南开大学数学分析答案2005

合集下载

高等代数考研20051

高等代数考研20051

南开大学2005硕士研究生入学考试试题 高等代数注:本解答所需知识均参照高教社出版的由北大代数小组主编由王萼芳、石生明修订的《高等代数》!一、计算下列行列式2n ?,x x x x x x x x x x x x 1x 1x 1x 1112n n1n n 2n 21n 22n 11n 1n2n 222121n 21≥=+++++++++------解:由行列式性质,2n n1n n 2n 21n 22n 11n 1n2n 2221212n n1n n 2n 21n 22n 11n 1n2n 222121n 212n n 1n n 2n 21n 22n 11n 1n2n 222121n 21x x x x x x x x x x x x 111111x x x x x x x x x x x x x x x 111x x x x x x x x x x x x 1x 1x 1x 111------------------+++++++++++++=+++++++++显然,第二式为0,连续运用此性质得()∏≤<≤----------==+++++++++ni j 1j i1n n1n 21n 12n 2221n 212n n 1n n 2n 21n 22n 11n 1n2n 222121n 21a ax x x x x x x x x 111x x x x x x x x x x x x 1x 1x 1x 111二、设齐次线形方程组⎪⎪⎩⎪⎪⎨⎧=-+=-+=++-=++0ex dx bx 0ex cx ax 0dx cx x 0bx ax x 321421431432的一般解以43x ,x 为自由未知量(1) 求 a,b,c,d,e 满足的条件 (2)求齐次线形方程组的基础解系解:由自由变量数为2,可知,方程组系数矩阵的秩为2,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0e d b e 0c a d c 01b a 10的秩为2,又易得系数矩阵变形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--0e d b e 0c a b a 10d -c -01。

2005考研数一真题答案及详细解析

2005考研数一真题答案及详细解析

当F(x) 为偶函数时,有 F(— x)=F(x),
于是 F'(- X) • (—1) = F'(x),
即— f(— X) = j(x), 也即八— x) = — f(x),
可见 f(x) 为奇函数;
I: f +-c 勹 反过来,若 f(x) 为奇函数,则 f (t)dt 为偶函数,从而 F(x) = Ct)dt
1
x2
X
2 'xE(—1,1)'
I。厂 r 从而
(17)解
X2 f(x)=2S(x)+
l+x
=2xarctanx

lnCl
+x
2
x2 )+
1 +x
2
'
+x)广(x)dx=(x 2 +x)广(x) 3 - (2x+1)广(x)心
�-f'.<zx + 1)广!:)dx"
xE(-1,1).
『+ 。 = — (2x+1)f'(x)
g(�)=f(�)+� — 1=0,
c II)根据拉格朗日中值定理 , 存在r;E (0,�),1;E C�,1),使得
f'( 1/ )
= J(n
-f(O)

l—
=

e
'
�' J'烤)=
J(l) 1
— /CO -�
=1
-Cl -�) 1—�
= 1


从而
e f' J'(沪
1-� 烤)= �

� 1—

2004-2005 学年第二学期大学数学分析试题及答案

2004-2005 学年第二学期大学数学分析试题及答案
2004——2005 学年第二学期数学分析试题 A(0401,0402)
一:填空(20 分)
1、函数 f (x) = e x 的带有拉格朗日型余项的麦克劳林公式为

2、设 f(x)为区间 I 上的可导函数,则 f 为 I 上的凸函数的充要条件为 f (x)
f (x1) + f (x1)(x2 − x1)
n+1
,
n
=
(4
1,2,
分)
n
所以当 x (0,2) 时,
f (x) = x = 4 (−1)n+1 sin nx = 4 sin x − 1 sin 2x + 1 sin 3x + (6 分)
n
2 2 2 2 3 2
5、因 an
=
n(n
1 + 1)(n
+
2)
=
1 2
1
n(n
+
1)

(n
由罗尔定理存在 (,1) (0,1) 使得 F ( ) = 0 ,即 f ( ) = − f ( ) (4 分)
23
n
,当 x = −1时
二:判断(16 分)
1、实轴上的任一有界点集 S 至少有一个聚点。( )
2、设 H = { ( 1 , 1 ) n+2 n
n = 1, 2, } ,则 H 能覆盖区间 (0,1)。( )
3、黎曼函数
f
(x)
=
1 , q
x = p , p, q互素, q p q
在 区 间 [0 , 1] 上 可 积 , 且
连续及连续函数的局部保号性,存在 x0 的某领域 (x0 − , x0 + ) (当 x0 = a 或

数学分析课后习题答案

数学分析课后习题答案

习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时,y 的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数解 由推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。

因此每一个含有第一类间断点的函数都没有原函数。

5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷ ⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22⑻ C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2⑼ C x x dx x x dx xx xx dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀ C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁ C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂ C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(习题1.应用换元积分法求下列不定积分:⑴ C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹ C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼ C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇ C x dx x xxdx +==⎰⎰|sin |ln sin cos cot(21) ⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴ C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵ C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln ⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸ C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻ ⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼ ⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以 C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n m习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得31=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材 例9或关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵ ]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷ ⎰⎰⎰⎰===x x x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sinC x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸ C x e C e u e du u e u x dx ex u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿ ⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄ ⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。

2005年普通高等学校招生全国统一考试数学及详细解析(天津卷.文)

2005年普通高等学校招生全国统一考试数学及详细解析(天津卷.文)

2005年普通高等学校招生全国统一考试 数学(天津文科卷)试题精析详解一、5分⨯10=50分)(1) 集合{|03}A x x x N =≤<∈且的真子集个数是 ( ) (A )16 (B )8 (C )7 (D )4 【思路点拨】本题考查集合、真子集的基本概念,可采用直接法求集合A【正确解答】用列举法,{0,1,2}A =,A 的真子集有:,{0},{1},{2},{0,1},{0,2},{1,2}∅,共7个,选C【解后反思】注意不要忘记空集,以及真子集不包含集合本身.(2) 已知111222log log log b a c <<,则 ( )(A )222b a c >> (B) 222a b c >> (C) 222c b a >> (D) 222c a b >> 【思路点拨】本题考查指数函数和对数函数的增减性.【正确解答】由函数性质可知,函数12log y x =在()0,∞上是减函数,因此得b a c >>,又因为2xy =是增函数,所以222b a c >>,选A【解后反思】要深刻理解指数函数和对数函数的图象与性质,并从已知条件和结论的特征出发,发现它们各自所具有的模型函数,以便有目的地思考.(3)某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为 ( )(A )81125 (B )54125 (C )36125 (D )27125见理第7题(4)将直线20x y λ-+=沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-= 相切,则实数λ的值为 ( ) (A )-3或7 (B )-2或8 (C )0或10 (D )1或11 【思路点拨】本题考查了平移公式、直线与圆的位置关系,只要正确理解平移公式和直线与圆相切的充要条件就可解决.【正确解答】由题意可知:直线20x y λ-+=沿x 轴向左平移1个单位后的直线l 为:2(1)0x y λ+-+=.已知圆的圆心为(1,2)O -解法1:直线与圆相切,则圆心到直线的距离等于圆的半径,因而有=,得3λ=-或7.解法2:设切点为(,)C x y ,则切点满足2(1)0x y λ+-+=,即2(1)y x λ=++,代入圆方程整理得:225(24)(4)0x x λλ+++-=, (*)由直线与圆相切可知,(*)方程只有一个解,因而有0∆=,得3λ=-或7. 解法3:由直线与圆相切,可知CO l ⊥,因而斜率相乘得-1,即2211y x -⨯=-+,又因为(,)C x y 在圆上,满足方程22240x y x y ++-=,解得切点为(1,1)或(2,3),又(,)C x y 在直线2(1)0x y λ+-+=上,解得3λ=-或7.选A【解后反思】直线与圆的位置关系历来是高考的重点.作为圆与圆锥曲线中的特殊图形,具有一般曲线的解决方法外(解法2)还有特别的解法,引起重视理解和掌握.(5)设,,αβγ为平面,,,m n l 为直线,则m β⊥的一个充分条件是 ( )(A ),,l m l αβαβ⊥=⊥ (B ),,m αγαγβγ=⊥⊥ (C ),,m αγβγα⊥⊥⊥ (D) ,,n n m αβα⊥⊥⊥ 见理第4题(6)设双曲线以椭圆221259x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为 ( ) (A )±2 (B )43± (C )12± (D )34± 见理第5题(7)给出三个命题:①若1a b ≥>-,则11a b a b≥++. ②若正整数m 和n 满足m n ≤2n ≤. ③设11(,)P x y 为圆221:9O x y +=上任一点,圆2O 以(,)Q a b 为圆心且半径为1.当2211()()1a x b y -+-=时,圆1O 和2O 相切.其中假命题的个数为 ( ) (A )0 (B )1 (C )2 (D )3 见理第3题(8)函数sin()(0,,)2y A x x R πωϕωϕ=+><∈的部分图像如图所示,则函数表达式为( )(A )4sin()84y x ππ=-+ (B )4sin()84y x ππ=- (C )4sin()84y x ππ=-- (D )4sin()84y x ππ=+ 【思路点拨】本题考查正弦曲线的图象变换,考查图与形的等价转换能力. 只要由已知图形依次确定A 、ω、φ,而φ的确定是解决本题的难点,必须用最高点或最低点进行处理. 【正确解答】解法1:由函数图象可知,函数过点(2,0),(6,0)-,振幅4A =,周期16T =,频率28T ππω==,将函数4sin 8y x π=向右平移6个单位,得到 34sin((6))4sin()4sin()88484y x x x πππππ=-=-=-+.选A解法2:由函数图象可知,函数过点(2,0),(6,0)-,振幅||4A =,周期16T =,频率28T ππω==,这时4sin()8y x πφ=±+,又因为图象过点(2,4)-,代入得,sin()14πφ+=±.当sin()14πφ+=时,2,2()424k k k Z πππφπφπ+=+=+∈,而||,24ππφφ<∴=,当sin()14πφ+=-时,32,2()424k k k Z πππφπφπ+=-=-∈,而||2πφ<,无解. ∴ 33sin(2)4sin()4sin()848484y x k x x πππππππ=+-=-=-+.选A.解法3:可将点的坐标分别代入进行筛选得到.选A.【解后反思】一般地,如果由图象来求正弦曲线sin()(0,,)2y A x x R πωϕωϕ=+><∈的解析式时,其参数A 、ω、φ的确定:由图象的最高点或最低点求振幅A ,由周期或半个周期(相邻最值点的横坐标间的距离)确定ω,考虑到φ的唯一性,在确定A 、ω的基础上将最值点的坐标代入正弦函数的解析式,在给定的区间内求出φ的值.(9)若函数2()log (2)(0,1)a f x x x a a =+>≠在区间1(0,)2,内恒有()0f x >,则()f x 的单调递增区间为 ( ) (A )1(,)4-∞- (B )1(,)4-+∞ (C )(0,)+∞ (D )1(,)2-∞- 【思路点拨】本题考查二次函数对数函数的性质,区间1(0,)2的题意就是要研究出22y x x =+的值域来判定a 的取值范围.【正确解答】函数的定义域为1{|0}2x x x ><-或,在区间1(0,)2上,2021x x <+<,又()0f x >,则01a <<,因此log a y t =是减函数,函数()f x 的单调递增区间为函数22y x x =+的递减区间,考虑对数函数的定义域,得所求的单调递增区间为1(,)2-∞-选D【解后反思】对复合函数的性质,一方面要考虑定义域,另一方面要有借助函数图象,用数形结合的思想来解决问题.(10)设()f x 式定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( ) (A )(1.5)(3.5)(6.5)f f f << (B )(3.5)(1.5)(6.5)f f f << (C )(6.5)(3.5)(1.5)f f f << (A )(3.5)(6.5)(1.5)f f f << 【思路点拨】本题考查函数的周期性,单调性和对称性等性质,对相关概念有深刻的理解,将自变量的值转化到同一个单调区间,借助图象进行处理.【正确解答】函数图象关于直线3x =对称,则有(3)(3)f x f x +=-,因此有(3.5)(30.5)(30.5)(f f f f =+=-=,又因为函数周期为6,因此(6.5)(0.5)f f =, ()f x 在(0,3)内单调递减,所以(3.5)(1.5)(6.5)f f f <<,选B【解后反思】直观的几何图形是解决问题的有效的重要方法之一,必须引起重视. 二、填空题(4分⨯6=24分)(11)二项式10的展开式中常数项为 . 【思路点拨】本题考查二项式定理的通项公式,只要概念清楚和运算无误即可.【正确解答】展开式的一般项为1010(t tt C -,令1()(10)032t t +--=,6t =,因此常数项为610210C =.【解后反思】要注意符号因子不能丢.(12)已知2,4a b == ,a 和b 的夹角为3π,以a ,b 为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为 .【思路点拨】本题以向量为背景,考查余弦定理,要判断较短的一条应是3π所对的对角线. 【正确解答】222||||||2||||cos 416224cos 123c a b a b C π=+-⋅=+-⨯⨯⨯=【解后反思】要正确向量的加减法则的几何意义,对向量a=(x,y )的模有几种方法.①||a = 22||a a = .(13)如图,PA ABC ⊥平面,90ACB PA AC BC a ∠==== 且,则异面直线PB 与AC 所成的角的正切值等于 .见理第12题(14)在数列{}n a 中,121,2a a ==,且21(1)nn n a a +-=+- *()n N ∈,则10S = . 见理第13题 (15)设函数1()ln1x f x x +=-,则函数1()()()2x g x f f x=+的定义域为 . 【思路点拨】本题考查复合函数定义域的求法,必须使常见各类函数都有意义,构成不等式组来解.【正确解答】由题意得120122221121111011x x x x x x x x x⎧+⎪>⎪⎪--<<⎧⎪⇒⇒-<<-<<⎨⎨><-⎩⎪+⎪>⎪-⎪⎩或或则所求定义域为(2,1)(1,2)-- . 【解后反思】正确地解不等式组,将繁分式化简是一关键. (16)在三角形的每条边上各取三个分点(如图).以这9个分点为顶点可画出若干个三角形,若从中 任意抽取一个三角形,则其三个顶点分别落在原 三角形的三个不同边上的概率为 .【思路点拨】本题考查等可能事件的概率,关键是要确定基本事件.【正确解答】可画出的三角形个数为39381C -=,三个顶点分别落在不同边上的个数为11133327C C C = ,所求概率为271813=. 【解后反思】理解和掌握等可能事件的概率的计算公式P (A )=mn,本题中构成三角形的个数是一难点.三、解答题(共6小题,共76分) (17)(本小题满分12分)已知7sin()241025παα-==,求sin α及tan()3πα+.【思路点拨】本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到.【正确解答】解法一:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα①由题设条件,应用二倍角余弦公式得)sin (cos 57)sin )(cos sin (cos sin cos 2cos 25722ααααααααα+-=+-=-== 故51sin cos -=+αα ②由①和②式得53sin =α,5cos =α因此,43tan -=α,由两角和的正切公式11325483343344331433tan 313tan )3tan(-=+-=+-=-+=+ααπα 解法二:由题设条件,应用二倍角余弦公式得αα2sin 212cos 257-==, 解得 259sin 2=α,即5sin =α由1027)4sin(=-πα可得5cos sin =-αα 由于0cos 57sin >+=αα,且057sin cos <-=αα,故α在第二象限53sin =α, 从而557sin cos =-=αα以下同解法一【解后反思】在求三角函数值时,必须对各个公式间的变换应公式的条件要理解和掌握,注意隐含条件的使用,以防出现多解或漏解的情形. (18)(本小题满分12分)若公比为c 的等比数列{}n a 的首项11a =且满足13(3,4,)2n n n a a a n --+== . (I )求c 的值;(II )求数列{}n na 的前n 项和n S .【思路点拨】本题考查等比数列的通项公式及前n 项和的求法.可根据其定义进行求解,要注意①等比数列的公比C 是不为零的常数②前n 项和的公式是关于n 的分段函数,对公比C 是否为1加以讨论.【正确解答】(Ⅰ)解:由题设,当3n ≥时,2212,n n n n a c a a ca ---==,221212---+=+=n n n n a ca a a ,由题设条件可得20n a -≠,因此212c c +=,即2210c c --= 解得c =1或2=c (Ⅱ)解:由(Ⅰ),需要分两种情况讨论,当c =1时,数列{}n a 是一个常数列,即1n a = (n ∈N *)这时,数列{}n na 的前n 项和2321=++++=n S n 当21-=c 时,数列{}n a 是一个公比为21-的等比数列,即1)21(--=n n a (n ∈N *)这时,数列{}n na 的前n 项和12)21()21(3)21(21--++-+-+=n n n S①① 式两边同乘21-,得n n n n n S )21()21)(1()21(2212112-+--++-+-=-- ②①式减去②式,得n nn n n n n S )21(211)21(1)21()21()21()21(1)211(12--+--=---++-+-+=+- 所以]223)1(4[911-+--=n n n n S (n ∈N *) 【解后反思】本题是数列求和及极限的综合题.(1)完整理解等比数列{}n a 的前n 项和公式:11(1)(1)(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(2)要掌握以下几种情形的极限的求法.①利用1lim 0n n →∞=②利用lim 0n n q →∞=(1q <)③要掌握分类讨论的背景转化方法.如1q >时转化为11q<. (19)(本小题满分12分)如图,在斜三棱柱111ABC A B C -中,11111,,A AB A AC AB AC A A A B a ∠=∠===,侧面11B BCC 与底面ABC 所成的二面角为120,,E F 分别是棱111,B C A A 的中点 (I )求1A A 与底面ABC 所成的角; (II )证明1//A E 1平面B FC ; (III )求经过1,,,A A B C 四点的球的体积.见理第19题 (20)(本小题满分12分)某人在山坡P 点处观看对面山顶上的一座铁塔,如图所示,塔高80BC =米,塔所在的山高220OB =米,200OA =米,图中所示的山坡可视为直线l 且点P 在直线l 上,l 与水平面的夹角为1,tan 2αα=.试问,此人距水平地面多高时,观看塔的视角BPC ∠最大(不计此人身高)? 见理第20题 (21)(本小题满分14分) 已知m R ∈,设P :1x 和2x 是方程220x ax --=的两个实根,不等式21253m m x x --≥-对任意实数[1,1]a ∈-恒成立;Q :函数324()()63f x x mx m x =++++在(,)-∞+∞上有极值.求使P 正确且Q 正确的m 的取值范围.【思路点拨】本题是组合题,考查一元二次方程的根的概念和导数的应用. 【正确解答】 (Ⅰ)由题设1x 和2x 是方程220x ax --=的两个实根,得1x +2x =a 且1x 2x =-2,所以,84)(||22122121+=-+=-a x x x x x x当a ∈[-1,1]时,28a +的最大值为9,即12||x x -≤3由题意,不等式212|53|||m m x x --≥-对任意实数a ∈[1,1]恒成立的m 的解集等于不等式2|53|3m m --≥的解集由此不等式得2533m m --≤- ①或 2533m m --≥②不等式①的解为0m ≤≤不等式②的解为1m ≤或m ≥因为,对1m ≤或05m ≤≤或6m ≥时,P 是正确的(Ⅱ)对函数6)34()(23++++=x m mx x x f 求导3423)('2+++=m mx x x f 令0)('=x f ,即34232=+++m mx x 此一元二次不等式的判别式124)34(12422--=+-=∆m m m m 若∆=0,则0)('=x f 有两个相等的实根0x ,且)('x f 的符号如下:因为,0()f x 不是函数()f x 的极值若∆>0,则0)('=x f 有两个不相等的实根1x 和2x (1x <2x ),且)('x f 的符号如下:因此,函数f (x )在x =1x 处取得极大值,在x =2x 处取得极小值综上所述,当且仅当∆>0时,函数f (x )在(-∞,+∞)上有极值由0161242>--=∆m m 得1m <或4m >, 因为,当1m <或4m >时,Q 是正确得综上,使P 正确且Q 正确时,实数m 的取值范围为(-∞,1)⋃,6[]5,4(+∞⋃【解后反思】对恒成立问题的等价转换,相应知识的完整理解是关键.对P 来说,转化为求使12x x -的最大值时的范围,而要注意一次二次方程根存在的充要条件.对Q 来说,()f x 的导函数存在的充要条件的理解是一难点,也是易错点.(22)(本小题满分14分)抛物线C 的方程为2(0)y ax a =<,过抛物线C 上的一点000(,)(0)P x y x ≠作斜率为12,k k 的两条直线分别交抛物线C 于1122(,),(,)A x y B x y 两点(,,P A B 三点互不相同),且满足120(0,1)k k λλλ+=≠≠-.(I )求抛物线C 的焦点坐标和准线方程;(II )设直线AB 上一点M ,满足BM MA λ=,证明线段PM 的中点在y 轴上;(III )当1λ=时,若点P 的坐标为(1,-1),求PAB ∠为钝角时点A 的纵坐标1y 的取值范围. 见理第22题.。

2005年考研数学试题详解及评分参考

2005年考研数学试题详解及评分参考

=
¶2u ¶x 2
.
【答】 应选 (B) .
【解】 因
¶u ¶x
=
j ¢( x
+
y)
+ j¢(x
-
y)
+y
(x
+
y)
-y
(x
-
y)
,且
¶u ¶y
=
j ¢( x
+
y)
- j ¢( x
-
y) +y
(x
+
y)
-y
(x
-
y)


¶2u ¶x2
=
j ¢¢( x
+
y)
- j ¢¢( x
-
y)
+y
¢( x
+
y)
-y
l1 l2
ù úû

所以 a 1
,
A(a1
+
a2
)
线性
1 无关的充要条件是 0
l1 l2
= l2
¹ 0.
故选 (B) .
【解法二】 由题意,知 Aa1 = l1a1, Aa2 = l2a2 . 设 k1a1 + k2 A(a1 + a 2 ) = 0 ,则有 k1a1 + k2l1a1 + k2l2a 2 = 0 ,即有 (k1 + k2l1 )a1 + k2l2a 2 = 0 . 因a1,a 2 是属于不同特征值的特征向量,故a1,a 2 线性无关,于是有 k1 + k2l1 = 0 , k2l2 = 0 . 因此当 l2 ¹ 0 时,有 k1 = 0, k2 = 0 ,此时a1 , A(a1 + a 2 ) 线性无关; 反之,若a1, A(a1 + a2 ) 线性无关,则必然有 l2 ¹ 0 (否则,由 l2 = 0 ,可见 k2 可以不

2005年南开大学数学分析试题答案

2005年南开大学数学分析试题答案

2005年南开大学数学分析试题答案0D .1为成奇函数,所以该积分轴对称,被积函数关于关于由于y x 2.x z f x y f f dx du z y x ∂∂+∂∂+=,其中x z x y ∂∂∂∂,由 00=∂∂+∂∂+=∂∂+∂∂+x z h x y h h x z g x y g g z y x z yx 求出 =∂∂--=∂∂x z h g h g g h g h x y y z z y x z z x ,yz z y x y y x h g h g g h g h -- 3.⎰∑+=-=-=∞→102123234)(411lim πx dx n k n nk n 4.tx dt t M +≤⎰1,2sin 0在),0(+∞∈x 上单调一致趋于0,则)(x f 在),0(+∞∈x 上一致收敛,又tx t +sin 在),0(+∞∈x 上连续,则)(x f 在),0(+∞∈x 上连续。

5.由泰勒公式)!1(!1!21!111+++++=n e n e ξ,则)!1()!1(!1!21!111+≤+=+++-n e n e n e ξ ,后者收敛,则原级数收敛。

6.由拉格朗日中值定理,,)('1)(122n M n Mx n x f n n x f n ≤≤=ξ后者收敛,由魏尔特拉斯定理,原级数一致收敛。

由)(x s 一致收敛,则可以逐项求导,∑∞==12)(')('n n n x f x s 也一致收敛且连续,故)(x s 连续可导7.反证:设存在),(00y x 有0),)((00≠∂∂-∂∂y x y P x Q ,不妨设0),)((00>∂∂-∂∂y x yP x Q ,由连续函数的局部保号性,知道存在一个邻域,δ当δ∈),(y x 时0),)((>∂∂-∂∂y x yP x Q ,则存在一个圆周,0δ⊂C ⎰⎰⎰=+D Qdy Pdx 0)(>∂∂-∂∂dxdy y P x Q 与已知矛盾。

考研数学一真题解析 2005

考研数学一真题解析 2005

,即
方法二:排除法
以2阶方阵为例,设
,则
由此可见,交换的第1列与第2列得,排除ABD,选C
(13)设二维随机变量 的概率分布为
X
Y
0
1
0
0.4
1
已知随机事件

0.1 相互独立,则
(A)
(B)
(C)
(D)
【考点分析】:二维离散型随机变量的概率分布,事件独立性定义
【求解方法】:由二维随机变量概率和为1和事件
是偶函

(C) 是周期函数
是周期函数 (D) 是单调函数
是单
调函数
【考点分析】:函数的奇偶性、周期性、单调性与其原函数奇偶 性、周期性、单调性的关系 【求解过程】:
方法一:排除法 令,显然是偶函数,但不是奇函数,排除B 令,显然是周期函数,但不是周期函数,排除C 令,显然是单调函数,但不是单调函数,排除D
其中为常数,所以有,即证。 (2)由(1),有,又
所以在右半平面上有
(5.19)
(5.20)
(5.21)
解得。 (20) 已知二次型的秩为. (1)求的值 (2)求正交变换,把化成标准型 (3)求方程的解 【考点】二次型与矩阵 【思路】先列出对应该二次型的矩阵,根据秩为2的条件即可求得第
一问,第二问只需将系数矩阵对角化,第三问可以在第二问的基础上先 求出标准型的解再用变换得到 的解
【考点】曲线积分
【思路】对第一问,为了应用题目给的条件,考虑过上的任意两点 作过原点的分段光滑曲线曲线,且将分成两个部分,即可用所给的条件 证明。第二问只需应用第一问的条件,令解关于的微分方程即可。
【题解】(1)如上一部分所述,作如图所示的分段光滑曲线,则 有

南开大学 南开 2005年微观、宏观经济学 考研真题及答案解析

南开大学 南开 2005年微观、宏观经济学 考研真题及答案解析

南开大学2005年硕士研究生入学考试试题考试科目:微观、宏观经济学专业:经济学院所有专业一、简答题(每题5分,共40分)1.什么是福利经济学第一定理?2.说明纳什均衡与纳什定理的基本概念。

3.什么是逆向选择、道德风险?4.用序数效用理论说明消费者均衡?5.说明财政政策实施过程中的挤出效应。

6.什么是货币政策的“灵活偏好陷阱”?7.什么是“理性预期”?8.什么是充分就业的失业率?二、论述题(每题10分,共40分)1.资本的边际生产力递减规律与技术进步导致的生产率提高之间有和关系?边际生产力递减是如何体现在现实中的,请举例说明。

2.从资源利用效率角度对完全竞争和完全垄断进行比较。

3.用IS —LM —BP (EB )模型说明浮动汇率制度下,国际收支失衡的自动调节机制。

4.最近国际石油涨价对世界经济产生了重大的影响,请用经济学原理解释其影响机制,并说明影响产生的实际过程。

三、计算题(每题15分,共30分),请在下列3题中任选两题回答。

1.假设某人从25岁开始工作,年收入为50,000元,60岁退休,预期寿命为85岁,现在他已经45岁,试求:(1)此人的财富边际消费倾向和劳动收入的边际倾向。

(2)假定此人现有财富100,000元,则他的年消费为多少?2.假设某商品的反需求曲线为Q P 15.011-=;其反供给曲线为10.05P Q =+;试求:(1)市场达到均衡时,消费者剩余是多少?(2)如果政府对这种商品每单位征收1.00元销售税,政府的税收收入是多少?(3)在这1.00元的税收中,消费者和生产者各负担多少?3.给定规模收益不变的生产函数βαK AL Q =,根据边际生产力分配理论证明:α为生产要素L 的收入在总产值中所占的份额,β为生产要素K 的收入在总产值中所占的份额。

四、分析题(每题20分,共40分)1.中国人民银行决定,从2004年10月29日起上调金融机构存贷款基准利率,将一年期存款基准利率和贷款基准利率均上调0.27个百分点,分别由现行的1.98%和5.31%提高到2.25%和5.58%,以便抑制某些部门投资过热的现象,并进一步发挥经济手段在资源配置和宏观调控中的作用。

南开大学数学分析

南开大学数学分析

南开大学2000年硕士研究生入学考试1.设222222()sin 0(,)00x y xy x y x yf x y x y +⎧+≠⎪+=⎨⎪+=⎩,证明(,)f x y 在点(0,0)处连续但不可微2.设()f u 具有连续的导数,且{}2lim ()0,(,)|,,0(0)u f u A D x y x y R x y R →+∞=>=+≤≥>1) 证明lim ()u f u →+∞=+∞2) 求22()R DI f x y dxdy =+⎰⎰3) 求2limR R I R→+∞3.(1)叙述()f x 于区间I 一致连续的定义(2)设(),()f x g x 都于区间I 一致连续且有界,证明()()()F x f x g x =也于上I 一致连续 4.设函数列{}()f x 于区间I 上一致收敛于()f x ,且存在数列{}n a 使得x I ∈当是,总有 (),(1,2...)n f x a n ≤=,证明()f x 于I 上有界5,设10(1,2...),nn n kk a n S a=≥==∑,证明(1) 若1n n na S =∑收敛,则1n n a =∑也收敛(2) 如果 ?>1,1n n na S =∑收敛,问1n n a =∑是否必收敛?说明理由6.设(,)f x t 于[],;,a c d +∞连续,(,)af x t dx +∞⎰于(],c d 一致收敛,证明(,)af x d dx +∞⎰收敛南开大学2001年硕士研究生入学考试1. 计算三重积分22()x y dxdydz Ω+⎰⎰⎰,其中Ω为由曲面22x y z +=与平面4z =为界面的区域2. 计算220sin x xy dx xdy yπ⎰⎰3. 计算2222()yx I y dx dy xyx y=--++⎰,c 为椭圆22194xy+=,方向为正4. 设{}n a 为一数列,满足lim ,0n n na a a →∞=>(1) 证明1n n a ∞=∑收敛(2) 能否确定1n n a ∞=∑的敛散性?说明理由5.设()f x 于[),a +∞可导,且'()0f x c ≥>(c 为常数),证明 (1)lim ()n f x →∞=+∞(2)()f x 于[),a +∞必有最小值6.设()f x 于[)0,+∞有定义,对任意实数,()A a f x >于[]0,A 可积,且lim ()0n f x →∞=,证明01lim()0x f x dt x+∞→∞=⎰7.设0,0x y ≤≤+∞<<+∞时(,)f x y 连续且有界,证明 (1)对任意正数0,(,)xyxef x y dx δ+∞-⎰,于(),δ+∞一致收敛(2)0()(,)xyF y xef x y dx +∞-=⎰于()0,+∞连续(3)问0(,)xyxef x y dx +∞-⎰于()0,+∞是否必不一致收敛?说明理由南开大学2002年硕士研究生入学考试1.计算三重积分Ω⎰⎰⎰,其中Ω为由222x y z +=及2z =所围成2. 设s 为抛物面22x y z +=位于0,1z z ==之间的部分,取外侧,求222sxydydz y dzdx x dxdy --⎰⎰3. 设1n n a nα∞=∑收敛,βα>,证明1n n a nβ∞=∑收敛4. 设{}()n f x 于()00,,0x x δδδ-+>内一致收敛,且0lim ()(1,2,...)n n x x f x a n →==证明{}n a 收敛5. 设()f x 于区间I 一致连续,(1,2,...)n x I n ∈=且{}n x 收敛,证明{}()n f x 也收敛 问若将()f x 于区间I 一致连续改为()f x 于I 连续,上述结论是否仍成立?说明理由6. 设()f x 于[),a +∞(a 为实数)连续,且()0,lim ()0x f x f x →+∞≥=,证明()f x 于[),a +∞有最大值,问()f x 于[),a +∞是否比有最小值?说明理由7. 证明0()xyf y xedx ∞-=⎰于()0,+∞连续问()f x 于[),a +∞是否比有最小值?说明理由南开大学2003年硕士研究生入学考试1. 设(,,)w f x y x y x =+-,其中(,,)f x y z 有二阶连续偏导数,求xy u2. 设数列{}n a 非负单增且lim n n a a →∞=证明112lim ()nn n n nn a a a a →∞+++=3.设2ln(1)0()00x x x f x x α⎧->=⎨≤⎩试确定α的取值范围,使()f x 分别满足(1) 极限0lim ()x f x +→存在(2) ()f x 在0x =连续 (3) ()f x 在0x =可导3. 设()f x 在(),-∞+∞连续,证明积分22()()Lf x y xdx ydy ++⎰与积分路径无关5. 设()f x 在[],a b 上可导,()02a b f +=且'()f x M <,证明2()b zf x dx ≤⎰M(b-a )46. 设{}n a 单减而且收敛于0.1sin n n a n ∞=∑发散(1)证明级数1sin n n a n ∞=∑收敛(2)证明lim 1n n nu v →∞=其中11(sin sin ),(sin sin )nnn kk n kk k k u ak a k u ak a k ===+=-∑∑7. 设1sin ()txxF t edx x +∞-=⎰证明(1)1sin txx edx x+∞-⎰在[)0,+∞一致收敛(2) ()F t 在[)0,+∞连续8. 命{}()n f x 是[],a b 上定义的函数列,满足(1) 对[]{}00,,()n x a b f x ∈任意是一个有界数列(2) 对任意0ε>,存在一个0δ>,当[],,x y a b ∈且x y δ-<时,对一切自然数n,有()()n n f x f y ε-<求证存在一个子序列{}()n f x 在[],a b 上一致收敛南开大学2004年硕士研究生入学考试1. 设()f x 在点a 的一个邻域中有定义,'()0,()0f a f a ≠=,求1()lim ()x ax af x f a -→⎛⎫ ⎪⎝⎭2. 设(,)f u v 所有二阶偏导数都连续,(,)y z f xy x=,求2z x y∂∂∂3. 证明不等式 12l n (1)1(0)1xx x x x+<+>+ 4. 计算二重积分2222221ln()x y x y x y dxdy +≤+⎰⎰5. 计算第二型线积分22()2Lx y dx xydy --⎰其中L 是从(0,1)A 沿sin x y x=到(,0)B π的一段曲线6.证明级数11n nα∞=∑在0α>时收敛,在0α≤时发散7. 设()f x 在[),a +∞上可微且有界,证明存在一个数列{}[),n x a ⊂+∞,使得l i m n n x →∞=-∞且'lim ()0n n f x →∞=8. 设{}()n f x 是[],a b 上的连续函数序列,且存在常数0M >,使得对任何n N ∈和任何[],x a b ∈,有()n f x M <(1) 证明对任何n N ∈,{}12()min (),(),,()n n F x f x f x f x = 在[],a b 上连续 (2) 举一个例子使{}()inf ()n n NF x f x ∈=在[],a b 上不连续(3) 若{}()inf ()n n NF x f x ∈=在[],a b 上连续,则{}()n F x 在[],a b 上不一致收敛于()F x ,其中{}12()min (),(),,()n n F x f x f x f x =9. 设()f x 在(),a b 上有定义且对任何()12,,x x a b ∈和任何[]0,1λ∈,有1212((1))()(1)()f x x f x f x λλλλ+-<+-(1) 证明()f x 在(),a b 内处处有右导数'()()()lim x f x x f x f x x++∆→+∆-=∆且'()f x +是(),a b 上的单增函数(2)'()f x +在(),a b 内至多只有可数个间断点南开大学2005年硕士研究生入学考试1. 计算二重积分2DI xydxdy =⎰⎰ 其中{}2(,)|1D x y R x y =∈+≤2. 设()u u x =为由方程组(,,)(,,)0(,,)0u f x y z g x y z h x y z =⎧⎪=⎨⎪=⎩确定的隐函数,求du dx3.求极限lim n →∞+4. 求证0sin ()t f x dx x t+∞=+⎰在()0,+∞上连续5. 判断级数1111(1)1!2!!n e n ∞=⎡⎤-++++⎢⎥⎣⎦∑ 的敛散性 6. 设函数()f x 在[]1,1-上连续可导且(0)0f =(1) 求证11()n xf n n∞=∑在[]1,1-上一致收敛 (2) 设11()()n xS x f n n∞==∑,求证()S x 在[]1,1-上连续可导 7. 设(,),(,)P x y Q x y 在全平面2R 上有连续的偏导数,并且对任何一个圆周C ,有(,)(,)0CP x y d x Q x y d y +=⎰求证Q P xy∂∂=∂∂8. 设()f x 在[]0,a 上两次可导,''(0)(0)()0,()1f f f a f a ====,并且对任何[]0,x a ∈,有"()1f x ≤,设,02(),2a x x g x a a x x a⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩(1) 求证'()()f x g x ≤(2) 求证()00,x a ∈存在,使得'00()()f x g x < (3) 求证0a > 9.设()f x 和()g x 在区间(),a b 内有定义,且对任何()0,,x x a b ∈,有00()()()()f x f xg x x x -≥-(1)求证()f x 在(),a b 内连续南开大学2006年硕士研究生入学考试.1.求极限24sin()limt t tx dx t→⎰2.设122221211112111n nn n n nx x x u xxxx x x ---=,试证1(1)2nii iu n n x u x =∂-=∂∑3.设()f x 在[]0,2上有界可积,20()0f x dx =⎰求证存在[]0,1a ∈使得1()0a af x dx +=⎰4.若幂级数nnn ax∞=∑在()1,1-内收敛于()f x ,设()01,1n x ≠∈-满足l i m 0()0,nn n x f x n →∞===和,则()0f x =对所有()1,1x ∈-5.设函数()f x 在(),-∞∞有任意阶导数,且导数函数列()()n f x 在(),-∞∞一致收敛于(),(0)1x ϕϕ=,求证()xx e ϕ= 6.设(,,)f x y z 在球{}222(,,)|1x y z x y z ++≤上连续令{}{}2222222()(,,)|,()(,,)|,0B r x y z x y z r S r x y z x y z rr =++≤=++=>求证()()(,,)(,,),(0,1)B r S r d f x y z dxdydz f x y z dS r dr=∈⎰⎰⎰⎰⎰7.设(,,)f x y z 在全空间上具有连续的偏导数,且关于x,y,,z 都是1周期的,即对任意点(x,y,,z )成立(1,,)(,1,)(,,1)(,,)f x y z f x y z f x y z f x y z +=+=+=则对任意实数,,αβγ,有f f f dxdydz xyz αβγΩ⎡⎤∂∂∂++=⎢⎥∂∂∂⎣⎦⎰⎰⎰ 这里[][][]0,10,10,1Ω=⨯⨯是单立方体8.设A 为三阶实对称方阵,定义函数(,,)(,,)x h x y z x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭求证(,,)h x y z 在条件2221y z ++=下的最大值为矩阵A 的最大特征值9.(1)设0n a ≠数列满足0,n a n →→∞,定义集合{|,}i p ka k Z i N =∈∈,Z 为整数集,N 为自然数集,求证对任何实数b ,存在数列k b p ∈使得lim k k b b →∞=(2)试证一个非常数的周期连续函数必有最小正周期10.设()x ϕ是(),-∞∞定义的周期连续函数,周期为1,且1()0x dx ϕ=⎰,令10()xn a e x dx ϕ=⎰,对任意自然数n ,求证级数21nn a ∞=∑收敛南开大学2007年硕士研究生入学考试1.填空 (1)111lim ()122n n n n→∞+++++(2)1sin te tdt t+∞--⎰(3)函数22(,)212f x y x xy y =++在闭区域{}222(,)|425D x y R x y =∈+≤的最小值 (4)设{}222(,)|1,0,0D x y R x y x y =∈+≤≥≥,则二重积分D⎰⎰(5)设{}3222(,,)|1,n n n S x y z R x y z n N =∈++=∈,则下面曲面积分333()Sx y z dS ++⎰⎰的值(6)设L 为单位圆221x y +=的方向,则下曲线积分[]22(sin cos )(sin )yLex x y x dx y x xcox dy xy++-+⎰的值是2.设()f x 函数在[)0+∞,上连续,(0)0f <,并且'()2f x >对0x >成立,求证方程(0)0f =在区间(0)0,2f ⎛⎫ ⎪⎝⎭中有且仅有一根3.设()f x 在[]0,1上连续,求证121lim (()()(1)())nn n f f f n nn→+∞--++-4.若正项级数1n n a ∞=∑收敛,求证(1)1p n n a ∞=∑收敛,1p >(2)1n n∞=∑收敛,,2k N k ∈≥5.求证含参变量广义积分2txtedx +∞-⎰在关于[)0,t ∈+∞的任何有界闭子区间上一致收敛6.设()f x 在区间()0,+∞连续有界,且(1)()f x f x +≠对所有0x >成立,求证 ()l i m ()(1)0n f nf n →+∞--=7.设{}:1n x R x Ω=∈<,函数()u x 在Ω内二阶连续可微,在Ω上连续,且在Ω内满足0u bu ∆-=,其中221ni ix =∂∆=∂∑为Laplace 算子,0b >为常数,设对任意边界上的点x ∈∂Ω有()0u x >,证明:对任意x ∈Ω,有()0u x >南开大学2008年硕士研究生入学考试一.计算题1.()[]x x x +-∞→1ln lim 22.()()∑∞=-+-1121n n n n3.求()x f ,已知()()()1''+-=x fx x f4. 5.()[][]{}1,1,2,0,-∈∈=y x y x D ,求⎰⎰-DdS y x二.61+=+n n x x ,61-≥x ,求n x x ∞→lim三.()[]b a C x f ,∈,[]b a x ,∈∀,[]b a y ,∈∃,使()()x f y f 21≤,证明[]b a ,∈∃ξ,()0=ξf四.()x f 在[)+∞,a 一致连续且广义几分()⎰+∞adx x f 收敛,证()0lim=+∞→x f x五.()∑-=nxnex f ,证:(1)()x f 在()+∞,0收敛但不一致(2)()x f 在()+∞,0无穷次可导六.()1ln -=n n a f a ,()()x mf x f≤',10<<m ,证∑--1n n a a 收敛 七.x yu =,x v =,y xz +=ω,0222=+∂∂+∂∂y x zx zx ,求()v u ,ω八.求222a az y x =++分az z y x 2222=++成两部分体积之比。

2005年南开大学经济学综合考研真题及答案解析

2005年南开大学经济学综合考研真题及答案解析
,不能只满足于看上去会做,而是应该去整体分析,分析其中的出题规律和出 题范围。万事万物,必有规律可循,试题也不例外。因此要尽量去弄到更多的试题,最好能 够搜集全最近五年的实考题。经过严密地分析和研究,以下规律浮出水面:1.五年之内, 论 述题一般不会重复,这是出题人出题的主体思路;2.简答题三年之内不会重复,三年之外很 有可能重复, 毕竟专业考试的出题范围有限, 考生可以结合前面讨论的复习方法来比较和分 析;3.名词解释题三年之外必有重复,有些更是经常考到,成为常考点,多多留意;4.密切 关注常考点和不考点(五年之内没有考过的点) ,这两个点都极可能是下次考试的重点,这 也是前面所提及的。 3 热点问题和热点论文试题一般由专业课的导师出,至少有部分由导师出(其他可能
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
论是文科还是理科, 其核心期刊总会反映年度热点问题) 和近期理论界的研究争论焦点进行 分析。事实证明,考生对专业真题的钻研确实可以让考生猜到那么几十分的题目。专业课的 真题,要训练对分析题的解答,把自己的答案切切实实写在纸上,不要打腹稿(这样有时候 感觉自己给分点都答到了,实际上却相差很远) ,再反复对照自己和参考答案(如果有的话) 的差别,分析答题角度,揣摩命题人意图,并用同一道题在相隔一定时间后反复训练,慢慢 完善自己此类题型的解答方法。 历年题是专业课的关键, 而融会贯通则是关键中的关键。 考研的专业课考题大体有两种 类型,一种是认知性质的考题,另一种是理解与应用型的,而且以后一种居多。因此,同学 们在复习时绝不能死记硬背条条框框, 而应该看清条条框框背后所包含的东西, 并且加以灵 活运用。在复习时,首先要把基本概念、基本理论弄懂,然后要把它们串起来,多角度、 多 层次地进行思维和理解。 由于专业的各门功课之间有着内在的相关性, 如果能够做到融会贯 通,无论对于理解还是记忆,都有事半功倍的效果。考生完全可以根据历年的考题,在专业 课本中划出历年涉及的重点,有针对性、有侧重点地进行复习。 针对笔记、 真题以及热点问题, 下面的提纲可能会比较快速地让考生朋友掌握以上的内 容:1 专业课笔记一般来说,大部分高校的专业课都是不开设专业课辅导班的,这一点在 05年的招生简章中再次明确。因此对于外校考生,尤其是外地区考生,也就是那些几乎不可 能来某高校听课的考生,专业课笔记尤为重要。可以说,笔记是对指定参考书最好的补充。 如果条件允许,这个法宝一定要志在必得。在具体操作上,应先复习书本,后复习笔记, 再 结合笔记来充实参考书。笔记的搜集方法,一般来说,有的专业比较热门,可以在市面上买 到它的出版物;有的专业笔记在网上也可能搜集到,这需要考生多花一些时间;还有的专业 由于相对冷门,那么考生就需要和该专业的同学建立联系,想办法把笔记弄到手。 2 专业课历年真题真题是以前的考试题,是专业课的第一手资料,它更是法宝中的法

2005年数学四分析、详解和评注

2005年数学四分析、详解和评注

2005年数学四试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sinlim 2+∞→x xx x = 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可.【详解】 12s i n l i m2+∞→x x x x =.212lim 2=+∞→x xx x 【评注】 若在某变化过程下,)(~)(x x αα,则).()(lim )()(lim x x f x x f αα= (2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.【评注】 本题虽属基本题型, 也可先变形xdxy dy -=, 再积分求解.(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz dy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】)1l n (y xe e xzy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=21. 【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a. 【详解】 由题设,有=1234123121112aa a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a.【评注】 当向量的个数小于维数时,一般通过初等变换化阶梯形讨论其线性相关性. (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。

2005数学分析解答

2005数学分析解答

2005数学分析解答D解:112022000111011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2y yDdxdy dxdy x y dy y x y x y dy ydyy y y y y y ==+++=+-=++-+-+=⎰⎰⎰⎰⎰⎰⎰5、计算第二类曲线积分:22C ydx xdyI x y--=+⎰,22:21C x y +=方向为逆时针。

解:22220022222tan 2222cos ,[0,2)2sin cos cos 222113cos 22cos 2213(2)(1)12arctan 421(2)(1)2311421C x x y ydx xdy I d x y x x x x d x dx x x x x ππθθθπθθθθθθθθ+∞+∞=-∞-∞=⎧⎪∈⎨=⎪⎩---=−−−→=+++-+-++−−−−−→=--++++=-⎰⎰⎰换元万能公式代换226426212dx d x ππ+∞+∞-∞-∞+=-+++⎰6、设a>0,b>0,证明:111b ba ab b ++⎛⎫⎛⎫≥ ⎪⎪+⎝⎭⎝⎭。

证明:1111()1111(1)111()'()1[ln(1)]0()()()b bxb b bbxa a ab f x b b x a a b f b b b a a b f b b b a b a b a b f x Taylor x x x a b f x ++++-⎛⎫⎛⎫⎛⎫≥=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭+-⎛⎫⎛⎫=+=+ ⎪ ⎪++⎝⎭⎝⎭-⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭---⎛⎫=++-> ⎪+-⎝⎭,构造函数展开可以证明所以递增,从而得证一、 设f(x)为[a,b]上的有界可测函数,且2[,]()0,a b f x dx =⎰证明:f(x)在[a,b]上几乎处处为0。

证明:反证法,假设A={x|f(x)≠0},那么mA>0。

南开大学 2005年 数学分析

南开大学 2005年 数学分析

1 / 3南开大学 2005年 数学分析1.(16分)计算二重积分dxdy y x I D⎰⎰=2,其中}1;),{(2≤+∈=y x R y x D .解:被积函数关于y 为奇函数,积分区域关于y 为偶,则0=I2.(16分)设)(x u u =为由方程组⎪⎩⎪⎨⎧===0),,(0),,(),,(z y x h z y x g z y x f u 确定的隐函数,求dx du .解:由dz f dy f dx f du z y x ++=,有x z x y x z f y f f dxdu++= 由方程⎩⎨⎧=++=++00x z x y x x z x y x z h y h h z g y g g ,得⎪⎪⎩⎪⎪⎨⎧-+-=-+-=y z z y y x x y x y z z y x z z x xh g h g h g h g z h g h g h g h g y ,有⎪⎪⎭⎫ ⎝⎛-+-+⎪⎪⎭⎫ ⎝⎛-+-+=y z z y y x x y z y z z y x z z x y x h g h g h g h g f h g h g h g h g f f dx du3.(16分)求极限⎪⎪⎭⎫⎝⎛-++-+-∞→22222241241141lim n n n n n . 解:641)(411lim 41lim10212122π=-=-=-=⎰∑∑=∞→=∞→dx x nk n k n I n k n nk n4.(16分)求证⎰+∞+=0sin )(dt t x tx f 在),0(+∞上连续.证明:由2sin 0≤⎰+∞tdt 有界,tx +1在),0(+∞∈x 关于t 单减趋于零利于A-D 判别法,有⎰+∞+0sin dt tx t一致收敛,则)(x f 在),0(+∞上连续.5.(16分)判断级数∑∞=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++-1!1!21!111n n e 的敛散性. 解:由∑∞==0!k kxk x e (0>x ),则)!1(!!!!!2!1111002+≤=-=⎪⎪⎭⎫ ⎝⎛++++-∑∑∑∑∞+=∞+==∞=n xk xk x k x n x x x e n k kn k kn k k k k nx 利用stolz 公式,)!1)(1(lim )!1()!2(lim )!1(lim 1121++-=+-+-=++∞→∞+=∞+=∞→∞+=∞→∑∑∑n n x n n xxn xn n n k kn k kn n k kn2 / 3有)!1)(1(1!1!21!111++≤⎪⎭⎫ ⎝⎛++++-n n n e (1=x ) 由∑∞=++1)!1)(1(1n n n 绝对收敛,则∑∞=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++-1!1!21!111n n e 绝对收敛.6.(20分)设函数)(x f 在]1,1[-上连续可导,且0)0(=f .(a )求证∑∞=1)(1n n xf n 在]1,1[-上一致收敛. (b )设∑∞==1)(1)(n n xf nx S .求证)(x S 在]1,1[-上连续可导. (a )证明:利用中值定理,22)('0)0()()(1n f nx f n xf n x n x f n ξ≤--=(ξ在0,n x 之间) 由∑∞=121n n 收敛,利用M 判别法,有∑∞=1)(1n n xf n 在]1,1[-上一致收敛.(b )证明:2)(')(1n nxf n x f n dx d =⎪⎭⎫ ⎝⎛,由(a )结论,则∑∞=⎪⎭⎫ ⎝⎛1)(1n n x f ndx d 在]1,1[-上一致收敛 有)(x S 在]1,1[-上连续可导.7.(16分)设),(y x P ,),(y x Q 在全平面2R 上有连续的偏导数, 并且对任何一个圆周C ,有0),(),(=+⎰Cdy y x Q dx y x P . 求证yPx Q ∂∂=∂∂ 证明:反证,设x Q ∂∂与yP ∂∂在2R 上恒不相等,则存在点200),(R y x ∈,使得0)(),(00>∂∂-∂∂y x y P x Q (或0<) 若0)(),(00>∂∂-∂∂y x y P x Q 时,由yP x Q ∂∂-∂∂在2R 上有连续,利用连续函数的保号性 存在00>r ,使得在})()(),({202020r y y x x y x D <-+-=上,有0)(>∂∂-∂∂Dy Px Q 由C 的任意性,取C 为202020)()(r y y x x =-+-(0>r )逆时针方向 利用格林公式0)(),(),(>∂∂-∂∂=+⎰⎰⎰dxdy yPx Q dy y x Q dx y x P DC,矛盾.3 / 3若0)(),(00<∂∂-∂∂y x y P x Q 时,同理可得矛盾.则yPx Q ∂∂=∂∂.8.(20分)设)(x f 在],0[a 上两次可导,0)(')0(')0(===a f f f ,1)(=a f ,并且对任何],0[a x ∈,有1)(''≤x f .设⎪⎩⎪⎨⎧≤<-≤≤=ax ax a a x x x g 220)(. (a )求证)()('x g x f ≤.(b )求证存在),0(0a x ∈,使得)()('00x g x f <. (c )求证2>a(a )证明:)('x f 在0处泰勒展开,有x f f x f )('')0(')('1ξ+=()0(1δξ∈) ①当20ax ≤≤时,)()('')('1x g x x f x f =≤=ξ )('x f 在a 处泰勒展开,有))(('')(')('1a x f a f x f -+=ξ()(2a δξ∈)②当a x a≤<2时,)())(('')('1x g x a a x f x f =-≤-=ξ,由①、②,则)()('x g x f ≤ (b )证明:反证,假设)()('x g x f ≡,有)('x f 在2a处不可导,矛盾,则存在),0(0a x ∈,使得)()('00x g x f <(c )证明:由0)(≥x g ,又存在),0(0a x ∈,使得)()('00x g x f <,则dx x g dx x f aa⎰⎰<0)()(',有2>a9.(14分)设)(x f 和)(x g 在区间),(b a 内有定义,且对任何),(,0b a x x ∈,有))(()()(000x x x g x f x f -≥-. (a )求证)(x f 在),(b a 内连续.(b )求证对任何),(0b a x ∈,)('0x f -,)('0x f +均存在,且)(')()('000x f x g x f +-≤≤. (a )证明:对于任意),(,10b a x x ∈且10x x <有))(()()(01001x x x g x f x f -≥-与))(()()(10110x x x g x f x f -≥- 则)()()()(101010x g x x x f x f x g ≤--≤,有)('0+x f 存在对于任意),(,20b a x x ∈且02x x <,同理可得)('0-x f 存在由)('0+x f ,)('0-x f 存在,则)(x f 在0x 处连续,即)(x f 在),(b a 内连续(b )证明:利用(a )结论,有)(')()('000x f x g x f +-≤≤。

南开大学2005硕士研究生入学考试高等代数试题

南开大学2005硕士研究生入学考试高等代数试题

Α (α i ) = β i ,
i = 1,2,3,4
解 : 由 题 显 然 有 α 4 = α1 + α 2 + α 3 ,
β 4 = β 1 + β 2 + β 3 , 且 α 1 ,α 2 ,α 3 线 性 无 关 ,
β 1 , β 2 , β 3 也线性无关. 故可添加一个向量 γ ,η 使得 α 1 ,α 2 ,α 3 , γ , β 1 , β 2 , β 3 ,η 均线形
2
0 O 0
故 λ1 = L λ r = 1 ,此时, λi = λi ,1 ≤ i ≤ r 从而有 A = A 2 ,这与题意矛盾从而不存在 V 的一组基使 Α 在这组基下的矩阵为对角矩阵 七、设 A 为 n 阶正定实对称矩阵, α 1 , α 2 , L , α n , β 为 n 维欧式空间 R n (标准度量)中的 n+1 个向量.若已知
博士 5
家园
博士家园
λ1 O λr A=
(λ1 ,K , λ r 均不为0) 0 O 0
3 2 2
由 284 页定理 2 及 Α = Α 但Α ≠ Α ,知, A 3 = A 2 , A ≠ A 2
3 λ1 O λ3 3 r 对前式,有 A = 2 λ1 O λ2 2 r =A = 0 O 0
L 1 1 L xn +1 x1 2 2 L x n + x n = x1 L L L n −1 n −2 n −1 L xn + xn x1
1 x2 x2 2 L= ∏ (a i − a j ) 1≤ j< i ≤ n L L −1 L xn n

南开大学(已有09试题)

南开大学(已有09试题)

南开大学陈省身数学研究所数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)空间解析几何与高等代数2000——2002抽象代数2002微分几何1999——2000实变函数1999——2000泛函分析1999——2000概率统计1999——2000拓扑学1999——2000实变函数与泛函分析1999——2000数理方程1999——2000概率论与数理统计1999——2000偏微分方程数值解法1999——2000计算主意1999——2000数理统计1999——2000概率统计信息1999——2000量子力学1999——2023年年量子力学(物理)1999——2000量子力学导论2002——2023年年数学物理主意2003——2023年年数学科学学院数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)空间解析几何与高等代数2000——2002抽象代数2002第 1 页/共22 页微分几何1999——2000实变函数1999——2000泛函分析1999——2000概率统计1999——2000拓扑学1999——2000实变函数与泛函分析1999——2000数理方程1999——2000概率论与数理统计1999——2000偏微分方程数值解法1999——2000计算主意1999——2000数理统计1999——2000概率统计信息1999——2000数学物理主意2003——2023年年物理科学学院材料化学2023年年材料物理2004——2023年年热力学统计物理2003——2004统计物理1999——2000理论力学1999——2000,2003——2004固体物理(基础部分)2004——2023年年大学物理2000大学物理(物理科学学院)2023年年大学物理(信息技术科学学院)2003——2004普通物理1999——2000,2003——2004晶体物理2004激光物理2003——2004光学(信息技术科学学院)2000,2003——2023年年光物理学2023年年应用光学1999——2000,2003——2023年年电动光学1999晶体管原理1999——2000量子力学1999——2023年年量子力学(物理)1999——2000量子力学导论2002——2023年年量子物理概论2003——2004细胞生物学1999——2000高等数学1999——2000高等数学(信息技术科学学院)2003——2023年年电磁学2003——2023年年电力电子学基础2003——2004经典物理学2023年年普通生物化学2003——2023年年生物物理学2003——2023年年数学物理主意2003——2023年年泰达生物技术学院数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)微生物学1999——2000细胞生物学1999——2000生物化学1999——2000动物学1999,2003——2023年年昆虫学2003——2023年年普通生物化学2003——2023年年信息技术科学学院高等数学1999——2000第 3 页/共22 页高等数学(信息技术科学学院)2003——2023年年光学(信息技术科学学院)2000,2003——2023年年应用光学1999——2000,2003——2023年年信号与系统1999——2023年年控制原理1999——2000自动控制2023年年自动控制原理2003——2004现代控制论基础1999——2000,2003——2004综合基础课(光学、电路与系统、通信与信息系统、信号与信息系统、物理电子学、微电子学与固体电子学、光学工程专业)1999——2000,2002——2023年年编译原理1998数据结构(含程序设计)2002数据结构与算法2003——2004数据结构1998——2000软件基础1999——2000计算机软硬件基础2023年年C语言与数据结构2004计算机原理1999——2000,2003综合基础课(模拟电路、数字电路、计算机原理)1999——2000大学物理2000大学物理(物理科学学院)2023年年大学物理(信息技术科学学院)2003——2004晶体管原理2003——2004普通物理1999——2000,2003——2004通信原理2003——2023年年物理学2023年年运筹学2003——2023年年高分子化学与高分子物理1999——2000高分子化学与物理2004,2023年年环境科学与工程学院水污染控制工程2004——2023年年安全学导论2004——2023年年环境监测1999——2000,2002——2023年年环境经济学2003——2023年年环境微生物学1999——2000环境生物学2003——2023年年环境学导论2004——2023年年环境管理1999——2000,2003——2023年年动物生理学1999——2000环境化学1999——2000,2002,2023年年环境化学与分析化学2003——2004(注:2004年试卷缺页,惟独“环境化学”内容)环境质量评价1999——2000环境工程1999——2000细胞生物学1999——2000生物化学1999——2000环境科学概论1999——2000,2002——2003化学学院综合化学2023年年——2023年年无机化学1999——2000,2003——2023年年分析化学1999——2000,2003——2023年年,2023年年高分子化学与高分子物理1999——2000高分子化学与物理2004,2023年年有机化学1999——2000,2003——2023年年,2023年年物理化学2000,2003,2023年年——2023年年第 5 页/共22 页药物化学2004——2023年年细胞生物学1999——2000生物化学1999——2000固体物理(基础部分)2004——2023年年普通生物化学2003——2023年年植物化学保护1999——2000,2004生命科学学院微生物学1999——2000,2003——2023年年细胞生物学1999——2000生物化学1999——2000数学分析2000——2023年年(2023年年有答案)高等代数2003——2023年年(2023年年有答案)遗传学1999——2000,2003,2023年年真菌学1999——2000普通植物生理学1999——2000,2003——2023年年植物学1999——2000,2003动物学1999,2003——2023年年昆虫学2003——2023年年分子遗传学1999——2000植物生理学2000,2003——2023年年植物化学保护1999——2000,2004植物解剖学2023年年普通生态学1999——2000,2003——2023年年普通生物化学2003——2023年年普通微生物学2003——2023年年普通物理1999——2000,2003——2004数据结构(含程序设计)2002数据结构与算法2003——2004数据结构1998——2000医学院病理学2004——2023年年人体解剖学2004——2023年年生理学2004——2023年年生物化学(医)2004——2023年年药理学2004——2023年年汉语言文化学院汉语2023年年古代汉语2002现代汉语(文学院)2001现代汉语(汉语言文化学院)2002——2004语言学理论基础(汉语言文化学院)2001——2004 语言学理论2023年年文学院文学基础2023年年中国古代文学2023年年人文社科基础2004——2023年年世界文学2023年年综合考试(文学)1999——2000文学综合1999——2000文艺理论1999——2000,2004——2023年年文艺评论2004——2023年年文艺写作2023年年文艺评论写作1999——2000中国文学史1998——2002第7 页/共22 页中国文学批评史1998——2001古代汉语2002现代汉语与古代汉语2003——2023年年古典文学文献学2004——2023年年语言学概论2023年年现代汉语(文学院)2001现代汉语(汉语言文化学院)2003——2004语言理论基础(文学院)2003——2004语言学理论基础(汉语言文化学院)2001——2004 汉语基础知识2004汉语知识2004中国文学史2003——2023年年人文地理学1999——2000传扬学2003传扬学原理2004——2023年年绘画基础与创作2004——2023年年美学原理2003——2023年年书法技法2003——2004书法史论2003——2004新闻学原理2004——2023年年艺术史论2004——2023年年艺术与设计史论2003——2023年年中外美术史论2003——2023年年专业设计(环境设计)2003专业设计(设计艺术学、环境设计专业)2004专业设计(设计艺术学、视觉设计)2023年年历史学院古代汉语2003——2023年年古代文献2003——2004古典文献学2004——2023年年拉丁美洲史2003——2004历史地理2004——2023年年历史文献学2004——2023年年历史学基础理论2023年年美国史2003——2004美国学综论2023年年明清史2003——2004史学史2023年年世界近现代史(历史学院)2003——2023年年世界近现代史(日研院)2023年年世界上古中古史2003——2023年年世界通史2003——2023年年文物博物馆学2003——2023年年中国古代史2003——2023年年中国近现代史2003——2023年年中国史学史与史学理论2003——2004中国思想史2003——2023年年中国通史1994——1997,2003——2023年年中国文献学基础2003——2004中国近代史(中共党史专业)2003——2023年年哲学系马克思主义哲学(哲学各专业)2004——2023年年马克思主义哲学(马克思主义教诲学院)2003——2023年年宗教学概论2004——2023年年伦理学原理2004——2023年年美学概论2023年年第9 页/共22 页欧美哲学通史2003——2023年年西方哲学通史2023年年形式逻辑2003——2023年年中国哲学史2023年年中外哲学史2003——2023年年外国语学院二外日语2001——2023年年二外德语2001——2023年年二外法语2001——2023年年二外俄语2003——2023年年专业英语2000——2003,2023年年——2023年年(2023年年——2023年年有答案)(注:2023年年答案惟独英美文学部分,2023年年答案有英美文学部分和语言学部分)基础英语1997,2000——2023年年(1997,2004——2023年年,2023年年有答案)语言学基础2023年年(2023年年有答案)翻译2004(2004有答案)双语翻译与文学2004英美文学2004(2004有答案)语言学2004——2023年年(2004——2023年年有答案)二外英语2001,2003——2023年年,2023年年基础日语2001,2003——2023年年专业日语2001,2003——2023年年基础俄语2004——2023年年法学院刑法学2023年年法学综合(含法理学、宪法、民法、刑法、刑诉、民诉)2000——2023年年(2023年年试题有答案)民法与商法2003——2023年年,2023年年民法(民商法专业)2002民法(经济法专业)2002民法2000——2001(法理学)法学理论2023年年法学理论2003法制史(含中国法制史、外国法制史)2003——2023年年,2023年年国际法学(含国际经济法、国际公法、国际私法)2003——2023年年,2023年年国际经济法概论2000经济法与商法2003——2023年年,2023年年经济法1999诉讼法学(含行政诉讼法、刑事诉讼法、民事诉讼法)2004——2023年年,2023年年宪法学、行政法与行政诉讼法2003——2023年年,2023年年(2004有答案)环境法2023年年周恩来政府管理学院行政管理学2003——2023年年政策原理与政策分析2003——2023年年(2004有答案)国际关系史1999——2000,2003——2023年年国际关系学2003——2023年年国际关系概论1999——2000外交学概论与当代中国外交2004——2023年年外国政治制度史1999——2000政治学原理1999——2023年年中国政治制度史1999——2000中国通史1994——1997第11 页/共22 页中外政治思想史2003——2023年年中国政治思想史1999——2000,2002西方政治思想史1999——2000中外经济地理1999——2000世界近现代历史2002社会保障学2004——2023年年社会学理论2023年年社会学概论1995——2001,2003——2004社会调查主意与社会统计1995——2023年年社会工作2001环境学与环境法2004——2023年年西方经济学流派2004——2023年年(2004——2023年年有答案)心理学主意2004——2023年年(2004有答案)心理学基础2004——2023年年(2004有答案)马克思主义教诲学院马克思主义哲学(哲学各专业)2004——2023年年马克思主义哲学(马克思主义教诲学院)2003——2023年年科学社会主义原理2004——2023年年专业综合基础理论(科学社会主义与国际共产主义运动理论专业)2004——2023年年思想政治教诲原理2003——2023年年中共党史2003——2023年年中国近代史(中共党史专业)2003——2023年年中外哲学史2003——2023年年经济学院微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年第13 页/共22 页有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000综合基础课(保险)1999——2000金融学基础(联考)2002——2023年年(2002——2023年年有答案)商学院会计学综合2023年年——2023年年会计学综合考试1999——2000,2003——2023年年(2000,2003——2023年年有答案)财务管理1999——2000财务管理与管理会计1999——2000(1999——2000有答案)公司治理2023年年技术经济学2003——2023年年市场学1999——2000管理综合(含管理学、微观经济学)2003——2023年年(2003——2023年年有答案)(注:2023年年——2023年年的答案惟独管理学部分的答案,无微观经济学部分的答案)管理学概论2002信息系统技术1999——2000管理信息系统2003——2023年年旅游管理1999旅游学综合(旅游概论和旅游经济学)2001——2023年年旅游学概论1997企业人力资源开辟与管理1999——2000(1999——2000有答案)人文地理学1999——2000中外经济地理1999——2000计算机应用(设计程序、数据库系统)2004——2023年年编辑学2001出版学2001网络技术基础2001档案管理学2004——2023年年档案学概论2004——2023年年目录学(含目录学概论、中西文工具书)2003——2004文献目录学2023年年情报学(含情报学概论、科技文献检索、计算机情报检索)2003情报学(含情报学概论、信息检索)2004第15 页/共22 页情报学综合2023年年图书馆学理论2003——2023年年高等教诲研究所高等教诲原理2003——2023年年(2023年年有答案)经济学原理2023年年——2023年年(2023年年——2023年年有答案)高等教诲管理学2003——2023年年教诲社会学2004——2023年年教诲学原理2004——2023年年(2004有答案)普通心理学2003——2023年年(2004有答案)中国高等教诲史2003——2023年年经济与社会发展研究院专业综合(含微观经济学、区域经济学)2004——2023年年(2004——2023年年有答案)专业综合(宏观经济学、产业经济学)2004——2023年年(2004——2023年年有答案)微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000第17 页/共22 页保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000深圳金融工程学院专业基础(金融学)2003——2023年年(2003——2023年年有答案)微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000企业人力资源开辟与管理1999——2000第19 页/共22 页保险学原理1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000日本研究院日本经济2004日本史2003,2023年年日本通史2004世界近现代史(历史学院)2003——2023年年世界近现代史(日研院)2023年年微观、宏观经济学2002,2023年年(2023年年有答案)微观经济学1999——2001宏观经济学1999——2001(1999——2000有答案)专业基础(微观经济学、宏观经济学、保险学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、财政学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、产业经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、国际经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、金融工程学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、经济思想史)2003(2003有答案)专业基础(微观经济学、宏观经济学、劳动经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、区域经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、人口经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、台湾经济)2003(2003有答案)专业基础(微观经济学、宏观经济学、西方经济学流派)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、应用统计学)2003(2003有答案)专业基础(微观经济学、宏观经济学、政治经济学)2003——2004(2003——2004有答案)专业基础(微观经济学、宏观经济学、中国近代经济史)2003——2004(2003——2004有答案)专业基础(国际经济学)(世界经济、国际贸易专业)2003西方经济学1999——2003(1999——2000,2002有答案)政治经济学1999——2000,2002,2023年年(1999——2000,2002,2023年年有答案)当代西方经济学1999——2001(2000——2001有答案)区域经济学2002——2003(2002——2003有答案)产业经济学2002——2003(2002——2003有答案)货币银行学1999——2001(1999——2001有答案)国际金融1999——2001(1999——2001有答案)第21 页/共22 页中国近代经济史1999——2000社会经济统计学原理1999——2000中国近代经济史(经研所)1999——2000劳动经济学1999——2000人口经济学1999——2000人口学理论2003——2023年年计量经济学1999——2000世界经济概论1999——2000房地产经济1999——2000财产学1999——2000世界经济概论与世界经济情况1999——2000市场学1999——2000信息系统技术1999——2000环境经济学1999——2000国际经济学1999——2002(2000——2002有答案)外国近现代经济史1999——2000。

数学分析各校考研试题与答案

数学分析各校考研试题与答案

数学分析各校考研试题与答案2003南开⼤学年数学分析⼀、设),,(x y x y x f w-+=其中),,(z y x f 有⼆阶连续偏导数,求xy w解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=;)1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w⼆、设数列}{n a ⾮负单增且a a nn =∞→lim ,证明a a a a n n n n n n =+++∞→121][lim解:因为an ⾮负单增,故有n n n nnn n n n na a a a a 1121)(][≤+++≤由a a n n =∞→lim ;据两边夹定理有极限成⽴。

三、设?≤>+=0,00),1ln()(2x x x x x f α试确定α的取值围,使f(x)分别满⾜:(1)极限)(lim 0x f x +→存在(2) f(x)在x=0连续(3) f(x)在x=0可导解:(1)因为)(lim 0x f x +→=)1ln(lim 20x x x ++→α=)]()1(2[lim 221420n nα极限存在则2+α0≥知α2-≥(2)因为)(lim 0x f x -→=0=f(0)所以要使f(x)在0连续则2->α(3)0)0(='-f 所以要使f(x)在0可导则1->α四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径⽆关解;令U=22y x+则ydy xdx y x f l ++?)(22=21du u f l )(?⼜f(x)在R 上连续故存在F (u )使dF(u)=f(u)du=ydy xdx y x f ++)(22所以积分与路径⽆关。

(此题应感⼩毒物提供思路)五、设f(x)在[a,b]上可导,0)2(=+ba f 且Mx f ≤')(,证明2)(4)(a b Mdx x f b a -≤?证:因f(x)在[a,b]可导,则由拉格朗⽇中值定理,存在)2)(()2()(),(ba x fb a f x f b a +-'=+-∈ξξ使即有dx ba x f dx x f ba)(()(+-'=??ξ222)(4])2()2([)2)((a b M dx b a x dx x b a M dx b a x f bb a ba a ba-=+-+-+≤+-'≤++ξ六、设}{n a 单减⽽且收敛于0。

南开大学考研真题 管理综合2005[试卷+答案]

南开大学考研真题  管理综合2005[试卷+答案]

南开大学2005年硕士研究生入学考试试题考试科目:管理综合专业:企业管理管理学部分(100分)一、简述题(请简要回答下列问题,每题不得超过400字,每题6分,共计30分)1.管理追求“l+l>2”的协同效应,影响协同效应的因素有哪些?2.试述企业组织结构与战略的关系。

3.双因素理论的基本内容是什么?在现实管理实践中如何运用这种理论?4.说明有效的控制工作对调动员工积极性的作用。

5.为什么SWOT分析方法能够在管理工作中受到广泛重视和普遍应用?二、分析论述题(共计70分)1.简述提高决策科学水平的措施?(10分)2.请讨论“管理就是实行计划、组织、指挥、协调和控制”和“管理就是通过其他人来完成工作”这两种定义之间的关系。

(15分)3.美国学者邓肯(Duncan)提出从两个不同的环境层面来确定组织所面临的不确定性程度:一是环境变化的程度:静态(稳定)——动态(不稳定)层面;二是环境复杂性程度:简单——复杂层面。

(1)请分别分析处于低不确定性环境和高不确定性环境中的组织,其管理重点应该是什么?(2)请指出一种有助于应对高不确定性环境的管理理论或方法,并说明理由。

(20分)评估环境不确定性模型复杂简单稳定(静态)不稳定(动态)环境变化的程度4.认真分析下面的图示,回答以下问题:(25分)(1)造成产品生命周期快速缩短的原因有哪些?(2)管理工作的重点应该在哪里?管理工作会面临哪些挑战?(3)管理者应该具备什么样的素质和能力?微观经济学部分(50分)一、解释下列概念(每题5分,共计20分)1.经济模型2.需求的收入弹性3.均衡价格4.恩格尔定律二、简要回答下列问题(每题10分,共计20分)1.简述公平的标准2.简述等产量曲线的特征三、计算题(10分)某大型机电设备公司是在两个市场上进行销售的垄断厂商,它在第一个市场上的边际收益曲线为MR1=20-2Q1,在第二个市场上的边际收益曲线为MR2=15-3Q2,其中MR1和MR2分别为两个市场上的边际收益,Q1和Q2分别为两个市场上的月销售量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年南开大学数学分析试题答案
0D .1为成奇函数,所以该积分轴对称,被积函数关于关于由于y x 2.x z f x y f f dx du z y x ∂∂+∂∂+=,其中x z x y ∂∂∂∂,由 00=∂∂+∂∂+=∂∂+∂∂+x z h x y h h x z g x y g g z y x z y
x 求出 =∂∂--=∂∂x z h g h g g h g h x y y z z y x z z x ,y
z z y x y y x h g h g g h g h -- 3.⎰∑+=-=-=∞→1021
23234)(411lim πx dx n k n n
k n 4.t
x dt t M +≤⎰1,2sin 0在),0(+∞∈x 上单调一致趋于0,则)(x f 在),0(+∞∈x 上一致收敛,又t
x t +sin 在),0(+∞∈x 上连续,则)(x f 在),0(+∞∈x 上连续。

5.由泰勒公式)!1(!1!21!111+++++=n e n e ξ
,则
)!
1()!1(!1!21!111+≤+=+++-n e n e n e ξ ,后者收敛,则原级数收敛。

6.由拉格朗日中值定理,
,)('1)(122n
M n Mx n x f n n x f n ≤≤=ξ后者收敛,由魏尔特拉斯定理,原级数一致收敛。

由)(x s 一致收敛,则可以逐项求导,∑∞==
12)(')('n n n x f x s 也一致收敛且连续,故)(x s 连续可导
7.反证:设存在),(00y x 有0),)((00≠∂∂-∂∂y x y P x Q ,不妨设0),)((00>∂∂-∂∂y x y
P x Q ,由连
续函数的局部保号性,知道存在一个邻域,δ当δ∈),(y x 时0),)((>∂∂-∂∂y x y
P x Q ,则存在一个圆周,
0δ⊂C ⎰⎰⎰=+D Qdy Pdx 0)(>∂∂-∂∂dxdy y P x Q 与已知矛盾。

8.当2
0a x ≤≤时,x x f x f ≤=)('')('ξ a x a ≤≤2
时,x a a x f x f -≤-=))(('')('η,综上,)()('x g x f ≤ )2(若对任意的),0(a x ∈有)()('x g x f =,则在2
a x =时,)(''x f 不存在,矛盾。

)3(设当U x ∈时,0)()('<-x g x f 当U a x \),0(∈时0)()('=-x g x f ,两边对x 积分即可
6.))(()()(000x x x g x g x f -≥- ,))(()()(00x x x g x f x f -≥-,由)(x g 在),(b a 上有定义,则)(x g 在),(b a 上有界,则可以得到)(x f 在),(b a 上连续。

210)2(x x x <<,则121210101)()()()()(x x x f x f x g x x x f x f --≤≤--,则
02020101)()()()(x x x f x f x x x f x f --≤--则0
0)()(x x x f x f --单调递增有下界,存在右极限,)(0'x f +存在,同理)(0'x f -存在,由极限的保不等式性可得。

相关文档
最新文档