线性代数方程组的解法 PPT
合集下载
高等数学线性代数线性方程组教学ppt(4)
1.2 高斯消元法
对线性方程组消元的三种变换(统称为线性方程组 的初等变换):
(1)交换方程组中某两个方程的位置; (2)以非零常数k乘以方程组中某个方程; (3)用数k乘以方程组中某个方程后加到另一个方程 上去.
定理1 线性方程组经过初等变换后得到的新方程组 与原方程组同解.
例1
解线性方程组
R( A) n;
(2)若R(A) n 1,则 A 0, AA* A E O,
由例5知:R( A) R( A*) n, R( A*) n R( A) n (n 1) 1, 即R( A*) 1.
另一方面,由于R(A) n 1, 因此A存在n 1阶非零子式,即A* O, 从而R( A*) 1.
R( A*) 1;
任一解都可以表示为
x 0 k11 knrnr ,
其中k1, , knr R. 即,当R(A) R(A | b)时,有
Ax b的通解
Ax b的一个特解 Ax 0的通解.
行阶梯形矩阵对应的方程组,叫行阶梯 形方程组;
行阶梯形方程组中,每个方程的第一个 未知量称为主未知量(主变量),其余变量叫 自由未知量(自由变量);
用消元法解线性方程组,就是用初等行 变换将方程组的增广矩阵化为行阶最简形, 得到的行阶梯方程组与原方程组同解.
例2 求解非齐次方程组的通解
x1 x1
3.设0是Ax b的某个解(称为特解),则Ax b 的任一个解向量都可表示成0与对应的 Ax 0的解之和,即有
0 .
证 :由于 0 ( 0 ),记 0,由性质1知 是导出组Ax 0的解,则 0 .
故只要 取遍Ax 0的全部解, 0 就取遍了 Ax b的所有解.
三、Ax b解的结构定理 定理4 若Ax b有解,1, ,nr是对应的Ax 0 的基础解系,0是Ax b的一个特解,则Ax b的
《线性代数》教学课件—第4章 向量线性相关 第四节 线性方程组的解的结构
2. 基础解系的求法
设系数矩阵 A 的秩为 r , 并不妨设 A 的前 r 个
列向量线性无关, 于是 A 的行最简形矩阵为
1
0
b11
b1,nr
B
0
0
1 0
br1 0
br,nr
,
0
0
0
0
0
与 B 对应, 即有方程组
x1
b11xr1 b1,nr xn
,
(3)
例 12 求齐次线性方程组
2xx11x52x2
x3 x4 3x3
2
0, x4
0,
7x1 7x2 3x3 x4 0
的基础解系与通解.
解 对系数矩阵 A 作初等行变换, 变为行最
简形矩阵, 有
1
1
1 1
行变换
1
0
2 7 5
3
7 4
例 13 设 Am×nBn×l = O,证明
xr
br1xr1 br,nr xn
,
把 xr+1 , ···, xn 作为自由未知量,并令它们依次 等于 c1 , ···, cn-r ,可得方程组 (1) 的通解
x1
b11
b12
b1,nr
xr
br1
br
2
br
,nr
xr1 c1 1 c2 0 cnr 0 .
把方程 Ax = 0 的全体解所组成的集合记作 S ,
如果能求得解集 S 的一个最大无关组 S0 : 1 , 2 , ···, t,那么方程 Ax = 0 的任一解都可由最大无关
组 S0 线性表示;另一方面,由上述性质 1、2 可 知,最大无关组 S0 的任何线性组合
线性代数第三章第三节线性方程组的解课件
B1 1 ~1 1
1
1 2
1
1
1
1 1
2
~ 0 - 1 1 - - 2
0
1-
1 - 2
1
-
2
1 1
~ 0 -1 1-
2
- 2
0
0
2 - - 2
1
-
2
-
3
1 1
0 -1
1-
2
1 -
0
0
1 - 2
1
-
1
2
1 当 1时,
1 1 1 1 B ~ 0 0 0 0
例3 求解非齐次方程组的通解
x1 x1
-
x2 x2
x3 x3
-
x4 0 3x4 1
.
x1 - x2 - 2x3 3x4 -1 2
解 对增广矩阵B进行初等变换
1 - 1 - 1 1 0 1 - 1 - 1 1 0 B 1 -1 1 - 3 1 ~ 0 0 2 - 4 1
1 - 1 - 2 3 - 1 2 0 0 - 1 2 - 1 2
所以方程组的通解为
x1 1 0 1 2
x2 x3 x4
x2
1 0
0
x4
0 2 1
102 .
0
其中x2 , x4任意.
x1 - x2 a1
例4
证明方
程组
x2 x3
-
x3 x4
a2 a3
x4
-
x5
a4
x5 - x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
0
0 1
-2 2
线性代数课件3-5齐次线性方程组的解法
二、基础解系及其求法
1.基础解系的定义
h1 ,h 2 , ,h t 称为齐次线性方程组 Ax 0的基础
解系, 如果 (1)h 1 ,h 2 , ,h t 是 Ax 0的一组线性无关 的解 ;
如果 h 1 , h 2 , , h t 为齐次线性方程组 的一组基础解系 Ax 0
, 那么 , Ax 0 的通解可表示为
,
h r 1 1 r 2 2 n n r
由于 1 , 2 , , n r 是 Ax 0 的解 ,故h 也是Ax 0 的 解.
下面来证明
h.
h r 1 1 r 2 2 n n r
0 1
b 11 br1
b1 ,n r b r ,n r 0 0
x1 x2 0 xn
x 1 b11 x r 1 b1 ,n r x n x b x b r ,n r x n r1 r 1 r
例1
求齐次线性方程组
x1 x 2 x 3 x 4 0, 2 x1 5 x 2 3 x 3 2 x 4 0, 7 x1 7 x 2 3 x 3 x4 0
的基础解系与通解. 解 对系数矩阵 A 作初等行变换,化为阶梯型矩 阵,有
1 A 2 7 1 5 7 1 3 3 1 2 1
2 7 3 7 5 7 4 7 , , 1 1 2 0 0 1
即得基础解系
并由此得到通解 2 7 3 7 x1 x2 5 7 4 7 , ( , R ). c1 1 c 2 0 c1 c 2 x3 x4 0 1
解线性方程组的解法_图文
第三章
线性方程组是线性代数中最重要最基本的内容之 一,是解决很多实际问题的的有力工具,在科学技术 和经济管理的许多领域(如物理、化学、网络理论、 最优化方法和投入产出模型等)中都有广泛应用. 第一章介绍的克莱姆法则只适用于求解方程个数 与未知量个数相同,且系数行列式非零的线性方程组. 本章研究一般线性方程组,主要讨论线性方程组解的 判定、解法及解的结构等问题,还要讨论与此密切相 关的向量线性相关性等. 其主要知识结构如下:
为方程组(3.1)的增广矩阵(augmented matrix). 因为 一个线性方程组由它的系数和常数项完全确定,所以 线性方程组与它的增广矩阵是一一对应的. 如果 x1 c1 , x2 c2 ,, xn cn 可以使(3.1)中的每个等式都 T x ( c , c , , c ) 成立,则称 为线性方程组(3.1)的一个 1 2 n 解(solution). 线性方程组(3.1)的解的全体称为它的解
集(solution set). 若两个线性方程组的解集相等,则称 它们同解(same solution). 若线性方程组(3.1)的解存 在,则称它有解或相容的. 否则称它无解或矛盾的. 解 线性方程组实际上先要判断它是否有解,在有解时求 出它的全部解.
例1 解线性方程组
2 x1 x2 3 x3 1 2 x3 6 2 x1 4 x 2 x 5 x 4 2 3 1
( 2 ) (1)
x2 x3
1 6
显然原方程组与最后的方程组(叫阶梯形方程组) 同解,所以原方程组有唯一解 x1 9, x2 1, x3 6
由此不难发现,在求解线性方程组的过程中,可 以对方程组反复施行以下三种变换: 1. 交换两个方程的位置; 2. 用一个非零数乘某个方程的两边; 3. 把一个方程的倍数加到另一个方程上. 称它们为线性方程组的初等变换. 显然:线性方程组的初等变换不改变线性方程组 的同解性. 在例1的求解过程中,我们只对方程组的系数和 常数项进行了运算,对线性方程组施行一次初等变 换,就相当于对它的增广矩阵施行一次相应的初等行 变换,用方程组的初等变换化简线性方程组就相当于 用矩阵的初等行变换化简它的增广矩阵. 下面我们将 例1的求解过程写成矩阵形式:
线性方程组是线性代数中最重要最基本的内容之 一,是解决很多实际问题的的有力工具,在科学技术 和经济管理的许多领域(如物理、化学、网络理论、 最优化方法和投入产出模型等)中都有广泛应用. 第一章介绍的克莱姆法则只适用于求解方程个数 与未知量个数相同,且系数行列式非零的线性方程组. 本章研究一般线性方程组,主要讨论线性方程组解的 判定、解法及解的结构等问题,还要讨论与此密切相 关的向量线性相关性等. 其主要知识结构如下:
为方程组(3.1)的增广矩阵(augmented matrix). 因为 一个线性方程组由它的系数和常数项完全确定,所以 线性方程组与它的增广矩阵是一一对应的. 如果 x1 c1 , x2 c2 ,, xn cn 可以使(3.1)中的每个等式都 T x ( c , c , , c ) 成立,则称 为线性方程组(3.1)的一个 1 2 n 解(solution). 线性方程组(3.1)的解的全体称为它的解
集(solution set). 若两个线性方程组的解集相等,则称 它们同解(same solution). 若线性方程组(3.1)的解存 在,则称它有解或相容的. 否则称它无解或矛盾的. 解 线性方程组实际上先要判断它是否有解,在有解时求 出它的全部解.
例1 解线性方程组
2 x1 x2 3 x3 1 2 x3 6 2 x1 4 x 2 x 5 x 4 2 3 1
( 2 ) (1)
x2 x3
1 6
显然原方程组与最后的方程组(叫阶梯形方程组) 同解,所以原方程组有唯一解 x1 9, x2 1, x3 6
由此不难发现,在求解线性方程组的过程中,可 以对方程组反复施行以下三种变换: 1. 交换两个方程的位置; 2. 用一个非零数乘某个方程的两边; 3. 把一个方程的倍数加到另一个方程上. 称它们为线性方程组的初等变换. 显然:线性方程组的初等变换不改变线性方程组 的同解性. 在例1的求解过程中,我们只对方程组的系数和 常数项进行了运算,对线性方程组施行一次初等变 换,就相当于对它的增广矩阵施行一次相应的初等行 变换,用方程组的初等变换化简线性方程组就相当于 用矩阵的初等行变换化简它的增广矩阵. 下面我们将 例1的求解过程写成矩阵形式:
《线性代数》课件第4章
此时A的第j列元素恰为αj表示成β1, β2,…, βt的线性组合时的
系数.
证明:若向量组a1,a2,…,as可由β1, β2,…, βt线性表示,即每个ai
均可由β1, β2,…, βt线性表示,则有
α1 = a11β1 + a21β2 + + at1βt = (β1, β2,
, βt )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝aaa12t111 ⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟,
我们有下面的定理: 定理 1.1 矩阵的秩数=行秩数=列秩数.
例1.3 设
α1 = (1, 2, 0,1)T , α2 = (0,1,1,1)T , α3 = (1, 3,1, 2)T , α4 = (1,1,−1, 0)T
求此向量组的秩数及一个极大无关组.
解 考虑向量组构成的矩阵
A=(α1,
α2,
我们有下面的命题:
命题1.
1. α1, α2,…, αs线性无关; 2.方程x1α1 + x2α2 + … + xxαs只有零解 3. 对于任意一组不全为零的数c1,c2,…,cs均有
c1α1 + c2α2 + + csαs ≠ 0, 4. 对于任意一组数c1,c2,…,cs, 若c1α1 + c2α2 +
定义1.4 两个可以互相表示的向量组称为等价向量组.
容易看出: 1. 向量组的等价是一个等价关系; 2. 等价向量组的秩数相同; 3. 任何向量组等价于其极大无关组; 4. 两个向量组等价当且仅当它们的极大无关组等价.
最后我们给出化简向量组的一种技巧 为此先给出一个定义
定义1.5 设α1, α2,…, αs和β1, β2,…, βs是两个向量组, 若对于任意一组数c1,c2,…,cs均有
线性代数ppt课件同济
05
向量空间及其性质
向量空间的定义与性质
向量空间的定义
向量空间是一个由向量构成的集合, 其中每个向量都可以表示为一组基向 量的线性组合。
向量空间的性质
向量空间具有一些重要的性质,例如 封闭性、加法和数量乘法封闭性、加 法和数量乘法的结合律和分配律等。
向量空间的基底与维数
向量空间的基底
一个向量空间可以由一组不相关的基向量构成,这些 基向量是线性无关的,并且可以生成整个空间。
行列式的计算方法
要点一
总结词
行列式的计算方法包括高斯消元法、拉普拉斯展开式和递 推法等。
要点二
详细描述
高斯消元法是一种常用的计算行列式的方法,它通过初等 行变换将矩阵化为阶梯形矩阵,然后求解出阶梯形矩阵的 行列式即可。拉普拉斯展开式是一种基于二阶子式和代数 余子式的展开式,它可以用来计算高阶行列式。递推法是 一种利用低阶行列式的值递推高阶行列式的方法,它适用 于计算n阶行列式。
线性代数的背景
线性代数起源于17世纪,随着科学技术的不断发展和进步,线性代数的应用领域越来越广泛。它不仅 在数学、物理、工程等领域有着广泛的应用,还在计算机科学、经济学、生物医学等领域发挥着重要 的作用。
线性代数的应应用,例如求解线性方程组、 计算矩阵的秩和特征值等。
现代发展
随着科学技术的发展,线性代数的应用领域越来越广泛,同时它也得到了不断的发展和完善。现代线性代数已经 形成了一套完整的理论体系,为解决实际问题提供了更加有效的工具。
02
矩阵及其运算
矩阵的定义与性质
矩阵的定义
矩阵是一个由数值组成的矩形阵列,通 常表示为二维表格。矩阵的行数和列数 可以分别为m和n。每个元素用a(i,j)表示 ,其中i表示行号,j表示列号。
线性代数第1章解线性方程组的消元法与矩阵的初等变换PPT课件
否则称之为无解或不相容。
当(1)式右端常数全为0而得到的齐次线性方程组
a11 x1 a12 x2
a21 x1
a22 x2
am1 x1 am2 x2
a1n xn 0 a2n xn 0
amn xn 0
成为(1)导出的齐次线性方程组。
- 30 -
定义 由方程组(1)的系数与常数项组成的矩阵
几种特殊的方阵(P4)
1. 对角矩阵(约定:未写出的元素全为零)
d1
D
d2
d
n
记作 D d ia g ( d 1 ,d 2 , ,d n )
2. 数量矩阵
A
- 11 -
3. 单位矩阵
1
E
1
1
4.上(下)三角矩阵
a11 A
a12 a22
上三角
a1n
a2n
- 16 -
定义 称矩阵的下面三种变换分别为第一、第二、 第三种初等行变换:
(1) 交换矩阵的某两行,记为 ri rj (2) 以不等于0的数乘矩阵的某一行,记为 k ri (3) 把矩阵的某一行乘上一个数加到另一行上,
记为 ri krj
类似定义三种初等列变换:
( 1 ) c i c j( 2 ) k i ( k c 0 )( 3 ) c i k j c
2 2
2
0
1 2
r2
0
1 1
1
0
r3 2r1 0 5 5 3 6 0 5 5 3 6
r4 3r1
0
3 3
4
3
0
3 3
4
3
- 24 -
1 1 2 1 4
1 1 2 1 4
r35r2
当(1)式右端常数全为0而得到的齐次线性方程组
a11 x1 a12 x2
a21 x1
a22 x2
am1 x1 am2 x2
a1n xn 0 a2n xn 0
amn xn 0
成为(1)导出的齐次线性方程组。
- 30 -
定义 由方程组(1)的系数与常数项组成的矩阵
几种特殊的方阵(P4)
1. 对角矩阵(约定:未写出的元素全为零)
d1
D
d2
d
n
记作 D d ia g ( d 1 ,d 2 , ,d n )
2. 数量矩阵
A
- 11 -
3. 单位矩阵
1
E
1
1
4.上(下)三角矩阵
a11 A
a12 a22
上三角
a1n
a2n
- 16 -
定义 称矩阵的下面三种变换分别为第一、第二、 第三种初等行变换:
(1) 交换矩阵的某两行,记为 ri rj (2) 以不等于0的数乘矩阵的某一行,记为 k ri (3) 把矩阵的某一行乘上一个数加到另一行上,
记为 ri krj
类似定义三种初等列变换:
( 1 ) c i c j( 2 ) k i ( k c 0 )( 3 ) c i k j c
2 2
2
0
1 2
r2
0
1 1
1
0
r3 2r1 0 5 5 3 6 0 5 5 3 6
r4 3r1
0
3 3
4
3
0
3 3
4
3
- 24 -
1 1 2 1 4
1 1 2 1 4
r35r2
第三章 线性方程组解法
可以看出,在计算第i个xik+1分量时,前 面i-1个分量x1k+1, x2k+1… xi-1k+1已经从上式 中计算出来了,于是很自然会想到如果 把它们代入用来计算xik+1可能会改进迭代, 于是就得到Ga大u家s好s-Seidel迭代格式: 35
§3.3 高斯-塞德尔迭代
x ik 1a 1 ii(b iij 1 1a ijxk j 1j n i 1a ijxk j),i 1 ,2 ...,n
大家好
21
§3.1 问题的提出
由原方程
8x1 x2 4 x1 10 x2
2x3 12 x3 21
3x1 2x2 5x3 16
构造
xx12((kk11))
2.5x2(k) 0.25x3(k) 1.5x1(k) 2.5x3(k)
5.25 8.0
(2) (3)
x3(k1) 4x1(k) 0.5x2(k) 6.0
§3.1 问题的提出
是方程组的精确解,用有限次运算得不到精 确解。迭代法是牛顿最先提出来的,1940年 经司威尔提出的松弛法也是一种迭代法,共 轭梯度法则是另一种迭代法,是弗莱彻等人 于20世纪60年代提出来的。
大家好
16
§3.1 问题的提出
例3.1
5x 2y 8 3x 20 y 26
5) 给出估计误差和迭代停止判据。
大家好
25
§3.1 问题的提出
❖ 定义:在n维空间中给定一个向量序
列 x k ,xk (x1 k,x2 k,...xn k)T ,如果对每一个分
量
x
k i
,当
k
时都有极限xi,
即
lim
k
xik
§3.3 高斯-塞德尔迭代
x ik 1a 1 ii(b iij 1 1a ijxk j 1j n i 1a ijxk j),i 1 ,2 ...,n
大家好
21
§3.1 问题的提出
由原方程
8x1 x2 4 x1 10 x2
2x3 12 x3 21
3x1 2x2 5x3 16
构造
xx12((kk11))
2.5x2(k) 0.25x3(k) 1.5x1(k) 2.5x3(k)
5.25 8.0
(2) (3)
x3(k1) 4x1(k) 0.5x2(k) 6.0
§3.1 问题的提出
是方程组的精确解,用有限次运算得不到精 确解。迭代法是牛顿最先提出来的,1940年 经司威尔提出的松弛法也是一种迭代法,共 轭梯度法则是另一种迭代法,是弗莱彻等人 于20世纪60年代提出来的。
大家好
16
§3.1 问题的提出
例3.1
5x 2y 8 3x 20 y 26
5) 给出估计误差和迭代停止判据。
大家好
25
§3.1 问题的提出
❖ 定义:在n维空间中给定一个向量序
列 x k ,xk (x1 k,x2 k,...xn k)T ,如果对每一个分
量
x
k i
,当
k
时都有极限xi,
即
lim
k
xik
线性代数 课件-PPT精品文档
16
线性代数
出版社 科技分社
• 1.4
• 从行列式的定义看,一般低阶行列式的计 算比高阶行列式的计算简便.
• 定义2 在n阶行列式D=Δ(aij)中,把元素aij 所在的第i行和第j列划去,剩下元素按原来 的相对位置不变形成的一个n-1阶行列式, 17
线性代数
出版社 科技分社
• 称之为D中元素aij的余子式,记为Mij;称 Aij=(-1)i+jMij为aij的代数余子式.
28
线性代数
出版社 科技分社
• 2.2.3 矩阵的乘法 • 定义4 设A=(ai k)m×s,B=(bk j)s×n,则称C=(cij)m×n
为矩阵A与B的乘积,记为C=AB,
29
线性代数
出版社 科技分社
• 2.2.4
• 定义5 把矩阵A的行列依次互换得到的新 矩阵称为A的转置矩阵,记为AT.
30
• 性质1 向量组线性无关的充分必要条件是 向量组所含向量的个数等于其秩.
• 性质2 设向量组A的秩为r1,向量组B的秩 为r2,如果A组能由B组线性表示,则r1≤r2.
• 性质3 等价的向量组有相同的秩.
57
线性代数
• 证 设矩阵
• 3.4
出版社 科技分社
58
线性代数
• 定理8 正交向量组一定线性无关.
36
线性代数
出版社 科技分社
• 这里k≤min(m,n),共有CkmCkn个k阶子式. • 定义9 如果矩阵A有一个不等于零的r阶子
式D,并且所有r+1阶子式(如果有)全等于零, 则称D为矩阵A的最高阶非零子式,称r为矩 阵A的秩,记为R(A)=r,并规定零矩阵的秩 等于零.
线性代数完整版ppt课件
a 31 a 32 a 33 a13a22a31a12a21a33a11a23a32
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22
线性代数课件PPT 第3章.线性方程组
2) (α β) γ α ( β γ() 加法结合律)
3) 存在任意一个向量α,有α 0n α 4)存在任意一个向量α,存在负向量-α,使α (α) 0n
5) 1α α
6) k(lα) (kl)α(数乘结合律)
7) k(α β) kα kβ(数乘分配律)
m
kiai k1α1 k2α2 L kmαm
i 1
称为向量组α1, α2,L , αm在数域F上的一个线性组合。如果记
m
β kiαi,就说β可由α1, α2,L , αm线性表示。 i 1
10
3.1 n维向量及其线性相关性
线性相关性 定义:如果对m个向量α1, α2, α3, ... , αm∈Fn,有m个不全 为0的数k1,k2,...,km∈F,使
α=(a1 a2 an) 其中ai 称为α的第i个分量。
向量写成行的形式称为行向量,向量写作列的形式称为 列向量(也可记作行向量的转置)。
a1
αT
a2
M
an
3
3.1 n维向量及其线性相关性
向量的定义 数域F上全体n元向量组成的集合,记作Fn。
4
3.1 n维向量及其线性相关性
向量的运算
定义:设α=(a1, a2, ... , an),β=(b1, b2, ... , bn)∈Fn,k∈F,
定义:
1)α=β,当且仅当ai=bi (i=1,...,n); 2)向量加法(或α与β之和)为
α β (a1 b1, a2 b2 , ... , an bn )
k1α1 k2α2 L kmαm 0n
成立,则称α1, α2, α3, ... ,αm线性相关;否则,称α1, α2, α3, ... ,αm线性无关。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) R , A|| A
3 )A B A B , A ,B R n n ;
4) xRn 时 AxA x
5) ABA B, A 、B Rnn
定理5.3中的性质 1), 2) 和 3)是一般范数所满 足的基本性质,性质 4)、5) 被称为相容性条件, 一般矩阵范数并不一定满足该条件.
线性代数方程组的解法
线性代数方程组的解法
上一页 下一页 3
(2) 迭代解法:所谓迭代方法,就是构造某种 极限过程去逐步逼近方程组的解.
经典迭代法有:
Jacobi 迭代法、G a u s s S e i d e l迭代法、 逐次超松弛(SOR)迭代法等;
线性代数方程组的解法
上一页 下一页 4
5.1.1 向量空间及相关概念和记号
此时 A (ATA) 2
若
ARnn 为对称阵,
A (A) 2
( 因为 (ATA)(A2) )
线性代数方程组的解法
上一页 下一页 15
关于矩阵的谱半径与矩阵的范数之间有如下关系.
定理 5.4 设 A Rnn,则有
(1)对任意一种 A的从属范数 ,有
(A) A . (2)对任给的 0,存在一种 A的从属范数 ,第五章 线性代数程组的解法5.1 预备知识
线性代数方程组的解法
上一页 下一页 1
求解线性方程组 Axb
其中
a11 a12 L a1n
A a21
a22 L
a2n
L L L L L L L L L L
an1。
an2
L
ann
且 | A|0
xx1,x2,L,xnT bb1,b2,L,bnT
线性代数方程组的解法
线性代数方程组的解法
上一页 下一页 13
矩阵范数的等价定理:
对
A
、A
,存在常数 m
和M
,使得:
m A A M A
几种常用范数的等价关系:
1
A A nA
n
2
1 AA nA
n1
2
1
线性代数方程组的解法
上一页 下一页 14
2. 谱半径:
定义 5.2 设 A Rnn, 称其特征值的按模最大值
(A) max{ : (A)} 为 A的谱半径,这里 ( A)表示 A的特征值全体.
p
q
数m和M ,使对一切 x Rn都有
m x x M x .
(*)
q
p
q
例如:
1 x x x
n1
2
1
x xnx
1
x xnx
2
线性代数方程组的解法
上一页 下一页 7
2 向量序列的收敛问题 设 x (k ) R n ,k 1 ,2 ,L ,为 R n 中的一个给定 向量序列 x (k ) (x 1 (k ),L ,x n (k ))T 若对 i 1 ,2 ,L ,n有lki m xi(k) xi 则称向量序列{ x ( k ) } 收敛于向量 x(x1,L,xn)T
定义 5.1 若 是Rn上任意范数,则对任一 A Rnn
A max Ax max Ax ,
x0 x
x 1
称为 A的由向量范数 导出的矩阵范数,简称 A的从属
范数.
线性代数方程组的解法
上一页 下一页 10
定理5.3 矩阵的从属范数具有下列基本性质:
1) A 0 ,当且仅当 A0时, A 0
使得
A ( A) .
线性代数方程组的解法
上一页 下一页 16
3. 矩阵级数的收敛性 定义5.3 称矩阵序列 A (k)(ai(jk))Rnn 是收敛的, 如果存在 A(aij)Rnn ,使得
l k i m a i ( jk ) a ij, i,j 1 ,2 ,L ,n 此时称 A 为矩阵序列 A ( k ) 的极限 记为
1 向量的范数
设 是n维实向量空间Rn上的范数,最常用的向量
范数是 p范数: x ( x 1 ,x 2 ,L ,x n ) T
xpi n1|xi |p1/p,p[1,),
其中 p 1,2,是最重要的,即:
n
x1|x1||x2|L|xn| |xi|
x
2
n i1
xi2
1/ 2
i1
x m a x ( |x 1 |,L ,|x n |)
A
1 3
2 4
,
求
A ,p1,2, p
解: 按定义 A 6 A 7
1
Q A T A 1 2 4 3 1 3 4 2 1 1 0 4 2 1 0 4
I A T A 1 4 1 01 4 2 0 2 3 0 4 0
15 221
A (A T A )1 5 2 2 1 5 .4 6 2
上一页 下一页 11
三种从属范数计算:
n
(1)矩阵的1-范数(列和范数):
A 1
max j
i1
|
aij
|
n
(2)矩阵的 -范数(行和范数): A max
i
| aij |
j1
(3)矩阵的2-范数:
A 2
1
其中 1 : A T A 的最大特征值
线性代数方程组的解法
上一页 下一页 12
例
已知矩阵
定理 5.2 设 为Rn中的任一种范数,则序 列{x(k)}收敛于 x Rn的充分必要条件为
x(k) x 0, k 时.
利用向量范数的等价性及向量范数的连续性, 容易 得到定理5.2的证明
线性代数方程组的解法
上一页 下一页 9
5.1.2 矩阵的一些相关概念及记号
1. 矩阵的范数
对于 R n 上的任何向量范数,我们可以定义矩阵范数.
线性代数方程组的解法
上一页 下一页 5
例 : 设 x(1,3,5,4)T, 求 x ,p1,2, p
根据定义:
4
x 1
| xi | 13
i1
x
2
4 i1
1/2
xi2
51
x m a x ( |x 1 |,L ,|x 4 |) 5
线性代数方程组的解法
上一页 下一页 6
范数的等价性
定理 5.1 对于Rn中任意两种范数 和 ,总存在常
命题: 当 k时
x(k) x limx(k)x 0
k
这是因为 x ( k ) x m a x | x 1 ( k ) x 1 | , L , | x n ( k ) x n |
从而当 k 时, x(k) x 与 x(k) x 0 等价
线性代数方程组的解法
上一页 下一页 8
上一页 下一页 2
利用 Cramer法则求解时存在的困难是:当方程
组的阶数 n 很大时,计算量为 O(n!)O(n2)
常用计算方法: (1) 直接解法:它是一类精确方法,即若不考虑计
算过程中的舍入误差,那么通过有限步运算可以获得 方程解的精确结果.
Gauss 逐步(顺序)消去法、 Gauss主元素法、矩阵分解法等;
3 )A B A B , A ,B R n n ;
4) xRn 时 AxA x
5) ABA B, A 、B Rnn
定理5.3中的性质 1), 2) 和 3)是一般范数所满 足的基本性质,性质 4)、5) 被称为相容性条件, 一般矩阵范数并不一定满足该条件.
线性代数方程组的解法
线性代数方程组的解法
上一页 下一页 3
(2) 迭代解法:所谓迭代方法,就是构造某种 极限过程去逐步逼近方程组的解.
经典迭代法有:
Jacobi 迭代法、G a u s s S e i d e l迭代法、 逐次超松弛(SOR)迭代法等;
线性代数方程组的解法
上一页 下一页 4
5.1.1 向量空间及相关概念和记号
此时 A (ATA) 2
若
ARnn 为对称阵,
A (A) 2
( 因为 (ATA)(A2) )
线性代数方程组的解法
上一页 下一页 15
关于矩阵的谱半径与矩阵的范数之间有如下关系.
定理 5.4 设 A Rnn,则有
(1)对任意一种 A的从属范数 ,有
(A) A . (2)对任给的 0,存在一种 A的从属范数 ,第五章 线性代数程组的解法5.1 预备知识
线性代数方程组的解法
上一页 下一页 1
求解线性方程组 Axb
其中
a11 a12 L a1n
A a21
a22 L
a2n
L L L L L L L L L L
an1。
an2
L
ann
且 | A|0
xx1,x2,L,xnT bb1,b2,L,bnT
线性代数方程组的解法
线性代数方程组的解法
上一页 下一页 13
矩阵范数的等价定理:
对
A
、A
,存在常数 m
和M
,使得:
m A A M A
几种常用范数的等价关系:
1
A A nA
n
2
1 AA nA
n1
2
1
线性代数方程组的解法
上一页 下一页 14
2. 谱半径:
定义 5.2 设 A Rnn, 称其特征值的按模最大值
(A) max{ : (A)} 为 A的谱半径,这里 ( A)表示 A的特征值全体.
p
q
数m和M ,使对一切 x Rn都有
m x x M x .
(*)
q
p
q
例如:
1 x x x
n1
2
1
x xnx
1
x xnx
2
线性代数方程组的解法
上一页 下一页 7
2 向量序列的收敛问题 设 x (k ) R n ,k 1 ,2 ,L ,为 R n 中的一个给定 向量序列 x (k ) (x 1 (k ),L ,x n (k ))T 若对 i 1 ,2 ,L ,n有lki m xi(k) xi 则称向量序列{ x ( k ) } 收敛于向量 x(x1,L,xn)T
定义 5.1 若 是Rn上任意范数,则对任一 A Rnn
A max Ax max Ax ,
x0 x
x 1
称为 A的由向量范数 导出的矩阵范数,简称 A的从属
范数.
线性代数方程组的解法
上一页 下一页 10
定理5.3 矩阵的从属范数具有下列基本性质:
1) A 0 ,当且仅当 A0时, A 0
使得
A ( A) .
线性代数方程组的解法
上一页 下一页 16
3. 矩阵级数的收敛性 定义5.3 称矩阵序列 A (k)(ai(jk))Rnn 是收敛的, 如果存在 A(aij)Rnn ,使得
l k i m a i ( jk ) a ij, i,j 1 ,2 ,L ,n 此时称 A 为矩阵序列 A ( k ) 的极限 记为
1 向量的范数
设 是n维实向量空间Rn上的范数,最常用的向量
范数是 p范数: x ( x 1 ,x 2 ,L ,x n ) T
xpi n1|xi |p1/p,p[1,),
其中 p 1,2,是最重要的,即:
n
x1|x1||x2|L|xn| |xi|
x
2
n i1
xi2
1/ 2
i1
x m a x ( |x 1 |,L ,|x n |)
A
1 3
2 4
,
求
A ,p1,2, p
解: 按定义 A 6 A 7
1
Q A T A 1 2 4 3 1 3 4 2 1 1 0 4 2 1 0 4
I A T A 1 4 1 01 4 2 0 2 3 0 4 0
15 221
A (A T A )1 5 2 2 1 5 .4 6 2
上一页 下一页 11
三种从属范数计算:
n
(1)矩阵的1-范数(列和范数):
A 1
max j
i1
|
aij
|
n
(2)矩阵的 -范数(行和范数): A max
i
| aij |
j1
(3)矩阵的2-范数:
A 2
1
其中 1 : A T A 的最大特征值
线性代数方程组的解法
上一页 下一页 12
例
已知矩阵
定理 5.2 设 为Rn中的任一种范数,则序 列{x(k)}收敛于 x Rn的充分必要条件为
x(k) x 0, k 时.
利用向量范数的等价性及向量范数的连续性, 容易 得到定理5.2的证明
线性代数方程组的解法
上一页 下一页 9
5.1.2 矩阵的一些相关概念及记号
1. 矩阵的范数
对于 R n 上的任何向量范数,我们可以定义矩阵范数.
线性代数方程组的解法
上一页 下一页 5
例 : 设 x(1,3,5,4)T, 求 x ,p1,2, p
根据定义:
4
x 1
| xi | 13
i1
x
2
4 i1
1/2
xi2
51
x m a x ( |x 1 |,L ,|x 4 |) 5
线性代数方程组的解法
上一页 下一页 6
范数的等价性
定理 5.1 对于Rn中任意两种范数 和 ,总存在常
命题: 当 k时
x(k) x limx(k)x 0
k
这是因为 x ( k ) x m a x | x 1 ( k ) x 1 | , L , | x n ( k ) x n |
从而当 k 时, x(k) x 与 x(k) x 0 等价
线性代数方程组的解法
上一页 下一页 8
上一页 下一页 2
利用 Cramer法则求解时存在的困难是:当方程
组的阶数 n 很大时,计算量为 O(n!)O(n2)
常用计算方法: (1) 直接解法:它是一类精确方法,即若不考虑计
算过程中的舍入误差,那么通过有限步运算可以获得 方程解的精确结果.
Gauss 逐步(顺序)消去法、 Gauss主元素法、矩阵分解法等;