AO工艺设计
AO工艺设计计算参考
AO工艺设计计算参考AO工艺设计计算是指在AO(Atomic Operations)制造工艺中,通过对制造过程和制造设备参数等进行计算和优化,以实现高效、高质量的制造过程。
AO工艺设计的目标是提高制造过程的效率和准确性,降低制造成本和资源消耗,同时保证产品的质量和可靠性。
下面将从AO工艺设计中常见的计算内容和具体的计算方法进行详细介绍。
一、AO工艺设计中的常见计算内容1.制造过程能力分析和优化计算制造过程能力分析是指通过统计分析和计算,评估制造过程的稳定性和可靠性。
在AO工艺设计中,可以通过计算过程的CP(Process Capability)指数和Cpk(Process Capability Index)指数,来评估过程的能力和稳定性。
CP指标描述了过程的能力,Cpk指标描述了过程的稳定性。
通过对CP和Cpk进行计算,可以了解制造过程的能力水平,进而采取合适的措施进行优化。
2.制造设备参数优化计算制造设备参数优化计算是指通过对制造设备的参数进行计算和优化,实现制造过程的高效和高质量。
常见的制造设备参数包括速度、温度、力度等。
在AO工艺设计中,可以通过计算设备参数的响应曲线和性能曲线,来确定最佳的设备参数组合。
通过计算和优化制造设备参数,可以提高制造过程的效率和准确性,降低制造成本和资源消耗。
3.制造过程中的数据收集和分析计算制造过程中的数据收集和分析计算是指通过对制造过程中的数据进行收集和分析,来了解过程的状态和变化。
在AO工艺设计中,可以通过计算制造过程中的数据均值、方差等统计特性,来分析过程的变化和偏差。
通过数据分析计算,可以及时发现和纠正制造过程中的问题,保证制造过程的稳定性和可靠性。
二、AO工艺设计中的具体计算方法1.统计分析方法统计分析方法是AO工艺设计中常用的计算方法之一、通过对制造过程中的数据进行统计分析,可以了解过程的变化和偏差,进而采取合适的措施进行优化。
常用的统计分析方法包括正态性检验、方差分析、回归分析等。
ao工艺的设计计算
ao工艺的设计计算
AO工艺的设计计算是指在工程设计中,根据具体要求和条件,
对AO工艺进行计算和设计的过程。
AO工艺是一种常见的水处理工艺,用于去除水中的氨氮和有机物质,常用于污水处理、饮用水处
理等领域。
在进行AO工艺的设计计算时,需要考虑以下几个方面:
1. 水质参数分析,首先需要对水质进行分析,包括氨氮浓度、
有机物浓度、pH值、温度等参数的测定。
这些参数将直接影响到AO
工艺的设计和计算。
2. 反应器容积计算,根据水质参数和处理要求,需要计算出
AO反应器的容积。
反应器容积的大小与处理效果和处理能力密切相关,需要根据实际情况进行合理的估算和计算。
3. 氧化池和缺氧池设计,AO工艺通常包括氧化池和缺氧池两
个单元,需要根据处理要求和水质参数计算出各个池的尺寸和容积。
氧化池用于氨氮的氧化和有机物的降解,缺氧池用于硝化和反硝化
过程。
4. 曝气系统设计,曝气系统是AO工艺中重要的组成部分,用于提供氧气供给微生物进行降解和氧化反应。
曝气系统的设计需要考虑氧气传质效率、曝气池的尺寸和曝气量等因素。
5. 污泥产生和处理计算,AO工艺会产生污泥,需要计算污泥的产生量和处理方式。
污泥产生量的计算需要考虑水质参数、反应器容积和污泥浓度等因素。
除了上述几个方面,还需要考虑AO工艺的运行参数调整、控制策略和监测方法等内容。
在设计计算过程中,需要充分考虑工程实际情况和经济性,确保设计的合理性和可行性。
总之,AO工艺的设计计算是一个综合性的工程设计过程,需要考虑多个因素并进行合理的计算和估算。
这样才能设计出满足要求的AO工艺系统。
AO工艺流程及工艺原理
AO工艺流程及工艺原理AO工艺(Additive manufacturing,增材制造)是一种新型的制造方法,它利用计算机辅助设计(CAD)和三维打印技术,通过将原材料逐层堆叠或连续沉积,制造出立体实体物体。
与传统的切削加工不同,AO工艺具有快速、灵活和可定制化的特点,极大地拓宽了制造的可能性。
1.设计:使用计算机辅助设计软件(CAD)进行产品的三维建模设计。
2.切片:将三维模型切片成一系列二维的图层,每个图层的厚度即为打印机在该层上堆积材料的高度。
3.制备:选择合适的打印机和材料,并进行预处理,如清洁和固化。
4.打印:根据切片图层逐层堆积材料,通过精确控制打印机的喷嘴或光束的位置和能量进行打印。
5.后处理:将打印出来的模型进行去除支撑结构、清洁、表面处理、烘干等工艺。
6.检验:对打印出来的产品进行质量检验和测试,如尺寸测量、材料性能测试等。
7.使用:产品可由制造商或用户直接使用,也可以进行组装和进一步加工后使用。
AO工艺的原理主要是通过逐层堆积或连续沉积原材料来制造物体。
具体的原理包括:1.材料选择:根据不同的产品要求和打印机的能力,选择合适的材料。
常用的材料有塑料、金属、陶瓷、生物材料等。
2.打印路径控制:通过计算机控制系统准确控制打印喷嘴或光束的位置和能量,实现精确的打印路径和形状控制。
3.材料堆积:通过不断堆积材料,逐渐形成三维物体。
对于塑料材料,常用的堆积方法有熔融沉积和光固化两种;对于金属材料,常用的堆积方法有粉末床熔融、粉末层压和线状沉积等。
4.支撑结构:对于悬空部分或上下方向的悬垂结构,需要添加临时的支撑结构以保持稳定性,打印完成后再去除。
5.后处理:对于打印出来的模型,可能需要进行去除支撑结构、清洁、表面处理、烘干等后处理工艺,以提高产品的质量和性能。
AO工艺的工艺原理和流程的应用范围非常广泛,可以用于制造各种产品,如零件、工具、模型、艺术品、骨骼和器官等。
它在汽车、航空航天、生物医学、建筑等领域都有广泛的应用,为制造业带来了新的变革和机遇。
多级多段ao工艺毕业设计
多级多段ao工艺毕业设计
多级多段AO工艺是一种在工业生产中广泛应用的工艺方法。
它通过多级反应和多段操作来提高生产效率和产品质量。
在多级多段AO工艺中,原料经过多级反应器进行反应,并在每个反应器之间进行分离和补料操作。
这种工艺可以有效地提高反应的转化率和产量,并且可以使得不同的反应物在不同的反应器中进行不同的反应,从而得到更复杂的化学产物。
多级多段AO工艺的设计需要考虑多个因素。
首先,需要确定反应器的数量和容积,以满足所需的反应转化率和产量。
其次,需要确定每个反应器的操作条件,例如温度、压力、催化剂用量等。
此外,还需要设计适当的分离和补料系统,以确保反应物和产物的高效分离和补给。
在多级多段AO工艺的设计过程中,需要进行模拟和优化。
通过使用计算流体力学(CFD)模拟来分析流体在反应器中的流动和反应过程,并通过优化算法来寻找最佳的操作条件和反应器配置。
此外,还可以使用实验设计方法来优化反应器的操作条件和参数设置。
多级多段AO工艺在许多领域有广泛的应用。
例如,在化学工业中,它可以用于合成复杂的有机化合物和高性能聚合物。
在环保领域,它
可以用于废水处理和空气净化。
在能源领域,它可以用于生物质转化和石油加工。
总之,多级多段AO工艺是一种高效和灵活的工艺方法,可以在不同的领域中应用。
通过合理的设计和优化,它可以提高生产效率和产品质量,同时减少资源和能源的消耗。
AO工艺流程课程设计
A O工艺流程课程设计一、课程目标知识目标:1. 学生能够理解A/O工艺流程的基本原理,掌握其运行机制及各阶段的关键步骤。
2. 学生能够描述A/O工艺在污水处理中的应用及其对环境保护的意义。
3. 学生能够解释A/O工艺中活性污泥法的原理及其影响因子。
技能目标:1. 学生能够通过观察和实验操作,分析A/O工艺流程中的水质变化。
2. 学生能够运用图表和数据,评估A/O工艺的处理效果。
3. 学生能够运用所学知识,设计简单的A/O工艺流程,解决实际问题。
情感态度价值观目标:1. 学生通过学习A/O工艺流程,培养环保意识,关注水资源的保护和利用。
2. 学生在学习过程中,学会合作与交流,培养团队精神和批判性思维。
3. 学生能够认识到科学技术在环境保护中的重要性,激发对环保事业的热爱。
本课程针对高年级学生,结合学科特点,注重理论联系实际,提高学生的实践操作能力。
通过本课程的学习,使学生掌握A/O工艺流程的相关知识,培养其在环保领域的技能和素养,为我国环境保护事业贡献力量。
同时,课程目标具体、可衡量,有助于教师进行教学设计和评估,确保学生达到预期学习成果。
二、教学内容1. A/O工艺原理:讲解A/O工艺的基本概念、运行机制,包括缺氧池、好氧池的作用,污泥回流比、混合液回流比的影响。
相关教材章节:第三章第二节2. A/O工艺在污水处理中的应用:介绍A/O工艺在生活污水、工业废水处理中的应用案例,分析其优缺点。
相关教材章节:第三章第三节3. 活性污泥法:讲解活性污泥法的原理、种类及其在A/O工艺中的应用,重点分析溶解氧、污泥龄等影响因子。
相关教材章节:第四章第一节4. 实践操作:组织学生进行A/O工艺流程的观察和实验操作,分析水质变化,评估处理效果。
相关教材章节:第五章5. 设计与应用:引导学生运用所学知识,设计简单的A/O工艺流程,解决实际问题,培养创新意识和实践能力。
相关教材章节:第六章教学内容按照以上五个方面进行组织,确保科学性和系统性。
AO工艺设计计算
AO工艺设计计算一、AO工艺设计计算的基本概念和原理1.AO工艺的基本原理和流程:AO工艺是一种常见的废水处理工艺,其基本原理是通过氧化和吸附的过程,将废水中的有机物质和颜色等污染物去除或转化为可沉淀和可分离的物质,从而实现废水的处理和净化。
2.AO工艺设计计算的目标:AO工艺设计计算的目标是确定最优的工艺参数组合,以实现废水处理的高效和可控。
最优的工艺参数组合应该能够在保证废水处理效果的前提下,尽量减少能耗和操作成本。
3.AO工艺设计计算的基本方法:AO工艺设计计算的基本方法包括实验室试验、数学模型和仿真模拟。
可以通过实验室试验来确定不同工艺参数对处理效果的影响,然后利用数学模型和仿真模拟的方法来进行工艺参数优化和设计。
二、AO工艺设计计算的具体内容和步骤1.废水特性分析:首先需要进行废水特性分析,包括废水的COD(化学需氧量)、颜色、PH值等方面的分析。
通过废水特性分析,可以了解废水的污染物组成和浓度,为后续的工艺设计计算提供数据基础。
2.工艺参数选择:根据废水特性分析的结果,选择适合的AO工艺参数,包括曝气时间、曝气周期、MBR滤料料号和比例、曝气方式等。
不同的废水特性需要采取不同的工艺参数组合,以实现最佳的处理效果。
3.AO工艺计算公式:根据AO工艺的基本原理和流程,可以建立一些计算公式,用于计算AO工艺中的各种参数,如MLSS(混合液悬浮固体浓度)、F/M比(污泥产生速率与废水中COD的比值)等。
这些计算公式可以作为工艺参数设计的依据。
4.实验室试验:设计并进行相应的实验室试验,通过改变不同工艺参数值,观察和分析废水处理效果,以确定最优的工艺参数组合。
实验室试验还可以验证计算公式的准确性和可靠性。
5.数学模型和仿真模拟:利用数学模型和仿真模拟的方法,可以对AO工艺进行建模和优化设计。
数学模型可以描述废水处理过程中的各种物理化学反应和传质过程,从而帮助理解和预测工艺效果。
仿真模拟可以模拟不同工艺参数组合下的废水处理效果,并进行优化设计。
AO工艺设计计算公式
AO工艺设计计算公式A/O工艺设计参数在A/O工艺的设计中,需要考虑以下参数:1.水力停留时间:硝化不少于5-6小时,反硝化不超过2小时,A段:O段=1:3.2.污泥回流比:50-100%。
3.混合液回流比:300-400%。
4.反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1.72gBOD/gNOx--N。
5.硝化段的TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化的凯氏氮):<0.05KgTKN/KgMLSS·d。
6.硝化段污泥负荷率:BOD5/MLSS<0.18KgBOD5/KgMLSS·d。
7.混合液浓度x=3000-4000mg/L(MLSS)。
8.溶解氧:A段DO2-4mg/L。
9.pH值:A段pH=6.5-7.5,O段pH=7.0-8.0.10.水温:硝化20-30℃,反硝化20-30℃。
11.碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3--N将放出2.6g 氧,生成3.75g碱度(以CaCO3计)。
12.需氧量Ro:单位时间内曝气池活性污泥微生物代谢所需的氧量称为需氧量(KgO2/h)。
微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b’VX+4.6Nr。
其中,a’为平均转化1Kg的BOD的需氧量KgO2/KgBOD,b’为微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d。
13.Nr为被硝化的氨量,kd/d4.6为1kgNH3-N转化成NO3-所需的氧量(KgO2)。
对于不同类型的污水,其a’和b’值也有所不同。
最后,还需要考虑供氧量的问题。
由于充氧与水温、气压、水深等因素有关,因此氧转移系数应作修正。
ρ表示所在地区实际压力(Pa)与标准大气压下Cs值的比值。
公式为ρ=实际Cs值/(Pa)=所在地区实际压力(Pa)/(Pa)。
ao工艺的设计计算
ao工艺的设计计算AO工艺的设计计算是指在制造过程中,针对特定的工艺要求和产品设计要求,进行工艺参数的计算和设计。
下面我将从多个角度对AO工艺的设计计算进行全面回答。
首先,AO工艺是指通过自动光学系统对产品进行光学检测和自动校正的工艺。
在设计计算中,需要考虑以下几个方面:1. 光学系统参数计算,包括光源的选择、光源的亮度和颜色温度等参数的计算,以及光学元件的选择和布局。
这些参数的计算需要考虑产品的特性和要求,以及光学系统的灵敏度和精度要求。
2. 自动校正算法设计,AO工艺的核心是自动校正,需要设计合适的算法来实现自动校正功能。
这涉及到图像处理、特征提取和反馈控制等方面的计算。
算法的设计需要考虑到系统的实时性和稳定性。
3. 传感器选择和布局,在AO工艺中,传感器用于采集产品的图像信息,因此需要选择合适的传感器,并设计合理的传感器布局。
传感器的选择需要考虑分辨率、灵敏度和响应速度等因素,布局需要考虑到产品的几何形状和检测要求。
4. 控制系统设计,AO工艺需要一个稳定可靠的控制系统来实现自动校正和调整。
在设计计算中,需要考虑控制系统的控制算法、控制器的选择和参数调整等方面。
控制系统的设计需要综合考虑产品的特性、工艺要求和系统的响应速度。
此外,还需要考虑到工艺参数的计算和优化。
工艺参数包括光学系统的焦距、光源的亮度和颜色温度、传感器的曝光时间和增益等。
这些参数的计算需要结合产品的特性和要求,通过实验和仿真等手段进行优化。
总之,AO工艺的设计计算涉及到光学系统参数的计算、自动校正算法的设计、传感器选择和布局、控制系统设计以及工艺参数的计算和优化等方面。
通过综合考虑产品的特性和要求,可以设计出满足工艺要求的AO工艺。
AO工艺设计计算
AO工艺设计计算AO工艺设计计算,是指在制造领域中为了满足产品的工艺要求,通过计算方法来确定工艺参数或流程的过程。
AO工艺设计计算包括产品的结构尺寸、工艺流程、加工工艺参数等内容,对于保证产品的质量和成本控制具有重要意义。
在AO工艺设计计算中,首先需要明确产品的结构要求和功能要求,根据产品的结构要求确定产品的基本尺寸。
基本尺寸的确定需要考虑产品的使用要求和产品的装配要求等因素,通过分析产品的结构和功能要求,确定产品的关键尺寸。
在确定产品的关键尺寸时,需要考虑产品的使用功能需求和产品的可制造性,避免出现无法加工或加工困难的情况。
在确定产品的基本尺寸之后,需要进行工艺流程的设计。
工艺流程是指产品从开始制造到成品的全过程,包括原材料的加工、加工过程的控制、产品的组装等环节。
工艺流程的设计需要考虑加工工艺的先后顺序、加工设备的选择、加工参数的确定等因素。
通过分析产品的结构和工艺要求,确定产品的加工工艺流程,并编制相应的工艺流程图和工艺文件。
在确定工艺流程之后,需要进行加工工艺参数的计算。
加工工艺参数是指加工过程中的各项参数,如切削刀具的选用、切削速度的选择、进给速度的选择等。
加工工艺参数的计算需要考虑加工工艺的性能要求和加工设备的能力要求,通过分析产品的结构和工艺要求,确定加工工艺参数,并编制相应的工艺参数表和工艺参数文件。
在进行AO工艺设计计算时,还需要考虑产品的质量和成本控制。
质量控制是指通过控制加工工艺和加工参数,保证产品达到规定的质量要求。
成本控制是指通过合理的工艺设计和加工流程,降低产品的制造成本。
通过合理的工艺设计计算,可以有效地提高产品的质量和降低产品的制造成本。
总之,AO工艺设计计算是制造领域中重要的一环,通过计算方法可以确定产品的结构尺寸、工艺流程、加工工艺参数等内容。
通过合理的工艺设计计算,可以提高产品的质量和降低产品的制造成本,对于制造企业来说具有重要的意义。
污水处理厂AO工艺设计
污水处理厂AO工艺设计AO工艺的设计主要包括以下几个方面:1.污水的处理流程设计:AO工艺通常包括好氧池和厌氧池两个部分,其中好氧池主要用来降解有机物质,厌氧池主要用来去除氮和磷。
在设计时,需要确定好氧池和厌氧池的容积和水流速度等参数。
2.污水的预处理:在进入AO工艺之前,通常需要对污水进行预处理,以去除大颗粒的固体物质和部分有机物质。
比如通过格栅筛分去除大颗粒物,通过沉砂池去除重质物质。
3.好氧池的设计:好氧池是AO工艺的核心部分,其通常采用曝气方式进行生物处理。
对于好氧池的设计,需要确定曝气系统的曝气量、曝气时间和曝气方式。
同时,还需要确定好氧池的混合方式和搅拌力度,以保证污水中的有机物质能够充分被生物降解。
4.厌氧池的设计:厌氧池通常用来去除氮和磷,其设计需要考虑厌氧条件的维持,包括控制进水口的氧气含量和维持适当的PH值。
此外,还需要确定厌氧池的混合方式和搅拌力度,以保证厌氧菌的生长和活动。
5.污泥处理:污泥是AO工艺产生的副产物,需要进行处理以达到无害化处理的要求。
常见的污泥处理方式包括厌氧消化和好氧消化。
6.其他设备的选择:AO工艺设计还需要考虑其他附属设备的选择,比如曝气设备、搅拌设备、污泥浓缩设备等。
在选择设备时,需要考虑设备的性能、可靠性、能耗等因素,以保证整个处理系统的运行效果和经济效益。
综上所述,AO工艺设计是对污水处理厂的整体工艺流程进行设计和优化,包括污水预处理、好氧池和厌氧池的设计、污泥处理以及其他设备的选择等。
通过科学合理的设计,可以高效地降解有机物质,达到对污水进行有效处理的目的。
ao工艺设计计算
1、缺氧池、好氧池(曝气池)的设计计算: (1)、设计水量的计算由于硝化和反硝化的污泥龄和水力停留时间都较长,设计水量应按照最高日流量计算。
Q=K Q式中:Q——设计水量,m3/d;Q——日平均水量,m3/d;K——变化系数;(2)、确定设计污泥龄0C需反硝化的硝态氮浓度为N O =N-0.05(S0 -S e)-N e式中:N——进水总氮浓度,mg/L;S---- 进水BOD值【1】,mg/L;S e——出水BOD值,mg/L;N e——出水总氮浓度,mg/L;反硝化速率计算K =N O de S 0计算出K“e值后查下表选取相应的V D/ V值,再查下表取得0°值。
反硝化设计参数表(T=10~12℃)式中:Y ——污泥产率系数,kgSS/kgBOD ;K ——修正系数,取K =0.9 ; x 0——进水SS 值mg/L;T ——设计水温,与污泥龄计算取相同数值。
然后按下式进行污泥负荷核算:L = -------- S -------- S e 「Y (S 0-S )式中:L S ——污泥负荷,我国规范推荐取值范围为0.2〜0.4kgBOD/(kgMLSS • d )。
XY =K [0.75 +0.6—0S0.102 e 「1.072(T -15)] 1 +0.174・1.072(T -15)C(4)、确定 MLSS(X)MLSS(X)取值通过查下表可得。
反应池MLSS 取值范围RX R - X式中:R ——污泥回流比,不大于150%;t ——浓缩时间,其取值参见下表。
E(5)、计算反应池容积V = 24Q呼(S 0 - S )1000X~一计算出反应池容积V 后,即可根据匕/V 的比值分别计算出缺氧反应池和好氧反应池 的容积。
2、厌氧池的设计计算:X =0.7R1000 ~VIT厌氧反应池的容积计算V =0.75Q (1+R ) +0.15VAD式中:V A ——厌氧反应池容积,m 3。
AO法工艺设计参数
AO法工艺设计参数AO法工艺设计参数是指在AO法(Advanced Oxidation Process,高级氧化工艺)中,针对不同的废水处理需求和实际情况,确定的一系列重要参数。
通过合理选择和调节这些参数,可以最大程度地提高AO法的处理效果和经济效益。
1.水质参数:水质参数是指废水的基本性质和组成。
它们包括有机物浓度、COD (化学需氧量)、BOD(生化需氧量)、氨氮浓度等。
这些参数可以进一步帮助确定AO法中氧化、还原和微生物的作用。
2.pH值:pH值是指废水的酸碱性程度。
pH调节对AO法的进行起到重要作用,因为pH的改变可以影响废水中的有机物的溶解度、离子交换、金属沉淀等。
通常情况下,废水的pH在3-10范围内能够满足AO法的处理要求。
3.温度:温度是指废水的温度。
温度对AO法的反应速率和微生物的活性有一定的影响。
较高的温度可以加快废水中有机物的降解速率,但也会增加处理系统的能耗。
4.系统氧气供给率及供氧方式:AO法是通过氧化和还原反应来处理废水的,氧气在反应中起到了重要作用。
氧气供给率和供氧方式的选择和调节可以影响废水中的溶解氧浓度和传质速率。
其中供氧方式包括通气法、压力曝气法等。
5.反应时间:反应时间是指废水在AO法中处理的时间。
根据废水的性质和要求,确定合适的反应时间可以使AO法充分发挥其降解能力,同时避免废水过度处理导致成本增加。
6.填料类型和用量:填料是指在AO法反应器中用于增加接触面积、提高反应效率的材料。
常用的填料包括活性炭、陶粒等。
填料的类型和用量的选择与反应器的设计和处理效果密切相关。
7.水力停留时间:水力停留时间是指废水在AO法中停留的时间。
废水的水力停留时间可以通过调整反应器的容积和进出水流量来控制。
合适的水力停留时间可以保证废水在AO法反应器中充分接触和反应。
8.微生物的种类和菌种:微生物在AO法中起到了重要作用,因为它们能够降解废水中的有机物。
选择适宜的微生物种类和菌种,可以提高废水的降解效率和处理效果。
AO工艺生物脱氮工艺原理、设计与计算
A/O工艺生物脱氮工艺原理、设计与计算(一)工艺流程A/O工艺以除氮为主时,基本工艺流程如下图1。
图1 缺氧/好氧工艺流程A/O工艺有分建式和合建式工艺两种,分别见图2、图3。
分建式即硝化、反硝化与BOD 的去除分别在两座不同的反应器内进行;合建式则在同一座反应器内进行。
合建式反应器节省了基建和运行费用以及容易满足处理工程对碳源和碱度等条件的要求,但受以下因数影响:溶解氧 (0.5~1.5mg/L)、污泥负荷[0.1~ 0.15kgBOD5/(kgMLVSS•d)]、C/N比(6~7)、pH值(7.5~8.0) ,而不易控制。
对于pH值,分建式A/O工艺中,硝化液一部分回流至反硝化池,池内的反硝化脱氮菌以原污水中的有机物作碳源,以硝化液中NOx-N中的氧作为电子受体,将NO3-N还原成N2,不需外加碳源。
反硝化池还原1gNOx-N产生3.57g碱度,可补偿硝化池中氧化1gNH3-N所需碱度(7.14g)的一半,所以对含N浓度不高的废水,不必另行投碱调pH值,反硝化池残留的有机物可在好氧硝化池中进一步去除。
一般来说分建式反应器(A/O工艺)硝化、反硝化的影响因素控制范围可以相应增大,更为有效地发挥和提高活性污泥中某些微生物(如硝化菌、反硝化菌等)所特有的处理能力,从而达到脱、处理难降解有机物的目的,减少了生化池的容积,提高了生化处理效率,同时也节省了环保投资及运行费用;而合建式A/O工艺便于对现有推流式曝气池进行改造。
图2 分建式缺氧一好氧活性污泥脱氮系统图3 合建式缺氧好氧活性污泥脱氮系统(二)A/O工艺生物脱氮工艺的特点1.优点①同时去除有机物和氮,流程简单,构筑物少,只有一个污泥回流系统和混合液回流系统,节省基建费用。
②反硝化缺氧池不需外加有机碳源,降低了运行费用。
③好氧池在缺氧池后,可使反硝化残留的有机物得到进一步去除,提高了出水水质。
④缺氧池中污水的有机物被反硝化菌所利用,减轻了好氧池的有机物负荷,同时缺氧池中反硝化产生的碱度可弥补好氧池中硝化需要碱度的一半。
AO工艺设计计算公式
AO工艺设计计算公式1.焊接速度计算公式焊接速度是指焊接过程中焊接头在单位时间内移动的距离。
根据焊接速度的计算公式,可以优化焊接过程中的速度控制,以实现焊缝的质量和效率的最佳平衡。
焊接速度(mm/min)=焊接头长度(mm)/焊接时间(min)2.焊接电流计算公式焊接电流是焊接过程中产生热能的重要参数,它的选择会直接影响焊缝的质量和熔化深度。
根据焊接电流的计算公式,可以选择出适合的焊接电流,使焊缝达到最佳的力学性能。
焊接电流(A)=(0.5-1)×焊接材料的截面积(mm²)×焊接速度(mm/min)3.激光切割速度计算公式激光切割是一种高精度、高效率的切割方法,在工业制造中得到广泛应用。
根据激光切割速度的计算公式,可以选择合适的切割速度,以实现切割质量和效率的最佳平衡。
激光切割速度(mm/s)=焊接电源功率(W)/焊接材料的切割比(mm/W)4.高速铣削进给速度计算公式高速铣削是一种高效率、高精度的加工方法,在模具制造等领域广泛应用。
根据高速铣削进给速度的计算公式,可以选择适合的进给速度,以满足加工的表面粗糙度要求和加工时间的限制。
高速铣削进给速度(mm/min)=铣削切削深度(mm)×铣削切割宽度(mm)×铣削转速(r/min)5.数据传输速度计算公式数据传输速度是指在网络通信中数据传输的速率,它会直接影响网络传输的效率和稳定性。
根据数据传输速度的计算公式,可以选择适合的传输速度,以满足大数据传输和实时传输的需求。
数据传输速度(Mbps)=数据大小(MB)/传输时间(s)6.机床刚度计算公式机床刚度是机床在加工过程中承受切削力和振动的能力。
根据机床刚度的计算公式,可以选择适合的机床刚度,以实现加工精度和稳定性的最佳平衡。
机床刚度(N/mm)=切削力(N)/加工深度(mm)7.卡位力计算公式在装配和紧固等工艺过程中,卡位力是一种将工件固定在一定位置的力。
污水处理厂AO工艺设计
污水处理厂AO工艺设计1.污水处理厂的初步设计在进行AO工艺设计之前,首先需要进行污水处理厂的初步设计。
根据所需要处理的污水量和水质情况,确定处理厂的规模和处理工艺。
在初步设计中,还需要考虑到土地利用和环保要求等因素。
2.AO工艺的基本原理AO工艺是一种生物降解工艺。
它是将污水处理分为好氧和厌氧两个阶段,通过好氧和厌氧微生物的作用将有机物和氨氮等污染物降解。
在AO工艺中,首先将污水引入好氧池。
在好氧池中,通过曝气装置和混合装置使污水与好氧微生物充分接触和混合,好氧微生物利用有机物进行降解,产生二氧化碳和水。
然后,将经过好氧处理的废水引入厌氧池。
在厌氧池中,通过不添加氧气的条件下,利用厌氧微生物对废水中的硝酸盐和亚硝酸盐进行还原,产生氨氮和氮气。
最后,将厌氧池中生成的氨氮和硝酸盐通过嗜氧微生物进一步降解和氧化,最终达到对污水中氮氮的去除。
3.AO工艺设计参数的确定在进行AO工艺设计时,需要确定好氧池和厌氧池的尺寸和操作参数。
首先,确定好氧池的尺寸。
好氧池的尺寸应根据进水量和水质情况来确定,以使每天的好氧池停留时间满足要求。
其次,确定好氧池的运行参数。
好氧池的运行参数包括溶氧浓度、曝气量、混合速度等。
溶氧浓度应保持在2-3 mg/L,曝气量应根据有机负荷和溶解氧需求进行调整,混合速度应保证好氧微生物能充分与污水接触和混合。
然后,确定厌氧池的尺寸。
厌氧池的尺寸应根据好氧池的出水和水质情况来确定,以保证厌氧微生物能充分与废水接触和反应。
最后,确定厌氧池的运行参数。
厌氧池的运行参数包括厌氧池内的氨氮浓度、温度、pH值等。
氨氮浓度应根据厌氧微生物的降解能力来确定,温度应保持在适宜的范围,pH值应根据厌氧微生物的生长条件进行调整。
4.AO工艺的运行调试在完成AO工艺的设计后,需要进行运行调试。
在调试过程中,可以根据实际情况对工艺参数进行调整,以使其达到最佳处理效果。
同时,调试过程中还需要进行一系列的监测分析工作,包括取样和监测进水和出水中的COD、氨氮、总氮等指标。
污水处理AO工艺介绍
污水处理AO工艺介绍污水处理是保护环境和人类健康的重要环节。
AO工艺(Anoxic-Oxic Process)是一种常用的污水处理工艺,它通过一系列的生物和化学反应,将污水中的有机物和氮、磷等污染物去除,从而达到净化水质的目的。
1. AO工艺原理AO工艺是一种生物处理工艺,主要包括缺氧区(Anoxic Zone)和好氧区(Oxic Zone)两个区域。
在缺氧区,通过控制氧气供应,使污水中的硝酸盐还原为氮气,同时有机物被氧气消耗。
而在好氧区,通过供氧,利用好氧菌降解有机物,同时氨氮被氧化为硝酸盐。
2. AO工艺的工程设计(1)缺氧区设计:缺氧区的设计考虑到氧气供应和混合条件,通常采用内循环方式,将部份好氧区的污水回流到缺氧区,以保证充分的反应时间和混合效果。
(2)好氧区设计:好氧区主要包括生物膜反应器和曝气系统。
生物膜反应器采用固定生物膜,提高生物附着菌的密度,增加降解效果。
曝气系统则通过气体进入水体,提供氧气供给好氧菌进行降解反应。
(3)沉淀池设计:沉淀池用于沉淀和分离污水中的悬浮物和沉淀物,设计时需要考虑沉淀时间、污泥浓度和污泥回流等参数。
3. AO工艺的优点(1)高效降解:AO工艺能够同时去除有机物和氮、磷等污染物,具有较高的处理效率。
(2)占地面积小:相比传统的污水处理工艺,AO工艺占地面积较小,适合于城市等空间有限的地区。
(3)运行成本低:AO工艺运行成本相对较低,主要是由于生物降解过程中产生的废污泥可作为资源利用或者再利用。
4. AO工艺的应用领域AO工艺广泛应用于城市污水处理厂、工业废水处理、农村污水处理等领域。
在城市污水处理厂中,AO工艺常用于二级处理工艺,能够有效去除污水中的有机物和氮、磷等污染物,使处理后的水质符合排放标准。
在工业废水处理中,AO工艺可以根据不同的废水特性进行调整和改进,以达到最佳处理效果。
综上所述,AO工艺是一种高效、节能、占地面积小的污水处理工艺。
通过合理的工程设计和运行管理,可以有效地去除污水中的有机物和氮、磷等污染物,达到环境保护和水资源可持续利用的目标。
AO工艺设计原理
AO工艺设计原理AO工艺是一种广泛应用于电子制造行业的高精度工艺,能够在微米级别上实现精确的位置和定向控制。
本文将介绍AO工艺的设计原理。
1. AO工艺概述AO工艺是指通过光学干涉的方法,将光波分成两束,分别经过两个具有特定形状的光阑进入样品,然后在样品上产生干涉效应,通过对干涉图案的分析,实现对样品形貌和位置的精确控制。
2. AO工艺的原理AO工艺的原理是基于两束相干光的干涉效应。
具体实现过程如下:- 步骤1:通过分束器将激光光源分成两束相干光。
步骤1:通过分束器将激光光源分成两束相干光。
步骤1:通过分束器将激光光源分成两束相干光。
- 步骤2:分别将两束光经过光阑调整为特定形状,并通过透镜进行聚焦。
步骤2:分别将两束光经过光阑调整为特定形状,并通过透镜进行聚焦。
步骤2:分别将两束光经过光阑调整为特定形状,并通过透镜进行聚焦。
- 步骤3:将两束光照射到待加工的样品表面,产生干涉效应。
步骤3:将两束光照射到待加工的样品表面,产生干涉效应。
步骤3:将两束光照射到待加工的样品表面,产生干涉效应。
- 步骤4:通过对干涉图案的观察和分析,调整光束的参数,如位置、方向和形状等,来控制样品的加工。
步骤4:通过对干涉图案的观察和分析,调整光束的参数,如位置、方向和形状等,来控制样品的加工。
步骤4:通过对干涉图案的观察和分析,调整光束的参数,如位置、方向和形状等,来控制样品的加工。
3. AO工艺的优势AO工艺具有以下几个优势:- 高精度: AO工艺可以实现在微米级别上的精确控制,满足高精度加工的需求。
高精度: AO工艺可以实现在微米级别上的精确控制,满足高精度加工的需求。
高精度: AO工艺可以实现在微米级别上的精确控制,满足高精度加工的需求。
- 非接触: AO工艺采用光学干涉原理,无需直接接触样品,避免了对样品的损伤。
非接触: AO工艺采用光学干涉原理,无需直接接触样品,避免了对样品的损伤。
非接触: AO工艺采用光学干涉原理,无需直接接触样品,避免了对样品的损伤。
污水处理中AO工艺的设计参数
污水处理中AO工艺的设计参数AO工艺是一种常用的污水处理工艺,其主要通过一系列的生物反应器来去除污水中的有机物和氨氮等污染物。
在设计AO工艺时,需要考虑以下几个参数:1.污水处理量:AO工艺的设计首先要确定污水处理量,即单位时间内需要处理的废水流量。
根据实际情况确定处理量可以保证工艺稳定运行和满足环保要求。
2.污水水质:针对不同的污水水质,需要调整AO工艺的参数,以保证其处理效果。
首先要了解污水中的有机物含量、氨氮含量等参数,并根据水质情况进行相应的调整。
3.反应器类型:AO工艺通常包括好氧反应器(A)和厌氧反应器(O)两个部分。
好氧反应器主要用于有机物降解和氨氮氧化,厌氧反应器则用于硝化反硝化作用。
根据处理需求和水质特点,确定反应器的类型和数量,以达到最佳的处理效果。
4.氧气供应:在好氧反应器中,氧气供应是至关重要的。
可以通过机械通风或使用曝气装置来供应氧气,以满足好氧反应器中微生物的需氧条件。
氧气供应量的大小需要根据水质情况和处理需求进行调整,以防止氧传质限制和能耗过高。
5.温度控制:温度是影响AO工艺效果的重要因素之一、生物反应器中的微生物对温度敏感,因此需要保持适宜的反应器温度。
一般来说,好氧反应器的温度应在20-35摄氏度之间,厌氧反应器的温度应在30-40摄氏度之间。
通过合理的温度控制,可以促进微生物的生长和降解作用。
6.水力负荷:水力负荷是指单位面积反应器所承受的废水流量。
在设计AO工艺时,需要根据水质和反应器的尺寸来确定合适的水力负荷。
水力负荷的合理控制可以避免反应器内过度混合和氧气传质限制等问题。
7.固体滞留时间:固体滞留时间是指废水在生物反应器内停留的时间。
固体滞留时间的大小直接影响微生物的降解效果和反应器的处理能力。
一般来说,AO工艺中的好氧反应器固体滞留时间为4-8小时,厌氧反应器固体滞留时间为8-12小时。
8.pH值控制:pH值是指废水中氢离子的浓度。
不同微生物对pH值有不同的需求,因此在AO工艺中需要控制废水的pH值。
AO工艺设计计算公式
A/O工艺设计参数ﻫ①水力停留时间:硝化不小于5~6h;反硝化不大于2h,A段:O段=1:3ﻫ②污泥回流比:50~100%ﻫ③混合液回流比:300~400%④反硝化段碳/氮比:BOD5/TN>4,理论BOD消耗量为1、72gBOD/gNOx-—Nﻫ⑤硝化段得TKN/MLSS负荷率(单位活性污泥浓度单位时间内所能硝化得凯氏氮):<0、05KgTKN/KgMLSS·d⑥硝化段污泥负荷率:BOD/MLSS〈0、18KgBOD5/KgMLSS·d⑦混合液浓度x=3000~4000mg/L(MLSS)⑧溶解氧:A段DO〈0、2~0、5mg/LO段DO>2~4mg/L⑨pH值:A段pH =6、5~7、5O段pH =7、0~8、0⑩水温:硝化20~30℃反硝化20~30℃⑾ 碱度:硝化反应氧化1gNH4+-N需氧4.57g,消耗碱度7.1g(以CaCO3计)。
反硝化反应还原1gNO3—-N将放出2.6g氧,生成3.75g碱度(以CaCO3计)⑿需氧量Ro--单位时间内曝气池活性污泥微生物代谢所需得氧量称为需氧量(KgO2/h)。
微生物分解有机物需消耗溶解氧,而微生物自身代谢也需消耗溶解氧,所以Ro应包括这三部分。
Ro=a’QSr+b'VX+4、6Nra’─平均转化1Kg得BOD得需氧量KgO2/KgBODb'─微生物(以VSS计)自身氧化(代谢)所需氧量KgO2/KgVSS·d.上式也可变换为:Ro/VX=a’·QSr/VX+b’ 或 Ro/QSr=a’+b'·VX/QSrSr─所去除BOD得量(Kg)Ro/VX─氧得比耗速度,即每公斤活性污泥(VSS)平均每天得耗氧量KgO2/KgVSS·dRo/QSr─比需氧量,即去除1KgBOD得需氧量KgO2/KgBODﻫ由此可用以上两方程运用图解法求得a’b’ﻫNr-被硝化得氨量kd/d 4、6—1kgNH3-N转化成NO3-所需得氧量(KgO2)几种类型污水得a’ b’值⒀供氧量─单位时间内供给曝气池得氧量,因为充氧与水温、气压、水深等因素有关,所以氧转移系数应作修正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 章概述1.1 基本设计资料1.1.1设计规模污水设计流量:45000m3/d流量变化系数K z=1.351.1.2原污水水质指标原污水水质指标原污水水质指标原污水水质指标:BOD=180mg/LCOD=410mg/LSS=200mg/LNH3-N=30mg/L1.1.3出水水质指标符合《城镇污水处理厂污染物排放国家二级标准》:BOD=20mg/LCOD=70mg/LSS=30mg/LNH3-N=15mg/L1.1.4气象资料日照属暖温带半湿润季风区大陆性气候,四季分明,冬无严寒,夏无酷暑,非常潮湿,台风登陆频繁。
年均气温12.7℃,年均湿度72%,无霜期223天,年平均日照2533小时,年均降水量870毫米。
日照属于东部季风区,夏季高温多雨,冬季寒冷少雨。
因其濒临沿海,受海洋影响显著,相对同纬度其他内陆地区四季温差较小,因此夏冬季气温适中。
全市年平均气温13.8℃,较上年偏高1.1℃,较常年偏高1.1℃。
年极端最高气温在35.8~36.1℃之间,莒县和市区分别于6月11日和7月22日出现35.8℃的高温,五莲县分别于6月11日和7月22日出现36.1℃的高温。
年极端最低气温为-14.7~9.9℃之间,出现在1月21~22日。
年降水量全市平均765.4毫米,较上年偏少33.3%,较常年偏少0.4%。
全市降水分布不均,五莲县年降水量最多,为857.3毫米,市区降水量最少,为661.5毫米。
年日照时数全市平均2405.0小时,较上年偏多352.0小时,较常年偏少27.9小时。
以五莲县光照最为充足,年日照时数2459.1小时,莒县最少,为2262.1小时。
1.1.5厂址及场地状况某以平原为主,污水处理厂拟用场地较为平整,占地面积20公顷。
厂区地面标高10米,原污水将通过管网输送到污水厂,来水管管底标高为 5米(于地面下5米)。
1.2 设计内容、原则1.2.1 设计内容污水处理厂工艺设计流程设计说明一般包括以下内容:(1)据城市或企业的总体规划或现状与设计方案选择处理厂厂址;(2)处理厂工艺流程设计说明;(3)处理构筑物型式选型说明;(4)处理构筑物或设施的设计计算;(5)主要辅助构筑物设计计算;(6)主要设备设计计算选择;(7)污水厂总体布置(平面或竖向)及厂区道路、绿化和管线综合布置;(8)处理构筑物、主要辅助构筑物、非标设备设计图绘制;(9)编制主要设备材料表。
1.2.2 设计的原则考虑城市经济发展及当地现有条件,确定方案时考虑以下原则:(1)要符合适用的要求。
首先确保污水厂处理后达到排放标准。
考虑现实的技术和经济条件,以及当地的具体情况(如施工条件),在可能的基础上,选择的处理工艺流程、构(建)筑物型式、主要设备、设计标准和数据等,应最大限度地满足污水厂功能的实现,使处理后污水符合水质要求。
(2)污水厂设计采用的各项设计参数必须可靠。
(3)污水处理厂设计必须符合经济的要求。
设计完成后,总体布置、单体设计及药剂选用等要尽可能采取合理措施降低工程造价和运行管理费用。
(4)污水处理厂设计应当力求技术合理。
在经济合理的原则下,必须根据需要,尽可能采用先进的工艺、机械和自控技术,但要确保安全可靠。
(5)污水厂设计必须注意近远期的结合,不宜分期建设的部分,如配水井、泵房及加药间等,其土建部分应一次建成;在无远期规划的情况下,设计时应为以后的发展留有挖潜和扩建的条件。
(6)污水厂设计必须考虑安全运行的条件,如适当设置分流设施、超越管线等。
第 2 章工艺方案的选择2.1 水质分析本项目污水处理的特点:(1)污水以有机污染物为主,BOD/COD=0.57,可生化性较好,采用生化处理最为经济。
(2)BOD/TN>4.0,COD/TN>7,满足反硝化需求;若BOD/TN>5,氮去除率大于60%。
2.2 工艺选择按《城市污水处理和污染防治技术政策》要求推荐,20万t/d规模大型污水厂一般采用常规活性污泥法工艺,10-20万t/d 污水厂可以采用常规活性污泥法、氧化沟、SBR、AB 法等工艺,小型污水厂还可以采用生物滤池、水解好氧法工艺等。
对脱磷或脱氮有要求的城市,应采用二级强化处理,如2/AO工艺,A/O工艺,SBR 及其改良工艺,氧化沟工艺,以及水解好氧工艺,生物滤池工艺等。
2.2.1 方案对比1、SBR 序列间歇式活性污泥法SBR工艺是一种按间歇曝气方式来运行的活性污泥处理技术又称序批式活性污泥法。
通过在时间上的交替来实现传统活性污泥法的整体运行过程它在流程上只有一个基本单元将调节池、曝气池、和二沉池的功能集于一池按时间顺序进行进水、反应、沉淀和排水等工序达到水质水量调节、降解有机物和固液分离的目的。
主要特点:(1)处理构筑物少,与标准活性污泥法工艺相比,基建费、运行费用较低;(2)运行灵活,通过改变运行周期中各工序运行时间、状态,可完成对碳源有机物、氮、磷的有效去除,处理效果稳定;(3)不发生污泥膨胀;(4)兼具推流式和完全混合式工况,因此具有耐冲击负荷和处理效率高的优点;(5)泥水分离效果;(6)适用于组件式建造方法,有利于废水处理厂扩建与改;(7)运行管理自动化程度要求较高,要求管理操作人员的素质相应提高。
2、Carrousel氧化沟传统的氧化沟是多沟串联污水生化处理系统。
进水与回流活性污泥混合后,沿水流方向在沟内作无终端的循环流动。
一般在池的一端安装立式表曝机,每组沟安装一个,不仅起到曝气充氧的作用,而且起到搅拌混合的作用,并向混合液传递水平循环动力。
表曝机的种定位布置形成了在装置下游混合液的溶解氧浓度较高,随着水流沿沟长的流动,溶解氧浓度逐渐下降的变化。
利用这种浓度梯度变化而形成好氧区、缺氧区的特征,Carrousel氧化沟除了能获得较高的BOD去除率,同时还能在同一池中实现硝化和反硝化的生物脱氮效果。
这样不仅可以利用硝酸盐中的氧,节省需氧量,而且通过反硝化补充了硝化过程消耗的部分碱度,有利于节约能源和减少碳源的投加。
当污水负荷较低时,可以关停部分表曝机或通过变频以较低的转速运行,在保证水流搅拌混合循环的前提下,节约能耗。
适用特点Carrousel氧化沟的研制目的是为了满足在较深德,氧化沟沟渠中使混合液充分混合,并能够维持较高的传质效率,以克服小型氧化沟沟深过浅、混合效果差的缺陷。
实践证明,Carrousel氧化沟工艺具有适用范围广、投资省、处理效率高、可靠性好、管理方便和运行维护费用低等优点。
3、缺氧——好氧(A/O)A/O工艺可以使有机污染物得到降解之,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。
A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。
在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。
A/O内循环生物脱氮工艺特点:(1)效率高。
该工艺对废水中的有机物,氨氮等均有较高的去除效果。
当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。
(2)流程简单,投资省,操作费用低。
该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。
尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。
(3)缺氧反硝化过程对污染物具有较高的降解效率。
如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。
(4)容积负荷高。
由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。
(5)缺氧/好氧工艺的耐负荷冲击能力强。
当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。
通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。
结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮 (内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。
考虑该设计是中型污水处理厂,A/O工艺比较普遍,稳定,且出水水质要求不是很高,本设计选择A/O工艺。
2.2.2 工艺流程第 3 章 污水处理构筑物的设计计算3.1中格栅格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物。
本设计采用中细两道格栅。
3.1.1 中格栅设计参数日处理量:3d 45000m /d Q = 平均日处理量:3d 1875m /h 520.83/s 24Q Q L === 最大日处理量:3max z K =0.703m /s Q Q =g 栅条间隙:20mm 0.02m e ==柵前水深:1.0m h =栅条宽度:10mm 0.01m S ==过栅流速:0.6m/s v =栅条倾角:60α=o3.1.2.设计计算:1、栅条间隙数:max 0.703250.70.02 1.00.6Q n ehv ⨯===⨯⨯, 取51个。
2、栅槽宽度:(1)0.01(511)0.0251 1.52m B S n e n =-+⋅=⨯-+⨯=3、过栅水头损失:设: 栅条断面形状为锐边矩形,则2.42,20mm b e β===;重力加速度 9.81m /s g =; 系数k=3; (1)阻力系数44330.01() 2.420.960.02S bξβ⎛⎫==⨯=⎪⎝⎭(2)计算水头损失2200.6sin 0.960.016m229.812v h g ξα==⨯⨯=⨯(3)过栅水头损失1030.0160.048mh k h =⋅=⨯=4、栅槽总高度 设:超高 20.3mh =栅槽总高度12 1.00.0480.3 1.348mH h h h =++=++=5、栅槽总长度设:进水渠道宽1 1.0m B =; 进水渠道渐宽部分展开角度120α=o(1)进水渠道渐宽部分长111 1.52 1.00.72m 2tan 2tan 20B B l α--===⨯o(2)栅槽与出水槽连接处的渐窄部分长120.720.36m 22l l ===(3)栅前槽高12 1.00.3 1.3mH h h =+=+=(4)栅槽总长度112 1.31.00.50.720.36 1.00.5 3.33m tan tan60H L l l α=++++=++++=o6、每日栅渣量:格栅间隙20mm e =情况下,单位栅渣量33310.08m /10m W =。