构造函数法证明不等式的八种方法

合集下载

不等式证明中的几种新颖方法

不等式证明中的几种新颖方法

不等式证明中的几种新颖方法
以下是 8 条关于不等式证明中的新颖方法:
1. 放缩法简直太神奇啦!比如说,要证明
1+1/2+1/3+……+1/n>ln(n+1),咱就可以通过巧妙地放大或缩小一些项
来达到目的。

这就好像建房子,一点一点把合适的材料放上去就能建成稳固的大厦呀!
2. 构造函数法真的是绝了!像证明x²+5>2x+3 ,咱可以构造函数
f(x)=x²-2x+2 ,通过研究函数的性质来得出不等式的结论,这多像给不等
式穿上了一件量身定制的衣服!
3. 数学归纳法也很厉害的哟!比如要证明一个关于 n 的不等式,先证
明当 n=1 时成立,然后假设 n=k 时成立去推出 n=k+1 时也成立。

这就像爬楼梯,一步步稳稳地往上走!“嘿,这不就证明出来啦!”
4. 利用均值不等式来证明,哇哦,那可太好用啦!例如证明
(a+b)/2≥√(ab) ,这就像是给不等式找了个平衡的支点!
5. 换元法也有意思呀!把复杂的式子通过换元变得简单明了,再去证明。

就好像把一团乱麻理清楚,然后就能看清它的真面目啦!“哇,原来这么简单!”
6. 反证法也超棒的呢!先假设不等式不成立,然后推出矛盾,从而证明原来的不等式是对的。

这不是和找错一样嘛,找到错的就知道对的在哪啦!
7. 排序不等式更是一绝!在一堆乱序的数中找到规律证明不等式,就像在一堆杂物中找到宝贝一样让人惊喜!
8. 柯西不等式也是很牛的哦!通过它独特的形式来证明不等式,真的是让人眼前一亮呀!“哇塞,还有这种神奇的方法!”
我觉得这些新颖的方法就像是一个个神奇的工具,能让我们在不等式的证明中如鱼得水,轻松搞定各种难题!。

证明不等式的八大绝招

证明不等式的八大绝招

证明不等式的八大绝招高考数学的压轴题常以不等式为背景,而不等式的证明因其方法灵活,技巧性强,历来是学生学习中的一大难点,本文给同学们介绍不等式证明中的八大绝招:“变形法、拆项法、添项法、放缩法、构造法、换元法、导数法、数形结合法”,希望对同学们的学习有所禅益。

一、变形法例1、已知121212101010,,,:a b c a b c R a b c bc ca ab+∈++≥++求证 证明:原不等式等价于:131313101010a b c a b c abc ++≥++()131313101010a b c abc a b c ⇔++≥++ (*)1313112211a b a b a b +≥+ , 1313112211b c b c b c +≥+, 1313112211c a a c a c +≥+, ()()()()1313131122112211222a b c a b c b a c c a b ∴++≥+++++()1111111010102222a bc b ac c ab abc a b c ≥++=++。

从而()131313101010a b c abc a b c ++≥++;所以(*)式成立,故原不等式成立。

二、拆项法例2、已知,,,1a b c R a b c +∈++=且 ,求证:231.432ab c ≤证明:122333b b c c c a b c a =++=+++++ 66≥=232362316432ab c ⋅∴≤=。

三、添项法例3、【第36届IMO 试题】设,,a b c 为正数,满足1abc =,求证:()()()33311132a b c b a c c a b ++≥+++.证明:()()3114b c a b c bc a ++≥=+ , ()3114a c b a c ac b++≥=+,311()4a b c a b ab c++≥=+, ∴()()()33311111114b c a c a b a b c b a c c a b bc ac ab a b c+++⎛⎫+++++≥++ ⎪+++⎝⎭.从而()()()33311111111112a b c b a c c a b a b c a b c ⎛⎫++≥++-++ ⎪+++⎝⎭1111322a b c ⎛⎫=++≥= ⎪⎝⎭. 故∴原不等式成立. 四、放缩法 例4、【1998年全国高考试题】求证:())*111111114732n N n ⎛⎫⎛⎫⎛⎫++++>∈ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭ 。

构造函数法证明泰勒展开不等式的八种方法

构造函数法证明泰勒展开不等式的八种方法

构造函数法证明泰勒展开不等式的八种方

泰勒展开定理是微积分中一个非常重要的定理,它可以将一个函数在某一点附近展开为无穷的多项式和。

在实际应用中,我们经常需要保留部分项,将函数近似表示,而泰勒展开就可以很好地满足我们的需求。

本文将介绍泰勒展开不等式的八种证明方法,其中均使用了构造函数的方法。

1. 利用 $(1+x)^n$ 的二项式展开式证明。

2. 利用 $e^x$ 的泰勒展开式证明。

3. 利用 $\ln (1+x)$ 的泰勒展开式证明。

4. 利用 $\int_0^x \cos t^2 dt$ 的收敛性证明。

5. 利用 $\int_0^x e^{-t^2} dt$ 的平方证明。

6. 利用 $\tan^{-1} x$ 和 $\tanh^{-1} x$ 的泰勒展开式证明。

7. 利用 $\sin x$ 和 $\cos x$ 的泰勒展开式证明。

8. 利用 $\int_0^1 x^p (1-x)^q dx$ 的收敛性证明。

这八种证明方法各有不同的特点和难度,涉及到的数学知识也
各有侧重。

但它们都使用了构造函数的方法,通过寻找适当的函数,将展开式转化为极限形式或积分形式,然后进一步证明不等式的成立。

总之,泰勒展开定理和泰勒展开不等式是数学中非常重要的工具,它们不仅有着重要的理论价值,在工程和自然科学中也有着广
泛的应用。

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧

导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。

它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。

而构造函数则是数学中一种非常常见的证明不等式的方法。

本文将介绍一些常用的导数和构造函数证明不等式的技巧。

一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。

因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。

例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。

由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。

2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。

因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。

3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。

例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。

例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。

例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。

例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。

7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。

例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。

下面就列举八种常用的构造函数法证明不等式的方法。

1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。

2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。

3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。

4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

以上就是八种常用的构造函数法证明不等式的方法。

在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。

此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。

构造函数法证明不等式的常见方法

构造函数法证明不等式的常见方法

构造函数法证明不等式一、教学目标:1.知识与技能:利用导数研究函数的单调性极值和最值,再由单调性和最值来证明不等式.2.过程与方法:引导学生钻研教材,归纳求导的四则运算法则的应用,通过类比,化归思想转换命题,抓住条件与结论的结构形式,合理构造函数.3.情感与态度:通过这部分内容的学习,培养学生的分析能力(归纳与类比)与推理能力(证明),培养学生战胜困难的决心和解题信心。

二、教学重难点:解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

难点:将命题的结论进行转化与化归,变成熟悉的题型。

三、教法学法:变式训练 四、教学过程: (一)引入课题:1.复习导数的运算法则:2.问题探源:(教材第32页B 组题第1题)利用函数的单调性,证明下列不等式,并通过函数图象直观验证(3)1(0)(4)ln 1(0)x e x x x x x >+≠≤->3.问题探究:1、直观感知(几何画板演示);(2)推理论证 4高考探究:例1、(2013年北京高考)设L 为曲线C :ln xy x=在点(1,0)处的切线. (I)求L 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线L 的下方.若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b ,求证:.()af a >b )(b f变式练习2:证明:对任意的正整数n ,不等式11ln(1)111nn+>-+ 都成立(类似还有2012年湖北高考题第22题)变式练习3:已知m 、n 都是正整数,且,1n m <<证明:mnn m )1()1(+>+思考题5.(全国卷)已知函数()ln g x x x = 设b a <<0,证明 :()()()22g a g b a bg ++>(1)知识点:(2)解题步骤:(3)数学思想方法高考真题训练:1.【2015年新课标Ⅰ文21】. (本小题满分12分)设函数()2ln xf x e a x =-.证明:当0a >时()22lnf x a a a≥+. 分析:利用函数最值和不等式单调性证明.2.【15北京理科】已知函数()1ln 1x f x x +=-,求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; 分析:移项构造函数利用函数单调性求证。

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理

构造函数法证明不等式的八种方法冷世平整理1.构造多项式函数法:通过构造一个多项式函数来证明不等式。

例如,要证明当$x>0$时,$x^3+x^2+x+1>0$,我们可以构造多项式$f(x)=x^3+x^2+x+1$,然后证明$f(x)$的系数全为正数,从而得到结论。

2. 构造变形函数法:通过构造一个特定的变形函数来证明不等式。

例如,要证明当$x>0$时,$x+\frac{1}{x}>2$,我们可以构造变形函数$f(x)=x+\frac{1}{x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

3. 构造反函数法:通过构造一个特定的反函数来证明不等式。

例如,要证明当$x>0$时,$\frac{1}{x}+\frac{1}{1-x}>2$,我们可以构造反函数$f(x)=\frac{1}{x}+\frac{1}{1-x}-2$,然后证明$f(x)$的取值范围为正数,从而得到结论。

4. 构造积分函数法:通过构造一个特定的积分函数来证明不等式。

例如,要证明当$x>0$时,$\int_{0}^{x}\sqrt{t}dt<x$,我们可以构造积分函数$f(x)=\int_{0}^{x}\sqrt{t}dt-x$,然后证明$f(x)$的取值范围为负数,从而得到结论。

5. 构造递推函数法:通过构造一个特定的递推函数来证明不等式。

例如,要证明$n$个正实数的算术平均数大于等于它们的几何平均数,我们可以构造递推函数$f(n)=\frac{a_1+a_2+\dots+a_n}{n}-\sqrt[n]{a_1a_2\dots a_n}$,然后证明$f(n)$关于$n$的递推关系为非负数,从而得到结论。

6. 构造交换函数法:通过构造一个特定的交换函数来证明不等式。

例如,要证明当$x,y,z>0$时,$(x+y)(y+z)(z+x)\geq 8xyz$,我们可以构造交换函数$f(x,y,z)=(x+y)(y+z)(z+x)-8xyz$,然后证明$f(x,y,z)$在$x,y,z$的任意交换下都保持不变或增加,从而得到结论。

构造函数证明不等式的常见思考途径

构造函数证明不等式的常见思考途径

构造函数证明不等式的常见思考途径对不等式的证明采用构造函数证明常是一种很好的思考途径,下面
列举四种常见的构造函数证明不等式的思路:
1. 极大极小法:极大极小法是一种构建函数证明不等式的有效途径,
主要就是找到函数的极大值或极小值,从而推导出不等式的真值。

2. 矩阵法:矩阵法是一种将函数转化为矩阵形式的构建函数证明方法,一般将矩阵的元素进行操作,从而求得最终的结论,以做出应有的不
等式证明。

3. 破坏法:破坏法是一种构建函数强力途径,它的核心思想是假设存
在某种不等式的假设,然后按照假设充分分析得出该假设不符实际,
从而得出不等式的真值。

4. 直接法:直接法是一种最简单、最常用的构建函数证明不等式方法,它的核心就是不断地变换函数中的变量,并且分析其变化,从而得出
不等式的最终结论。

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc

构造函数法证明不等式的八种方法.doc构造函数法是一种证明不等式的有效方法。

构造函数法是通过构造函数来证明不等式的真实性。

构造函数是函数的一种特殊形式,它是根据不等式中的条件和限制而构造出来的函数。

构造函数法的基本思路是,通过构造函数将原不等式转化为更容易证明的形式,进而通过对构造函数的研究来证明原不等式的真实性。

本文将介绍构造函数法证明不等式的八种方法。

一、线性函数法线性函数法是基于线性函数的构造函数法,它是构造函数法中最简单的方法之一。

线性函数法的思路是,构造一个线性函数,使得该函数在不等式限制下达到最大值或最小值。

例如,证明如下不等式:$$\frac{a}{b+1}+\frac{b}{c+1}+\frac{c}{a+1}\geq\frac{3}{2}$$将不等式两边都乘以$2(b+1)(c+1)(a+1)$得:$$2a(c+1)(b+1)+2b(a+1)(c+1)+2c(b+1)(a+1)\geq 3(a+1)(b+1)(c+1)$$此时,可以构造如下的线性函数$f(x,y,z)$:容易发现,$f(x,y,z)$在限制条件$x,y,z\geq 0$,$xy+yz+zx=3$下,达到最大值$\frac{3}{2}$。

因此,原不等式成立。

二、对数函数法对数函数法是基于对数函数的构造函数法,它常用于证明形如$a^x+b^y+c^z\geq k$的不等式,其中$a,b,c,x,y,z,k$均为正实数。

对数函数法的思路是,构造一个对数函数,使得该函数满足$g(x,y,z)\leq\ln(a^x+b^y+c^z)$,进而证明$g(x,y,z)\leq\ln k$,从而得到原不等式的证明。

例如,证明如下不等式:考虑构造如下的对数函数:$$g(x)=\ln\left(\frac{4a^3x+6}{5a^2x+2ax+5}\right)-\frac{3}{4}\ln x$$不难证明,$g(x)$在$x\geq 1$时单调递减且$g(1)=0$,因此$g(x)\leq 0$。

构造函数法求解不等式问题

构造函数法求解不等式问题

构造函数法求解不等式问题步骤一:根据不等式的形式,构造函数。

根据不等式的形式,我们可以构造一个合适的函数,该函数满足不等式的性质。

根据不等式的类型,我们可以构造线性函数、二次函数、指数函数等。

构造的函数应当包含不等式的解集,因此我们需要考虑函数值的正负、函数的增减性质等。

步骤二:找出函数的零点和关键点。

找到函数的零点和关键点对于确定函数的性质和解集至关重要。

函数的零点是指函数等于零的点,而关键点是函数的最值点和拐点。

步骤三:利用函数的性质来确定不等式的解集。

根据函数的图像和性质,利用函数的增减性质和函数值的正负来确定不等式的解集。

通过观察函数的图像,我们可以确定不等式的解集是一个区间,或者是两个区间的并集。

以下为几个实例,展示了如何使用构造函数法求解不等式问题。

实例一:$x^2-3x-4<0$首先,我们构造函数$f(x) = x^2 - 3x - 4$。

然后,我们需要找出函数$f(x)$的零点和关键点。

通过求解方程$f(x) = 0$,我们可以得到$x = -1$和$x = 4$是函数的零点,而$x = \frac{3}{2}$是函数的关键点。

接下来,我们观察函数的图像。

通过求导函数$f'(x)$,我们可以确定函数$f(x)$在$x < -1$时是递减的,在$-1 < x < \frac{3}{2}$时是递增的,而在$x > \frac{3}{2}$时又是递减的。

根据函数$f(x)$的性质和函数值的正负,我们可以得出不等式的解集是$x \in (-1, \frac{3}{2})$。

实例二:$2^x-8<0$首先,我们构造函数$f(x)=2^x-8$。

然后,我们需要找出函数$f(x)$的零点和关键点。

通过求解方程$f(x)=0$,我们可以得到$x=3$是函数的零点,而$x=0$是函数的关键点。

接下来,我们观察函数的图像。

由于指数函数$2^x$是递增的,函数$f(x)$在$x>0$时是递增的,而在$x<0$时是递减的。

构造函数法证明不等式

构造函数法证明不等式

构造函数法证明不等式要证明一个不等式,一种常见的方法是使用构造函数法。

构造函数法是通过构造一个满足不等式的函数来证明不等式的正确性。

下面我们来具体说明如何使用构造函数证明一个不等式。

首先,我们需要明确待证明的不等式是什么。

假设我们需要证明的不等式是:f(x) \leq g(x)\]其中,f(x)和g(x)是关于x的函数。

接下来,我们需要构造一个满足不等式的函数h(x)。

我们的目标是证明h(x)满足:f(x) \leq h(x) \leq g(x)\]通过这个中间函数h(x),我们可以将不等式分解成两个更简单的不等式。

为了构造适当的函数h(x),我们可以考虑函数的性质,例如导数、零点、拐点等。

以下是几种常见的构造函数的方法:1. 加减常数法: 可以通过给f(x)或g(x)加减一个适当的常数来构造函数h(x),使得f(x) \leq h(x) \leq g(x)。

例如,如果我们想证明 x^2 \leq x^3,我们可以通过构造一个函数h(x) = x^2 + 1来证明。

显然,对于任意的x,x^2 + 1 \geq x^2,并且x^2 + 1 \leq x^3(因为x^2 \leq x^3对于所有的x成立)。

2. 乘除法: 可以通过乘以或者除以一个适当的函数来构造函数h(x)。

例如,如果我们想证明 x^2\leq x^4,我们可以通过构造一个函数h(x)= \frac{1}{x^2}来证明。

当 x>0时,显然x^2 \leq \frac{1}{x^2},而当 0\leq x \leq 1时, x^4 \geq x^2、因此,对于所有的x,\frac{1}{x^2} \geq x^2\leq x^43.对函数取导数:如果我们可以找到f(x)和g(x)的导数,并证明导数的关系成立,则可以通过证明导数的关系来证明原始函数的关系。

例如,如果我们想证明 x \leq e^x,我们可以比较两个函数的斜率。

我们知道导数表达式 d/dx(x) = 1 小于 d/dx(e^x) = e^x。

不等式的八种证明方法及一题多证

不等式的八种证明方法及一题多证

不等式的证明:一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种: 1.作差比较法方法:欲证A>B,只需要证A-B>0 步骤:“作差----变形----判断符号”。

使用此法作差后主要变形形式的处理:○将差变形为常数或一个常数与几个平方和的形式常用配方法或实数特征a2≥0判断差的符号。

○将差变形为几个因式的积的形式,常用因式分解法。

○若变形后得到二次三项式,常用判别式定符号。

总之,变形的目的是有利于判断式子的符号,而变形方法不限定,也就是说,关键是变形的目标。

2.作商比较法方法:要证A>B,常分以下三种情况:若B>0,只需证明1AB >; 若B=0,只需证明A>0; 若B<0,只需证明1AB<。

(3)步骤:“作商-----变形-----判断商数与1的大小” 例:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b - a > 0 ∴0)()(>+-m b b a b m 即:b a m b m a >++ 例:已知a>b>0,求证:()2a ba ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba ababb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>例:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法

导数之构造函数法证明不等式 1、移项法构造函数 【例1】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有【解】1111)(+-=-+='x xx x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f +=求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 【解】设)()()(x f x g x F -=,即x x x x F ln 2132)(23--=, 则xx x x F 12)(2--='=x x x x )12)(1(2++-当1>x 时,)(x F '=xx x x )12)(1(2++-从而)(x F 在),1(∞+上为增函数,∴061)1()(>=>F x F∴当1>x 时 0)()(>-x f x g ,即)()(x g x f <, 故在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方。

构造函数证明不等式

构造函数证明不等式

突破疑难点1构造函数证明不等式构造法证明不等式是指在证明与函数有关的不等式时,根据所要证明的不等式,构造与之相关的函数,利用函数单调性、极值、最值加以证明.常见的构造方法有:(1)直接构造法:证明不等式f(x)>g(x)(f(x)<g(x))转化为证明f(x)-g(x)>0(f(x)-g(x)<0),进而构造辅助函数h(x)=f(x)-g(x);(2)适当放缩构造法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x≤x-1,e x≥x+1,ln x<x<e x(x>0),xx+1≤ln(x+1)≤x(x>-1);(3)构造“形似”函数:稍作变形再构造,对原不等式同解变形,如移项、通分、取对数,把不等式转化为左、右两边是相同结构的式子的形式,根据“相同结构”构造辅助函数;(4)构造双函数:若直接构造函数求导难以判断符号,导函数零点也不易求得,因此函数单调性与极值点都不易获得,则可构造函数f(x)和g(x),利用其最值求解.突破疑难点2利用分类讨论法确定参数取值范围一般地,若a>f(x)对x∈D恒成立,则只需a>f(x)max;若a<f(x)对x∈D恒成立,则只需a<f(x)min.若存在x0∈D,使a>f(x0)成立,则只需a>f(x)min;若存在x0∈D,使a<f(x0)成立,则只需a<f(x0)max.由此构造不等式,求解参数的取值范围.常见有两种情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另外一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.突破疑难点3两法破解函数零点个数问题两类零点问题的不同处理方法:利用零点存在性定理的条件为函数图象在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0.①直接法:判断一个零点时,若函数为单调函数,则只需取值证明f(a)·f(b)<0;②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明f(a)·f(b)<0.突破疑难点4两法破解由零点个数确定参数问题已知函数有零点求参数范围常用的方法:(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f(x)中分离出参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.。

八种方法解决高中数学不等式问题

八种方法解决高中数学不等式问题

八种方法解决高中数学不等式问题下面用八种方法解决高中数学常见的不等式问题: 例题:224x y ,求34x y 的最大值.【解法一】柯西不等式先备知识:柯西不等式(二维下的)解:3,4,,a b c x d y ,由柯西不等式得:222223434x y x y 所以:3410x y ,当且仅当34x y ,即68,55x y 时,取得最大值10.【总结】柯西不等式常用,建议理解记忆。

【解法二】线性规划解:令34x y t ,则344t y x (将t 看作是直线的截距,转化为求直线截距的范围) ,x y 满足直线方程344t y x ,也满足方程224x y ,因此:显然,由图像得: 2.5104t t .【总结】数形结合典型做法,但是线性规划新高考不考。

建议从数形结合角度理解。

【解法三】判别式法解:令34x y t ,则344t y x ,代入方程:224x y ,得: 223444t x x , 整理,得:222534016816t x tx ………………(*) 一元二次方程(*)有解,则:2232544081616t t210010t t . 【总结】常用方法之一,解决“条件极值”问题的常用手段。

【解法四】三角换元224x y 22144x y ,不妨令:cos ,sin 22x y x x . 则:34346cos 8sin 10cos sin 10sin 1055x y x x x x x,(3tan 4 ). 【总结】三角换元、参数法建议学有余力的同学适当了解。

【解法五】对偶式先备知识: 34x y 的对偶式为43x y2223492416x y x xy y (1)2224316249x y x xy y (2)(1)+(2),得:222234432525100x y x y x y223410043100x y x y .【总结】进阶方法,学有余力可了解。

【解法六】向量法(类似柯西不等式)34x y 可以看作向量 3,4,,a b x y 的数量积:34a b x y .所以:cos ,10a b a b a b.【总结】注意观察代数式的结构特征。

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题05 构造函数证明不等式(学生版) -2025年高考数学压轴大题必杀技系列导数

专题5 构造函数证明不等式函数与导数一直是高考中的热点与难点, 利用导数证明不等式在近几年高考中出现的频率比较高.求解此类问题关键是要找出与待证不等式紧密联系的函数,然后以导数为工具来研究该函数的单调性、极值、最值(值域),从而达到证明不等式的目的.(一) 把证明()f x k >转化为证明()min f x k>此类问题一般简单的题目可以直接求出()f x 的最小值,复杂一点的题目是()f x 有最小值,但无法具体确定,这种情况下一般是先把()f x 的最小值转化为关于极值点的一个函数,再根据极值点所在范围,确定最小值所在范围【例1】(2024届黑龙江省哈尔滨市三中学校高三下学期第五次模拟)已知函数()()21ln f x a x x x =+--(a ÎR ).(1)讨论()f x 的单调性;(2)当102a <£时,求证:()1212f x a a³-+.【解析】(1)由题意可知,函数2()(1)ln f x a x x x =+--的定义域为(0,)+¥,导数1(1)(21)()2(1)1x ax f x a x x x+-¢=+--=,当0a £时,,()0x Î+¥,()0f x ¢<;当0a >时,1(0,)2x a Î,()0f x ¢<;1(,),()02x f x a¢Î+¥>;综上,当0a £时,函数()f x 在区间(0,)+¥上单调递减;当0a >时,函数()f x 在区间1(0,2a 上单调递减,在区间1(,)2a+¥上单调递增.(2)由(1)可知,当102a <£时,函数()f x 在区间1(0,)2a 上单调递减,在区间1(,)2a+¥上单调递增.所以函数211111()()(1)ln()1ln(2)22224f x f a a a a a a a a³=+--=+-+,要证1()212f x a a ³-+,需证111ln(2)2142a a a a a+-+³-+,即需证11ln(2)0,(0,]42a a a a +-³Î恒成立.令1()ln(2)4g a a a a =+-,则()2222111()1044a g a a aa -=--+=-£¢,所以函数()g a 在区间1(0,2单调递减,故111()()00222g a g ³=+-=,所以11ln(2)0,(0,]42a a a a +-³Î恒成立,所以当102a <£时,1()212f x a a³-+.【例2】(2024届重庆市南开中学高三上学期第一次质量检测)已知函数()()sin ln 1f x x x =-+.(1)求证:当π1,2x æöÎ-ç÷èø时,()0f x ³;(2)求证:()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L .【解析】(1)证明:因为()()sin ln 1f x x x =-+,则()0sin 0ln10f =-=,()1cos 1f x x x =-+¢,当(]1,0x Î-时,cos 1x £,111x ³+,()0f x ¢£,函数()f x 单调递减,则()()00f x f ³=成立;当π0,2x æöÎç÷èø时,令()1cos 1p x x x =-+,则()()21sin 1p x x x ¢=-+,因为函数()211y x =+、sin y x =-在π0,2æöç÷èø上均为减函数,所以,函数()p x ¢在π0,2æöç÷èø上为减函数,因为()010p ¢=>,2π1102π12p æö¢=-<ç÷èøæö+ç÷èø,所以存在π0,2x æöÎç÷èø,使得()00p x ¢=,且当00x x <<时,()0p x ¢>,此时函数()f x ¢单调递增,当0π2x x <<时,()0p x ¢<,此时函数()f x ¢单调递减,而()00f ¢=,所以()00f x ¢>,又因为π02f æö¢<ç÷èø,所以存在10π,2x x æöÎç÷èø,使得()10f x ¢=,当10x x <<时,()0f x ¢>,此时函数()f x 单调递增,当1π2x x <<时,()0f x ¢<,此时函数()f x 单调递减,因为π1e 2+<,所以,ππ1ln 11ln e 022f æöæö=-+>-=ç÷ç÷èøèø,所以,对任意的π0,2x æöÎç÷èø时,()0f x >成立,综上,()0f x ³对任意的π1,2x æöÎ-ç÷èø恒成立.(2)证明:由(1),对任意的n *ÎN ,11022n <£,则111sin ln 10222f n n n æöæö=-+>ç÷ç÷èøèø,即1121sinln 1ln 222n n n n +æö>+=ç÷èø,对任意的n *ÎN ,()()()()22122221221022*******n n n n n n n n n n n +-+++-==>+++,所以,2122221n n n n ++>+,则2122ln ln 221n n n n ++>+,所以111135721sin sin sin sinln ln ln ln 24622462n n n +++++>+++L ,从而可得111146822sin sin sin sinln ln ln ln 246235721n n n +++++>++++L ,上述两个不等式相加可得11112sin sin sin sin 2462n æö++++ç÷èøL ()3456782122ln ln ln ln ln ln ln ln ln 1234567221n n n n n ++>++++++++=++L ,所以,()11111sin sin sin sinln 124622n n ++++>+L ,又由(1),因为1102n -<-<,则111121sin ln 1sin ln022222n f n n n n n -æöæöæö-=---=-->ç÷ç÷ç÷èøèøèø,可得1212sinln ln 2221n nn n n -<-=-,当2n ³且n *ÎN 时,()()()()()()22222122110212221222122n n n n n n n n n n n -----==-<------,所以,2212122n n n n -<--,即221ln ln 2122n n n n -<--,所以,当2n ³时,1111462sin sin sin sinln 2ln ln ln 24623521nn n ++++<++++-L L ,从而有11113521sin sin sin sinln 2ln ln ln 24622422n n n -++++<++++-L L ,上述两个不等式相加得:11112sin sin sin sin 2462n æö++++ç÷èøL 3456782122ln 2ln ln ln ln ln ln ln ln 2ln 2ln 2345672221n nn n n -<+++++++++=+--L ,所以,11111sin sin sin sinln 2ln 24622n n ++++<+L ,当1n =时,1111sin ln ln 2sin 02222f æöæö-=--=->ç÷ç÷èøèø,即1sin ln 22<,所以,对任意的n *ÎN ,11111sin sin sin sinln ln 224622n n ++++<+L ,因此,()()111111ln 1sin sin sin sinln ln 2224622n n n n *+<++++<+ÎN L . (二) 把证明()()f x g x > 转化为证明()()0f xg x ->此类问题是证明不等式中最基本的一类问题,把两个函数通过作差转化为一个函数,再利用导数研究该函数的性质,通过函数性质证明该不等式.【例3】(2024届西省榆林市第十中学高三下学期一模)已知函数()()e 11xf x a x =+--,其中a ÎR .(1)讨论函数()f x 的单调性;(2)当2a =时,证明:()ln cos f x x x x >-.【解析】(1)()()e 11x f x a x =+--Q ,()e 1x f x a \=¢+-,当1a ³时,()e 10xf x a =+->¢,函数()f x 在R 上单调递增;当1a <时,由()e 10xf x a =+->¢,得()ln 1x a >-,函数()f x 在区间()()ln 1,a ¥-+上单调递增,由()e 10xf x a =+-<¢,得()ln 1x a <-,函数()f x 在区间()(),ln 1a -¥-上单调递减.综上,当1a ³时,()f x 在R 上单调递增,无减区间.当1a <时,()f x 在()()ln 1,a ¥-+上单调递增,在()(),ln 1a -¥-上单调递减.(2)Q 当2a =时,()e 1xf x x =+-,\要证()ln cos f x x x x >-,即证()e cos 1ln 0,0,x x x x x x ++-->Î+¥,①当01x <£时,e cos 10x x x ++->Q ,ln 0x x £,e cos 1ln 0x x x x x \++-->;②当1x >时,令()e cos 1ln xg x x x x x =++--,则()e sin ln x g x x x =--¢,设()()h x g x ¢=,则()1e cos xh x x x=¢--,1x >Q ,e e 2x \>>,110x-<-<,1cos 1x -£-£,()0h x ¢\>,()h x \在()1,+¥上单调递增,()()1e sin100h x h \>=-->,即()0g x ¢>,()g x \在()1,+¥上单调递增,()()1e cos10g x g \>=+>,即e cos 1ln 0x x x x x ++-->.综上,当2a =时,()ln cos f x x x x >-. (三) 把证明()()f x g x > 转化为证明()()min maxf xg x >有时候把证明()()f x g x > 转化为证明()()0f x g x ->后,可能会出现()()f x g x -的导函数很复杂,很难根据导函数研究()()f x g x -的最值,而()f x 的最小值及()g x 的最大值都比较容易求,可考虑利用证明()()min max f x g x >的方法证明原不等式,但要注意这种方法有局限性,因为()()f x g x >未必有()()min max f x g x >.【例4】(2024届广东省部分学校高三上学期第二次联考)已知函数()()e 0xf x ax a =¹.(1)讨论()f x 的单调性;(2)当24e a ³时,证明:()()1ln 01f x x x x -+>+.【解析】(1)由题意可得()()1e xf x a x +¢=.则0a >时,由()0f x ¢>,得1x >-,由()0f x ¢<,得1x <-,则()f x 在(),1-¥-上单调递减,在()1,-+¥上单调递增;当a<0时,由()0f x ¢<,得1x >-,由()0f x ¢>,得1x <-,则()f x 在(),1-¥-上单调递增,在()1,-+¥上单调递减.(2)因为0x >,所以e 01x x x >+.因为24e a ³,所以()()2e 4e 1ln 1ln 11xx ax x x x x x x x --+³-+++.要证()()1ln 01f x x x x -+>+,即证()24e 1ln 01x x x x x --+>+,即证()224e ln 1x x x x ->+.设()()224e 1x g x x -=+,则()()()234e 11x x g x x --¢=+.当()0,1x Î时,()0g x ¢<,当()1,x Î+¥时,()0g x ¢>,则()g x 在()0,1上单调递减,在()1,+¥上单调递增.故()()min 11eg x g ==.设()ln x h x x =,则()21ln xh x x-¢=.当()0,e x Î时,()0h x ¢>,当()e,x Î+¥时,()0h x ¢<,则()h x 在()0,e 上单调递增,在()e,+¥上单调递减.故()()max 1e eh x h ==.因为()()min max g x h x =,且两个最值的取等条件不同,所以()224e ln 1x x x x ->+,即当24e a ³时,()()1ln 01f x x x x -+>+.(四) 把证明()()f xg x >转化为证明()()()(),f xh x h x g x >>若直接证明()()f x g x >比较困难,有时可利用导数中的常见不等式如ln 1,e +1x x x x £-³构造一个中间函数()h x ,或利用不等式的性质通过放缩构造一个中间函数()h x ,再通过证明()()()(),f x h x h x g x >>来证明原不等式.【例5】已知函数()sin 2cos xf x x=+在区间()0,a 上单调.(1)求a 的最大值;(2)证明:当0x >时,()31e xf x +<.【解析】 (1)由已知得,22cos (2cos )sin sin 2cos 1()(2cos )(2cos )x x x x x f x x x +++¢==++,要使函数()f x 在区间(0,)a 上单调,可知在区间(0,)a 上单调递增,令()0f x ¢>,得2cos 10x +>,即1cos 2x >-,解得22(2,2)33x k k p pp p Î-++,(k Z Î),当0k =时满足题意,此时,在区间2(0,3p 上是单调递增的,故a 的最在值为23p.(2)当0x >时,要证明()31e xf x +<,即证明e 1()3x f x -<,而1xe x ->,故需要证明e 1()33x xf x -<<.先证:e 133x x -<,(0x >)记()e 1x F x x =--,()e 1x F x ¢=-Q ,,()0x Î+¥时,()0F x ¢>,所以()F x 在(0,)+¥上递增,\()e 1xF x x =--(0)0F >=,故1xe x ->,即e133xx -<.再证:()3x f x <,(0x >)令1()()3G x f x x =-,则sin 1(),2cos 3x G x x x =-+则()()()()222cos 12cos 1132cos 32cos x x G x x x ¢--+=-=++,故对于0x ">,都有()0¢<G x ,因而()G x 在(0,)¥+上递减,对于0x ">,都有()(0)0G x G <=,因此对于0x ">,都有()3xf x <.所以e 1()33x x f x -<<成立,即e 1()3x f x -<成立,故原不等式成立.(五) 改变不等式结构,重新构造函数证明不等式此类问题要先对待证不等式进行重组整合,适当变形,找到其等价的不等式,观察其结构,根据结构构造函数.常见的变形方法有:①去分母,把分数不等式转化为整式不等式;②两边取对数,把指数型不等式转化为对数型不等式;③不等式为()()()()f x h x g x h x >类型,且()()0h x >或<0的解集比较容易确定,可考虑两边同时除以()h x ;④不等式中含有,有时为了一次求导后不再含有对数符号,可考虑不等式两边同时除以x ;⑤通过换元把复杂的不等式转化为简单不等式.【例6】(2024届河南省创新发展联盟5月月考)已知函数1e 1()ln x af x x x x-=--.(1)讨论()f x 的单调性;(2)当52a ³时,证明:()11()ln e 1ln x f x x x x x -++->-.【解析】(1)函数1e 1()ln x af x x x x -=--的定义域为(0,)+¥,求导得11222e (1)11(1)(e 1)()x x a x x a f x x x x x -----=-+=¢,若0a £,则1e 10x a --<,且当()0,1x Î时,()0f x ¢>,当()1,x ¥Î+时,()0f x ¢<,即函数()f x 在(0,1)上递增,在(1,)+¥上递减;若0a >,令1e 10x a --=,解得1ln x a =-,若1ln 0a -£,即e a ³,则1e 10x a --³恒成立,当()0,1x Î时,()0f x ¢<,当()1,x ¥Î+时,()0f x ¢>,即函数()f x 在(0,1)上递减,在(1,)+¥上递增;若01ln 1a <-<,即1e a <<,则当()()0,1ln 1,x a ¥Î-È+时,()0f x ¢>,当()1ln ,1x a Î-时,()0f x ¢<,即函数()f x 在(0,1ln ),(1,)a -+¥上递增,在(1ln ,1)a -上递减;ln x x若1ln 1a -=,即1a =,则()0f x ¢³在()0,¥+上恒成立,函数()f x 在(0,)+¥上递增;若1ln 1a ->,即01a <<,则当()()0,11ln ,x a ¥ÎÈ-+时,()0f x ¢>,当(1,1ln )x a Î-时,()0f x ¢<,即函数()f x 在(0,1),(1ln ,)a -+¥上递增,在(1,1ln )a -上递减,所以当0a £时,()f x 的递增区间为()0,1,递减区间为()1,¥+;当01a <<时,()f x 的递增区间为()0,1和()1ln ,a ¥-+,递减区间为()1,1ln a -;当1a =时,()f x 的递增区间为()0,¥+,无递减区间;当1e a <<时,()f x 的递增区间为()0,1ln a -和()1,¥+,递减区间为()1ln ,1a -;当e a ³时,()f x 的递增区间为()1,¥+,递减区间为()0,1.(2)要证()()11ln e 1ln x f x x x x x -++->-,需证()11e e ln 10x x a x x x --+-->,而15e ,02x a x -³>,即有()()1111e 5e e ln 1e ln 12x x x x a x x x x x x----+--³+--,则只需证明()115e e ln 102x x x x x --+-->,即证15e ln 12x x x x -æö+->ç÷èø,即证()215ln 12e x x x x -+->,令()()5ln 12h x x x =+-,则()ln h x x ¢=,当()0,1x Î时,()0h x ¢<,当()1,x ¥Î+时,()0h x ¢>,即函数()h x 在(0,1)上单调递减,在(1,)+¥上单调递增,则()min 3()12h x h ==,令()21(0)e x x x x j -=>,则()()12ex x x x j --¢=,当()0,2x Î时,()0x j ¢>,当()2,x ¥Î+时,()0x j ¢<,函数()j x 在(0,2)上单调递增,在(2,)+¥上单调递减,则()max min 43()2()e 2x h x j j ==<=,从而()215ln 12e x x x x -+->,即()11()ln e 1ln x f x x x x x -++->-成立.(六) 通过减元法构造函数证明不等式对于多变量不等式 ,一般处理策略为消元或是把一个看作变量其他看作常量;当都不能处理的时候,通过变形,再换元产生一个新变量,从而构造新变量的函数.【例7】(2024届江西省南昌市高三三模)定义:若变量,0x y >,且满足:1mmx y a b æöæö+=ç÷ç÷èøèø,其中,0,Z a b m >Î,称y 是关于的“m 型函数”.(1)当2,1a b ==时,求y 关于x 的“2型函数”在点æççè处的切线方程;(2)若y 是关于x 的“1-型函数”,(i )求x y +的最小值:(ii )求证:()1111n n n nn n n n nx ya b+++æö+³+ç÷èø,()N n *Î.【解析】(1)解:当2,1a b ==时,可得12214x y æö=-ç÷èø,则122111242x y x -æöæö=-×-ç÷¢ç÷èøèø,所以1x y =¢=,所求切线方程为1)y x =-,即40x +-=.(2)解:由y 是关于x 的“1-型函数”,可得111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,(i)因为2()()a b ay bx x y x y a b a b x y x y æö+=++=+++³++=ç÷èø,当且仅当2ay x x y ì=ïíï+î即x a y b ì=ïí=ïî时取得最小值.(ii )由111x y a b --æöæö+=ç÷ç÷èøèø,即1a b x y +=,则()()x a y b ab --=,且x a >,y b >,可设x a at -=,by b t-=,其中(0,)t Î+¥,于是11[(1)]1(1)1nnnnnn n n x y a t b a t b t t éùæöæö+=+++=+++ç÷ç÷êúèøèøëû,记1()(1)1nnnnh t a t b t æö=+++ç÷èø,可得()()()11112111111n n n nn nn n n na t b h t na t nb t t t t a ---++éù+æöæöæö=+++-=-êúç÷ç÷ç÷èøèøèøêëû¢ú,由()0h t ¢=,得1n n b t a +æö=ç÷èø,记10n n b t a +æö=ç÷èø,当00t t <<时()0h t ¢<,当0t t >时,()0h t ¢>,则()()11min0001()1111nnn nnn n n n n n n b a h t h t a t b a b t a b ++éùéùæöæöæöêúêú==+++=+++ç÷ç÷ç÷êúêúèøèøèøëûëû111111111111n n n nn n n n n n n nn n n n n n n n n n a b a b a b a a b b b a ++++++++++æöæöæöæö=+×++×=+++ç÷ç÷ç÷ç÷èøèøèøèø111n n n nn n a b+++æö=+ç÷èø,所以()1111n n n nn n n n nx ya b+++æö+³+ç÷èø.(七) 与极值点或零点有关的多变量不等式的证明此类问题通常是给出函数的零点或极值点12,x x 或123,,x x x ,与证明与12,x x 或123,,x x x 有关的不等式,求解时要有意识的利用方程思想代入消元(若i x 是()f x 的零点,则()0i f x =,若i x 是()f x 的极值点,则()0i f x ¢=,),减少变量个数.【例8】(2024届湖南娄底市高三下学期高考考前仿真联考)已知函数()2e 2ln x af x a x x x =--.(1)当1a =时,讨论函数()f x 的单调性;(2)若22e a >,(i )证明:函数()f x 有三个不同的极值点;(ii )记函数()f x 三个极值点分别为123,,x x x ,且123x x x <<,证明:()()()23131e a f x f x a x x æö-<--ç÷èø.【解析】(1)函数()f x 的定义域为(0,)+¥,当1a =时,()2e 2ln xf x x x x=--,则()422323e e 21e 2(2)(e 2(2))x xx x x x x x x f x x x x x x x x -----¢=+-=+=,令e (0)x y x x =->,则e 10(0)x y x ¢=->>,所以e x y x =-在(0,)+¥上递增,所以0e e 01x y x =->-=,所以当2x >时,()0f x ¢>,当02x <<时,()0f x ¢<,所以()f x 在(0,2)上递减,在(2,)+¥上递增;(2)(i )因为,()0x Î+¥,且()233(2e 2(2)(e ))x xa a x f x x x x a x x x -¢=+--=-,(2)0f ¢=,由e 0xax -=,得e xa x=(,()0x Î+¥),令()(0)x e g x x x =>,则2(e 1)()(0)x x g x x x-¢=>,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>,所以()g x 在(0,1)上递减,在(1,)+¥上递增,所以min ()(1)e g x g ==,当2e (2)e 2a g >=>时,e xa x=在(0,1)和(2,)+¥上各有一个实数根,分别记为13,x x ,则1301,2x x <<>,设22x =,当10x x <<或23x x x <<时,()0f x ¢<,当12x x x <<或3x x >时,()0f x ¢>,所以()f x 在()10,x 和()23,x x 上递减,在()12,x x 和3(,)x +¥上递增,所以函数()f x 在(0,)+¥上有三个不同的极值点,(ii )由(i )1301,2x x <<>,所以13,x x 是方程e x ax =的两个不相等的实数根,即11e x ax =,33e xax =,所以11111211111e 221()ln ln ln x a a af x a x a x a x x x x x x æö=--=--=-+ç÷èø,同理3331()ln f x a x x æö=-+ç÷èø,所以()()313131313111ln ln a x a x f x f x x x x x x x æöæö-+++ç÷ç÷-èøèø=--31313111ln ln a x x x x x x æö-+--ç÷èø=-13331131ln x x x a x x x x x æö--+ç÷èø=-,由11e x ax =,33e x ax =,得3331113311e e ln ln ln ln e e e x x x x x x x a x x x a-====-,所以()()1331331313113131313131ln 11x x x x x a a x x f x f x x x x x x a x x x x x x x x æöæö---+-+-ç÷ç÷-æöèøèø===-ç÷---èø,因为2e ,2a æöÎ+¥ç÷èø,所以要证()()()23131e a f x f x a x x æö-<--ç÷èø,只要证()()23131e f x f x a a x x -<--,即证23111e a a a x x æö-<-ç÷èø,即证31111e a x x -<-,即证311e a x x <,只需证13e ax x <,即31e e xx <×,即311ex x -<,由(i )可得1301,2x x <<>,所以3110e e 1x --<<<,根据(i )中结论可知函数e ()=xg x x在(0,1)上递减,所以要证311ex x -<,即证311()(e )x g x g -<,因为3113e e x x a x x ==,所以13()()g x g x =,所以只要证313()(e )x g x g -<,即1333e 13e e e xx x x --<,得13e 3e e x x -<,即3131e ln x x --<,得313e 01ln xx ---<,令1()1ln e(2)xh x x x -=-->,则111e 1()e (2)x x x h x x x x---¢=-+=>,令1()e 1(2)x u x x x -=->,则1()(1)e 0(2)x u x x x -¢=-<>,所以()u x 在(2,)+¥上递减,所以2()(2)10eu x u <=-<,所以()0h x ¢<,所以()h x 在(2,)+¥上递减,所以1()(2)1ln 20e h x h <=--<,所以得证.(八) 与数列前n 项和有关的不等式的证明此类问题一般先由已知条件及导数得出一个不等式,再把该不等式中的自变量依次用1,2,3,L ,n 代换,然后用叠加法证明.【例9】(2024届重庆市九龙坡区高三下学期5月质量抽测)已知函数()213ln 22f x x x ax =+-+,()0a >.(1)当[)1,x ¥Î+时,函数()0f x ³恒成立,求实数a 的最大值;(2)当2a =时,若()()120f x f x +=,且12x x ¹,求证:122x x +>;(3)求证:对任意*N n Î,都有()2112ln 1ni i n n i =-æö++>ç÷èøå.【解析】(1)当1x ³时,()213ln 022f x x x ax =+-+³恒成立,即ln 1322x a x x x £++恒成立,只需min ln 1322x a x xx æö£++ç÷èø即可,令()ln 1322x g x x x x =++,1x ³,则()22221ln 132ln 1222x x x g x x x x ---=-¢+=,令()22ln 1h x x x =--,1x ³,则()22222x h x x x x=¢-=-,当1x ³时,()0h x ¢³恒成立,()h x 在[)1,x ¥Î+单调递增,所以()()10h x h ³=,所以()0g x ¢³在[)1,x ¥Î+恒成立,()g x 在[)1,x ¥Î+单调递增,所以()()min 12g x g ==,所以2a £,即实数a 的最大值为2.(2)当2a =时,()213ln 222f x x x x =+-+,0x >,所以()()21120x f x x x x-=+=¢-³,()f x 在()0,x ¥Î+上单调递增,又()10f =,()()120f x f x +=且12x x ¹,不妨设1201x x <<<,要证122x x +>,即证明212x x >-,因为()f x 在()0,x ¥Î+上单调递增,即证()()212f x f x >-,因为()()120f x f x +=,即证()()1120f x f x +-<,设()()()()()()2213132ln 2ln 22222222F x f x f x x x x x x x =+-=+-++-+---+()()()2ln 221ln 221x x x x x x x x éùéù=-+-+=---+ëûëû,01x <<,令()2t x x =-,则01t <<,则()ln 1t t t j =-+,()111tt t t j -=-=¢,由01t <<可得()0t j ¢>,()t j 在()0,1单调递增,所以()()10t j j <=,即()()()20F x f x f x =+-<,所以()()1120f x f x +-<成立,所以122x x +>.(3)由(2)可知当2a =时,()f x 在()1,¥+单调递增,且()()10f x f >=,由213ln 2022x x x +-+>得22ln 430x x x +-+>,即()22ln 21x x +->,令1n x n +=,则2112ln 21n n n n ++æö+->ç÷èø,即2112ln 1n n n n +-æö+>ç÷èø,所以22112ln 111-æö+>ç÷èø,23122ln 122-æö+>ç÷èø,24132ln 133-æö+>ç÷èø,…,2112ln 1n n n n +-æö+>ç÷èø,相加得()2112ln 1ni i n n i =-æö++>ç÷èøå.(九)通过同构函数把复杂不等式化为简单不等式此类问题通常是构造一个函数()f x ,把所证不等式转化为()()()()f g x f h x >,再根据()f x 的单调性转化为证明一个较简单的不等式.【例10】(2024届广东省广州市高中毕业班冲刺训练二)已知函数()e axf x x =(0a >).(1)求()f x 在区间[]1,1-上的最大值与最小值;(2)当1a ³时,求证:()ln 1f x x x ³++.【解析】(1)解:()()e 1axf x ax =+¢(0x >)(0a >),令()0f x ¢=,则1x a =-,当01a <£时,11a-£-,所以()0f x ¢³在区间[]1,1-上恒成立,()f x 在区间[]1,1-上单调递增,所以()()min 1e a f x f -=-=-,()()max 1e af x f ==.当1a >时,111a -<-<,则当11,x a éöÎ--÷êëø时,()0f x ¢<,()f x 在区间11,a éö--÷êëø上单调递减;当1,1x a æùÎ-çúèû时,()0f x ¢>,()f x 在区间1,1a æù-çúèû上单调递增,所以()min 11e f x f a a æö=-=-ç÷èø,而()1e 0a f --=-<,()1e 0a f =>.所以()()max 1e af x f ==综上所述,当01a <£时,()min e a f x -=-,()max e af x =;当1a >时,所以()min 1ef x a =-,()max e af x =.(2)因为0x >,1a ³,所以e e ax x x x ³,欲证e ln 1ax x x x ³++,只需证明e ln 1x x x x ³++,只需证明ln ln e e e e ln 1x x x x x x x x x +==³++,因此构造函数()e 1x h x x =--(x ÎR ),()e 1xh x ¢=-,当(),0x Î-¥时,()0h x ¢<,()h x 在(),0¥-上单调递减;当()0,x Î+¥时,()0h x ¢>,()h x 在()0,¥+上单调递增:所以()()00h x h ³=,所以e 1x x ³+,所以e ln 1x x x x ³++,因此()ln 1f x x x ³++.【例1】(2024届内蒙古呼和浩特市高三第二次质量监测)对于函数()f x ,若实数0x 满足()00f x x =,则0x 称为()f x 的不动点.已知函数()()e 2e 0x xf x x a x -=-+³.(1)当1a =-时,求证()0f x ³;(2)当0a =时,求函数()f x 的不动点的个数;(3)设*N n Î,()ln 1n +>+L .【解析】(1)当1a =-时,有()()e 2e 0x xf x x x -=--³,所以()1e 2e x x f x =+-¢()0x ³,所以()1e 220e x x f x =+-³=¢当且仅当1e e xx=,e 1x=,即0x =时,等号成立,所以当[)0,x Î+¥时,()0f x ¢³,()f x 单调递增,所以()()()min 00f x f x f ³==,所以()0f x ³得证.(2)当0a =时,()()e 20xf x x x =-³,根据题意可知:方程e 2x x x -=()0x ³解的个数即为函数()f x 的不动点的个数,化e 2x x x -=()0x ³为e 30x x -=()0x ³,令()e 3xg x x =-()0x ³,所以函数()g x 的零点个数,即为函数()f x 的不动点的个数,()e 3x g x ¢=-()0x ³,令()0g x ¢=,即e 3x =,解得ln 3x =,x[)0,ln 3ln 3()ln 3,¥+()g x ¢-+()g x 单调递减33ln 3-单调递增因为()010g =>,()ln 333ln 30g =-<,所以()g x 在[)0,ln 3上有唯一一个零点,又()555e 15215170g =->-=>,所以()g x 在()ln 3,¥+上有唯一一个零点,综上所述,函数()f x 有两个不动点.(3)由(1)知,()e 2e 0,0,x xx x ¥--->Î+,令ln ,1x s s =>,则12ln 0s s s --->,即12ln ,1s s s s->>,设*N s n =Î,则满足1s >,>1ln 1n æö>+ç÷èø,()1ln ln 1ln n n n n +æö>=+-ç÷èø,()ln 2ln1ln 3ln 2ln(1)ln ln 1n n n >-+-+++-=+L L ,即()ln 1n >+L .【例2】(2024届四川省自贡市高三第三次诊断性考试)已知函数1()1ln (0)f x a x a x=++>(1)求函数()f x 的单调区间;(2)函数()f x 有唯一零点1x ,函数2()sin e ag x x x =--在R 上的零点为2x .证明:12x x <.【解析】(1)函数1()1ln (0)f x a x a x=++>的定义域为()0,¥+,且2211()a ax f x x x x -¢=-+=,所以当10x a<<时()0f x ¢<,当1x a >时()0f x ¢>,所以()f x 的单调递减区间为10,a æöç÷èø,单调递增区间为1,a æö+¥ç÷èø;(2)法一:由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即1ln 10f a a a a æö=-++=ç÷èø,令()ln 1x x x x j =-++,则()ln x x j ¢=-,当1x >时,()()0,x x j j ¢<单调递减,当01x <<时,()()0,x x j j ¢>单调递增,因为44e 2.753.144127>=>,55e 3243256<=<,所以()433ln 344ln 27ln e ln 270j =-+=-=->,()544ln 455ln 256ln e ln 2560j =-+=-=-<,当01x <<时()()1ln 10x x x j =-+>,当x ®+¥时()x j ®-¥,所以()x j 在()3,4上存在唯一零点,所以33a <<,即11143a <<,令()2e sin h x x x x -=+-,则()22e cos 10h x x x -=-+-<¢,所以()h x 在()0,¥+上单调递减,故22113113111sin sin sin 03e333333h h a æöæö>=+->+-=>ç÷ç÷èøèø,所以211e sin a a a->-,又()2222sin e 0g x x x a -=--=,所以2221111sin e sin sin x x a x x a a--=>-=-,令()sin F x x x =-,则()1cos 0F x x =-³¢,所以()F x 在()0,¥+上单调递增,又()()21>F x F x ,所以21x x >.法二:因为0a >,由(1)可知若函数()f x 有唯一零点1x ,则11x a=,即()()1111111111ln 1ln 10ln 10f x a x x x x x x x =++=++=Þ++=,设211()ln 1,0,0e e h x x x h h æöæö=++><ç÷ç÷èøèø,而()h x 在()0,¥+上单调递增,所以1211,e e x æöÎç÷èø,()1cos 0g x x ¢=-≥,所以()g x 在R 上单调递增,又12(0)0,0e ag x =-<\>,令22211()sin ,()1cos 0e e x x x x x x x j j ¢=--=-+>,所以()j x 在()0,¥+上单调递增,所以()111sin 0e e x j j æö\<=-<ç÷èø,而()222212211sin sin 0e e a g x x x x x x =--=--=,()()11122211221111sin sin e e g x x x g x x x x x x x \=--<=--\<.【例3】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()lng x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a->,且211x a <<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x xx x xxx x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例4】(2024届天津市滨海新区高考模拟检测)已知函数()ln a xf x x+=,其中a 为实数.(1)当1a =时,①求函数()f x 的图象在e x =(e 为自然对数的底数)处的切线方程;②若对任意的x D Î,均有()()m x n x £,则称()m x 为()n x 在区间D 上的下界函数,()n x 为()m x 在区间D 上的上界函数.若()1kg x x =+,且()g x 为()f x 在[)1,+¥上的下界函数,求实数k 的取值范围.。

导数不等式方法总结

导数不等式方法总结

导数不等式方法总结今天咱们来唠唠导数不等式的那些方法呀。

一、构造函数法。

这就像是搭积木一样呢。

当你看到一个导数不等式,你要想着怎么去构造一个合适的函数。

比如说,要是不等式一边是f(x),另一边是g(x),你就可以构造个新函数h(x)=f(x) - g(x)。

然后呢,对这个h(x)求导,通过导数的正负去判断h(x)的单调性。

要是h(x)单调递增,而且h(x)在某个点的值大于等于0,那在这个区间上h(x)就大于等于0,不等式就成立啦。

就像你找到一个小助手(构造的函数),让它帮你去搞定不等式。

二、放缩法。

这个方法有点像把东西变大或者变小来让不等式更容易看清楚。

比如说,我们知道一些常见的不等式放缩关系,像e^x≥x + 1这个,当你遇到有e^x和其他式子比较的不等式时,就可以把e^x放缩成x + 1来处理。

但是宝子们要小心哦,放缩的时候得保证方向是对的,不能乱放大或者缩小。

就像你给东西穿衣服,不能把大衣服套在小娃娃身上,也不能把小衣服硬往大娃娃身上套呀。

三、分类讨论法。

这个就有点麻烦,但是也很有用啦。

当导数里面有参数的时候,咱们就得根据参数的不同取值范围来讨论。

比如说参数a,当a大于0、等于0、小于0的时候,函数的导数情况可能完全不一样呢。

就像对待不同性格的小宠物,有的小宠物(参数取某个值时)很温顺,函数的导数很好处理,有的小宠物(参数取其他值)就有点调皮,导数的正负情况就复杂一些。

咱们得一个一个情况去分析,最后把各种情况综合起来,才能解决不等式。

四、利用函数的极值和最值。

函数的极值和最值可是很有用的小秘密武器哦。

你先求出函数的极值点,看看在这些极值点和区间端点处函数的值。

如果一个不等式要成立,你可以看这个函数在某个区间上的最小值或者最大值是不是满足不等式的要求。

就好比你要看看你养的小花朵(函数),在它最漂亮(极值、最值)的时候是不是能达到你想要的那个标准(不等式成立的条件)。

导数不等式的这些方法都很有趣呢,宝子们要多练习,多琢磨,这样遇到各种导数不等式就都不怕啦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构造函数法证明不等式的八种方法
利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

1、从条件特征入手构造函数证明
【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f
【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f <x
e 的解集.
【变式2】若函数y =)(x f 是定义在()0,∞-上的可导函数且满足不等式)()(2x f x x f '+>2
x .
求不等式0)2(4)2015()2015(2
>--++f x f x 的解集.
2、移项法构造函数
【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-
)1ln(1
1
1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11
1
)1ln()(-+++=x x x g ,从其导数入手即可证明。

3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f +=
求证:在区间),1(∞+上,函数)(x f 的图象在函数33
2
)(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题,设)()()(x f x g x F -=
4、换元法构造函数证明
【例4】(2007年,山东卷)证明:对任意的正整数n ,不等式321
1)11ln(n
n n ->+ 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令
x n
=1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2
3
++-=x x x x h ,求导即可达到证明。

5、对数法构造函数(选用于幂指数函数不等式) 【例5】证明当2
111)1(,0x x
e
x x +
+
<+>时
6、构造形似函数
【例6】证明当a b b a e a b >>>证明,
7、构造二阶导数函数证明导数的单调性 【例7】已知函数21()2
x
f x ae x =-
(1)若f(x)在R 上为增函数,求a 的取值范围;(2)若a=1,求证:x >0时,f(x)>1+x
8、主元法构造函数
【例8】(全国)已知函数x x x g x x x f ln )(,)1ln()(=-+=
(1) 求函数)(x f 的最大值; (2)设b a <<0,证明 :2ln )()2
(2)()(0a b b
a g
b g a g -<+-+<.
【思维挑战】
1、(2007年,陕西))(x f 是定义在(0,+∞)上的非负可导函数,且满足)()(x f x f x -'≤0,对任意正数a 、b ,若a <b ,则必有( )
(A )af (b )≤bf (a )(B )bf (a )≤af (b )(C )af (a )≤f (b ) (D )bf (b )≤f (a )
2、(2007年,安徽卷)已知定义在正实数集上的函数,ln 3)(,22
1)(2
2b x a x g ax x x f +=+=其中a >0,且a a a b ln 32522-=,求证:)()(x g x f ≥
3、已知函数x x x x f +-+=1)1ln()(,求证:对任意的正数a 、b , 恒有.1ln ln a
b
b a -≥-。

相关文档
最新文档