3条(C)2条(D)1条4、整数的100200C=n两位质因数的最大值是(A)61 B)67 (C)83 (D)975、若正整数a使得函数()axxxfy213-+==的最大值也是整数,则这个最大值等于(A)3 (B)4 (C)7 (D)86、在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第2003个数是(A)3844 (B)3943 (C)3945 (D)4006二、填空题(每小题9分,共54分):1、在复平面上,Rt△ABC的顶点A、B、C分别对应于复数z+1、2z+1、(z+1)2,A为直角顶点,且|z|=2.设集合M={m|z m∈R,m∈N+},P={x|x=m21,m∈M}.则集合P所有元素之和等于.2、函数f(x)=|sin x|+sin42x+|cos x|的最大值与最小值之差等于.3、关于x的不等式()()074547422222222<-+--++-+-++aaxaaxaaxax的解集是一些区间的并集,且这些区间的长度的和小于4,则实数a的取值范围是 .4、银行计划将某项资金的40%给项目M 投资一年,其余的60%给项目N .预计项目M 有可能获得19%到24%的年利润,N 有可能获得29%到34%的年利润.年终银行必须回笼资金,同时按一定的回扣率支付给储户.为使银行的年利润不少于给M 、N 总投资的10%而不大于总投资的15%,则给储户的回扣率的最小值是 .5、已知点(a ,b )在曲线arcsin x =arccos y 上运动,且椭圆ax 2+by 2=1在圆x 2+y 2=32的外部(包括二者相切的情形).那么,arcsin b 的取值范围是 .6、同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为、,则tan(+)的值是 .三、(20分)△ABC 的三边长a 、b 、c (a ≤b ≤c )同时满足下列三个条件(i )a 、b 、c 均为整数;(ii )a 、b 、c 依次成等比数列;(iii )a 与c 中至少有一个等于100.求出(a ,b ,c )的所有可能的解.四、(20分)在三棱锥D -ABC 中,AD =a ,BD =b ,AB =CD =c ,且∠DAB +∠BAC +∠DAC =180°,∠DBA +∠ABC +∠DBC =180°.求异面直线AD 与BC 所成的角.五、(20分)设正系数一元二次方程ax 2+bx +c =0有实根.证明:(1) max{a ,b ,c }≥94(a +b +c );(2) min{a ,b ,c }≤41(a +b +c ).第二试一、(50分)已知△ABC的外角∠EAC平分线与△ABC的外接圆交于D,以CD为直径的圆分别交BC、CA于点P、Q.求证:线段PQ平分△ABC的周长.二、(50分)已知x0=1,x1=3,x n+1=6x n-x n-1(n∈N+).求证:数列{x n}中无完全平方数.三、(50分)有2002名运动员,号码依次为1,2,3,…,2002.从中选出若干名运动员参加仪仗队,但要使剩下的运动员中没有一个人的号码数等于另外两人的号码数的乘积.那么被选为仪仗队的运动员至少能有多少人?给出你的选取方案,并简述理由.参考答案 第一试一、选择题:二、填空题: 1、71; 2、2; 3、[1,3];4、10%;5、⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡3,44,6ππππ ;6、aR334-. 三、可能解为(100,100,100),(100,110,121),(100,120,144),(100,130,169),(100,140,196),(100,150,225),(100,160,256),(49,70,100),(64,80,100),(81,90,100),(100,100,100). 四、222arccos a c b -.五(1)证略(提示:令a +b +c =t ,分b ≥t 94和b <t 94讨论); (2)证略(提示:分a ≤t 41和a >t 41讨论);第二试一、证略;二、证略(提示:易由特征根法得x n =()()⎥⎦⎤⎢⎣⎡-++nn22322321,设y n =()()⎥⎦⎤⎢⎣⎡--+nn223223221,于是1222=-n n y x,原结论等价于方程x 4-2y 2=1无整数解,由数论只是可证).三、43.全国高中数学联赛模拟试题(四)第一试一、选择题:(每小题6分,共36分)1、 空间中n (n ≥3)个平面,其中任意三个平面无公垂面.那么,下面四个结论 (1) 没有任何两个平面互相平行;(2) 没有任何三个平面相交于一条直线; (3) 平面间的任意两条交线都不平行;(4) 平面间的每一条交线均与n -2个平面相交. 其中,正确的个数为(A )1 (B )2 (C )3 (D )4 2、 若函数y =f (x )在[a ,b ]上的一段图像可以近似地看作直线段,则当c ∈(a ,b )时,f (c )的近似值可表示为(A )()()2b f a f +(B )⎪⎭⎫⎝⎛+2b a f(C )()()()()()a b b f a c a f c b --+-(D )()()()[]a f b f ab ac a f ----3、 设a >b >c ,a +b +c =1,且a 2+b 2+c 2=1,则(A )a +b >1 (B )a +b =1 (C )a +b <1 (D )不能确定,与a 、b 的具体取值有关4、 设椭圆12222=+b y a x 的离心率23=e ,已知点⎪⎭⎫ ⎝⎛23,0P 到椭圆上的点的最远距离是47,则短半轴之长b = (A )161 (B )81(C )41(D )21 5、 S ={1,2,…,2003},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是(A )32003C(B )2100221001C C +(C )2100221001A A +(D )32003A6、 长方体ABCD -A 1B 1C 1D 1,AC 1为体对角线.现以A 为球心,AB 、AD 、AA 1、AC 1为半径作四个同心球,其体积依次为V 1、V 2、V 3、V 4,则有 (A )V 4<V 1+V 2+V 3 (B )V 4=V 1+V 2+V 3 (C )V 4>V 1+V 2+V 3(D )不能确定,与长方体的棱长有关二、填空题:(每小题9分,共54分)1、已知k ==βαβαcos cos sin sin 33,则k 的取值范围为 . 2、等差数列{a n }的首项a 1=8,且存在惟一的k 使得点(k ,a k )在圆x 2+y 2=102上,则这样的等差数列共有 个. 3、在四面体P -ABC 中,PA =PB =a ,PC =AB =BC =CA =b ,且a <b ,则ba的取值范围为 .4、动点A 对应的复数为z =4(cos +isin ),定点B 对应的复数为2,点C 为线段AB 的中点,过点C 作AB 的垂线交OA 与D ,则D 所在的轨迹方程为 .5、∑=200313k k被8所除得的余数为 .6、圆周上有100个等分点,以这些点为顶点组成的钝角三角形的个数为 .三、(20分)已知抛物线y 2=2px (p >0)的一条长为l 的弦AB .求AB 中点M 到y 轴的最短距离,并求出此时点M 的坐标.四、(20分)单位正方体ABCD -A 1B 1C 1D 1中,正方形ABCD 的中心为点M ,正方形A 1B 1C 1D 1的中心为点N ,连AN 、B 1M .(1)求证:AN 、B 1M 为异面直线; (2)求出AN 与B 1M 的夹角.五、(20分)对正实数a 、b 、c .求证:cabc b ac b a bc a 888222+++++≥9.第二试一、(50分)设ABCD 是面积为2的长方形,P 为边CD 上的一点,Q 为△PAB 的内切圆与边AB 的切点.乘积PA ·PB 的值随着长方形ABCD 及点P 的变化而变化,当PA ·PB 取最小值时,(1)证明:AB ≥2BC ; (2)求AQ ·BQ 的值.二、(50分)给定由正整数组成的数列⎩⎨⎧+===++n n n a a a a a 12212,1(n ≥1). (1)求证:数列相邻项组成的无穷个整点(a 1,a 2),(a 3,a 4),…,(a 2k -1,a 2k ),…均在曲线x 2+xy -y 2+1=0上.(2)若设f (x )=x n +x n -1-a n x -a n -1,g (x )=x 2-x -1,证明:g (x )整除f (x ).三、(50分)我们称A 1,A 2,…,A n 为集合A 的一个n 分划,如果 (1)A A A A n = 21; (2)∅≠j i A A ,1≤i <j ≤n .求最小正整数m ,使得对A ={1,2,…,m }的任意一个13分划A 1,A 2,…,A 13,一定存在某个集合A i (1≤i ≤13),在A i 中有两个元素a 、b 满足b <a ≤89b .参考答案 第一试二、填空题:1、⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--1,2121,1 ;2、17;3、⎪⎭⎫ ⎝⎛-1,32;4、()134122=+-y x ;5、4;6、117600.三、⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--≥-⎪⎪⎭⎫ ⎝⎛<<2222,2,2,20,8,20,8p pl p l M p l p l p l M p l p l .四、(1)证略;(2)32arccos .五、证略.第二试一、(1)证略(提示:用面积法,得PA ·PB 最小值为2,此时∠APB =90°);(2)AQ ·BQ =1.二、证略(提示:用数学归纳法).三、m =117.全国高中数学联赛模拟试题(五)第一试一、 选择题:(每小题6分,共36分)1、在复平面上,非零复数z 1、z 2在以i 对应的点为圆心,1为半径的圆上,21z z ⋅的实部为零,arg z 1=6π,则z 2= (A )i 2323+-(B )i 2323- (C )i 2323+- (D )i 2323- 2、已知函数()⎪⎭⎫ ⎝⎛+-=21log 2x ax x f a 在[1,2]上恒正,则实数a 的取值范围是(A )⎪⎭⎫⎝⎛85,21(B )⎪⎭⎫⎝⎛+∞,23 (C )⎪⎭⎫ ⎝⎛+∞⎪⎭⎫⎝⎛,2385,21(D )⎪⎭⎫⎝⎛+∞,21 3、已知双曲线过点M (-2,4),N (4,4),它的一个焦点为F 1(1,0),则另一个焦点F 2的轨迹方程是(A )()()116425122=-+-y x (y ≠0)或x =1(y ≠0)(B )()()125416122=-+-y x (x ≠0)或x =1(y ≠0)(C )()()116125422=-+-y x (y ≠0)或y =1(x ≠0)(D )()()125116422=-+-y x (x ≠0)或y =1(x ≠0)4、已知正实数a 、b 满足a +b =1,则b a M 2112+++=的整数部分是(A )1(B )2(C )3(D )45、一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一角度,人行道的宽度是15米,长度是50米,则人行道间的距离是 (A )9米 (B )10米 (C )12米 (D )15米6、一条铁路原有m 个车站,为适应客运需要新增加n 个车站(n >1),则客运车票增加了58种(注:从甲站到乙站需要两种不同的车票),那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15二、 填空题:(每小题6分,共36分)1、长方形ABCD 的长AB 是宽BC 的32倍,把它折成无底的正三棱柱,使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ,则折后截面AMN 与底面AFH 所成的角是 .2、在△ABC 中,a 、b 、c 是角A 、B 、C 的对边,且满足a 2+b 2=2c 2,则角C 的最大值是 .3、从盛满a 升(a >1)纯酒精的容器里倒出1升,然后填满水,再倒出1升混合溶液后又用水填满,如此继续下去.则第n 次操作后溶液的浓度是 .4、已知函数f (x )与g (x )的定义域均为非负实数集,对任意x ≥0,规定f (x )*g (x )=min{f (x ),g (x )}.若f (x )=3-x ,g (x )=52+x ,则f (x )*g (x )的最大值为 .5、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有不同的取法.6、若实数a >0,则满足a 5-a 3+a =2的a 值属于区间:①()63,0;②()663,2;③()+∞,36;④()32,0.其中正确的是 .三、 (20分)求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面的面积四、 (20分)直线Ax +Bx +C =0(A ·B ·C ≠0)与椭圆b 2x 2+a 2y 2=a 2b 2相交于P 、Q 两点,O 为坐标原点,且OP ⊥OQ .求证:2222222BA b a C b a ++=.五、 (20分)某新建商场建有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品的总金额)为60万元,根据经验,各部商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部,同时适当安排各部的营业员人数,若商场预计每日的总利润为c(万元)且满足19≤c≤19.7,又已知商场分配给经营部的日营业额均为正整数万元,问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?第二试一、 (50分)矩形ABCD 的边AD =·AB ,以AB 为直径在矩形之外作半圆,在半圆上任取不同于A 、B 的一点P ,连PC 、PD 交AB 于E 、F ,若AE 2+BF 2=AB 2,试求正实数的值.二、 (50分)若a i ∈R +(i =1,2,…,n ),∑==ni iaS 1,且2≤n ∈N .求证:∑=-nk kk a S a 13≥∑=-n k k a n 1211.三、 (50分)无穷数列{c n }可由如下法则定义:c n +1=|1-|1-2c n ||,而0≤c 1≤1. (1)证明:仅当c 1是有理数时,数列自某一项开始成为周期数列.(2)存在多少个不同的c 1值,使得数列自某项之后以T 为周期(对于每个T =2,3,…)?参考答案第一试二、填空题:1、6π; 2、3π;3、na ⎪⎭⎫ ⎝⎛-11;4、132-;5、2500;6、③④.三、证略.四、证略.五、8,23,29或10,20,30(万元),对应40,92,58或50,80,60(人).第二试 一、22=λ;二、证略.三、 (1)证略. (2)无穷个.全国高中数学联赛模拟试题(六)第一试一、选择题:(每小题6分,共36分)7、 a 、b 是异面直线,直线c 与a 所成的角等于c 与b 所成的角,则这样的直线c 有(A )1条 (B )2条 (C )3条 (D )无数条8、 已知f (x )是R 上的奇函数,g (x )是R 上的偶函数,若f (x )-g (x )=x 2+2x +3,则f (x )+g (x )=(A )-x 2+2x -3 (B )x 2+2x -3 (C )-x 2-2x +3 (D )x 2-2x +39、 已知△ABC ,O 为△ABC 内一点,∠AOB =∠BOC =∠COA =32π,则使AB +BC +CA ≥m (AO +BO +CO )成立的m 的最大值是 (A )2(B )35(C )3(D )23 10、 设x =0.820.5,y =sin1,z =log 37则x 、y 、z 的大小关系是(A )x <y <z (B )y <z <x(C )z <x <y(D )z <y <x11、整数⎥⎦⎤⎢⎣⎡+31010951995的末尾两位数字是(A )10 (B )01 (C )00 (D )2012、 设(a ,b )表示两自然数a 、b 的最大公约数.设(a ,b )=1,则(a 2+b 2,a 3+b 3)为(A )1 (B )2 (C )1或2 (D )可能大于2二、填空题:(每小题9分,共54分)1、若f (x )=x 10+2x 9-2x 8-2x 7+x 6+3x 2+6x +1,则f (2-1)= .2、设F 1、F 2是双曲线x 2-y 2=4的两个焦点,P 是双曲线上任意一点,从F 1引∠F 1PF 2平分线的垂线,垂足为M ,则点M 的轨迹方程是 .3、给定数列{x n },x 1=1,且nn n x x x -+=+3131,则x 1999-x 601= .4、正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是CD 中点,F 是BB 1中点,则四面体AD 1EF 的体积是 .5、在坐标平面上,由条件⎪⎩⎪⎨⎧+-≤--≥321x y x y 所限定的平面区域的面积是 .6、12个朋友每周聚餐一次,每周他们分成三组,每组4人,不同组坐不同的桌子.若要求这些朋友中任意两个人至少有一次同坐一张桌子,则至少需要 周.三、(20分)已知椭圆12222=+by a x 过定点A (1,0),且焦点在x 轴上,椭圆与曲线|y |=x 的交点为B 、C .现有以A 为焦点,过B 、C 且开口向左的抛物线,抛物线的顶点坐标M (m ,0).当椭圆的离心率e 满足1322<<e ,求实数m 的取值范围. 四、(20分)a 、b 、c 均为实数,a ≠b ,b ≠c ,c ≠a .证明:23≤ac c b b a b a c a c b c b a -+-+--++-++-+222<2.五、(20分)已知f (x )=ax 4+bx 3+cx 2+dx ,满足 (i )a 、b 、c 、d 均大于0;(ii )对于任一个x ∈{-2, -1,0,1,2},f (x )为整数; (iii )f (1)=1,f (5)=70.试说明,对于每个整数x ,f (x )是否为整数.第二试一、(50分)设K 为△ABC 的内心,点C 1、B 1分别为边AB 、AC 的中点,直线AC 与C 1K 交于点B 2,直线AB 于B 1K 交于点C 2.若△AB 2C 2于△ABC 的面积相等,试求∠CAB .二、(50分)设5sini 5cosππ+=w ,f (x )=(x -w )(x -w 3)(x -w 7)(x -w 9).求证:f (x )为一整系数多项式,且f (x )不能分解为两个至少为一次的整系数多项式之积.三、(50分)在圆上有21个点.求在以这些点为端点组成的所有的弧中,不超过120°的弧的条数的最小值.参考答案 第一试二、填空题: 1、4; 2、x 2+y 2=4; 3、0; 4、245; 5、16;6、5.三、⎪⎪⎭⎫⎝⎛+423,1.四、证略.五、是.第二试一、60°;二、证略.三、100.全国高中数学联赛模拟试题(七)第一试一、选择题:(每小题6分,共36分)1、设log a b 是一个整数,且2log log 1log a b bb a a>>,给出下列四个结论 ①21a b b>>;②log a b +log b a =0; ③0<a <b <1; ④ab -1=0. 其中正确结论的个数是(A )1 (B )2(C )3(D )42、若△ABC 的三边长a 、b 、c 满足⎩⎨⎧=+-+=---03220222c b a c b a a ,则它的最大内角度数是(A )150°(B )120°(C )90°(D )60°3、定长为l (a b l 22>)的线段AB 的两端点都在双曲线12222=-by a x (a >0,b >0),则AB 中点M 的横坐标的最小值为 (A )222ba al + (B )222ba l a ++(C )()2222ba a l a +- (D )()2222ba a l a ++4、在复平面上,曲线z 4+z =1与圆|z |=1的交点个数为(A )0(B )1(C )2(D )35、设E ={(x ,y )|0≤x ≤2,0≤y ≤2}、F ={(x ,y )|x ≤10,y ≥2,y ≤x -4}是直角坐标平面上的两个点集,则集合G =()()⎭⎬⎫⎩⎨⎧∈∈⎪⎭⎫ ⎝⎛++F y x E y x y y x x 22112121,,,2,2所组成的图形面积是(A )6(B )2(C )6.5(D )76、正方形纸片ABCD ,沿对角线AC 对折,使D 在面ABC 外,这时DB 与面ABC 所成的角一定不等于(A )30°(B )45°(C )60°(D )90°二、填空题:(每小题9分,共54分)1、已知24πα=,则αααααααααααc os sin c os 2c os sin 2c os 3c os sin 3c os 4c os sin +++的值等于 .2、2004321132112111+++++++++++= . 3、在Rt △ABC 中,AB =AC ,以C 为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB 内,且椭圆过A 、B 点,则这个椭圆的离心率等于 .4、从{1,2,3,…,20}中选出三个数,使得没有两个数相邻,有 种不同的选法.5、设a 、b 均为正数,且存在复数z 满足⎪⎩⎪⎨⎧≤+=⋅+1iz b a z z z ,则ab 的最大值等于 .6、使不等式137158<+<k n n 对惟一的一个整数k 成立的最大正整数n 为 . 三、(20分)已知实数x 、y 满足x 2+y 2≤5.求f (x ,y )=3|x +y |+|4y +9|+|7y -3x -18|的最大值与最小值.四、(20分)经过点M (2,-1)作抛物线y 2=x 的四条弦P i Q i (i =1,2,3,4),且P 1、P 2、P 3、P 4四点的纵坐标依次成等差数列.求证:44332211MQ M P MQ M P MQ MP MQ M P ->-.五、(20分)n 为正整数,r >0为实数.证明:方程x n +1+rx n -r n +1=0没有模为r 的复数根.第二试一、(50分)设C (I )是以△ABC 的内心I 为圆心的一个圆,点D 、E 、F 分别是从I 出发垂直于边BC 、CA 和AB 的直线C (I )的交点.求证:AD 、BE 和CF 三线共点.二、(50分)非负实数x 、y 、z 满足x 2+y 2+z 2=1.求证:1≤xyzzx y yz x +++++111≤2. 三、(50分)对由n 个A ,n 个B 和n 个C 排成的行,在其下面重新定义一行(比上面一行少一个字母),若其头上的两个字母不同,则在该位置写上第三个字母;若相同,则写上该字母.对新得到的行重复上面的操作,直到变为一个字母为止.下面给出了n =2的一个例子.A CBC B A B A A A C C A A B B A C C B A求所有的正整数n ,使得对任意的初始排列,经上述操作后,所得的大三角形的三个顶点上的字母要么全相同,要么两两不同.参考答案 第一试二、填空题:1、33; 2、20054008; 3、36-; 4、816; 5、81;6、112.三、最大值5627+,最小值10327-.四、证略.五、证略.第二试一、证略;二、证略.三、 n =1.全国高中数学联赛模拟试题(八)第一试一、选择题:(每小题6分,共36分)1、已知n 、s 是整数.若不论n 是什么整数,方程x 2-8nx +7s =0没有整数解,则所有这样的数s 的集合是(A )奇数集 (B )所有形如6k +1的数集 (C )偶数集(D )所有形如4k +3的数集2、某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是 (A )16966 (B )16975 (C )16984 (D )170093、非常数数列{a i }满足02121=+-++i i i i a a a a ,且11-+≠i i a a ,i =0,1,2,…,n .对于给定的自然数n ,a 1=a n +1=1,则∑-=1n i ia等于 (A )2(B )-1(C )1(D )04、已知、是方程ax 2+bx +c =0(a 、b 、c 为实数)的两根,且是虚数,βα2是实数,则∑=⎪⎪⎭⎫⎝⎛59851k kβα的值是(A )1 (B )2(C )0(D )3i5、已知a +b +c =abc ,()()()()()()abb a acc a bcc b A 222222111111--+--+--=,则A 的值是(A )3(B )-3(C )4 (D )-46、对x i ∈{1,2,…,n },i =1,2,…,n ,有()211+=∑=n n x ni i ,x 1x 2…x n =n !,使x 1,x 2,…,x n ,一定是1,2,…,n 的一个排列的最大数n 是 (A )4 (B )6 (C )8(D )9二、填空题:(每小题9分,共54分)1、设点P 是凸多边形A 1A 2…A n 内一点,点P 到直线A 1A 2的距离为h 1,到直线A 2A 3的距离为h 2,…,到直线A n -1A n 的距离为h n -1,到直线A n A 1的距离为h n .若存在点P 使nn h a h a h a +++ 2211(a i =A i A i +1,i =1,2,…,n -1,a n =A n A 1)取得最小值,则此凸多边形一定符合条件 .2、已知a 为自然数,存在一个以a 为首项系数的二次整数系数的多项式,它有两个小于1的不同正根.那么,a 的最小值是 .3、已知()2cos 22sin 2,22++++=θθθa a a a a F ,a 、∈R ,a ≠0.那么,对于任意的a 、,F (a ,)的最大值和最小值分别是 .4、已知t >0,关于x 的方程为22=-+x t x ,则这个方程有相异实根的个数情况是 .5、已知集合{1,2,3,…,3n -1,3n },可以分为n 个互不相交的三元组{x ,y ,z },其中x +y =3z ,则满足上述要求的两个最小的正整数n 是 .6、任给一个自然数k ,一定存在整数n ,使得x n +x +1被x k +x +1整除,则这样的有序实数对(n ,k )是(对于给定的k ) .三、(20分)过正方体的某条对角线的截面面积为S ,试求最小最大S S 之值.四、(20分)数列{a n }定义如下:a 1=3,a n =13-n a (n ≥2).试求a n (n ≥2)的末位数.五、(20分)已知a 、b 、c ∈R +,且a +b +c =1.证明:2713≤a 2+b 2+c 2+4abc <1.第二试一、(50分)已知△ABC中,内心为I,外接圆为⊙O,点B关于⊙O的对径点为K,在AB 的延长线上取点N,CB的延长线上取M,使得MC=NA=s,s为△ABC的半周长.证明:IK⊥MN.二、(50分)M是平面上所有点(x,y)的集合,其中x、y均是整数,且1≤x≤12,1≤y≤13.证明:不少于49个点的M的每一个子集,必包含一个矩形的4个顶点,且此矩形的边平行于坐标轴.三、(50分)实系数多项式f(x)=x3+ax2+bx+c满足b<0,ab=9c.试判别此多项式是否有三个不同的实根,说明理由.参考答案第一试二、填空题: 1、该凸多边形存在内切圆; 2、5; 3、32+,32-;4、9;5、5,8;6、(k ,k )或(3m +2,2)(m ∈N +).三、332.四、7.五、证略.第二试一、证略;二、证略.三、 有.全国高中数学联赛模拟试题(九)第一试一、选择题:(每小题6分,共36分)1、 设集合M ={-2,0,1},N ={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有x +f (x )+xf (x )是奇数,则这样的映射f 的个数是(A )45 (B )27 (C )15 (D )112、 已知sin2=a ,cos2=b ,0<<4π,给出⎪⎭⎫ ⎝⎛+4tan πθ值的五个答案:①ab-1; ②b a-1; ③ab+1; ④b a +1; ⑤11-++-b a b a . 其中正确的是:(A )①②⑤ (B )②③④ (C )①④⑤ (D )③④⑤3、 若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是(A )64 (B )66 (C )68 (D )704、 递增数列1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个3的幂之和,则此数列的第100项为 (A )729 (B )972 (C )243 (D )9815、 14951C C C C +++++m n n n n (其中⎥⎦⎤⎢⎣⎡-=41n m ,[x ]表示不超过x 的最大整数)的值为 (A )4cos2πn n(B )4sin2πn n (C )⎪⎭⎫⎝⎛+-4cos 22211πn nn (D )⎪⎭⎫ ⎝⎛+-4sin 22211πn nn 6、 一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的个数是(A )8568 (B )2142 (C )2139 (D )1134二、填空题:(每小题9分,共54分)1、 过椭圆12322=+y x 上任意一点P ,作椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =PH (≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是.2、 已知异面直线a 、b 所成的角为60°,过空间一点P 作与a 、b 都成角(0<<90°)的直线l ,则这样的直线l 的条数是f ()= .3、 不等式()92211422+<+-x xx 的解集为 .4、 设复数z 满足条件|z -i|=1,且z ≠0,z ≠2i ,又复数使得i2i 2-⋅-z zωω为实数,则复数-2的辐角主值的取值范围是 . 5、 设a 1,a 2,…,a 2002均为正实数,且21212121200221=++++++a a a ,则a 1a 2…a 2002的最小值是 .6、 在一个由十进制数字组成的数码中,如果它含有偶数个数字8,则称它为“优选”数码(如12883,787480889等),否则称它为“非优选”数码(如2348756,958288等),则长度不超过n (n 为自然数)的所有“优选”数码的个数之和为 .三、(20分)已知数列{a n }是首项为2,公比为21的等比数列,且前n 项和为S n . (1) 用S n 表示S n +1;(2) 是否存在自然数c 和k ,使得cS cS k k --+1>2成立.四、(20分)设异面直线a 、b 成60°角,它们的公垂线段为EF ,且|EF |=2,线段AB 的长为4,两端点A 、B 分别在a 、b 上移动.求线段AB 中点P 的轨迹方程.五、(20分)已知定义在R +上的函数f (x )满足(i )对于任意a 、b ∈R +,有f (ab )=f (a )+f (b ); (ii )当x >1时,f (x )<0; (iii )f (3)=-1.现有两个集合A 、B ,其中集合A ={(p ,q )|f (p 2+1)-f (5q )-2>0,p 、q ∈R +},集合B ={(p ,q )|f (q p )+21=0,p 、q ∈R +}.试问是否存在p 、q ,使∅≠B A ,说明理由.第二试一、(50分)如图,AM 、AN 是⊙O 的切线,M 、N 是切点,L 是劣弧MN 上异于M 、N 的点,过点A 平行于MN 的直线分别交ML 、NL 于点Q 、P .若POQ O S S △⊙32π=,求证:∠POQ =60°.二、(50分)已知数列a 1=20,a 2=30,a n +2=3a n +1-a n (n ≥1).求所有的正整数n ,使得1+5a n a n +1是完全平方数.三、(50分)设M 为坐标平面上坐标为(p ·2002,7p ·2002)的点,其中p 为素数.求满足下列条件的直角三角形的个数:(1) 三角形的三个顶点都是整点,而且M 是直角顶点; (2) 三角形的内心是坐标原点.参考答案 第一试一、选择题:PQ二、填空题:1、⎪⎪⎭⎫⎢⎣⎡1,33;2、()⎪⎪⎪⎩⎪⎪⎪⎨⎧︒<<︒︒=︒<<︒︒=︒<<︒=900,460,36030,230,1300,0ααααααf ;3、⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡-845,00,21 ;4、⎪⎭⎫⎢⎣⎡-ππ,34arctan; 5、40022002;6、⎪⎪⎭⎫⎝⎛-+++63142789102111n n .三、(1)2211+=+n n S S ; (2)不存在.四、1922=+y x .五、不存在.第二试一、证略;二、n =3.三、 p ≠2,7,11,13时,324个;p =2时,162个;p =7,11,13时,180个.。
2019全国高中数学联赛一试和二试真题(含赛制介绍)
2019年数学联赛
数学联赛由全国高中数学联赛组委会统一命题,分一试和二试。
一试考试时间为8:00—9:20,共80分钟,包括8道填空题(每题8分)和3道解答题(分别为16分、20分、20分),满分120分。
二试(也称加试)考试时间为9:40—12:30,共170分钟,包括4道解答题,涉及平面几何、代数、数论、组合四个方面。
前两题每题40分,后两题每题50分,满分180分。
(部分地区一试二试一起考)。
参加全国高中数学联赛的学生可以自愿选择是否参加“全国高中数学联赛加试”;有意获得赛区一等奖和有意参加全国中学生数学冬令营的学生必须参加联赛一试及联赛二试(加试),并以两试的总分作为确定赛区一等奖、冬令营营员的标准。
数学联赛试题依然分AB卷两套试卷,浙江、江苏、河北、湖南、湖北、北京、上海、广东等绝大数省份使用A卷;极少数偏远地区则使用B卷。
B卷偏重对计算能力的考察,对思维方面的考察略低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1⻚页共6⻚页
2019年年全国⾼高中数学联赛江苏赛区市级选拔赛参考答案与评分细则
⼀一、填空题(本题共10⼩小题,每⼩小题7分,共70分.要求直接将答案写在横线上.)1.已知集合A ={x |x 2-3x +2≥0},B ={x |x -a ≥1},且A ∩B ={x |x ≥3},则实数a 的值是.
答案:2.
解:A ={x |x ≥2或x ≤1},B ={x |x ≥a +1}.⼜又A ∩B ={x |x ≥3},故a +1=3,
解得a =2.
2.已知与三条直线x +y =1,x +ay =2,x +2y =3都相切的圆有且只有两个,则所有可能的实数a 的值的和为.
答案:3.
解:由题意知,这三条直线中恰有两条平⾏行行时符合题意,故a =1或2,
从⽽而实数a 的值的和为3.
3.从1,2,3,4,5,6,7,8,9中任取3个不不同的数,并从⼩小到⼤大排成⼀一数列列,此数列列为等⽐比数列列的概率为.答案:121
.
解:满⾜足条件的等⽐比数列列共有4个:1,2,4;1,3,9;2,4,8;4,6,9.
故所求概率P =4C 39=1
21
.
4.设a ,b ∈[1,2],则
a 2+
b 2
ab
的最⼤大值是.
答案:52
.
解:因为a ,b ∈[1,2],所以(2a -b )(a -2b )≤0,展开得a 2
+b 2
≤5
2ab ,即a 2+b 2ab ≤52
.
且当a =1,b =2,或a =2,b =1时,a 2+b 2ab =52,所以a 2+b 2ab
的最⼤大值为5
2.
5.在矩形ABCD 中,AC =1,AE ⊥BD ,垂⾜足为E ,则(AD →·AE →)(CB →·CA
→
)的最⼤大值是.
答案:427
.
解:如图,设∠CAB =θ,AC =1,AE ⊥BD ,
A
B
D
第2⻚页共6⻚页
则AB =cos θ,AD =sin θ,AE =sin θcos θ,于是(AD →·AE →)(CB →·CA →
)=sin 2θ·cos 2θ·sin 2θ
=1
2
sin 2θ·2cos 2θ·sin 2θ≤12(sin 2θ+2cos 2θ+sin 2θ3
)3=427,等号当且仅当sin 2θ=2cos 2θ,即tan θ=2时成⽴立,故最⼤大值为4
27
.
6.在棱⻓长为1的正⽅方体ABCD -A 1B 1C 1D 1中,点E 在A 1D 1上,点F 在CD 上,A 1E =2ED 1,DF =2FC ,则三棱锥B -FEC 1的体积是.
答案:527
.
解:如图,过F 作EC 1的平⾏行行线交BC 的延⻓长线于G ,
则FG ∥平⾯面BEC 1.
从⽽而G 与F 到平⾯面BEC 1的距离相等,所以体积
=
.
⼜又A 1E =2ED 1,DF =2FC ,所以CG =13ED 1=1
9,
所以
=
=13×12×109×1×1=5
27
.7.设f (x )是定义在Z 上的函数,且对于任意的整数n ,满⾜足f (n +4)-f (n )≤2(n +1),f (n +12)-f (n )≥6(n +5),f (-1)=-504,则f (2019)
673
的值是.
答案:1512.
解:由f (n +4)-f (n )≤2(n +1),得
f (n +12)-f (n )≤f (n +12)-f (n +8)+f (n +8)-f (n +4)+f (n +4)-f (n )
≤2[(n +9)+(n +5)+(n +1)]=6(n +5).
⼜又f (n +12)-f (n )≥6(n +5),
所以f (n +12)-f (n )=6(n +5),故f (n +4)-f (n )=2(n +1).
因此f (2019)=(f (2019)-f (2015))+(f (2015)-f (2011))+…+(f (3)-f (-1))+f (-1)
=2(2016+2012+…+4+0)-504=2020×504-504=2019×504.
所以
f (2019)
673
=1512.8.函数f (x )=x 2+x
x 2-3的值域是
.
A 1
C D
A
E
B
D 1
B F
C 1
G。