高中数学线性回归方程检测试题(附答案)

合集下载

高中数学线性回归方程讲解练习题

高中数学线性回归方程讲解练习题

教学步骤及教学内容线性回归方程(参考公式:b=∑i=1nx i y i-n x y∑i=1nx2i-n x2,a=y-b x)1.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.y^=x+1 B.y^=x+2 C.y^=2x+1 D.y^=x-12.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R2的值分别约为0.96和0.85,则拟合效果好的模型是()A.甲B.乙C.甲、乙相同D.不确定3.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得∑8i=1x i=52,∑8i=1y i=228,∑8i=1x2i=478,∑8i=1x i y i=1849,则其线性回归方程为()A.y^=11.47+2.62x B.y^=-11.47+2.62xC.y^=2.62+11.47x D.y^=11.47-2.62x4.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x 123 4用水量y 4.543 2.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y^=-0.7x+a,则a等于______.5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)234 5加工的时间y(小时) 2.534 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程y^=bx+a,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少小时?作业布置家长意见家长签名:2013 年_月_日(第_次)审阅人:1。

(完整版)数学必修三回归分析经典题型(带答案)

(完整版)数学必修三回归分析经典题型(带答案)

数学必修三回归分析经典题型1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为93.7319.7ˆ+=x y用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm B.身高在145.83cm 以上 C.身高在145.83cm 以下 D.身高在145.83cm 左右 【答案】D【解析】解:把x=10代入可以得到预测值为145.83,由于回归模型是针对3-9岁的孩子的,因此这个仅仅是估计值,只能说左右,不能说在上或者下,没有标准。

选D2.对有线性相关关系的两个变量建立的线性回归方程$y =$a+b $x ,关于回归系数b $,下面叙述正确的是________.①可以小于0;②大于0;③能等于0;④只能小于0. 【答案】①【解析】由b$和r 的公式可知,当r =0时,这两变量不具有线性相关关系,但b 能大于0也能小于0.3.对具有线性相关关系的变量x 、y 有观测数据(x i ,y i )(i =1,2,…,10),它们之间的线性回归方程是$y =3x +20,若101i i x =∑=18,则101i i y =∑=________.【答案】254【解析】由101i i x =∑=18 1.8.因为点在直线$y =3x +2025.4. 所以101i i y =∑=25.4×10=254.4.下表是某厂1~4由散点图可知,用水量其线性回归直线方程是y =-0.7x +a ,则a 等于________. 【答案】5.252.53.5,∵回归直线方程过定点, ∴3.5=-0.7×2.5+a. ∴a =5.25.5.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到线性回归方程$y =b$x +$a ,那么下列说法正确的是________.①直线$y =b$x +$a 必经过点(x ,y ); ②直线$y =b$x +$a 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点; ③直线$y =b$x +$a 的斜率为1221ni ii nii x ynx y xnx==--∑∑;④直线$y =b $x +$a 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差$21()ni i i b a y x =⎡⎤⎣⎦∑$-+是该坐标平面上的直线与这些点的最小偏差.【答案】①③④【解析】回归直线的斜率为b ,故③正确,回归直线不一定经过样本点,但一定经过样本中心,故①正确,②不正确.6.某数学老师身高176 cm ,他爷爷、父亲和儿子的身高分别是173 cm 、170 cm 和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm. 【答案】185【解析】设父亲身高为173176,b$= $a=-b $ 176-1×173=3, ∴$y =x +3,当x =182时,$y =185.7.下表是关于宿州市服装机械厂某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:)请根据上表提供的数据,用最小二乘法求出y 关于的线性回归方程;(2)估计使用年限为10年时,维修费用为多少?【答案】解:(1)0.08 1.23yx =+线性回归方程为 (2)估计使用年限为10年时,维修费用为12.38万元. 【解析】(1)先求然后利用公可求出回归直线y ax b =+方程.(2)把x=10代入回归直线方程可得y 的值,就可得所求的值.解:(1906543222222512=++++=∑=i ixΘ又x y 23.108.0+=∴线性回归方程为 (2)把10=x 代入回归方程得到:38.121023.108.0=⨯+=y∴估计使用年限为10年时,维修费用为12.38万元.。

(完整)线性回归方程高考题

(完整)线性回归方程高考题

线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。

线性回归方程(人教A版)(含答案)

线性回归方程(人教A版)(含答案)

线性回归方程(人教A版)一、单选题(共8道,每道12分)1.人的年龄与人体脂肪的百分数的回归方程为:,如果某人36岁,那么这个人的脂肪含量( )A.一定是B.在附近的可能性比较大C.无任何参考数据D.以上解释均无道理答案:B解题思路:试题难度:三颗星知识点:可线性化的回归分析2.根据如下样本数据:得到的回归方程为,则( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析3.已知变量与负相关,且由观测数据算得样本平均数,,则由该观测数据算得的线性回归方程可能是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:可线性化的回归分析4.对具有线性相关关系的变量,测得一组数据如下表:根据上表,利用最小二乘法得到它们的回归直线方程为,则的值为( )A.1B.1.5C.2D.2.5答案:B解题思路:试题难度:三颗星知识点:可线性化的回归分析5.某单位为了解办公楼用电量与气温之间的关系,随机统计了四个用电量与当地平均气温,并制作了对照表:由表中数据得到线性归回方程,当气温为时,预测用电量为( )A.68度B.52度C.12度D.28度答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析6.根据如下样本数据:得到回归方程,则( )A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析7.某样本数据如下表所示:假设根据表中数据所得线性回归直线方程为,某同学根据表中的两组数据和求得的直线方程为,根据散点图的分布情况,判断以下结论正确的是( )A.,B.,C.,D.,答案:D解题思路:试题难度:三颗星知识点:可线性化的回归分析8.实验测得四组的值分别为,,,,则与间的线性回归方程是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:可线性化的回归分析。

高二线性回归方程试题及答案

高二线性回归方程试题及答案

高二线性回归方程试题及答案回归直线方程某公司为了研究广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图。

由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的。

根据频率分布直方图计算图中各小长方形的宽度,然后试估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)。

该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x(单位:万元) 1 2 3 4 5销售收益y(单位:万元) 2 3 2 3 4由表中的数据显示,x与y之间存在着线性相关关系。

根据回归直线的斜率和截距的最小二乘估计公式,计算得到y关于x的回归直线方程为y=0.4x+1.6.某校课程设置调研某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性。

调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调研情况制成如下图所示的列联表:男生女生合计选择坐标系与参数方程 60 85 145选择不等式选讲 45 30 75合计 105 115 220完成列联表,并使用卡方检验判断在犯错误的概率不超过0.025的前提下,能否认为选题与性别有关。

从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷,按照分层抽样的方法。

若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为ξ,求ξ的分布列及数学期望Eξ。

根据给出的数据,完成列联表如上所示。

使用卡方检验判断选题与性别是否有关,得到卡方值K=18.75,自由度df=1,查卡方分布表可得在显著性水平为0.025时的临界值为3.84.由于K>3.84,因此可以认为选题与性别有关。

线性回归方程高考题

线性回归方程高考题

线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。

高二数学回归直线方程的练习题

高二数学回归直线方程的练习题

高二数学回归直线方程的练习题1. 已知直线L1过点A(2,3),斜率为3,求直线L1的方程。

我们可以使用直线的点斜式来求解直线L1的方程,点斜式的一般形式为:y - y1 = m(x - x1),其中m为直线的斜率,(x1, y1)为直线上的一点。

代入已知条件,可以得到直线L1的方程为:y - 3 = 3(x - 2)化简得:y - 3 = 3x - 6进一步整理得:y = 3x - 3所以,直线L1的方程为 y = 3x - 3。

2. 已知直线L2过点B(4,5),斜率为-2,求直线L2的方程。

同样地,我们使用直线的点斜式来求解直线L2的方程。

代入已知条件,可以得到直线L2的方程为:y - 5 = -2(x - 4)化简得:y - 5 = -2x + 8进一步整理得:y = -2x + 13所以,直线L2的方程为 y = -2x + 13。

3. 直线L1和直线L2的交点坐标是多少?为了找到直线L1和直线L2的交点坐标,我们可以将两个方程联立起来,求解其解。

将直线L1和L2的方程联立得到:3x - 3 = -2x + 13整理得:5x = 16解得:x = 16/5将x的值代入其中一个方程,例如直线L1的方程,可以解出y的值:y = 3(16/5) - 3= 48/5 - 3= 48/5 - 15/5= 33/5所以,直线L1和直线L2的交点坐标为 (16/5, 33/5)。

总结:通过解题,我们找到了直线L1和直线L2的方程,并求得它们的交点坐标 (16/5, 33/5)。

这些练习题帮助我们熟悉了直线的方程和求解交点的方法,提高了我们对回归直线方程的理解和运用能力。

(完整版)线性回归方程必练题(强烈推荐).doc

(完整版)线性回归方程必练题(强烈推荐).doc

《线性回归方程》强化训练1、(门槛题)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x (个) 2 3 4 5加工的时间y (小时) 2.5 3 4 4.5(Ⅰ)在给定的坐标系中画出表中数据的散点图;(Ⅱ)求出 y 关于 x 的线性回归方程? ? ?,并在坐标系中画出回归直线;y bx a(Ⅲ)试预测加工10个零件需要多少时间?n附录:参考公式:? x i x y i y?i 1 ,?b n y bx .2 ax i xi 12 、(泸州市 2017 届高三一诊第 20 题)某班主任为了解本班学生的数学和物理考试成绩间关系,在某次阶段性测试中, 他在全班学生中随机抽取一个容量为 5 的样本进行分析。

该样本中5位同学的数学和物理成绩对应如下表:学生编号123 4 5 数学分数 x 89 9193 95 97 物理分数 y8789899293( Ⅰ ) 根据上表数据,用变量y 与 x 相关系数说明物理成绩y 与数学成绩 x 之间线性相关关系的强弱; ( Ⅱ ) 建立 y 与 x 的线性回归方程(系数精确到0.01),并预测该班数学分数为 88 的学生的物理分数 .5552附录:参考数据:y i450,x i y i41880,y i y4.90 ;i 1i 1i 1n参考公式:相关系数rx i x y i y?i 1; 回归直线的方程是 ??,nny bxa2 2i 1 x i xi 1 y iyn其中对应的回归估计值:?x i x y iy?i 1, ?,参考值:15 3.87bny bx .2ai 1 x i x3、( 2016年全国新课标高考Ⅲ卷第 18 题)下图是我国 2008 年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(Ⅰ)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明;(Ⅱ)建立 y 关于 t 的回归方程(系数精确到0.01),预测 2016 年我国生活垃圾无害化处理量 777y)2附注:参考数据:y i 9.32 ,t i y i 40.17 ,( y i0.55 , 7 2.646 .i 1 i 1i 1nt y it i y参考公式:相关系数ri 1,nn22t ty i yii 1i 1n)) ))(t i t )( y iy)i 1) )回归方程 ya bt 中斜率和截距的最小二乘估计公式分别为:bn,a=y (t it ) 2i 1.)bt .4 、( 2015 年全国新课标高考Ⅰ卷第 19 题)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量 (单位: )和年利润 (单位:千元)的影响,对近 8 年的宣传费x i 和年销售量 y i i 1,2,L ,8ytz数据作了初步处理,得到下面的散点图及一些统计量的值.r ur ur 8888xyw(x i x) 2(w i w) 2( x i x)( y iy)( w i w)( y i y)i 1i 1i1i 146.6 563 6.8289.81.61469108.8ur8表中 w ix i , w =1w i .8 i 1(Ⅰ)根据散点图判断, y a bx 与 y cd x ,哪一个适宜作为年销售量y 关于年宣传费 x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立 y 关于 x 的回归方程;(Ⅲ)已知这种产品的年利润 z 与 x , y 的关系为 z 0.2 y x ,根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费 x49 时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费 x 为何值时, 年利润的预报值最大?附:对于一组数据 (u 1, v 1 ) , (u 2 , v 2 ) , , (u n , v n ) , 其回归直线 vu 的斜率和截距的最小二乘估计分别为:n(u iu)(v iv)μ i 1μμ=n,=vu .(u i u)2i 1。

高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案)高中苏教数学③2. 4线性回归方程测试题一、选择题1.下列关系属于线性负相关的是()A.父母的身高与子女身高的关系B.身高与手长C.吸烟与健康的关系D.数学成绩与物理成绩的关系答案:C2.由一组数据得到的回归直线方程,那么下面说法不正确的是()A.直线必经过点B.直线至少经过点中的一个点C.直线 a的斜率为D.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直线答案:B3.实验测得四组的值为,则y与x之间的回归直线方程为()A.B.C.D.答案:A4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么下列说法正确的是()A.直线和一定有公共点B.直线和相交,但交点不一定是C.必有直线D.和必定重合答案:A二、填空题5.有下列关系:(1)人的年龄与他(她)拥有的财富之间的关系(2)曲线上的点与该点的坐标之间的关系(3)苹果的产量与气候之间的关系(4)森林中的同一种树木,其断面直径与高度之间的关系(5)学生与他(她)的学号之间的关系其中,具有相关关系的是.答案:(1)(3)(4)6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有的两个变量,将数据表中的各对数据在直角坐标系中描点得到的表示具有相关关系的两个变量的一组数据的图形,叫做.答案:统计分析;相关关系;散点图7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是.答案:;;8.已知回归直线方程为,则可估计x与y增长速度之比约为.答案:三、解答题9.某商店统计了近6个月某商品的进价x与售价y(单位:元)的对应数据如下:3 5 2 8 9 124 6 3 9 12 14求y对x的回归直线方程.解:,,回归直线方程为.10.已知10只狗的血球体积及红血球的测量值如下:45 42 46 48 426.53 6.30 9.257.580 6.9935 58 40 39 505.90 9.496.20 6.557.72x(血球体积,ml),y(红血球数,百万)(1)画出上表的散点图;(2)求出y对x的回归直线方程并且画出图形.解:(1)见下图(2),设回归直线方程为,则,.图形如下:11.某医院用光电比色计检验尿汞时,得尿汞含量(毫克/升)与消光系数如下表:尿汞含量:2 4 6 8 10消光系数 64 134 205 285 360(1)画出散点图;(2)如果y与x之间具有线性相关关系,求回归直线方程;(3)估计尿汞含量为9毫克/升时的消光系数.解:(1)(2)由散点图可知与线性相关,设回归直线方程为.列表:1 2 3 4 52 4 6 8 1064 134 205 285 360128 536 1230 2280 3600 回归直线方程为.(3)当时,.。

高二线性回归方程试题及答案

高二线性回归方程试题及答案

回归直线方程1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性 别有关.(Ⅰ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中.ξξE ξ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++3、面向全市招聘事业编工作人员,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶段:笔试和面试.现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.(Ⅰ)求出上表中的x,y,z,s,p的值;(Ⅱ)按规定,笔试成绩不低于90分的应聘人员可以参加面试,且面试的方式采用单循环,以参加面试人员胜出的场数决定是否录用(即参加面试的所有人员中每两人必需进行一个场次的PK比赛).已知松山区有两名应聘人员取得面试资格,在所有的比赛中,求有松山区选手参加比赛的概率.答案1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.] (1)根据频率分布直方图计算图中各小长方形的宽度;(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入(单位:万元) 1 2 3 4 5 销售收益(单位:万元)2 3 27由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.解:(1)设各小长方形的宽度为,由频率分布直方图中各小长方形的面积总和为1,可知,故,即图中各小长方形的宽度为2. …3分(2)由(1)知各小组依次是, 其中点分别为,对应的频率分别为,故可估计平均值为.7分 (3)由(2)可知空白栏中填5.由题意可知, ,401221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-==--∑∑4x y x y y x m (0.080.10.140.120.040.02)0.51m m +++++⋅==2m =[0,2),[2,4),[4,6),[6,8),[8,10),[10,12]1,3,5,7,9,110.16,0.20,0.28,0.24,0.08,0.0410.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=12345232573, 3.855x y ++++++++====,,根据公式,可求得 ………………10分, ………………11分 所以所求的回归直线方程为. ………………12分2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调51122332455769i ii x y=⨯+⨯+⨯+⨯+⨯==∑522222211234555ii x==++++=∑26953 3.8121.2,555ˆ310b-⨯⨯===-⨯3.8 1.230ˆ.2a=-⨯= 1.20.2y x =+,故不能认为选题与性别有关.…………………5分(Ⅱ)选择“坐标系与参数方程”与选择“不等式选讲”的人数比例为100:60=5:3, 所以抽取的8人中倾向“坐标系与参数方程”的人数为5,倾向“不等式选讲”的人 数为3.依题意,得,,,, . …………………9分 故的分布列如下:所以. …………………12分 3、面向全市招聘事业编工作人员 ,由人事、劳动、纪检等部门联合组织招聘考试,招聘考试分为两个阶22160(9001800) 3.74 5.0241055510060K -=≈<⨯⨯⨯3,1,1,3=--ξ33381(3)56C P C =-==ξ12533815(1)56C C P C =-==ξ21533830(1)56C C P C ===ξ30533810(3)56C C P C ===ξξ115301033(1)135********E =-⨯+-⨯+⨯+⨯=ξy = 50×0.38 = 19, Z = 50﹣9﹣19﹣16 = 6, S = = 0.12 ----------------------------------------------------------6分(Ⅱ)由(Ⅱ)知,参加面试的应聘人员共6人.若参加面试的6人分别记为:S 1 , S 2 , a , b , c , d .( 其中S 1 , S 2 表示松山区的参赛选手,a , b , c , d 表示其他旗、县的选手)则所有的比赛为: (S 1 , S 2 ) (S 1 , a ) (S 1 ,b ) (S 1 ,c ) (S 1 , d ) (S 2 , a ) (S 2 , b ) (S 2 , c ) (S 2 ,d ) (a , b ) ( a , c ) ( a , d ) ( b , c ) (b , d ) (c , d ) 共十五个场次的比赛,有松山区选手出现的比赛有9场. 若有松山区选手参加比赛的事件为:A 则P650。

高中线性回归习题含答案

高中线性回归习题含答案

高二选修1—2线性回归习题1. 独立性检验,适用于检查______变量之间的关系 ( )A.线性B.非线性C.解释与预报D.分类2. 样本点),(,),,(),,(2211n n y x y x y x 的样本中心与回归直线a x b yˆˆˆ+=的关系( ) A.在直线上 B.在直线左上方 C. 在直线右下方 D.在直线外3 已知数列 ,11,22,5,2,则52是这个数列的 ( )A.第6项B.第7项C.第19项D.第11项4 用数学归纳法证明)5,(22≥∈>*n N n n n 成立时,第二步归纳假设正确写法是( )A.假设k n =时命题成立B.假设)(*∈=N k k n 时命题成立C.假设)5(≥=n k n 时命题成立D.假设)5(>=n k n 时命题成立5 .确定结论“X 与Y 有关系”的可信度为5.99℅时,则随即变量2k 的观测值k 必须( )A.大于828.10B.小于829.7C.小于635.6D.大于706.26.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其横断面直径与高度之间的关系,其中有相关关系的是 ( )A .①②③B .①②C .②③D .①③④ 7.在线性回归模型y bx a e =++中,下列说法正确的是A .y bx a e =++是一次函数B .因变量y 是由自变量x 唯一确定的C .因变量y 除了受自变量x 的影响外,可能还受到其它因素的影响,这些因素会导致随机误差e 的产生D .随机误差e 是由于计算不准确造成的,可以通过精确计算避免随机误差e 的产生8.对相关系数r ,下列说法正确的是 ( )A .||r 越大,线性相关程度越大B .||r 越小,线性相关程度越大C .||r 越大,线性相关程度越小,||r 越接近0,线性相关程度越大D .||1r ≤且||r 越接近1,线性相关程度越大,||r 越接近0,线性相关程度越小9.在独立性检验中,统计量2K 有两个临界值:3.841和6.635;当2K >3.841时,有95%的把握说明两个事件有关,当2K >6.635时,有99%的把握说明两个事件有关,当2K ≤3.841时,认N M PCBA 为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算的2K =20.87,根据这一数据分析,认为打鼾与患心脏病之间 ( )A .有95%的把握认为两者有关B .约有95%的打鼾者患心脏病C .有99%的把握认为两者有关D .约有99%的打鼾者患心脏病10必过点 .11.已知,x y R +∈,且2x y +>, 求证:1x y +与1y x +中至少有一个小于212. 如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB =。

高学期线性回归方程同步练习题(文科)(教师版)

高学期线性回归方程同步练习题(文科)(教师版)

高二第二学期第一章线性回归方程同步练习题(文科)(1)一、选择题1 . 下列两个变量之间的关系哪个不是函数关系( D ) A .角度和它的余弦值 B.正方形边长和面积 C .正n边形的边数和它的内角和 D.人的年龄和身高2.某市纺织工人的月工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x ,则下列说法中正确的是( C )A .劳动生产率为1000元时,月工资为130元B .劳动生产率提高1000元时,月工资提高约为130元C .劳动生产率提高1000元时,月工资提高约为80元D .月工资为210元时,劳动生产率为2000元 3.设有一个回归方程为y=2-1.5x ,则变量x 每增加一个单位时,y 平均 ( C ) A .增加1.5单位 B .增加2单位 C .减少1.5单位 D .减少2单位4.实验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为( A )A.y ^=x +1 B.y ^=x +2 C.y ^=2x +1 D.y ^=x -15.由一组样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程y ^=a +bx ,下面有四种关于回归直线方程的论述:(1)直线y ^=a +bx 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点;(2)直线y ^=a +bx 的斜率是∑ni =1x i y i -n x y ∑ni =1x 2i -n x 2;(3)直线y ^=a +bx 必过(x ,y )点; (4)直线y ^=a +bx 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑ni =1 (y i -a -bx i )2是该坐标平面上所有的直线与这些点的偏差中最小的直线.其中正确的论述有( D )A .0个 B .1个C .2个 D .3个解析 线性回归直线不一定过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的任何一点;b =∑ni =1x i y i -n x y∑ni =1x 2i -n x 2就是线性回归直线的斜率,也就是回归系数;线性回归直线过点(x ,y );线性回归直线是平面上所有直线中偏差∑ni =1(y i -a -bx i )2取得最小的那一条.故有三种论述是正确的,选D. 6.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑8i =1x i =52,∑8i =1y i =228,∑8i =1x 2i =478,∑8i =1x i y i =1849,则其线性回归方程为( A ) A.y ^=11.47+2.62x B.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x解析 利用回归系数公式计算可得a =11.47,b =2.62,故y ^=11.47+2.62x . 7. 下列变量之间的关系是函数关系的是( A )A .已知二次函数c bx ax y ++=2,其中a ,b 是已知常数,取b 为自变量,因变量是这个函数的判别式ac b Δ42-=B .光照时间和果树的亩产量C .降雪量和交通事故发生率D .每亩用肥料量和粮食亩产量 8. 列有关线性回归的说法,不正确是( D )A.变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图C.线性回归直线方程最能代表观测值x ,y 之间的关系D.任何一组观测值都能得到具有代表意义的回归直线方程 9.已知x 与y 之间的一组数据:则y 对x 的线性回归方程y =bx +A. (2,2) B. (1.5,3.5) C. (1,2) D. (1.5,4)10. 设回归直线方程为y =2-1.5x ,若变量x 增加1个单位,则( C ). A. y 平均增加1.5个单位 B. y 平均增加2个单位 C. y 平均减少1.5个单位 D. y 平均减少2个单位二、填空题11.下列关系中,是相关关系的为 (填序号).①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系. 答案 ①②12.下列有关线性回归的说法,正确的是 (填序号).①相关关系的两个变量不一定是因果关系②散点图能直观地反映数据的相关程度 ③回归直线最能代表线性相关的两个变量之间的关系④任一组数据都有回归直线方程 答案 ①②③13.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=b ˆx +a ˆ及回归系数b ˆ,可以估计和预测变量的取值和变化趋势. 其中正确命题的序号是 .答案 ①②③14.下列关系:①人的年龄与其拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一树木,其截面直径与高度之间的关系;⑤学生的身高与其学号之间的关系,其中有相关关系的是___①③④_____(填序号).15.已知回归方程为yˆ=0.50x-0.81,则x=25时,y ˆ的估计值为 .答案 11.69 16.下表是某厂1~4由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y ^=-0.7x +a ,则a 等于______.解析 x =2.5,y =3.5,∵回归直线方程过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25. 17.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y =bx +a 中的b ≈-2,气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量约为________件.答案 46解析 由所提供数据可计算得出x =10,y =38,又b ≈-2代入公式a =y -b x 可得a =58,即线性回归方程y ^=-2x +58,将x =6代入可得.18.正常情况下,年龄在18岁到38岁的人们,体重y (kg )依身高x (cm )的回归方程为y=0.72x-58.5。

线性回归习题答案

线性回归习题答案

线性回归习题答案线性回归是统计学中一种常见的数据分析方法,用于建立自变量与因变量之间的线性关系模型。

在实际应用中,线性回归模型常用于预测、趋势分析和关联度分析等领域。

下面将通过一些典型的线性回归习题来探讨其应用。

习题一:某公司根据过去几年的销售数据,建立了一个线性回归模型来预测未来的销售额。

已知公司的广告费用与销售额之间存在着一定的线性关系。

根据模型,当广告费用为1000元时,预测的销售额为15000元。

求该模型的回归方程。

解答:假设回归方程为y = a + bx,其中y表示销售额,x表示广告费用。

根据已知条件,可以得到一个方程:15000 = a + 1000b。

进一步,如果再给出另外一个广告费用与销售额的数据点,就可以求解出回归方程的具体参数a和b。

习题二:某城市的房价与房屋面积之间存在一定的线性关系。

已知一套房子的面积为120平方米,根据线性回归模型预测其价格为80万元。

求该模型的回归方程。

解答:假设回归方程为y = a + bx,其中y表示房价,x表示房屋面积。

根据已知条件,可以得到一个方程:80 = a + 120b。

同样地,如果再给出另外一个房屋面积与价格的数据点,就可以求解出回归方程的具体参数a和b。

习题三:某公司根据市场调研数据,建立了一个线性回归模型来分析产品销售量与价格之间的关系。

已知当产品价格为10元时,预测的销售量为1000个。

根据该模型,求当产品价格为15元时的预测销售量。

解答:假设回归方程为y = a + bx,其中y表示销售量,x表示产品价格。

根据已知条件,可以得到一个方程:1000 = a + 10b。

根据该方程,可以求解出参数a和b的具体值。

然后,将x取15,代入回归方程中,即可得到当产品价格为15元时的预测销售量。

通过以上习题的解答,我们可以看到线性回归模型在实际问题中的应用。

通过建立合适的回归方程,我们可以通过已知的自变量值来预测因变量的取值。

这对于企业决策、市场分析以及经济预测等方面都具有重要意义。

苏教版高中数学必修三练习:2.4线性回归方程(一)含答案

苏教版高中数学必修三练习:2.4线性回归方程(一)含答案

2.4 线性回归方程(一)【新知导读】1. 以下两个变量之间的关系中,哪个不是函数关系()A.角度和它的余弦值B.正方形边长和面积C.正n边形的边数和其内角和 D .人的年纪和身高2.回归直线方程y bx a 中的 y 是展望值,与实质中的y 关系为()A.y y 越小,说明回归偏差越小B.y y 越大,说明回归偏差越小C.y y 越小,说明回归偏差越小D.y y 越小,说明回归偏差越小3.回归直线方程的系数a,b的最小二乘法预计中,使函数Q (a, b) 最小, Q 函数指()n nA.( y i a bx i ) 2B.y i a bx ii1i 1C.( y i a bx i )2D. y i a bx i【典范点睛】例 1.以下是采集到的新房子销售价钱y 与房子的大小x 的数据:房子大小 x(m2 )80105110115135销售价钱 y (万元)18.42221.624.829.2(1) 画出数据的散点图;(2) 用最小二乘法预计求线性回归方程,并在散点图中加上回归直线;(3)计算此时 Q (a,b) 和 Q(2,0.2)的值,并作比较.【课外链接】1.假定学生在初一和初二数学成绩是线性有关的.若10 个学生初一(x)和初二( y)数学分数如下:x74717268767367706574y76757170767965776272试求初一和初二数学分数间的线性回归方程.【随堂操练】1.以下说法错误的选项是()A.假如变量和之间存在线性有关关系,那么依据它们的一组数据获得一列点(x i , y i ) ( i1,2,3,..., n )将漫步在某向来线的邻近B.假如变量和之间不存在线性有关关系,那么依据它们的一组数据(x i , y i ) ( i1,2,3,..., n )不可以写出一个线性方程C.设x,y是拥有线性有关关系的两个变量,且x对于y的线性回归方程为y bx a ,此中 a, b 叫做回归系数D.在回归剖析中,变量间的关系假如非确立性的关系,则因变量不可以由自变量独一确立2.三点 (3,10),(7,20),(11,24)的线性回归方程是( )A.y 5.75 1.75x B. y 1.75 5.75xC.y 1.75 5.75x D. y 5.75 1.75x3.已知x,y之间的一组数据:x0123y1357则 y 与x的线性回归方程y bx a 必过( )A. (2,2) 点 B .(1.5,0)点 C . (1,2)点 D . (1.5,4)点4.设有一个回归方程为y 3x 2,变量 x 增添一个单位时,则y 均匀增添______个单位.5.已知线性回归方程为y 0.50 x 0.81 ,则x25 时, y 的预计值为_____________.6.某地域某种病的发病人数奉上涨趋向,统计近四年这类病的新发病人数的线性回归剖析以下表表示:年份 ( x )该年新发病人数 ( y)x2003.5 ,y2540.25i i200224004444x i y i[x i ][y i ]20032491b i 1i 1i194.7444x i2[x i ] 2 20042586i 1i 120052684a y bx186623如不加控制,仍按这个趋向发展下去,请展望从2006 年初到 2009 年末的四年时间里,该地域这种病的新发病总人数为 _______________ .7x 与y之间的关系的模型,为偏差项,模型以下:.我们考虑两个表示变量模型 1:y6 4 x ;模型2: y 6 4x.(1) 假如x 3 , 1 ,分别求两个模型中的y 值;(2)分别说明以上两个模型是确立性模型仍是随机性模型.8.在 10 年时期,某城市居民的年收入与某种商品的销售额之间的关系以下表所示:第几年城市居民收入x (亿元)某商品销售额y (万元) 132.225.0231.130.0332.934.0435.837.0537.139.0638.041.0739.042.0843.044.0944.648.01046.051.0(1) 画出散点图; (2)假如散点图中的各点大概散布在一条直线邻近,求 y 与x间的线性回归方程.9.已知对于某设施的使用年限x 与所支出的维修花费y (万元),有以下统计资料:使用年限 x23456维修花费 y 2.2 3.8 5.5 6.57.0设 y 对x呈线性有关关系.试求: (1) 线性回归方程y bx a 的回归系数 a ,b;(2)预计使用年限为 10 年,维修花费是多少?10.在钢线含量对于电阻的效应的研究中,获得以下的数据:碳含量 x(%)0.100.300.400.550.700.800.96电阻 y (200C时,微欧)1518192122.623.826(1)画出散点图 (2) 求线性回归方程.2.4 线性回归方程(一)【新知导读】1.D 2.C3.A【典范点睛】例 1. (1)5555(2)n5,x i545 , x109 ,y i116 , y 23.2 ,x i60952 ,i 1i1i 155129525451160.1962 ,a23.20.1962 109 1.8166x i y i12592 , b,i 15 60952 5452线性回归方程为y0.1962 x 1.8166 ;(3)Q (1.8166,0.1962) 5.1771 , Q(2,0.2)7.0 ,由此可知,求得的a 1.8166, b0.1962是使函数Q (a,b)取最小值的a, b 值.【课外链接】Q x7152y 72.310解:,x i50520,,x i y i51467,所以i 1i1b 10514677107231.2182,a72.3 1.2182 7114.912,因此回归直线方程为10505207102y 1.2182 x14.192.【随堂操练】1.B 2 .D 3. B 4.3 5 .11.69 6. 139497. 解: (1)模型 1:y64x64318 ;模型2: y6 4 x 6 4 3119 .(2) 模型 1中同样的 x 值必定获得同样的y 值,因此是确立性模型;模型2中同样的 x 值,因的不一样,所得 y 值不必定同样,且为偏差项是随机的,因此模型 2 是随机性模型.8.解: (1)102(2)由题意: x 37.97,y39.1 ;x i14633.67 ,i 110i 1x i y i15202.9 ,于是10i x i y i10 x y15202.91037.9739.1b1 1.447 , a y bx 39.1 1.447 10210 x14663.6710 37.9722i 137.97 15.843.因此所求线性回归方程为y bx a 1.447 x 15.843.525112.354 59.解: (1) x 4 , y 5 ,x i90 ,x i y i112.3 ,于是回归系数 bi 1i 190542,a y bx 5 1.23 4 0.08 ;(2)线性回归方程是y 1.23x 0.08,当x 10年时,1.23y 1.23 10 0.08 12.38 (万),即预计使用10年时,维修花费是12.38万元.10.解: (1)(2) 可求得y13.958412.5503 x。

2019-2020学年高一数学苏教版必修3同步练习:2.4 线性回归方程 Word版含答案

2019-2020学年高一数学苏教版必修3同步练习:2.4 线性回归方程 Word版含答案

2.4 线性回归方程1、某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( )A. 63.6万元B. 65.5万元C. 67.7万元D. 72.0万元2、某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为0.66.52ˆ16yx =+,若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( )A.83%B.72%C.67%D.66%3、变量X 与Y 相对应的一组数据为()()()()()10,1,11.3,2,11.8,3,12.5,4,13,5,变量U 与V 相对应的一组数据为()()()()()10,5,11.3,4,11.8,3,12.5,2,13,1.1r 表示变量X 与Y 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则( ) A.210r r <<B.210r r <<C.210r r <<D.21r r =4、四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.34.4ˆ7623yx =-; ②y 与x 负相关且 3.476 5.6ˆ48yx =-+; ③y 与x 正相关且 5.43.4ˆ7893yx =+; ④y 与x 正相关且 4.326 4.5ˆ78yx =--. 其中一定不正确的结论的序号是( ) A.①② B.②③ C.③④ D.①④5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆyx =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆyx =-+ 6、为了解某社区居民的家庭年收入与年支出的关系,随机调査了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y bx a =+,其中0.76,b a y bx ==-,据此估计,该社区一户年收入为15万元家庭的年支出为( ) A.11.4万元 B.11.8万元 C.12.0万元 D.12.2万元7、为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为1l 和2l ,已知两个人在试验中发现对变量x 的观测数据的平均值恰好相等,都是s ,对变量y 的观测数据的平均值也恰好相等,都是t ,那么下列说法正确的是( ) A.直线1l 和2l 有交点(),s tB.直线1l 和2l 相交,但是交点未必是(),s tC.直线1l 和2l 由于斜率相等,所以必定平行D.直线1l 和2l 必定重合 8、根据如下样本数据得到的回归方程为ˆybx a =+,则( ) A. 0a >,0b < B. 0a >,0b > C. 0a <,0b < D. 0a <,0b >9、某校金融专业的学生学习《统计学》的时间x 与考试成绩y 之间可建立线性回归方程ˆya bx =+,经计算,方程为200.8ˆy x =-,则该方程参数中( ) A. a 值错误 B.b 值错误 C. a 、b 值都错误 D. a 、b 值都正确10、如图,有5组数据,为使剩下的4组数据的线,性相关性最大,则应去掉( ).A.(1,2)B.(3,5)C.(4,10)D.(5,10)11、调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:0.25402ˆ.31yx =+,由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加__________万元.12、某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm ,170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为__________cm .13、在一组样本数据11(,)x y ,22(,)x y ,…(),n n x y ,(2n ≥,12,,,n x x x ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i x y ()1,2,,i n =⋅⋅⋅都在直线112y x =+上,则这组样本数据的样本相关系数为__________. 14已知与之间的几组数据如下表: x 1 2 3 4 5 6 y 0 2 1 3 3 4假设根据上表数据所得线性回归直线方程为.若某同学根据上表中的前两组数据和求得的直线方程为则以下结论正确的是①;②;③;④15、某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:(1)求回归直线方程ˆˆˆybx a =+,其中ˆ20b =-,ˆˆa y bx =-; (2)预计在今后的销售中,销量与单价仍然服从题(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)答案以及解析1答案及解析: 答案:B解析:由表可计算4235742x +++==, 49263954424y +++==,∵点7,422⎛⎫ ⎪⎝⎭在回归直线ˆˆˆy bx a =+上,且ˆb 为9.4,所以7429.4ˆ2a =⨯+, 解得ˆ9.1a=, 故回归方程为9.4.1ˆ9y x =+, 令6x =,得ˆ65.5y=。

苏教版高中数学必修三练习:2.4线性回归方程(一)含答案

苏教版高中数学必修三练习:2.4线性回归方程(一)含答案

2.4线性回归方程(一)【新知导读】1.下列两个变量之间的关系中,哪个不是函数关系 ( ) A .角度和它的余弦值 B .正方形边长和面积 C .正n 边形的边数和其内角和 D .人的年龄和身高2.回归直线方程y bx a ∧=+中的y ∧是预测值,与实际中的y 关系为 ( ) A .y y ∧-越小,说明回归偏差越小 B .y y ∧-越大,说明回归偏差越小 C .y y ∧-越小,说明回归偏差越小D .y y ∧-越小,说明回归偏差越小3.回归直线方程的系数a ,b 的最小二乘法估计中,使函数(,)Q a b 最小,Q 函数指( )A .21()niii y a bx =--∑ B .1niii y a bx=--∑C .2()i i y a bx -- D .i i y a bx --【范例点睛】例1.以下是收集到的新房屋销售价格y 与房屋的大小x 的数据:(3)计算此时(,)Q a b 和(2,0.2)Q 的值,并作比较. 【课外链接】1.假设学生在初一和初二数学成绩是线性相关的.若10个学生初一()x 和初二()y 数学分数如下:【随堂演练】1.下列说法错误的是( )A .如果变量η和ξ之间存在线性相关关系,那么根据它们的一组数据得到一列点(,)i i x y (1,2,3,...,i n =)将散步在某一直线的附近B .如果变量η和ξ之间不存在线性相关关系,那么根据它们的一组数据(,)i i x y (1,2,3,...,i n =)不能写出一个线性方程C .设x ,y 是具有线性相关关系的两个变量,且x 关于y 的线性回归方程为y bx a ∧=+,其中,a b 叫做回归系数D .在回归分析中,变量间的关系若是非确定性的关系,则因变量不能由自变量唯一确定 2.三点(3,10),(7,20),(11,24)的线性回归方程是 ( ) A . 5.75 1.75y x ∧=- B . 1.75 5.75y x ∧=+ C . 1.75 5.75y x ∧=- D . 5.75 1.75y x ∧=+ 3.已知x ,y 之间的一组数据:则y 与x 的线性回归方程y bx a =+必过 ( )A .(2,2)点B .(1.5,0)点C .(1,2)点D .(1.5,4)点4.设有一个回归方程为32y x ∧=+,变量x 增加一个单位时,则y 平均增加______个单位.5.已知线性回归方程为0.500.81y x ∧=-,则25x =时,y 的估计值为_____________. 6.某地区某种病的发病人数呈上升趋势,统计近四年这种病的新发病人数的线性回归分析如下表表示:如不加控制,仍按这个趋势发展下去,请预测从2006年初到2009年底的四年时间里,该地区这种病的新发病总人数为_______________.7.我们考虑两个表示变量x 与y 之间的关系的模型,δ为误差项,模型如下: 模型1:64y x =+;模型2:64y x δ=++. (1) 如果3x =,1δ=,分别求两个模型中的y 值; (2) 分别说明以上两个模型是确定性模型还是随机性模型.8.在10年期间,某城市居民的年收入与某种商品的销售额之间的关系如下表所示:(1)画出散点图;(2)如果散点图中的各点大致分布在一条直线附近,求y与x间的线性回归方程.9.已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料:设y 对x 呈线性相关关系.试求:(1)线性回归方程y bx a ∧=+的回归系数a ,b ; (2)估计使用年限为10年,维修费用是多少?10.在钢线含量对于电阻的效应的研究中,得到以下的数据:(1)画出散点图(2)求线性回归方程.2.4线性回归方程(一) 【新知导读】 1.D 2.C 3.A 【范例点睛】 例1.(1)(2)5n =,51545ii x==∑,109x =,51116i i y ==∑,23.2y =,55160952i i x ==∑,5112592i i i x y ==∑,25129525451160.1962560952545b ⨯-⨯=≈⨯-,23.20.1962109 1.8166a =-⨯≈, ∴线性回归方程为0.1962 1.8166y x =+;(3)(1.8166,0.1962) 5.1771Q ≈,(2,0.2)7.0Q ≈,由此可知,求得的 1.8166a =,0.1962b =是使函数(,)Q a b 取最小值的a ,b 值. 【课外链接】 解:71x =Q ,52150520ii x==∑,72.3y =,10151467i ii x y==∑,所以210514677107231.21821050520710b ⨯-⨯=≈⨯-,72.3 1.21827114.912a =-⨯=-,所以回归直线方程为1.218214.192y x ∧=-.【随堂演练】1. B2. D3.B4. 35. 11.696.139497.解:(1)模型1:6464318y x =+=+⨯=;模型2:64643119y x δ=++=+⨯+=. (2)模型1中相同的x 值一定得到相同的y 值,所以是确定性模型;模型2中相同的x 值,因δ的不同,所得y 值不一定相同,且δ为误差项是随机的,所以模型2是随机性模型. 8. 解:(1)(2)由题意:37.97x =,39.1y =;102114633.67ii x==∑,10115202.9i ii x y==∑,于是1011022211015202.91037.9739.11.44714663.671037.9710i ii i i x y x yb x x==--⨯⨯==≈-⨯-∑∑,39.1 1.447a y bx =-=-⨯37.9715.843≈-.所以所求线性回归方程为 1.44715.843y bx a x ∧=+=-.9.解:(1)4x =,5y =,52190i i x ==∑,51112.3i i i x y ==∑,于是回归系数2112.35459054b -⨯⨯=-⨯ 1.23=,5 1.2340.08a y bx =-=-⨯=;(2)线性回归方程是 1.230.08y x ∧=+,当10x =年时,1.23100.0812.38y ∧=⨯+=(万),即估计使用10年时,维修费用是12.38万元.10.解:(1)(2)可求得13.958412.5503y x ∧=+。

最新苏教版 江苏省宿迁中学高中数学必修三练习:2.4线性回归方程(二) -含答案

最新苏教版 江苏省宿迁中学高中数学必修三练习:2.4线性回归方程(二) -含答案

2.4线性回归方程(二)【新知导读】1.对于线性相关系数r ,下列说法正确的是 ( )A .(0,)r ∈+∞时,r 越大,相关程度越高;反之相关程度越低B .(,)r ∈-∞+∞时,r 越大,相关程度越高,反之相关程度越低C .1r ≤时,r 越接近于1,相关程度越高;r 越接近于0,相关程度越低D .以上说法都不正确2.“回归”一词是在研究子女的身高与父母的身高之间的遗传关系时,由高尔顿提出的.他的研究结果是子代的平均身高向中心回归.根据他的结论,在儿子的身高y 与父亲的身高x 的回归直线方程y a bx ∧=+中,b ( ) A .在(-1,0)内 B .等于0 C .在(0,1)内 D .在[1,)+∞内3.由一组样本数据11(,)x y ,22(,)x y ,...,(,)n n x y 得到的线性回归方程为y bx a ∧=+,那么下面说法不正确的是 ( ) A .直线y bx a ∧=+经过点(,)x yB .直线y bx a ∧=+至少经过11(,)x y ,22(,)x y ,...,(,)n n x y 中的一个点C .直线y bx a ∧=+的斜率为1221ni ii nii x y nx yxnx==--∑∑D .直线y bx a ∧=+和各点11(,)x y ,22(,)x y ,...,(,)n n x y的偏差21[()]niii y bx a =-+∑是该坐标平面上所有直线与这些点的偏差中最小的 【范例点睛】例1 测得10对某国父子身高(单位:英寸)如下:(2) 如果y 与x 之间具有线性相关关系,求回归直线方程; (3) 如果父亲的身高为73英寸,估计儿子的身高.【课外链接】1.现有一个由身高预测体重的回归方程,体重预测值=4(磅/英寸)×身高-130磅.其中体重和身高分别以磅和英寸为单位.如果将它们分别以kg 、cm 为单位(1英寸≈2.5cm ,1磅≈0.45kg).回归方程应该是_ _________________________________. 【随堂演练】1.对于回归分析,下列说法错误的是 ( )A .在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定B .线性相关系数可以是正的或负的C .在回归分析中,如果21r =,说明x 与y 之间完全线性相关D .相关样本系数(,)r ∈-∞+∞ 2.线性回归方程y bx a ∧=+必过( )A .(0,0)点B .(x ,0)点C .(0,y )点D .(x ,y )点3.为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立做了100次和150次试验,并且利用线性回归方法,求得回归直线分别为1l 和2l .假设两个人在试验中发现对变量x 的观察数据的平均值都是m ,对变量y 观察的平均值都是t ,那么下列说法正确的是( ) A .1l 和2l 有交点(,)m tB .1l 和2l 相交,但交点不一定是(,)m tC .1l 和2l 必定平行D .1l 和2l 必定重合4.在研究硝酸钠的可溶性时,对不同的温度观察它在水中的溶解度,得观察结果如下:5.下面数据是从年龄在40到60岁的男子中随机抽取6个个体,分别测得的每个个体心脏功能水平y (满分100分)以及相应的每天花在看电视上的时间x (小时).6.若施肥量x 与水稻产量y 的线性回归方程为5250y x ∧=+,当施肥量为80kg 时,预计的水稻产量为______________kg .7.为了研究三月下旬的平均气温(x )与四月十二号前棉花害虫化蛹高峰日(y )的关系,某地区观察了1996年至2001年的情况,得到下面数据:(1)据气象预测,该地区在2002年三月下旬平均气温为27oC ,试估计2002年四月化蛹高峰日为哪天;(2)对变量x 、y 进行相关性检验.8.证明恒等式11()()nni i i i i i x y nx y x x y y ==-=--∑∑,其中11ni i x x n ==∑,1ni i y y ==∑,从而回归直线的斜率还可以写成121()()()niii nii x x y y x x ==---∑∑.9.以下是一位销售经理收集来的销售员每年销售额y 和销售经验年数x 的关系:(1)依据这些数据画出散点图并作直线78 4.2y x =+,计算2()iiy y -∑;(2)依据这些数据由最小二乘法估计线性回归方程,并据此计算1021()iii y y ∧=-∑.10.某工业部门进行一项研究,分析该部门的产量与生产费用之间的关系,数据如下:(2)如果y与x之间具有线性相关关系,求线性回归方程.2.4线性回归方程(二) 【新知导读】 1.C 2.C 3.B 【范例点睛】例1.(1)66.8x =,67.01y =,102144794ii x==∑,102144941ii y==∑,4476.27x y ≈,24462.24x =,24490.34y ≈,10144842.4i i i x y ==∑,1010i ix y x yr -∴=∑79.70.980181.31≈=≈≈.因为0.9801r =接近1,所以y 与x 具有较强的相关关系,也就是说y 与x 之间具有线性相关关系.(2)设回归直线方程为y bx a ∧=+,由101102211044842.444762.74479444622.410i ii i i x y x yb x x==--=≈--∑∑79.7171.6=0.4645≈,67.010.464566.835.98a y bx =-≈-⨯≈,所以所求直线方程为0.464539.98y x ∧=+.(3)当73x =时,0.46457335.9869.9y =⨯+≈,所以当父亲身高为73英寸时,估计儿子的身高为69.9英寸. 【课外链接】体重预测值=0.72(kg/cm)×身高-58.5kg 【随堂演练】1.D 2.D 3.A4.0.8809 5.-0.9023 6.6507.解:(1)61129.136i i x x ===∑,6117.56i i y y ===∑,6215130.92i i x ==∑,611222.6i i i x y ==∑,6162216 2.26i ii ii x y x yb xx==-∴==--∑∑,7.5( 2.2)29.1371.6a y bx =-=--⨯=,∴回归直线方程为2.271.6y x ∧=-+.当27x =时, 2.22771.612.2y ∧=-⨯+=.据此,可估计该地区2002年4月12日或13日化蛹高峰日.(2)660.9342i ix y x yr -==∑,r 的值接近于1,所以变量x ,y 存在线性相关关系. 8.证明:11111()()()n n n n niii iiii iiii i i i i x x y y x y xy x y x y x y x y y x nx y =====--=--+=--+∑∑∑∑∑11nni i i i i i x y nx y nx y nx y x y nx y ===--+=-∑∑,∴回归直线的斜率为1221()ni ii nii x y nx yxn x ==-=-∑∑121()()()niii nii x x y y x x ==---∑∑.9.解:(1)散点图与直线78 4.2y x ∧=+的图形如图所示,对1,3,...,13x =,82.2,90.6,94.8,94.8,y ∧=103.2,111.6,120,120,124.2,132.6,1021()178.48i i i y y ∧=-=∑.(2)1011710i i x x ===∑,1021()142xx i i l x x ==-=∑,108y =,101()()xy i i i l x x y y ==--∑ 568=,所以5684142xyxx l b l ===,1084780a y bx =-=-⨯=,480y x ∧∴=+.84,92,96,96,104,112,120,120,124,132i y ∧=,1021()170i i i y y ∧=-=∑.10.解:(1)由题意可得77777.710x ==,1657165.710y ==,102170903i i x ==∑,1021277119i i y ==∑,101132929i ii x y==∑.r =0.806≈,因此x 与y 之间具有显著的相关性.(2)21329291077.7165.70.397709031077.7b -⨯⨯=≈-⨯,∧y x=+.⨯=,所以线性回归方程为0.397134.8 165.70.397a=-77.7134.8。

2016-2017学年高中数学苏教版必修3学业分层测评16 线性回归方程 含解析

2016-2017学年高中数学苏教版必修3学业分层测评16 线性回归方程 含解析

学业分层测评(十六)(建议用时:45分钟)[学业达标]一、填空题1.以下关于线性回归的判断,正确的为________。

(填序号)①若散点图中所有点都在一条直线附近,则这条直线为回归直线;②已知线性回归方程为错误!=0。

50x-0.81,则x=25时,y的估计值为11。

69;③线性回归方程的意义是它反映了样本整体的变化趋势。

【解析】能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小平方法求得直线错误!=a+bx才是线性回归方程,①不对,③正确。

将x=25代入错误!=0。

50x-0.81,解得错误!=11。

69,②正确。

【答案】②③2.(2015·南通高一月考)甲、乙两同学各自独立地考察两个变量X、Y的线性相关关系时,发现两人对X的观察数据的平均值相等,都是s,对Y的观察数据的平均值也相等,都是t,各自求出的回归直线分别是l1,l2,则直线l1与l2必经过同一点________。

【解析】由回归方程必过样本中心(错误!,错误!)知,直线l1,l2经过的同一点为(s,t)。

【答案】(s,t)3.已知某工厂在2015年每月产品的总成本y(万元)与月产量x (万件)之间有线性相关关系,回归方程为错误!=1。

215x+0.974,若月产量增加4万件时,则估计成本增加________万元。

【解析】由错误!1=1.215x1+0。

974,=1.215(x1+4)+0。

974,错误!2得错误!2-错误!1=1.215×4=4。

86(万元)。

【答案】4。

864。

对某台机器购置后的运营年限x(x=1,2,3,…)与当年利润y的统计分析知具备线性相关关系,回归方程为y=10.47-1。

3x,估计该台机器使用________年最合算.【解析】只要预计利润不为负数,使用该机器就算合算,即y≥0,所以10.47-1。

3x≥0,解得x≤8.05,所以该台机器使用8年最合算。

【答案】85。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学线性回归方程检测试题(附答案)
高中苏教数学③
2. 4线性回归方程测试题
一、选择题
1.下列关系属于线性负相关的是()
A.父母的身高与子女身高的关系
B.身高与手长
C.吸烟与健康的关系
D.数学成绩与物理成绩的关系
答案:C
2.由一组数据得到的回归直线方程,那么下面说法不正确的是()
A.直线必经过点
B.直线至少经过点中的一个点
C.直线 a的斜率为
D.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直线
答案:B
3.实验测得四组的值为,则y与x之间的回归直线方程为()
A.B.
C.D.
答案:A
4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么下列说法正确的是()
A.直线和一定有公共点
B.直线和相交,但交点不一定是
C.必有直线
D.和必定重合
答案:A
二、填空题
5.有下列关系:
(1)人的年龄与他(她)拥有的财富之间的关系
(2)曲线上的点与该点的坐标之间的关系
(3)苹果的产量与气候之间的关系
(4)森林中的同一种树木,其断面直径与高度之间的关系(5)学生与他(她)的学号之间的关系
其中,具有相关关系的是.
答案:(1)(3)(4)
6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有的两个变量,将数据表
中的各对数据在直角坐标系中描点得到的表示具有相关关
系的两个变量的一组数据的图形,叫做.
答案:统计分析;相关关系;散点图
7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是.
答案:;;
8.已知回归直线方程为,则可估计x与y增长速度之比约为.
答案:
三、解答题
9.某商店统计了近6个月某商品的进价x与售价y(单位:元)的对应数据如下:
3 5 2 8 9 12
4 6 3 9 12 14
求y对x的回归直线方程.
解:,,
回归直线方程为.
10.已知10只狗的血球体积及红血球的测量值如下:
45 42 46 48 42
6.53 6.30 9.25
7.580 6.99
35 58 40 39 50
5.90 9.49
6.20 6.55
7.72
x(血球体积,ml),y(红血球数,百万)
(1)画出上表的散点图;
(2)求出y对x的回归直线方程并且画出图形.
解:(1)见下图
(2),
设回归直线方程为,
则,.
图形如下:
11.某医院用光电比色计检验尿汞时,得尿汞含量(毫克/升)与消光系数如下表:
尿汞含量:2 4 6 8 10
消光系数 64 134 205 285 360
(1)画出散点图;
(2)如果y与x之间具有线性相关关系,求回归直线方程;(3)估计尿汞含量为9毫克/升时的消光系数.
解:
(1)
(2)由散点图可知与线性相关,设回归直线方程为.列表:
1 2 3 4 5
2 4 6 8 10
64 134 205 285 360
128 536 1230 2280 3600 回归直线方程为.
(3)当时,.。

相关文档
最新文档