实验八 交换机之间的端口聚合(学生用)
交换机和路由器端口聚合的综合实验
一网络拓扑图如下:二:实验目的(1)R1与R2 之间通过ospf协议进行连接,并且端口之间进行端口汇聚。
(2)R2——S1——S2 之间进行端口汇聚,并配置静态路由进行互联。
(3)最后R1——R2——S1——S2 各设备间能互相连通。
三:配置思路此实验的配置,可以划分为三个部分,(1)是R1与R2两个三层路由器间的端口配置。
(2)是S1与S2两个二层交换机间的端口配置。
(3)是三层路由器R2与二层交换机S1互联进行的端口配置。
四:具体配置如下第一步分:R1与R2两个三层路由器间的端口配置。
1.路由器R1的配置如下:R1(config)#int port-channel 1R1(config-if)#ip address 10.10.10.1 255.255.255.0R1(config-if)#no shutdownR1(config-if)#duplex fullR1(config-if)#exitR1(config)#int range f1/0 - 1R1(config-if-range)#no ip addressR1(config-if-range)#no shutdownR1(config-if-range)#channel-group 1R1(config-if-range)#duplex fullR1(config-if-range)#exitR1#wrR1(config)#router ospf 100R1(config-router)#network 10.10.10.0 0.0.0.255 area 0R1(config-router)#exitR1(config)#exitR1#wr2.路由器R2的配置如下:R2(config)#int port-channel 1R2(config-if)#no shutdownR2(config-if)#duplex fullR2(config-if)#ip address 10.10.10.2 255.255.255.0R2(config-if)#exitR2(config)#int range f1/0 - 1R2(config-if-range)#no ip addressR2(config-if-range)#no shutdownR2(config-if-range)#channel-group 1R2(config-if-range)#duplex fullR2(config-if-range)#exitR2#wrR2(config)#router ospf 100R2(config-router)#network 10.10.10.0 0.0.0.255 area 0R2(config-router)#exitR2(config)#exitR2#wr测试:R1#ping 10.10.10.2Type escape sequence to abort.Sending 5, 100-byte ICMP Echos to 10.10.10.2, timeout is 2 seconds:!!!!!Success rate is 100 percent (5/5), round-trip min/avg/max = 48/72/100 ms其它命令:显示port channel配置的命令——show int port-channel <id>显示route 路由的命令:——show ip route二第二部分:S1与S2两个二层交换机间的端口配置。
端口聚合
四、培养目标
培养目标
知识目标
理解端口聚合的概念 掌握端口聚合的配置
能力目标
能够实现端口聚合技术
知识准备
冗余拓扑 以太网端口聚合
知识准备(五)
以太网端口聚合
端口聚合概述
个聚合端口Aggregate Port (AP):把多个物理接口捆绑在一起 而形成的一个简单逻辑接口
记录问题
收集问题
测试失败
网络设备配置调试
项目报告
项目测试 测试成功
项目结束
(二)网络互连设备选型
三层交换机1台
二层交换机1台
(三)项目实施
1. 网络拓扑结构设计 根据学院教学的需求,绘制出网络拓扑结构图,本课程中使用的网
络图标均来自锐捷网络产品图标库,统一规范。
网络拓扑结构图
VLAN 10
fastEthernet 0/1-2
SW1(config-if-range)#port-group 1 SW1(config-if-range)#end SW1#configure terminal
SW1 F0/1 F0/2
Enter configuration commands, one
per line. End with CNTL/Z. SW1(config)#aggregateport loadbalance dst-mac SW1(config)#exit SW2(config)#aggregateport loadbalance src-mac
VLAN 10 F0/6
F0/1
PC1 F0/11 L3-SW F0/2
F0/1
F0/2 L2-SW
F0/6
PC3 PC2 VLAN 20 VLAN 10为计算机系教学设备、 VLAN 20为化学工程系教学设备
交换机的端口配置实验报告
交换机的端口配置实验报告
进入全局配置模式
5.在全局配置模式下输入interface命令,进入接口配置模式。
7.配置接口的描述和管理状态
8.在特权模式下,关闭一个接口9配置接口的速度,双工,流控
11.显示接口状态
12.显示可交换接口(show interface description)
13.显示指定端口的统计值信息
15.配置网络接口的IP地址
16 show ip interface
通过本次实验学会了一部分锐捷公司交换机的端口的命名规则、类型和种类,它的端口有两部分组成,端口所在的插槽和端口在插槽上的编号。
交换机端口类型有快速以太网端口,千兆以太网端口、聚合端口和。
交换机端口聚合
计算机网络技术综合实训『交换机端口聚合、交换机生成树协议配置、交换机端口管理配置』报告学院专业:班级:组号:姓名:学号:组员:第一部交换机端口聚合一、实训目的掌握在交换机上端口聚合的方法掌握交换机端口聚合的配置方法及配置命令二、实训所需设备交换机两台、计算机两台、网线数根。
三、实训原理及拓扑图原理:端口聚合是将几个链路作聚合处理,增加交换机之间的连接带宽,避免网络瓶颈。
这几个链路必须同时连接两个相同的设备,不需从新布线。
可以绑定任何相关的端口,课随时取消,灵活性很高的链路聚合可以提供负载能力以及系统容错。
拓扑图:四、实训的内容1、规划交换机使用哪几个端口进行链路聚合的配置。
2、在计算机上配置相同网段的IP地址,然后互相使用Ping命令查看相互通信情况。
3、对交换机按照规划端口进行链路聚合的配置。
4、使用Ping命令,观察Ping后的结果5、用Show命令查看链路聚合的的配置。
五、实训步骤1、查看交换机配置情况清除不需要的配置及检测到网络广播风暴。
如图1和图2所示,图1 交换机配置情况图2 网络广播风暴2、进行实训链路连接。
、在计算机1上,单击【开始】|【程序】|【附件】|【通讯】|【超级终端】命令,选择端口连接,进行带外管理配置。
3、对交换机输入配置命令,如图3所示图3 验证交换机1的端口聚合4、在计算机2上,单击【开始】|【程序】|【附件】|【通讯】|【超级终端】命令,进行命令配置,同样验证端口聚合的情况。
第二部分交换机生成树协议配置一、实训目的1、了解广播风暴及其危害,并尝试产生广播风暴,观察交换机状态。
2、掌握跨交换机生成树的配置方法和配置命令3、理解生成树的工作过程,并对交换机端口是否阻塞进行判断。
二、实训所需设备两台交换机、网线数根、配置计算机两台三、实训原理1、桥接链路的危害在两台交换机之间,如果存在两条以上的链路,就必须形成环路,交换机并不知道图和处理,只是周而复始地转发帧,形成四循环。
实验:交换机的链路聚合技术
训练1 交换机的链路聚合技术
训练步骤交换机B上配置聚合端口
任务一 任务二 任务三 任务四
SwitchB(config)#interface port-channel 1 SwitchB(config-if)#switchport mode trunk SwitchB(config-if)#exit SwitchB(config)#interface range fastethernet 0/1 – 2 SwitchB(config-if-range)#channel-group 1 mode on SwitchB(config-if-range)#end SwitchB#show etherchannel summary
训练1 交换机的链路聚合技术
训练分析
任务一 任务二 任务三 任务四 由于本实验使用的是二层交换机实现链路聚合功能,在二层 交换机互联时要用交叉线进行互联。当我们连接好设备时会 发现,交换机互联的两条链路中,有一条是的链路标志是为 黄色的,表示该链路处于关闭状态,此时两台交换机之间并 没有实现链路聚合功能。
训练1 交换机的链路聚合技术
训练测试
任务一 任务二 任务三 任务四 当我们做完以上配置时,再次检查网络拓扑图可以发现,这 时交换机互联的两条链路的标记都是绿色的了,如图2.3.2所 示:
验证当交换机之间的一条链路断开时,PC1与PC2仍能互相 通信
训练1 交换机的链路聚合技术
训练小结 任务一 任务二 任务三 任务四 在设置交换机的端口汇聚时应选择偶数数目的端口,如2个、 4个、8个等; 选择的端口必须是连续的; 端 交换机的链路聚合技术
训练步骤交换机A上配置聚合端口
任务一 任务二 任务三 任务四
SwitchA(config)#interface port-channel 1 !创建聚合组 1 SwitchA(config-if)#switchport mode trunk !配置模式为 trunk SwitchA(config-if)#exit SwitchA(config)#interface range fastethernet 0/23–24 !进入接口 Fa0/23 和 Fa0/24 SwitchA(config-if-range)#channel-group 1 mode on !启动链路聚合功能 SwitchA(config-if-range)#end SwitchA#show etherchannel summary !查看链路聚合组 1 的信息
端口汇聚实验
SwitchA(config-if-range)#channel-group 1 mode on!配置接口0/1和0/2属于channel 1
注:AG1,最大支持端口数为8个,当前VLAN模式为Trunk,组成员有F0/1、F0/2。
FastEthernet0/6 is down, line protocol is down
Internet protocol processing disabled
FastEthernet0/7 is down, line protocol is down
Internet protocol processing disabled
!
port-channel load-balance src-mac
!
interface FastEthernet0/1
channel-group 1 mode on
!
interface FastEthernet0/2
channel-group 1 mode on
!
interface FastEthernet0/3
交换机端口聚合
实验目的
理解端口聚合(Aggregate-port)的配置及原理。
基础知识
端口聚合也叫做以太通道(ethernet channel),主要用于交换机之间连接。由于两个交换机之间有多条冗余链路的时候,STP会将其中的几条链路关闭,只保留一条,这样可以避免二层的环路产生。但是,失去了路径冗余的优点,因为STP的链路切换会很慢,在50s左右。使用以太通道的话,交换机会把一组物理端口联合起来,做为一个逻辑的通道,也就是channel-group,这样交换机会认为这个逻辑通道为一个端口。这样有几个优点:
82实验一:交换机端口聚合及端口安全配置
计算机网络工程实验
一、交换机端口聚合配置
技术原理
端口聚合(Aggregate-port)又称链路聚合,是指两台交
计 算 机 网 络 工 程
换机之间在物理上将多个端口连接起来,将多条链路聚 合成一条逻辑链路。从而增大链路带宽,解决交换网络 中因带宽引起的网络瓶颈问题。多条物理链路之间能够 相互冗余备份,其中任意一条链路断开,不会影响其他 链路的正常转发数据。 端口聚合遵循IEEE802.3ad协议的标准。
计算机网络工程实验
二、交换机端口安全配置
【背景描述】
你是一个公司的网络管理员,公司要求对网络进行严
计 算 机 网 络 工 程 【实验设备】
格控制。为了防止公司内部用户的IP地址冲突,防止 公司内部的网络攻击和破坏行为。为每一位员工分配 了固定的IP地址,并且限制只允许公司员工主机可以 使用网络,不得随意连接其他主机。例如:某员工分 配的IP地址是172.16.1.55/24,主机MAC地址是00-061B-DE-13-B4。该主机连接在1台2126G上。
计算机网络工程实验
二、交换机端口安全配置
注意事项 1. 交换机端口安全功能只能在ACCESS接口进行配 置 2. 交换机最大连接数限制取值范围是1~128,默认 是128. 3. 交换机最大连接数限制默认的处理方式是 protect。
计 算 机 网 络 工 程
计算机网络工程实验
思考题
1.用Cisco Packet Tracer配置交换机端口聚合
计算机网络工程实验
一、交换机端口聚合配置
【实验拓扑】
计 算 机 网 络 工 程
F0/23 F0/5 F0/24 NIC F0/23 F0/24 F0/5
交换机端口聚合实验报告
实验报告专业: 网络工程 班级:10网络(1)班 学号: 姓名:课程名称: 计算机网络工程 学年:2012-2013 学期:1 / 2 课程类别:专业必修 限选 任选 实践 实验时间:2012 年10月26日 实验名称:交换机端口聚合实验实验目的和要求:理解链路聚合原理及配置内容;掌握链路聚合的具体配制方法和测试方法。
真实实验软硬件条件: 二层交换机(S2691)2台; PC 机2台; 网线(4根):直通线(2根)、交叉线(2根);进入实验室电脑第三个系统winxp 。
模拟实验软硬件条件:用R2691+16口交换模块; 用Cloud+VPCS ; 网线(4根):直通线(2根)、交叉线(2根)。
实验内容:1、参考上图构建实验网络拓扑(配置两个交换机的模块,配置各PC 机网络接口、连接设备等);2、完整、明确的标注端口及配置信息;3、在交换机(Switch A )上配置VLAN 10,并将其F1/1端口划入VLAN 10中;4、在交换机(Switch B )上配置VLAN 10,并将其F1/1端口划入VLAN 10中;5、对交换机(Switch A )进行端口聚合配置,创建端口聚合链路1,并将该交换机的F1/2-3接口加入到端口聚合链路1中;6、对交换机(Switch B )进行端口聚合配置,创建端口聚合链路1,并将该交换机的F1/2-3接口加入到端口聚合链路1中;7、通过VPCS 虚拟机,为每个PC 机配置IP 地址;8、在两台PC 机间进行连通性测试(相互可以ping 通且链路状态稳定); 9、断开链路Switch A (F1/2)—> Switch B(F1/2)或链路Switch A (F1/3)—> SwitchB(F1/3)中的任意一条后,再次对两台PC 机进行连通性测试(相互可以ping 通,但会出现延时且链路状态不稳定)。
但是重新连接又可以ping 通了,比较灵活。
实验结果:见附页小结:评定成绩: 批阅教师: 年 月 日√√【实验拓扑】【实验步骤】步骤1.(1)按照上图构建网络拓扑结构图。
实验8 端口聚合配置
实验八端口聚合配置一、实验目的和要求•理解端口聚合的作用和特点•掌握链路聚合的配置及原理二、实验设备三层交换机1台,二层交换机1台,直通双绞线2根三、实验内容switchA是一台三层交换机,switchB是一台二层交换机,在两台交换机之间的冗余链路上实现端口聚合,并且在聚合端口上设置Trunk,以增加交换机之间网络骨干链路的传输带宽,并冗余链路上实现均衡负载。
四、实验拓扑图1 端口聚合五、背景描述假设某企业采用2台交换机组成一个局域网,由于很多据流量是跨过交换机进行传送的,因此需要提高交换机之间的传输带宽,并实现链路冗余备份,为此网络管理员在2台交换机之间采用2根网线互连,并将相应的2个端口聚合为一个逻辑端口,现要在交换机上做适当配置来实现这一目标。
六、相关知识1、概念端口聚合又叫链路聚合,端口捆绑,英文名是port trunking。
2、功能链路聚合技术可以在不改变现有的网络设备以及原有布线的基础上,将交换机的多个低带宽交换端口捆绑成一条高带宽的链路,通过几个端口进行链路负荷平衡,避免链路出现拥塞现象,这个高带宽的链路通常被称为Link Aggragation Group(LGA),它可以提供各物理链路的负载平衡。
3、端口聚合的条件组端口的速度必须一致组端口必须属于同一个VLAN组端口使用的传输介质相同组端口必须属于同一层次,并与AP也要在同一层次4、链路聚合优点提高链路可用性链路聚合中,成员互相动态备份。
当某一链路中断时,其它成员能够迅速接替其工作。
与生成树协议不同,链路聚合启用备份的过程对聚合之外是不可见的,而且启用备份过程只在聚合链路内,与其它链路无关,切换可在数毫秒内完成。
增加链路容量某些情况下,链路聚合甚至是提高链路容量的唯一方法。
例如当市场上的设备都不能提供高于10G 的链路时,用户可以将两条10G链路聚合,获得带宽大于10G的传输线路。
价格便宜,性能接近千兆以太网不需重新布线,也无需考虑千兆以太网传输距离极限问题Trunking可以捆绑任何相关的端口,也可以随时取消设置,这样提供了很高的灵活性提供负载均衡能力以及系统容错。
交换机端口链路聚合
交换机端口链路聚合交换机端口链路聚合描述:链路聚合就是将交换机上多个端口物理上连接起来,逻辑捆绑在一起。
1、形成较大宽带的端口。
2、实现负载分担,并提供冗余链路下面使用华为交换机进行配置步骤讲述一:配置手工负载分担模式链路聚合示例图1. 配置手工负载分担模式链路聚合组网图SwitchA和SwitchB通过以太链路分别都连接VLAN10和VLAN20的网络,创建Eth-Trunk接口并加入成员接口,为VLAN间通信提供较大的链路带宽及一定的冗余度,保证数据传输和链路的可靠性。
操作步骤配置前链路端口先不物理连接端口或将端口Shutdown,避免出现广播风暴。
在SwitchA创建Eth-Trunk接口并加入成员接口。
SwitchB配置与SwitchA类似,不再赘述。
<HUAWEI> system-view [HUAWEI] sysname SwitchA[SwitchA] interface eth-trunk 1[SwitchA-Eth-Trunk1] trunkport gigabitethernet 0/0/1 to 0/0/3[SwitchA-Eth-Trunk1] quit创建VLAN并将接口加入VLAN。
SwitchB配置与SwitchA类似,不再赘述。
[SwitchA] vlan batch 10 20[SwitchA] interface gigabitethernet 0/0/4[SwitchA-GigabitEthernet0/0/4] port link-type trunk[SwitchA-GigabitEthernet0/0/4] port trunk allow-pass vlan 10[SwitchA-GigabitEthernet0/0/4] quit[SwitchA] interface gigabitethernet 0/0/5[SwitchA-GigabitEthernet0/0/5] port link-type trunk[SwitchA-GigabitEthernet0/0/5] port trunk allow-pass vlan 20[SwitchA-GigabitEthernet0/0/5] quit配置Eth-Trunk1接口允许VLAN10和VLAN20通过[SwitchA] interface eth-trunk 1[SwitchA-Eth-Trunk1] port link-type trunk[SwitchA-Eth-Trunk1] port trunk allow-pass vlan 10 20配置Eth-Trunk1的负载分担方式,。
交换机链路聚合配置命令
交换机链路聚合配置命令1 交换机链路聚合介绍交换机链路聚合是一种允许多个物理链路被合并成一个更大的逻辑链路的技术。
交换机链接聚合的机制可以将多个物理链路组合为一个逻辑链路,以满足用户对负载平衡和可靠性的要求,且由于利用了多条链路,因此也具有更大的带宽。
最常见的交换机链接聚合技术是基于IEEE 802.3ad标准的Link Aggregation Control Protocol (LACP)。
2 交换机链路聚合配置命令(1)定义链路组:首先,我们需要创建一个链路组,以便将端口分组,例如在Here we configure two port aggregates, group 0 and group 1。
在这两个组中,可以把任意端口归组到这两个组,用以下命令创建链路组:switch(config)#interface port-channel 0switch(config-if-port-channel)#(2)绑定端口:将单个端口,比如F0/1/2和F0/1/3,绑定到链路组0上,可以使用以下命令:switch(config-if-port-channel)#switchport mode trunkswitch(config-if-port-channel)#switch(config-if-port-channel)#interface fastethernet0/1/2switch(config-if-fa0/1/2)#channel-group 0 mode activeswitch(config-if-fa0/1/2)#interface fastethernet 0/1/3switch(config-if-fa0/1/3)#channel-group 0 mode active(3)验证配置:可以使用 show port-channel summary 命令来检查配置,以确认两个端口已经连接到了正确的链路组中。
交换机及聚合配置(教学篇)
交换机及聚合配置(教学篇)■ 任务描述某服务器间的物理连接如图1所示,服务器A、B、C需要通过交换机与对端的服务器D、E、F通信,现需拓展链路带宽、同时提升服务器间访问的可靠性,传统的方式是更换更高级别的设备或者更换更高带宽的业务板。
图1 传统的交换机链路工程师诊断后,决定在原设备上配置链路聚合进行改进,可将交换机的多个物理端口绑定成一个逻辑端口,根据用户配置的端口负荷分担策略,链路聚合能实现链路带宽的增加、节约设备及工程成本,提高网络的安全性和可靠性。
■ 相关知识1、链路聚合的工作原理将交换机间的多个物理端口形成的物理链路捆绑在一起,形成一条大带宽的逻辑链路。
如图2所示。
捆绑后的逻辑链路一方面增加了链路传输带宽,同时也可避免二层环路。
图2 交换机的链路聚合且当有一条链路断开(例如:4端口之间的链路断开),如图3所示,流量会自动在剩下的1、2、3端口共三条链路间重新分配,实现链路传输弹性和冗余,增加了可靠性。
图3 交换机的4端口断开时实现冗余2、链路聚合的配置方式(1)创建Eth-trunk;(2)设置Eth-trunk端口属性,属性一般设置为trunk类型;(3)将交换机的端口加入到Eth-trunk组中。
■ 任务完成步骤1、网络拓扑规划根据任务需求,简化拓扑结构,规划拓扑如图4所示,服务器PC的IP规划如图4所示,四台PC分别被规划到两个VLAN,VLAN10及VLAN20,拓扑说明如下:图4 交换机链路聚合配置拓扑图要求:(1)根据拓扑图的要求,在交换机上创建相关VLAN;(2)将PC所连接的交换机端口划分给相应的VLAN;(3)在交换机上查看链路聚合的配置。
(4)配置完成后检验PC01与PC03、PC02与PC04之间的连通性;2、完成SW1和SW2设备配置(1)SW1的配置如下:第一步:创建两个vlanid 号10和20;[SW1] vlan batch 10 20第二步:在交换机SW1上创建聚合组Eth-trunk 1,并配置Eth-trunk的端口类型为trunk,让其放行VLAN10和VLAN20。
交换机链路聚合LACP实验报告
交换机链路聚合LACP实验报告摘要:本实验通过使用链路聚合控制协议(Link Aggregation Control Protocol,LACP),在交换机中实现了多个物理链路的聚合,提高了网络带宽利用率和可靠性。
实验结果表明,LACP能够有效地提升网络性能和可靠性,并且在适当配置下,对于大规模网络环境也同样适用。
一、引言链路聚合是一种利用多个物理链路进行并行工作的技术,通过将多个链路组合成为一个逻辑链路来提高网络的带宽和可靠性。
链路聚合在现代数据中心和企业网络中广泛应用,以满足对高带宽和高可靠性的需求。
本实验旨在通过LACP协议实现链路聚合,评估其对网络性能和可靠性的影响。
二、实验环境我们在实验室中搭建了一个小型网络环境,包括一台交换机和两台主机。
交换机使用了支持LACP协议的设备,并配置了四个物理接口用于链路聚合。
主机1和主机2通过交换机进行通信。
所有设备的硬件规格和软件版本保持一致,以消除因设备差异带来的影响。
三、实验步骤1. 准备工作在交换机上准备四个物理接口,并进行相应的配置。
选择适当的接口速率、速度和双工模式等参数。
2. 配置链路聚合组在交换机上创建一个链路聚合组,并将四个物理接口加入组中。
启用LACP协议,配置适当的模式和优先级。
3. 配置主机配置主机1和主机2的网络接口,设置IP地址和子网掩码。
确保两台主机处于同一子网内。
4. 测试连接使用ping命令测试主机1和主机2之间的连通性,确认链路聚合配置生效。
四、实验结果与分析通过实验,我们观察到以下结果和现象:1. 带宽增加在链路聚合之前,主机1和主机2之间的带宽受限于单个物理链路的带宽。
而在链路聚合之后,多个物理链路的带宽被合并为逻辑链路的带宽,大大提高了通信速率。
2. 可靠性提升链路聚合不仅提高了带宽,还增强了网络的可靠性。
当某个物理链路故障时,数据流量会自动切换到其他正常的链路上,保证通信的连续性和可靠性。
3. 配置灵活性LACP协议允许管理员根据需求配置链路聚合组的模式和优先级,以满足不同网络环境的需求。
STP和端口聚合实验
交换机的生成树协议(STP)和端口聚合的应用1、实验目的配置交换机之间的物理冗余备份链路,利用生成树协议消除逻辑上的循环冗余,避免形成数据帧的循环转发和广播风暴。
配置交换机之间的多端口聚合连接,提高交换机之间传输的速度。
2、实验条件⏹华为交换机Quidway S2403H两台、网线若干、微机若干台、专用配置电缆一条。
⏹实验拓扑图:如下图所示。
PCB:VLAN3PCD:VLAN3PCA:VLAN2PCC:VLAN23、实验内容及步骤1)STP⏹按上图连接交换机SwitchA、SwitchB,在e0/23和e0/24两个端口进行trunk连接。
⏹观察交换机之间形成的数据帧循环转发和广播风暴。
(两个S之间只连一根网线时,跨交换机同VLAN的两个计算机能PING通;两根网线连接一分钟后,两个S的红灯绿灯都亮,这两个计算机不能PING通)⏹两个S之间连两根网线时,运行生成树协议阻断冗余链路,消除桥接网络中的逻辑路径环路,避免数据帧的循环转发和广播风暴。
(两个S的绿灯亮,红灯偶尔闪,这两个计算机能PING通)开启生成树功能:[Quidway] stp enable⏹当前活动的转发路径发生故障时激活冗余备份链路恢复网络连通性。
分别拔下一根交换机之间的连线,测试交换机两端计算机之间的连通性,仍能保持网络的连通。
⏹关闭交换机的生成树功能:[Quidway] stp disable ‘两个S都关闭一分钟后,就PING不通(如果确定某个端口连接的部分不存在回路,则可以通过命令关闭该端口的生成树功能:[Quidway-Ethernet0/1] stp disable )⏹通过命令配置网桥优先级(Bridge Priority,默认为32768),将合适的交换机推举为根桥。
[Quidway] stp priority bridge-priority比如:[Quidway] stp priority 4096优先级小的交换机为根桥,如果优先级相同,则MAC地址小的为根桥。
探究交换机链路聚合的实际案例
探究交换机链路聚合的实际案例探究交换机链路聚合的实际案例1. 引言交换机链路聚合(Link Aggregation)是一种网络技术,它通过将多条物理链路绑定为一条逻辑链路来增加带宽、提高网络吞吐量和可靠性。
在实际应用中,交换机链路聚合可以发挥重要的作用,特别是在需要高速、可靠的网络连接时。
本文将通过探究几个实际案例,解析交换机链路聚合的应用和优势。
2. 案例一:企业数据中心在企业数据中心,网络连接的性能和可靠性对业务运行至关重要。
传统上,企业数据中心使用单个链路连接交换机和服务器,但这种设计存在带宽瓶颈和单点故障的风险。
通过使用交换机链路聚合技术,管理员可以将多个链路绑定为逻辑链路,实现带宽的叠加和冗余。
这样一来,企业数据中心可以同时实现更高的带宽和更强的容错能力,提高业务连通性和可靠性。
3. 案例二:校园网络校园网络通常需要处理大量的网络流量,包括学生和教职员工的数据传输、在线教育和视频流等。
对于校园网络来说,交换机链路聚合是一个强有力的工具,可以提供更大的带宽和更好的负载均衡。
通过将多条链路绑定为一条逻辑链路,可以将网络流量分散到多个链路上,避免单条链路资源的过度使用和拥塞。
这对于提高用户的网络体验和满足校园网络的高带宽需求非常有帮助。
4. 案例三:云计算中心在云计算中心,交换机链路聚合是实现高性能和高可靠性的关键技术之一。
云计算中心需要处理大量的数据传输和复杂的计算任务,对网络连接的要求非常高。
通过使用交换机链路聚合,云计算中心可以在物理链路故障时使用冗余链路,保障云服务的可用性。
链路聚合还可以提供更大的带宽,满足用户对高速数据上传和下载的需求。
5. 总结和观点交换机链路聚合在实际案例中展现出了其重要性和优势。
无论是企业数据中心、校园网络还是云计算中心,链路聚合都可以提供更高的带宽、更好的负载均衡和更强的容错能力。
在构建大规模网络时,管理员应该考虑采用链路聚合技术,以提高网络的性能和可靠性。
8月案例3-交换机端口聚合案例
交换机端口聚合案例链路聚合(Link Aggregation)又称Trunk,是指将多个物理端口捆绑在一起,成为一个逻辑端口,以实现出/入流量在各成员端口中的负荷分担,交换机根据用户配置的端口负荷分担策略决定报文从哪一个成员端口发送到对端的交换机。
当交换机检测到其中一个成员端口的链路发生故障时,就停止在此端口上发送报文,并根据负荷分担策略在剩下链路中重新计算报文发送的端口,故障端口恢复后再次重新计算报文发送端口。
为加大端口上行容量,假设端口25、26需要做聚合,一个端口有1G的上行带宽,现在两个端口聚合在一起就可以实现2G的容量带宽。
如下图,假设3928上行端口的聚合数据已做好。
3928的具体配置如下:interface smartgroup1 /*创建Trunk组*/switchport mode trunk /*对组内端口模式以及允许的vlan进行配置,注意:加入聚合组的端口配置必须与其一致*/ switchport trunk vlan 10switchport trunk vlan 1301-1303switchport trunk vlan 1305switchport trunk vlan 3410smartgroup1 mode on配置相应的端口interface gei_1/25switchport mode trunkswitchport trunk native vlan 1switchport trunk vlan 10switchport trunk vlan 1301-1303switchport trunk vlan 1305switchport trunk vlan 3410smartgroup 1 mode on /*端口加入聚合组中*/interface gei_1/26switchport mode trunkswitchport trunk native vlan 1switchport trunk vlan 10switchport trunk vlan 1301-1303switchport trunk vlan 1305switchport trunk vlan 3410smartgroup 1 mode on /*端口加入聚合组中*/检查配置:查看Trunk组2中成员端口的聚合状态:show lacp 1 internal当Agg State为active,Port State为0x3d时,表示端口聚合成功。
项目5:交换机之间的链路聚合
项目5: 项目 :交换机之间的链路聚合
5.2.1以太信道(EtherChannel)概念 以太信道( 以太信道 ) 1.2 相关知识 以太信道能从组合将2~ 条标准的以太链路 条标准的以太链路( 以太信道能从组合将 ~8条标准的以太链路(最高 160Mb/s)到一条逻辑信道,到组合将 ~8条快速以太链 )到一条逻辑信道,到组合将2~ 条快速以太链 最高1.6Gb/s)到一条逻辑信道,再到组合将 ~8条 路(最高 )到一条逻辑信道,再到组合将2~ 条 10G以太链路(最高 以太链路( 以太链路 最高160Gb/s)到一条逻辑信道。 )到一条逻辑信道。 以太信道将2~ 条链路捆绑为一组逻辑链路 条链路捆绑为一组逻辑链路, 以太信道将 ~8条链路捆绑为一组逻辑链路,如图 5.1所示。并且当捆绑的链路中有一条出现故障时,以太信 所示。 所示 并且当捆绑的链路中有一条出现故障时, 道能继续运行, 道能继续运行,以及当故障链路恢复后能重新将其加入到 捆绑链路中。以太信道常与以太网Trunk同时使用,并且 同时使用, 捆绑链路中。以太信道常与以太网 同时使用 支持IEEE802.1Q和ISL两种以太网 支持 和 两种以太网trunk技术。 技术。 两种以太网 技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验八 交换机之间的端口聚合
【场景构建】
学校的1号教学楼内计算机的数量比较多,是一个独立的局域网,上联到校中心机房交换机网络的流量较大,为了提高数据带宽,要求通过增加交换机之间的网线连接数量来实现,并且能够提供冗余链路。
[实验目的]
1、 了解什么交换机之间的端口聚合
2、 熟练掌握端口聚合的的方法与命令。
【知识准备】
端口聚合(Aggregate-port )又称链路聚合,是指两台交换机之间在物理上将多个端口连接起来,将多条链路合成一条逻辑链路。
从而增大链路带宽,解决交换网络中因带宽引起的网络瓶颈问题。
多条物理链路之间能够相互冗余备份,其中任意一条链路断开,不会影响其他链路的正常转发数据。
思科开发了端口聚合协议(PagP )。
交换机通过支持以太信道的端口交换PagP 分组。
它可以将具有相同速度,双工模式,本地vlan ,vlan 范围和中继状态和类型接口组合在一起。
PagP 只在配置的静态VLAN 中或中继模式相同的端口上建立以太信道。
如果某个被捆绑的端口发生变化,PagP 将动态地修改以太信道参数。
【实验一】 二层交换机之间的端口聚合
1.1 实验设备
1、2950-24交换机2台
2、PC 机2台
3、交叉线、直通线若干。
1.2 组网图
PC1PC2
SW1
SW2
1.3 实验设备IP 地址及要求
PC1连接在交换机SW2的F0/1端口,也属于VLAN 10。
两台交换机之间的F0/23和F0/24端口通过交叉线连接,通过端口的聚合,使两条100M 的物理链路能够形成一条200M 的逻辑链路,从而实现提高交换机之间
带宽的目的,同时当一根网线发生故障时,另一根网线仍然可以担负传输功能,
1.4配置步骤
第一步:PC机上的IP地址请自行设置完成。
(默认动作)
第二步:配置2950-24交换机SW1上的F0/1,加入VLAN 10
第三步:配置汇聚以太网通道组号及传输模式
第四步:配置需要汇聚的端口及汇聚模式
第五步:配置2950-24交换机SW2上的F0/1,加入VLAN 10
第六步:配置汇聚以太网通道组号及传输模式
第七步:配置需要汇聚的端口及汇聚模式
1.5 实验验证(截图保存在PKT文件中)
1、交换机SW1上端口聚合的情况。
2、交换机SW2上端口聚合的情况。