八年级数学下册 第五章《分式与分式方程》分式化简及分式方程中的易错题 北师大版
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。
1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)(1)
一、选择题1.下列运算中,正确的是( )A .211a a a +=+B .21111a a a -⋅=-+C .1b a a b b a +=--D .0.22100.7710++=--a b a b a b a b2.下列命题:①若22||11x x x x x ++⋅=++,则x 的值是1; ②若关于x 的方程1122mx x x -=--无解,则m 的值是1-; ③若(2019)(2018)2017x x --=,则22(2019)(2018)4034x x -+-=;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠,则abc ab bc ac ++的值是19. 其中正确的个数是( )A .1B .2C .3D .4 3.现在汽车已成为人们出行的交通工具.李刚、王勇元旦那天相约一起到某加油站加油,当天95号汽油的单价为m 元/升,他俩加油的情况如图所示.半个月后的某天,他俩再次相约到同一加油站加油,此时95号汽油的单价下调为n 元/升,他俩加油的情况与上次相同,请运用所学的数学知识计算李刚、王勇两次加油谁的平均单价更低?低多少?下列结论正确的是( )A .李刚比王勇低()22m n mn-元/升B .王勇比李刚低()22mn m n -元/升C .王勇比李刚低()22m n mn -元/升D .李刚与王勇的平均单价都是2m n +元/升 4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 5.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6- 7.计算221(1)(1)x x x +++的结果是( ) A .1B .1+1xC .x +1D .21(+1)x 8.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 9.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 10.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .411.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12-12.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N二、填空题13.若关于x 的分式方程3122++=--x m x x有增根,则m 的值是______. 14.如果30,m n --=那么代数式2⎛⎫-⋅ ⎪+⎝⎭m n n n m n 的值为______________________. 15.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 16.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 17.若x =2是关于x 的分式方程31k x x x -+-=1的解,则实数k 的值等于_____. 18.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.19.计算:262393x x x x -÷=+--______. 20.若()()023248x x ----有意义,则x 的取值范围是______.三、解答题21.(1)分解因式3228x xy -(2)解分式方程:23193x x x +=-- (3)先化简:2443111a a a a a -+⎡⎤÷-+⎢⎥++⎣⎦,然后a 在2-,1-,1,2五个数中选一个你认为合适的数代入求值.22.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 23.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?24.列分式方程解应用题:2020年玉林市倡导市民积极参与垃圾分类,某小区购进A 型和B 型两种分类垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个B 型垃圾桶比购买一个A 型垃圾桶多花30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?25.先化简,再求值:221111x x x ⎛⎫-÷ ⎪+-⎝⎭,其中2021x =. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同.(1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的运算法则及分式的性质逐项进行计算即可.【详解】A :211a a a a+=+,故不符合题意; B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意; C :1b a b a a b b a a b a b+=-=-----,故不符合题意;D :0.22100.7710++=--a b a b a b a b,故不符合题意; 故选:D .【点睛】 本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键. 2.B解析:B【分析】根据等式的性质和分式有意义的条件判断①;根据分式方程无解的意义求出m 值,可判断②;运用完全平方公式判断③;根据分式的化简求值判断④.【详解】解:①若22||11x x x x x ++⋅=++, ∴||1x =,又∵x ≠-1,∴x 的值是1,故正确; ②1122mx x x -=--化简得:()13m x +=, ∵方程1122mx x x -=--无解, ∴m +1=0,或321x m ==+, 则m 的值是-1或12,故错误; ③若(2019)(2018)2017x x --=,则22(2019)(2018)x x -+-=[]2(2019)(2018)(2019)(2018)2x x x x +-----=2120172+⨯=4035,故错误; ④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠, ∴1111115,6,7a b b c a c ab a b bc b c ac a c +++=+==+==+=, ∴ab bc ac abc++ =111a b c ++ =12222a b c ⎛⎫⨯++ ⎪⎝⎭=11111112a b b c a c ⎛⎫⨯+++++ ⎪⎝⎭ =()15672⨯++ =9 ∴abc ab bc ac ++的值是19,故正确; 故选:B .【点睛】本题考查了分式有意义的条件,完全平方公式,分式的化简求值,解题的关键是灵活运用运算法则以及分式的性质.3.A解析:A【分析】先求解李刚两次加油每次加300元的平均单价为每升:2mn m n +元,再求解王勇每次加油30升的平均单价为每升:2m n +元,再利用作差法比较两个代数式的值,从而可得答案. 【详解】解:李刚两次加油每次加300元,则两次加油的平均单价为每升: ()6006002300300300mn m n m n m n mn==+++(元), 王勇每次加油30升,则两次加油的平均单价为每升:3030602m n m n ++=(元), ()()()224222m n m n mn mn m n m n m n ++∴-=-+++ ()()()222222m n m mn n m n m n --+==++ 由题意得:,m n ≠ ()()22m n m n -∴+>0, ∴ 2m n +>2mn m n +. 故A 符合题意,,,B C D 都不符合题意,故选:.A本题考查的是列代数式,分式的加减运算,代数式的值的大小比较,掌握以上知识是解题的关键.4.B解析:B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a ≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键. 7.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.8.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.9.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.10.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确;方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.11.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 12.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】 解:2224411424x x x x x x-++÷-+ 2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键.二、填空题13.1【分析】分式方程去分母转化为整式方程由分式方程有增根确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2由分式方程有增根得到x ﹣2=0即x =2把x =2代入整式方程得:3﹣2﹣m =0解得:m =1解析:1【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可【详解】解:去分母得:3﹣x ﹣m =x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:3﹣2﹣m =0,解得:m =1,故答案:1.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.【分析】将原式进行分式的混合计算化简先算小括号里面的然后算乘法最后整体代入求值【详解】解:===∵∴故答案为:3【点睛】本题考查分式的混合运算掌握运算顺序和计算法则正确计算是解题关键解析:3【分析】将原式进行分式的混合计算化简,先算小括号里面的,然后算乘法,最后整体代入求值.【详解】 解:2⎛⎫-⋅ ⎪+⎝⎭m n n n m n =22m n n m n n ⎛⎫⋅ ⎪⎭-+⎝ =()()n n m nm n m n -⋅++ =m n -∵30m n --=,∴=3m n -故答案为:3.【点睛】本题考查分式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.15.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13 【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 16.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 17.4【分析】将x=2代入求解即可【详解】将x=2代入=1得解得k=4故答案为:4【点睛】此题考查分式方程的解解一元一次方程正确理解方程的解是解题的关键解析:4【分析】将x=2代入求解即可.【详解】将x=2代入31k x x x -+-=1,得112k -=, 解得k=4,故答案为:4.【点睛】此题考查分式方程的解,解一元一次方程,正确理解方程的解是解题的关键. 18.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 19.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 20.且【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组求出x 的取值范围即可【详解】解:∵(x-3)0-(4x-8)-2有意义∴解得x≠3且x≠2故答案为:x≠3且x≠2【点睛】本题考查解析:2x ≠,且3x ≠【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.【详解】解:∵(x-3)0-(4x-8)-2有意义,∴30480x x -≠⎧⎨-≠⎩, 解得x≠3且x≠2.故答案为:x≠3且x≠2.【点睛】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.三、解答题21.(1)()()222x x y x y +-;(2)4x =-;(3)22a a --+,13【分析】(1)先提取公因式,然后再利用平方差公式进行求解即可;(2)先去分母,然后进行整式方程的求解即可;(3)先算括号内的,然后再进行分式的运算即可,最后选择一个使最简公分母不为零的数代值求解即可.【详解】解:(1)3228x xy -=()2224x x y -=()()222x x y x y +-;(2)23193x x x +=-- 去分母得:()2339x x x ++=-,整理得:312x =-,解得:4x =-,经检验4x =-是方程的解;(3)2443111a a a a a -+⎛⎫÷-+ ⎪++⎝⎭=()222411a a a a --÷++ =()()()221122a a a a a -+⨯++- =22a a --+, 把1a =代入得:原式=311212-=-+. 【点睛】 本题主要考查因式分解、分式方程及分式的运算,熟练掌握因式分解、分式方程及分式的运算是解题的关键.22.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】 (1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可;(2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天, 根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;24.一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设一个A 型垃圾桶需x 元,则一个B 型垃圾桶需(x+30)元,根据购买A 型垃圾桶数量是购买B 品牌足球数量的2倍列出方程解答即可.【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元 由题意得:25002000230x x =⨯+, 解得:50x =,经检验:50x =是原方程的解,且符合题意,则:3080x +=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】此题考查了分式方程的应用,找出题目蕴含的等量关系列出方程是解决问题的关键. 25.1x x-,20202021 【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】 解:221111x x x ⎛⎫-÷ ⎪+-⎝⎭ 211(1)(1)1x x x x x +-+-=⋅+ 2(1)(1)1x x x x x +-=⋅+ 1x x-=, 当2021x =时, 原式202112021-=20202021=. 【点睛】 此题主要考查了分式的化简求值,正确化简分式是解题关键.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。
2020-2021学年北师大版八年级下册 第五章《分式与分式方程》实际应用常考综合题专练(一)
八年级下册第五章《分式与分式方程》实际应用常考综合题专练(一)1.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?2.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价6元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1680元所购该书的数量比第一次多50本,当按定价售出300本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?3.列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时各行多少千米?4.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步,在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.5.扎西与卓玛共同清点一批图书,已知扎西清点完300本图书所用的时间与卓玛清点完200本所用的时间相同,扎西平均每分钟比卓玛多清点10本,求卓玛平均每分清点图书的数量?6.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?7.甲、乙两车分别从A、B两地同时出发,沿同一公路相向而行,开往B、A两地.已知甲车每小时比乙车每小时多走20km,且甲车行驶350km所用的时间与乙车行驶250km所用的时间相同.甲、乙两车的速度各是多少km/h?8.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?9.2020年初,一场突如其来的新型冠状病毒肺炎疫情,打破了我们宁静的生活,为了预防新型冠状病毒肺炎,人们已经习惯出门戴口罩.某口罩生产企业在若干天内加工120万个口罩(每天生产数量相同),在实际生产时,由于提高了生产技术水平,每天加工的个数是原来的1.5倍,从而提前2天完成任务,问该企业原计划每天生产多少万个口罩?10.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?参考答案1.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.2.解:(1)设第一次购书的进价是每本书x元,则第二次购书时,每本书的批发价是(1+20%)x元,根据题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,答:第一次购书的进价是每本书4元;(2)第一次购书为1200÷4=300(本),第二次购书为300+50=350(本),第一次赚钱为300×(6﹣4)=600(元),第二次赚钱为300×(6﹣4×1.2)+(350﹣300)×(6×0.4﹣4×1.2)=240(元),所以两次共赚钱为:600+240=840(元),答:该老板两次售书总体上是赚钱了,共赚了840元.3.解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行3x千米,由题意得:=+,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴3x=60,答:李明乘公交、刘峰骑自行车每小时分别行60千米、20千米.4.解:设这名女生跑完800米所用时间为x秒,则这名男生跑完1000米所用时间(x+56)秒,根据题意得:,解得:x=224,经检验,x=224是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.5.解:设卓玛平均每分钟清点图书x本,则扎西平均每分钟清点(x+10)本,依题意,得:=.解得:x=20.经检验,x=20是原方程的解.答:卓玛平均每分钟清点图书20本.6.解:设甲每秒加工x个口罩,则乙每秒加工(35﹣x)个口罩.由题意得:=,解得:x=15,经检验:x=15是原方程的根,且x=15,35﹣x=20符合题意,答:甲每秒加工15个口罩,乙每天加秒20个口罩.7.解:设乙车的速度是xkm/h,则甲车的速度是(x+20)km/h,依题意得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+20=70.答:甲车的速度是70km/h,乙车的速度是50km/h.8.解:(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:=,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.9.解:设该企业原计划每天生产x万个口罩,则在实际生产时每天生产1.5x万个口罩,由题意得:﹣=2,解得:x=20,经检验:x=20是原分式方程的解,且符合题意,答:该企业原计划每天生产20万个口罩.10.解:设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该厂原计划每天加工4万只医用一次性口罩.。
北师大版八年级下册第五章分式和分式方程重难点概要和易错题型分析(答案不全)
分式与分式方程【分享主题】一、基础知识概要二、重点难点问题概要三、易错点分析四、巩固练习【基础知识概要】一、分式①、分式定义及有意义的条件;②、分式的值;③、分式的基本性质;④、最简分式与约分;⑤、最简公分母与通分;⑥、分式的加减乘除四则运算法则、乘法运算、负指数幂二、分式方程①、分式方程的定义;②、分式方程的解与检验;③、分式方程的无解与增根;④、分式方程的应用题常见类型【重点难点问题概要】一、分式重点内容:①、最简分式的化简;②、最简公分母的寻找;③、分式的混合计算;④、分式的化简求值;⑤、分式的基本性质;难点知识:①、计算中的最简公分母的寻找;②、含参分析易错点分析:①、判别分式或求分式的值时,忽略分母不为0;②、互为相反数的因式在化简(约分)过程中没有注意符号; ③、计算方面:运算顺序不恰当,负号问题,去括号与添括号; ④、分式基本性质方面使用不恰当; ⑤、把分式计算当作解分式方程。
二、分式方程重点:①、解分式方程的常用方法;②、分式方程解的情况判断(非负数解,正整数解,增根与无解);③、由实际问题抽象出分式方程。
难点:①、换元法解分式方程; ②、分式方程的增根与无解的情况理解与讨论; ③、含参方程的解的讨论;易错点分析:①、去分母时常数漏乘公分母; ②、去分母时,分子是多项式不加括号; ③、方程两边同除可能为零的整式;④、解分式方程后,忽略根的检验,未舍去增根。
【易错点分析】易错点1:识别分式不需要化简(对分式的定义理解不透)【例题】下列各式2b a -,x x 3+,πy +5,b a b a -+,)(1y x m -,xxy中,属于分式的有( )个A 、2B 、3C 、4D 、5【答案】C【变式练习】式子:a 32-,b a a +,2yx ,πa 1+,11--x x 中,是分式的有( )个 A 、1 B 、2 C 、3 D 、4【答案】C易错点2 :忽略分式有意义的条件而出错【例题】若分式242+-x x 的值为0,则x 的值为( )A .-2B .0C .2D .2±【答案】C【变式练习】若0)2(611---a a 有意义,则a 的取值范围是( ) A 、2>a B 、1<a C 、12≠≠a a 或 D 、12≠≠a a 且【答案】D易错点3:忽略除式不能为0而致错【例题】使式子4233++÷-+x x x x 有意义的x 的取值范围是________________ 【答案】3≠x 、2-≠x 且4-≠x【变式练习】若式子0)4(3-+-x x x有意义,则实数x 的取值范围是____________。
北师大版八年级下册《第五章分式与分式方程》测试题(含答案)
第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。
八年级数学下册第五章分式与分式方程全章热门考点整合专训作业pptx课件新版北师大版
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
解:设每辆小货车的货运量是x吨,则每辆大货车的货运量
是(x+4)吨.
依题意得
= ,解得x=12.
+
经检验,x=12是原方程的解,且符合题意.
故x+4=12+4=16.
答:每辆大货车的货运量是16吨,每辆小货车的货运量
第五章 分式与分式方程
全章热门考点整合专训
三个概念
分式
+
1.下列各式:① ;②
;③ ;④ .其中是分式的是
−
(
C )
A.①②
B.③④
C.①③
D.①②③④
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2.【教材P109随堂练习T1变式】要使分式 有意义,x的取值
15
16
17
18
19
分式方程
A )
4.下列方程中,是分式方程的是(
+
A.
=2
B.x2-2x=1
+
=1
D.x-2=3y
C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)
八年级下册第五章《分式与分式方程》实际应用常考综合题专练(二)1.在新冠肺炎疫情发生后,某企业加快转型步伐,引进A,B两种型号的机器生产防护服,已知一台A型机器比一台B型机器每小时多加工20套防护服,且一台A型机器加工800套防护服与一台B型机器加工600套防护服所用时间相等.(1)每台A,B型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排A,B两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A型机器?2.春节是我国的传统节日,人们素有吃水饺的习俗.某商场在年前准备购进A、B两种品牌的水饺进行销售,据了解,用3000元购买A品牌水饺的数量(袋)比用2880元购买B 品牌水饺的数量(袋)多40袋,且B品牌水饺的单价(元/袋)是A品牌水饺单价(元/袋)的1.2倍.(1)求A、B两种品牌水饺的单价各是多少?(2)若计划购进这两种品牌的水饺共220袋销售,且购买A品牌水饺的费用不多于购买B品牌水饺的费用,写出总费用w(元)与购买A品牌水饺数量m(袋)之间的关系式,并求出如何购买才能使总费用最低?最低是多少?3.为了防疫,某学校需购买甲、乙两种品牌的额温枪.已知甲品牌额温枪的单价比乙品牌额温枪的单价低40元,且用4800元购买甲品牌额温枪的数量是用4000元购买乙品牌额温枪的数量的倍.(1)求甲、乙两种品牌额温枪的单价;(2)若学校计划购买甲、乙两种品牌的额温枪共80个,且乙品牌额温枪的数量不小于甲品牌额温枪数量的2倍,购买两种品牌额温枪的总费用不超过15000元.设购买甲品牌额温枪m个,总费用为W元,则该校共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?4.两个小组同时开始攀登一座450m高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早1.5min到达峰顶.两个小组的攀登速度各是多少?(Ⅰ)设第二组的攀登速度为xm/min,根据题意,用含有x的式子填写下表:速度(m/min)时间(min)距离(m)第一组450第二组x450(Ⅱ)列出方程,并求出问题的解.5.创建文明城市,携手共建幸福美好.某地为美化环境,计划种植树木4800棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前4天完成任务.求原计划每天植树的棵数.6.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?7.受新冠肺炎疫情影响,口罩、体温计、消毒液等一度紧缺,某药店用3200元采购一批耳温计(测量体温的),上市后发现供不应求,很快销售完了,该药店又去采购第二批同样的耳温计,进货价比第一批贵了5元,该店用了9900元,所购数量是第一批的3倍.(1)求第一批采购的耳温计单价是多少元?(2)若该药店按每个耳温计的售价为210元,销售光这两批耳温计,总共获利多少元?8.小华到超市购买大米,第一次按原价购买,用了60元,几天后,遇上这种大米8折出售,他用96元又买了一些,两次一共购买了30kg,这种大米的原价是多少?9.随着5G网络技术的发展,对5G手机的需求越来越大,为满足市场需求,某大型5G手机的生产厂家更新技术后,加快了生产速度,现在每月比更新技术前每月多生产2万部5G 手机,现在生产60万部5G手机所需的时间与更新技术前生产50万部5G手机所需时间相同,求更新技术前每月生产多少万部5G手机?10.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?参考答案1.解:(1)设每台B型号的机器每小时加工x套防护服,则每台A型号的机器每小时加工(x+20)套防护服,依题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+20=80.答:每台A型号的机器每小时加工80套防护服,每台B型号的机器每小时加工60套防护服.(2)设需要安排m台A型机器,则安排(10﹣m)台B型机器,依题意得:80m+60(10﹣m)≥720,解得:m≥6.答:至少需要安排6台A型机器.2.解:(1)设A品牌水饺单价为x元/袋,则B品牌水饺单价为1.2x元/袋,根据题意,得:﹣=40,,解得:x=15,经检验,x=15是原方程的解,∴1.2x=18;答:A品牌水饺单价为15元/袋,B品牌水饺单价为18元/袋;(2)设购进A品牌水饺m袋,则购进B品牌水饺(220﹣m)袋,依题意,得:15m≤18(220﹣m),解得:m≥120,由题意得:w=15m+18(220﹣m)=﹣3m+3960,当m=120时,w最小=3600,220﹣120=100,答:A品牌水饺购买120袋,B品牌水饺购买100袋时,总费用最低,最低是3600元.3.解:(1)设甲、乙两种品牌额温枪的单价分别为x元、(x+40)元,由题意得:=×,解得:x=160,经检验,x=160是原方程的解,且符合题意,则x+40=200,答:甲、乙两种品牌额温枪的单价分别为160元、200元;(2)由题意得:W=160m+200(80﹣m)=﹣40m+16000,,解得:25≤m≤,∴该校共有2种购买方案:①m=25时,80﹣m=55,即购买甲种品牌的额温枪25个,购买乙种品牌的额温枪55个;②m=26时,80﹣m=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个;∵W=﹣40m+16000,﹣40<0,∴W随m的增大而减小,∴当m=26时,总费用最低,最低费用W=﹣40×26+16000=14960(元),80﹣26=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个时,可使总费用最低,最低费用是14960元.4.解:(Ⅰ)设第二组的攀登速度为xm/min,则第一组的攀登速度为1.2xm/min,∴第一组的攀登时间为(min),第二组的攀登时间为(min).故答案为:1.2x;;.(Ⅱ)根据题意得:﹣1.5=,解得:x=50,经检验,x=50是原分式方程的解,且符合题意,∴1.2x=60.答:第一组的攀登速度是60m/min,第二组的攀登速度是50m/min.5.解:设原计划每天植树x棵,则实际每天植树(1+20%)x棵,依题意,得:﹣=4,解得:x=200,经检验.x=200是原方程的解,答:原计划每天植树200棵.6.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.7.解:(1)设第一批采购的耳温计的单价为x元,则第二批采购的耳温计的单价是(x+5)元,依题意,得:,解得:x=160,经检验,x=160是原方程的解,且符合题意,答:第一批采购的耳温计的单价是160元;(2)第一批采购的耳温计的数量为3200÷160=20(个),第二批采购的耳温计数量为20×3=60(个),∴销售完这两批耳温计共获利210×(20+60)﹣3200﹣9900=3700元.答:销售光这两批耳温计,总共获利3700元.8.解:设这种大米的原价是每千克x元,根据题意,得:+=30,解得:x=6,经检验,x=6是原方程的解,且符合题意,答:这种大米的原价是每千克6元.9.解:设更新技术前每月生产x万部5G手机,则更新技术后每月生产(x+2)万部5G手机,由题意列方程,得:,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:更新技术前每月生产10万部5G手机.10.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.。
北师大版数学八年级下册期末备考:第五章《分式与分式方程》实际应用之选择易错试题(一)
期末备考:第五章《分式与分式方程》实际应用之选择易错试题(一)1.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑自行车速度的2倍,现在小军乘班车上学可以从家晚出发10分钟,结果与原来到校的时间相同,那么校车的速度是()A.12千米/小时B.15千米/小时C.18千米/小时D.36千米/小时2.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.某人沿正在向下运动的自动扶梯从楼上走到楼下,用了24秒;若他站在自动扶梯上不动,从楼上到楼下要用56秒.若扶梯停止运动,他从楼上走到楼下要用()A.32秒B.38秒C.42秒D.48秒4.甲、乙两个清洁队参加了某社区“城乡清洁工程”,甲队单独做2天完成了工程的三分之一,这时乙队加入,两队又共同做了1天,完成了全部工程.则乙队单独完成此项工程需要()A.6天B.4天C.2天D.3天5.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.5606.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成7.甲乙两人同时从同一地点出发,相背而行1小时后他们分别到达各自的终点A与B,若仍从原地出发,互换彼此的目的地,则甲在乙到达A之后50分钟到达B,甲乙的速度之比为()A.2:3 B.3:5 C.3:2 D.3:48.某工程队承接了60万平方米的绿化工程,由于情况有变,….设原计划每天绿化的面积为x万平方米,列方程为,根据方程可知省略的部分是()A.实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B.实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C.实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D.实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务9.一艘轮船在静水中的最大航速为30千米/小时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()A.=B.=C.=D.=10.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递40件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.C.=﹣40 D.=11.在学校组织的秋季登山活动中,某班分成甲、乙两个小组同时开始攀登一座450m高的山,乙组的攀登速度是甲组的1.2倍,乙组到达顶峰所用时间比甲组少15min.如果设甲组的攀登速度为xm/min,那么下面所列方程中正确的是()A.=+1.2 B.=﹣15C.=1.2×D.=+1512.一艘轮船在静水中的最大航速为50km/h,它以最大航速沿河顺流航行80km所用时间和它以最大航速沿河逆流航行60km所用时间相等,设河水的流速为xkm/h,则可列方程()A.=B.=C.=D.=13.2021年是中国共产党建党100周年,某校为了纪念党的生日,计划组织540名学生去外地参观学习.现有A,B两种不同型号的客车可供选择,在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆,设A型客车每辆坐x人,则根据题意可列方程为()A.﹣=6 B.﹣=6C.﹣=6 D.﹣=614.甲乙两港口相距50千米,一艘轮船从甲港口顺流航行至乙港口,又立即从乙港口逆流返回甲港口,共用去8小时,已知水流速度为4km/h,若设该轮船在静水中的速度为xkm/h,则可列方程()A.B.C.D.15.某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为()A.B.C.D.16.当前,国内多地呈现新冠零星散发病例、局部聚集性疫情连发态势,市教育局紧急对全市初一、初二学生15万人进行核酸检测,由于志愿者的加入,实际每天检测人数比原计划多50%,结果提前3天完成任务,设原计划每天检测x万人,则依题意列出的方程是()A.=3 B.=3C.+3=D.=317.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.5元.设每箱凉茶有x罐,则下列方程正确的是()A.B.C.D.18.某果品分拣车间有甲、乙两组工人负责将猕猴桃装箱,已知每小时甲组比乙组少装16箱,甲组装260箱与乙组装340箱所用的时间相等,设甲组每小时装x箱,所列方程正确的是()A.B.C.D.19.某童装店有几件不同款式的衣服,每件衣服的原价一样,6月1日儿童节那天,全场打7折,某宝妈在儿童节那天去购买该款式的衣服时发现:平时花350元购买到的衣服件数比现在少2件,设原价是x元,则根据题意可列出方程()A.=B.=C.﹣2=D.=﹣220.某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程()A.﹣=6 B.﹣=6C.﹣=6 D.﹣=6参考答案1.解:设小军骑车的速度为x千米/小时,则校车的速度为2x千米/小时,根据题意得:﹣=,解得:x=7.5,经检验,x=7.5是原方程的解,且符合题意,则2x=15,即校车的速度为15千米/小时,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:设楼上到楼下的路程为1,∴人的速度为﹣,∴(﹣)x=1,解得x=42.故选:C.4.解:设乙队单独完成此项工程需要的时间为x天,由题意,得×1+×1=1﹣,解得:x=2,经检验,x=2是原方程的根.∴x=2.故选:C.5.解:设第一次购进计算器x个,则第二次购进计算器3x个,根据题意得:=+1,解得:x=20,经检验x=20是原方程的解,则这笔生意该店共盈利:[50×(20+60﹣4)+4×50×90%]﹣(880+2580)=520(元);故选:B.6.解:设实际每天铺设管道x米,原计划每天铺设管道(x﹣10)米,方程,则表示实际用的时间﹣原计划用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.故选:C.7.解:设甲的速度为v1千米/时,乙的速度为v2千米/时,根据题意知,从出发地点到A的路程为v1千米,到B的路程为v2千米,从而有方程:,化简得:,解得:,﹣是负数,应该舍去故选:A.8.解:设原计划每天绿化的面积为x万平方米,∵所列分式方程为﹣=30,∴为实际工作时间,为原计划工作时间,∴省略的条件为:实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务.故选:C.9.解:设江水的流速为x千米/时,由题意得:=,故选:D.10.解:设原来平均每人每周投递快件x件,则更换了快捷的交通工具后平均每人每周投递快件(x+40)件,依题意得:=.故选:D.11.解:设甲组的攀登速度为xm/min,则乙组的攀登速度为1.2xm/min,依题意得:﹣15=.故选:B.12.解:设河水的流速xkm/h,则以最大航速沿江顺流航行的速度为(50+x)km/h,以最大航速逆流航行的速度为(50﹣x)km/h,根据题意得,=,故选:C.13.解:设A型客车每辆坐x人,则B型客车每辆坐(x+15)人,依题意得:﹣=6.故选:A.14.解:设该轮船在静水中的速度为xkm/h,根据题意得,,故选:A.15.解:设该工厂计划x天内生产120件零件,则实际生产了(x﹣2)天,依题意得:=+3.故选:B.16.解:由题意可得,=3,故选:A.17.解:由题意可得,=0.5,故选:B.18.解:设甲组每小时装x箱,则乙组每小时装(x+16)箱,依题意得:=.故选:B.19.解:设原价是x元,则打折后的价格为0.7x元,依题意得:=﹣2.故选:D.20.解:由题意可得:﹣=6,故选:B.。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(答案解析)(3)
一、选择题1.若关于x 的分式方程3111m x x -=--的解是非负数,则m 的取值范围是( ) A .4m ≥-,1m ≠B .4m ≥-且3m ≠-C .2m ≥且3m ≠D .4m >- 2.已知113x y -=,则代数式21422x xy y x xy y ----的值( ) A .4B .9C .-4D .-8 3.若关于x 的方程2033x a x x ++=++有增根,则 a 的值为( ) A .1B .3C .4D .5 4.分式方程3121x x =-的解为( ) A .1x = B .2x = C .3x = D .4x = 5.下列各分式中是最简分式的是( )A .2-1-1x xB .42xC .22-1x xD .-11-x x6.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度 7.若关于x 的方程1044m x x x --=--无解,则m 的值是( ) A .2- B .2 C .3- D .38.若关于x 的方分式方程222x m x x=---有非负整数解,且关于y 的不等式组()()2123513y y y y m +⎧+≥⎪⎨⎪-<-+⎩有且只有2个整数解,则所有符合条件的正整数m 的和为( ) A .5 B .7 C .8 D .99.已知x a =时,分式211x x ++的值为m .若a 取正整数,则m 的取值范围为( ) A .112m ≤< B .312m ≤< C .322m ≤< D .522m ≤<10.若x 2y 5=,则x y y +的值为( ) A .25 B .72 C .57 D .7511.若分式12x -有意义,则x 的取值范围是( ) A .0x ≠ B .2x ≠- C .2x ≠ D .x 取任意实数 12.小红和小丽分别将9000字和7500字的两篇文稿录入计算机,…,求两人每分钟各录入多少字?设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…”表示的缺失的条件应为( )A .两人每分钟录入字数的和是220字B .所用时间相同,两人每分钟录入字数的和是220字C .所用时间相同,小红每分钟录入字数比小丽多220字D .所用时间相同,小丽每分钟录人字数比小红多200字 二、填空题13.已知关于x 的分式方程233x k x x -=--的解是非负数,则k 的取值范围为______. 14.若x 2-x -1=0,则232x x x--=___. 15.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根. 16.已知5a b +=,6ab =,b a a b+=______. 17.观察给定的分式,探索规律:(1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数). 18.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133aa -=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可) 19.如果分式126x x --的值为零,那么x =________ . 20.用科学记数法表示:-0.00000202=_______.三、解答题21.某制药厂生产一种创新型中药,该药对于治疗流感及新冠肺炎都有较好的疗效.该制药厂第一车间原来每天能生产该药品960箱,受疫情影响,曾经停工停产,在复工复产初期,该生产车间仍有6名工人没有报到.已到厂的工人积极生产,原来每天工作8小时,现在每天加班2小时,在每人每小时平均完成的工作量不变的情况下,该车间现在每天能生产该药品840箱.(1)该制药厂第一车间原来有工人多少人?(2)就这样加班生产已过10天,该制药车间接到加急任务:将复工后的21000箱药品供应武汉市,制药厂决定从其他制药车间抽调6名技术工人以填补未到岗工人的空缺,并且每天仍然加班生产2小时,那么该车间至少还需要生产多少天才能完成任务?22.化简:22234122m m m m m --⎛⎫-÷ ⎪--⎝⎭. 23.先化简,再求值:21123369⎛⎫+÷⎪-+-+⎝⎭m m m m m ,其中9m =. 24.解方程(1)2231022x x x x -=+- (2)31523x-162x -=- (3)25231x x x x +=++ (4)552252x x =-+ 25.(1)计算:()30211324-⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭(2)化简:21111x x x ⎛⎫-÷ ⎪+-⎝⎭ (3)先化简,再求值:()()()22322a b a b a b +-+-,其中13a =,12b =-. 26.为预防新冠疫情的反弹,康源药店派采购员到厂家去购买了一批A 、B 两种品牌的医用外科口罩.已知每个B 品牌口罩的进价比A 品牌口罩的进价多0.7元,采购员用7200元购进A 品牌口罩的数量为用5000元购进B 品牌数量的2倍.(1)求A 、B 两种品牌每个口罩的进价分别为多少元?(2)若B 品牌口罩的售价是A 品牌口罩的售价的1.5倍,要使康源药店销售这批A 、B 两种品牌口單的利润为8800元,则它们的售价分别定为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先去分母得到整式方程m+3=x﹣1,再由整式方程的解为非负数得到m+4≥0,由整式方程的解不能使分式方程的分母为0得到m+4≠1,然后求出不等式的公共部分得到m的取值范围.【详解】解:去分母得m+3=x﹣1,整理得x=m+4,因为关于x的分式方程311mx x-=--1的解是非负数,所以m+4≥0且m+4≠1,解得m≥﹣4且m≠﹣3,故选:B.【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.在解方程的过程中因为在把分式方程化为整式方程的过程中,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.2.A解析:A【分析】由11x y=3,变形得y-x=3xy,然后整体代入代数式,计算化简,即可得到结论.【详解】解:由11x y=3,得y xxy-=3,即y-x=3xy,x-y=-3xy,则21422x xy yx xy y----=2()142x y xyx y xy----=61432xy xyxy xy----=4.故选:A.【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.3.A解析:A【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x的值,代入整式方程求出a的值即可.【详解】解:分式方程去分母得:20x a ++=,由分式方程有增根,得到x+3=0,即x=-3,把x=-3代入整式方程得:320a -++=,解得1a =故选:A .【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点.4.C解析:C【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验;【详解】两边同时乘以()21x x -,得:()312x x -= ,解得:x=3,检验:将x=3代入()210x x -≠,∴方程的解为x=3.故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验; 5.C解析:C【分析】根据最简分式的定义即可求出答案.【详解】解:A 、211()111)(11x x x x x x -==+--+-,故选项A 不是最简分式,不符合题意; B 、42=2x x ,故选项B 不是最简分式,不符合题意; C 、22-1x x ,是最简二次根式,符合题意; D 、1111(1)x x x x --==----,故选项D 不是最简分式,不符合题意. 故选:C .【点睛】本题考查最简分式,解的关键是正确理解最简分式的定义,本题属于基础题型.6.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系. 7.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 8.B解析:B【分析】由题意根据分式方程去分母转化为整式方程,由解为非负整数以及不等式组只有2个整数解,确定出符合条件m 的值,求出它们的和即可.【详解】解:去分母得:()22x x m =-+,解得:4x m =-,由解为非负整数解,得到40m -≥,且42m -≠,解得:4m ≤且2m ≠,不等式组整理得:242y y m ⎧⎪⎨-⎪≥-⎩<, 由不等式组只有2个整数解,得到y=-2,-1,即1024m --≤<, 解得:2≤m <6,综上:2<m≤4则符合题意m=3,4,它们的和为7.故选:B .【点睛】本题考查分式方程的解以及一元一次不等式组的整数解,熟练掌握相关运算法则是解答本题的关键. 9.C解析:C【分析】 先把211x x ++化为121x -+,再根据条件和a 的范围,即可得到答案. 【详解】 ∵211x x ++=22-12(1)-112111x x x x x ++==-+++, 又∵x a =时,分式211x x ++的值为m , ∴121m a -=+, ∵a 取正整数,即a≥1, ∴1112a ≤+, ∴13212a -≥+,即m≥32, 又∵101a >+, ∴1221a -<+,即m<2, ∴322m ≤<. 故选C .【点睛】本题主要考查分式的运算和化简,把原分式的分子化为常数,是解题的关键. 10.D解析:D 【分析】根据同分母分式的加法逆运算得到x y x yy y y+=+,将x2y5=代入计算即可.【详解】解:∵x2y5 =,∴x y x y2y y y5+=+=+175=,故选:D.【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.11.C解析:C【分析】根据分式有意义的基本条件计算即可.【详解】∵分式12x-有意义,∴x-2≠0,∴2x≠,故选C.【点睛】本题考查了分式有意义的条件,熟记有意义的条件,熟练转化成不等式是解题的关键.12.B解析:B【分析】根据工作时间=工作总量÷工作效率,从而得出正确答案.【详解】解:设小红每分钟录入x个字,则可得方程90007500220x x=-,根据此情景,题中用“…“表示的缺失的条件应补为所用时间相同,两人每分钟录入字数的和是220字,故选:B.【点睛】本题主要考查了由实际问题抽象出分式方程,根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.二、填空题13.且【分析】先解分式方程可得检验可得再由关于的分式方程的解是非负数列不等式解不等式从而可得答案【详解】解:去分母得:检验:关于的分式方程的解是非负数综上:且【点睛】本题考查的是分式方程的解与解分式方程 解析:6k ≤且 3.k ≠【分析】先解分式方程可得6,x k =-检验可得3,k ≠再由关于x 的分式方程233x k x x -=--的解是非负数,列不等式,解不等式,从而可得答案.【详解】 解:233x k x x -=-- 去分母得:()23,x x k --=26,x x k ∴-+=6,x k ∴=-检验:30,x -≠630,k ∴--≠3,k ∴≠关于x 的分式方程233x k x x -=--的解是非负数, 60,k ∴-≥6,k ∴≤综上:6k ≤且 3.k ≠【点睛】本题考查的是分式方程的解与解分式方程,解一元一次不等式,掌握解分式方程一定要检验是解题的关键.14.2【分析】把x2-x-1=0变形得x2-1=x 然后对分式进行化简再代入求值【详解】∵x2-x-1=0∴x2-1=x ∵故答案是:2【点睛】本题主要考查分式的化简求值掌握分式的减法运算是解题的关键解析:2【分析】把x 2-x -1=0变形得x 2 -1=x ,然后对分式进行化简,再代入求值.【详解】∵x 2-x -1=0,∴x 2 -1=x , ∵232x x x --=()222221322222x x x x x x x x x----====, 故答案是:2.【点睛】本题主要考查分式的化简求值,掌握分式的减法运算是解题的关键.15.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由 解析:6【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值.【详解】 解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12, 去分母得7-2x=m将x=12代入得m=6 即当m=6时,原分式方程会出现增根.故答案为6.【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.16.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136【分析】 原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab++-+== 25266-⨯=136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 17.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a -- 【点睛】本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键18.②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】 解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a -=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.19.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 20.02×10-6【分析】绝对值小于1的负数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:02×10-6【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法表示-0.00000202为 2.02×10-6.故答案为:2.02×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题21.(1)该制药厂第一车间原来有工人20人;(2)至少还需要生产10.5天才能完成任务【分析】(1)设该制药厂第一车间原来有工人x 人,根据每人每小时完成的工作量不变列出关于x 的方程,求解即可;(2)设还需要生产y 天才能完成任务.根据前面10天完成的工作量+后面y 天完成的工作量≥21000列出关于y 的不等式,求解即可.【详解】解:(1)设该制药厂第一车间原来有工人x 人,根据题意,得()9608408106=-x x , 解得20x .经检验,20x 是原分式方程的解且符合题意.答:该制药厂第一车间原来有工人20人.(2)设还需要生产y 天才能完成任务.当20x 时,96096068820==⨯x (箱), 即每人每小时生产该药物6箱.由题意得,()108402068221000⨯+⨯⨯+≥y ,解得10.5≥y .答:至少还需要生产10.5天才能完成任务.【点睛】本题考查分式方程及一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.22.1m m + 【分析】先把括号内的进行通分,然后除以一个数等于乘以这个数的倒数,把分子分母因式分解后进行约分计算即可;【详解】()()()22223441222411m m m m m m m m m m m m m ----⎛⎫-÷=⨯= ⎪----++⎝⎭; 【点睛】本题考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则;23.33-+m m ,12. 【分析】 原式被除数括号中两项通分并利用同分母分式的加法法则计算,除数分母利用完全平方公式分解因式后,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21123369⎛⎫+÷ ⎪-+-+⎝⎭m m m m m =33(3)(3)m m m m ++-+-•2(3)2m m- =33-+m m , 当m =9时,原式=931=932-+. 【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.24.(1)4x =;(2)10=9x ;(3)无解;(4)356x =- 【分析】(1)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;(2)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;(3)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;(4)解分式方程,先去分母,将分式方程变形为整式方程,然后去括号,移项,合并同类项,系数化1求解,最后对结果进行检验确定原方程的解;【详解】解:(1) 2231022x x x x-=+-整理,得:310(2)(2)x x x x -=+- 方程两边同乘(2)(2)x x x +-得:3(2)(2)0x x --+=去括号,得:3620x x ---=移项,合并同类项,得:28x =系数化1,得:4x =经检验:4x =是原方程的解∴原分式方程的解为:4x =(2) 31523x-162x -=- 整理,得:3152312(31)x x -=-- 方程两边同乘2(31)x -得:()33125x --=去括号,得:9325x --=移项,合并同类项,得:9=10x系数化1,得:10=9x 经检验:10=9x 是原方程的解 ∴原分式方程的解为:10=9x (3)25231x x x x +=++ 整理,得:523(1)1x x x x +=++ 方程两边同乘(1)x x +得:523x x +=移项,合并同类项,得:22x =-系数化1,得:1x =-经检验:1x =-是原方程的增根∴原分式方程无解(4)552252x x =-+ 方程两边同乘()()2525x x +-得:()()525225x x +=-去括号,得:1025410x x +=-移项,合并同类项,得:635x =-系数化1,得:356x =-经检验:356x =-是原方程的解 ∴原分式方程的解为:356x =-【点睛】本题考查解分式方程,掌握解方程步骤,正确计算是解题关键,注意分式方程的结果要进行检验.25.(1)0;(2)-x+1;(3)21210ab b +,12【分析】(1)根据负指数幂和零指数幂计算即可;(2)根据分式的乘除化简即可;(3)先根据整式乘法进行化简,在代入求值即可;【详解】解:(1) ()30211324-⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭, =-8+9-1,=0;(2)21111x x x ⎛⎫-÷⎪+-⎝⎭, =()()()11111x x x x x -++-+, =()()111x x x x x+--+, =1x -+; (3)()()()22322a b a b a b +-+-,=()222241294a ab b a b++--, =222241294a ab b a b ++-+,=21210ab b +,当13a =,12b =-时,原式=12×12×12⎛⎫- ⎪⎝⎭+10×212⎛⎫- ⎪⎝⎭=12. 【点睛】本题主要考查了分式化简、整式化简求值、实数计算,准确计算是解题的关键. 26.(1)A 、B 两种品牌每个口罩的进价分别为每个1.8元,2.5元;(2)A 、B 两种品牌每个口罩的售价分别定为每个3元,4.5元.【分析】(1)设A 种品牌每个口罩的进价为每个x 元,则B 种品牌每个口罩的进价为每个()0.7x +元,则可列方程7200500020.7x x =⨯+,解方程并检验即可得到答案; (2)设A 品牌口罩的售价为每个y 元,则B 品牌口罩的售价为每个1.5y 元, 由(1)得:A 品牌口罩的数量为7200=40001.8个,B 品牌口罩的数量为2000个,再列方程()()4000 1.820001.5 2.58800,y y -+-= 解方程可得答案.【详解】解:(1)设A 种品牌每个口罩的进价为每个x 元,则B 种品牌每个口罩的进价为每个()0.7x +元,则7200500020.7x x =⨯+ 1825,0.7x x ∴=+ 251812.6x x ∴=+712.6,x ∴=1.8,x ∴=经检验: 1.8x =是原方程的根,且符合题意,1.82.5x ∴+=即A 、B 两种品牌每个口罩的进价分别为每个1.8元,2.5元.(2)设A 品牌口罩的售价为每个y 元,则B 品牌口罩的售价为每个1.5y 元, 由(1)得:A 品牌口罩的数量为7200=40001.8个,B 品牌口罩的数量为2000个, 则()()4000 1.820001.5 2.58800,y y -+-=17.552.5,y ∴=3y ∴=1.5 4.5,y ∴=答:A 、B 两种品牌每个口罩的售价分别定为每个3元,4.5元.【点睛】本题考查的是一元一次方程的应用,分式方程的应用,掌握利用相等关系列方程解决实际问题是解题的关键.。
北师大版八年级下册数学 第五章 分式与分式方程(知识点)
第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。
如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。
分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。
分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。
字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。
3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。
字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。
最简分式:分子与分母没有公因式的分式,叫做最简分式。
5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。
通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。
期末备考 第5章《分式方程》 实际应用解答专项(二)2020-2021学年 北师大版八年级数学下册
八年级数学北师大版下册期末备考:第5章《分式方程》实际应用解答专项(二)1.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?2.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的,求港珠澳大桥的设计时速是多少.3.某市文化宫学习十九大有关优先发展交于的精神,举办了为某贫困山区小学捐赠书包活动.首次用2000元在商店购进一批学生书包,活动进行后发现书包数量不够,又购进第二批同样的书包,所购数量是第一批数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求文化宫第一批购进书包的单价是多少?(2)商店两批书包每个的进价分别是68元和70元,这两批书包全部售给文化宫后,商店共盈利多少元?4.列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?5.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)1100 1400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?6.列方程或方程组解应用题:某校的软笔书法社团购进一批宣纸,用720元购进的用于创作的宣纸与用120元购进的用于练习的宣纸的数量相同,已知用于创作的宣纸的单价比用于练习的宣纸的单价多1元,求用于练习的宣纸的单价是多少元∕张?7.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小明步行12 000步与小红步行9 000步消耗的能量相同.若每消耗1千卡能量小明行走的步数比小红多10步,求小红每消耗1千卡能量需要行走多少步?8.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?9.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?10.仙桃是遂宁市某地的特色时令水果.仙桃一上市,水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)11.现有A、B两种商品,已知买一件A商品要比买一件B商品少30元,用160元全部购买A商品的数量与用400元全部购买B商品的数量相同.(1)求A、B两种商品每件各是多少元?(2)如果小亮准备购买A、B两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?12.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?13.某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成:若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲乙两队合作完成该工程需要多少天?14.某商家预测某种粽子能够畅销,就用6000元购进了一批这种粽子,上市后销售非常好,商家又用14000元购进第二批这种粽子,所购数量是第一批购进数量的2倍,但每袋进价多了5元.(1)该商家两批共购进这种粽子多少袋?(2)由于储存不当,第二批购进的粽子中有10%腐坏,不能售卖.该商家将两批粽子按同一价格全部销售完毕后获利不低于8000元,求每袋粽子的售价至少是多少元?15.某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳.面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进手机壳按同一价格销售,全部售完后,为使得获利不少于2000元,那么销售单价至少为多少?参考答案1.解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:=,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.2.解:设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)千米/时.依题意,得.解方程,得x=100.经检验:x=100是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.3.解:(1)设第一批购进书包的单价为x元.依题意,得,整理,得20(x+4)=21x,解得x=80.检验:当x=80时,x(x+4)≠0,∴x=80是原分式方程的解.答:第一批购进书包的单价为80元,(2)=300+1050=1350答:商店共盈利1350元.4.解:设2002年地铁每小时客运量x万人,则2017年地铁每小时客运量4x万人,由题意得,解得x=6,经检验x=6是分式方程的解,答:2017年每小时客运量24万人.5.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400═2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.6.解:设用于练习的宣纸的单价是x元∕张.由题意,得,解得x=0.2.经检验,x=0.2是所列方程的解,且符合题意.答:用于练习的宣纸的单价是0.2元∕张.7.解:设小红每消耗1千卡能量需要行走x步,则小明每消耗1千卡能量需要行走(x+10)步,根据题意,得=,解得x=30.经检验:x=30是原方程的解.答:小红每消耗1千卡能量需要行走30步.8.解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工作所需天数是3x天,依题意得:+=1,解得x=20,检验,当x=20时,3x≠0,所以原方程的解为x=20.所以3x=3×20=60(天).答:乙队单独完成这项工程需20天,则甲队单独完成这项工作所需天数是60天;(2)设甲、乙两队合作完成这项工程需要y天,则有y(+)=1,解得y=15.需要施工的费用:15×(15.6+18.4)=510(万元).∵510>500,∴工程预算的费用不够用,需要追加预算10万元.9.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.10.解:(1)设第一批仙桃每件进价x元,则,解得x=180.经检验,x=180是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y折.可得×0.1y﹣3700≥440,解得y≥6.答:剩余的仙桃每件售价至少打6折.11.解:(1)设A商品每件x元,则B商品每件(30+x)元,根据题意,得:,经检验:x=20是原方程的解,所以A商品每件20元,则B商品每件50元.(2)设购买A商品a件,则购买B商品共(10﹣a)件,列不等式组:300≤20•a+50•(10﹣a)≤380,解得:4≤a≤6.7,a取整数:4,5,6.有三种方案:①A商品4件,则购买B商品6件;费用:4×20+6×50=380,②A商品5件,则购买B商品5件;费用:5×20+5×50=350,③A商品6件,则购买B商品4件;费用:6×20+4×50=320,所以方案③费用最低.12.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.13.解:(1)设这项工程的规定时间是x天,则甲队单独施工需要x天完工,乙队单独施工需要1.5x天完工,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,1÷(+)=18(天).答:甲乙两队合作完成该工程需要18天.14.解:(1)设该商家第一次购进这种粽子x袋,则第二次购进2x袋,依题意,得:﹣=5,解得:x=200,经检验,x=200是所列分式方程的解,且符合题意,∴x+2x=600.答:该商家两批共购进这种粽子600袋.(2)设每袋粽子的售价是y元,依题意,得:[200+200×2×(1﹣10%)]y﹣6000﹣14000≥8000,解得:y≥50.答:每袋粽子的售价至少是50元.15.解:(1)设第一批手机壳进货单价为x元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批手机壳的进货单价是8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥2000,解得:m≥12.答:销售单价至少为12元.。
北师大版八年级下册数学第五章《分式与分式方程》综合练习题
《分式与分式方程》综合练习题一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6 7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.15.(2009春•营山县期末)已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.(2020秋•北京期末)依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=++,则++=三.解答题(共10小题)21.(2021•包河区三模)市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.(2021•平房区三模)某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.(2021•岳阳二模)岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.(2021•宝安区模拟)为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.(2020秋•香洲区期末)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.(2021春•滨湖区期中)小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.(2021春•大兴区期中)已知非零实数a、b满足等式,求的值.28.(2020秋•连山区期末)阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.(2020秋•乌苏市期末)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.30.(2021•禅城区校级一模)先化简(1﹣)÷,再从0,2,﹣1,1中选择一个合适的数代入并求值.参考答案一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=50【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据“现在生产400台机器所需时间比原计划生产450台机器所需时间少1天”列出方程即可.【解答】解:设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据题意,得﹣=1.故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,利用本题中“生产400台机器所需时间比原计划生产450台机器所需时间少1天”这一个隐含条件,进而得出等式方程是解题关键.2.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=20【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”列方程即可.【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据题意可得:﹣=20.故选:B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.3.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.15【考点】分式方程的解;解一元一次不等式组.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据不等式组的解集为x≥6,列出不等式,求出a的范围;解出分式方程的解,根据方程的解是正整数,列出不等式,求得a的范围;检验分式方程,列出不等式,求得a的范围;综上所述,得到a的范围,最后根据方程的解是正整数求得满足条件的整数a的值,求和即可.【解答】解:,解不等式①得:x≥6,解不等式②得:x>,∵不等式组的解集为x≥6,∴6,∴a<7;分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=,∵方程的解是正整数,∴>0,∴a>﹣5;∵y﹣1≠0,∴1,∴a≠﹣3,∴﹣5<a<7,且a≠﹣3,∴能使是正整数的a是:﹣1,1,3,5,∴和为8,故选:B.【点评】本题考查了解一元一次不等式组,解分式方程,注意解分式方程一定要检验.4.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.5【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;一元一次不等式(组)及应用;推理能力.【分析】分别求出满足不等式有解与分式方程的解为正数的a的取值范围,再求出其中满足使分式方程的解为正整数的a的整数值,注意舍去增根的情况.【解答】解:解不等式①得x<2,解不等式②得x>﹣1,∵不等式组有解,∴﹣1<2,解得a<9,解分式方程=4﹣得y=,∵方程的解为正数,∴>0且≠3,∴a>﹣且a≠3,∴﹣<a<9且a≠3,满足使方程的解为正整数的整数a的值有0,6两个.故选:A.【点评】本题考查一元一次不等式组与分式方程的解,解题关键是求解过程要注意分式方程的增根情况.5.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣1【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据“结果比原计划提前一周完成任务”即可得出关于x的分式方程,此题得解.【解答】解:设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据题意,得:=+1.故选:C.【点评】本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.6.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据有且只有两个整数解列出不等式求出a的范围;解分式方程,根据解为正数,且y﹣1≠0,得到a的范围;然后得到a的范围,再根据a为整数得到a的值,最后求和即可.【解答】解:,解不等式①得:x≤2,解不等式②得:x≥,∴不等式组的解集为≤x≤2,∵不等式组有且只有两个整数解,∴0<≤1,∴0<a≤3;分式方程两边都乘以(y﹣1)得:1﹣3y+2a=﹣2(y﹣1),解得:y=2a﹣1,∵分式方程的解为正数,∴2a﹣1>0,∴a>;∵y﹣1≠0,∴y≠1,∴2a﹣1≠1,∴a≠1,∴<a≤3,且a≠1,∵a是整数,∴a=2或3,∴2+3=5,故选:C.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时别忘记检验.7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出不等式组的解集,根据不等式组有解且至多3个整数解,求得m的取值范围;解分式方程,检验,根据方程有整数解求得m的值【解答】解:,解不等式①得:x≥﹣1,∴﹣1≤x<,∵不等式组有解且至多3个整数解,∴﹣1<<2,∴﹣3<m<6,分式方程两边都乘以(x﹣1)得:mx﹣2﹣3=2(x﹣1),∴(m﹣2)x=3,当m≠2时,x=,∵x﹣1≠0,∴x≠1,∴≠1,∴m≠5,∵方程有整数解,∴m﹣2=±1,±3,解得:m=3,1,5,﹣1,∵m≠5,∴,m=3,1,﹣1.故选:C.【点评】本题考查了解一元一次不等式组,解分式方程,考核学生的计算能力,解分式方程时一定要检验.8.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.15【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解不等式组,根据不等式组有且仅有3个整数解,得到a的范围;解分式方程,根据分式方程有意义和方程有正数解求得a的范围,从而得到2<a≤6,且a≠5,所以a 的整数解为3,4,6,和为13.【解答】解:,解不等式①得:x<5,解不等式②得:x≥,∴不等式组的解集为,∵不等式组有且仅有3个整数解,∴1<≤2,∴2<a≤6;分式方程两边都乘以(x﹣1)得:ax﹣2﹣3=x﹣1,解得:x=,∵x﹣1≠0,∴x≠1,∵方程有正数解,∴0,≠1,∴a>1,a≠5,∴2<a≤6,且a≠5,∴a的整数解为3,4,6,和为13,故选:B.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程不要忘记检验.9.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时【考点】分式方程的应用.【专题】分式方程及应用.【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【解答】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则=.解得x=20经检验x=20是原方程的根,且符合题意.则丙的工作效率是.所以一轮的工作量为:++=.所以4轮后剩余的工作量为:1﹣=.所以还需要甲、乙分别工作1小时后,丙需要的工作量为:﹣﹣=.所以丙还需要工作小时.故一共需要的时间是:3×4+2+=14小时.故选:C.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.10.设x<0,x﹣=,则代数式的值()A.1B.C.D.【考点】分式的值;分式的加减法.【专题】计算题;整体思想.【分析】根据完全平方公式以及立方和公式即可求出答案.【解答】解:∵x﹣=,∴(x)2=5,∴x2+=7,∴(x+)2=x2+2+=9,∵x<0,∴x+=﹣3,∴x2+1=﹣3x,∴x4+1=7x2,∵(x2+)2=x4+2+,∴x4+=47,∴x8+1=47x4,∵x3+=(x+)(x2﹣1+),∴x3+=﹣18,∴x6+1=﹣18x3,∴原式=====故选:B.【点评】本题考查学生的整体的思想,解题的关键是熟练运用完全平方公式以及立方和公式,本题属于难题.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为﹣2.【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】分别解出两个一元一次不等式的解集,根据不等式组的解集为x≥5,列出不等式求得a的范围;解分式方程,根据方程有非负整数解,且y﹣2≠0列出不等式,求得a 的范围;综上所述,求得a的范围.根据a为整数,求出a的值,最后求和即可.【解答】解:,解不等式①得:x≥5,解不等式②得:x>a+2,∵解集为x≥5,∴a+2<5,∴a<3;分式方程两边都乘以(y﹣2)得:y﹣a=﹣(y﹣2),解得:y=,∵分式方程有非负整数解,∴≥0,∴a≥﹣2,∵≠2,∴a≠2,综上所述,﹣2≤a<3且a≠2,∴符合条件的所有整数a的数有:﹣2,﹣1,0,1,和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时一定记得要检验.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是4710元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).【考点】分式方程的应用.【专题】整式;运算能力.【分析】设乙的成本价为a,然后根据题意列出90﹣s=40%a,求得a,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,然后列式计算即可.【解答】解:设乙的成本价为a,根据题意列出90﹣s=40%a,解得a=70,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,m+n=50则有70n+m(3x+3×)=6213÷(1+30%)70n+70m+mx=4710.xm=,节后乙每盒成本98÷2÷(1+40%)=35,甲每盒成本2x+2×x+35﹣x=35+x,总成本35n+m(35+x)=35×50+×=2657.5.故答案为:2657.5.【点评】本题考查了列代数式和一元一次方程,根据题意正确列出代数式是解题的关键.13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为1.【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】计算题;方程与不等式;应用意识.【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.【解答】解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣2<a≤2;解分式方程得,y=2﹣a(a≠1);∵方程的解为非负数,∴2﹣a≥0即a≤2且a≠1综上可知,﹣2<a≤2且a≠1,∵a是整数,∴a=﹣1,0,2;∴﹣1+0+2=1,故答案为:1.【点评】本题考查了解一元一次不等式组,分式方程,本题易错,易忽视分式方程有意义的条件.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.【考点】分式的化简求值.【分析】先根据题意得出x2=5x﹣1,再根据分式混合运算的法则进行计算即可.【解答】解:∵x2﹣5x+1=0,∴x2=5x﹣1,∴原式======.故答案为:.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.15.(2009春•营山县期末)已知,则=﹣.【考点】分式的化简求值.【专题】探究型.【分析】先根据题意得出x﹣y=﹣2xy,再代入所求代数式进行计算即可.【解答】解:∵﹣=2,∴=2,即x﹣y=﹣2xy,原式====﹣.故答案为:﹣.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.【考点】分式的化简求值.【专题】分式;运算能力;推理能力.【分析】根据xyz=6,可以先将所求式子化简,然后根据x+a2=2010,y+a2=2011,z+a2=2012,可以得到x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,然后代入化简后的式子即可解答本题.【解答】解:∵xyz=6,∴++﹣﹣﹣=﹣=﹣==[(x﹣y)2+(y﹣z)2+(x﹣z)2],∵x+a2=2010,y+a2=2011,z+a2=2012,∴x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,∴原式=×[(﹣1)2+(﹣1)2+(﹣2)2]=×(1+1+4)==,故答案为:.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有27人.【考点】分式方程的应用.【专题】一元一次不等式(组)及应用;应用意识.【分析】设每人每天可检疫x头猪,该组检疫工作人员有y人,则每人半天检疫头猪,由甲养殖场的生猪比乙养殖场的生猪多1倍,根据题意可得不等式,从而得解.【解答】解:设每人每天可检疫x头猪,该组检疫工作人员有y人,由题意得:xy+x(1+20%)×<2[x(1+20%)×+6×],化简得:0.4y<11.4∴y<28.5,∵y只能为正整数,且有一人离开后,人数平分∴y的最大值为27.故答案为:27.【点评】本题是较复杂的不等式应用题,题目中有两个变量,但是列完之后,每个因式中都含有x,从而可以消掉,变成一元一次不等式,从而得解,本题的难点在于变量较多,不等关系的得出较为复杂.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比。
北师大版数学八年级下册第五章测试题及答案《分式与分式方程》
北师大版数学八年级下册第五章测试卷一、单选题1.在代数式ab a ,23a b ,-0.5xy +23y ,b ca c +-,12x x ---,1π中,是分式的有( ).A .1个B .2个C .3个D .4个2.下列各式从左到右变形正确的是A .1-2-2122x y x y x y x y =++ B .0.220.22a b a b a b a b ++=++C .-1-1--x x x y x y += D .--a b a ba b a b+=+ 3.计算11x x y--的结果是( ). A .()yx x y --B .2()x yx x y +-C .2()x yx x y --D .()yx x y -4.计算2623993m mm m m ⋅÷+--的结果为( ). A .21(3)m +B .21(3)m -+C .21(3)m -D .219m -+5.下列分式方程有解的是( ).A .210x x+=B .123x -=0 C .2111x x x x +=-- D .11x -=1 6.按下列程序计算,当a =-2时,最后输出的答案是().A .132- B .52-C .-1D .12-7.已知a ,b 为实数,且ab =1,设M =11a b a b +++,N =1111a b +++,则M ,N 的大小关系是( ). A .M >NB .M =NC .M <ND .无法确定8.某工程限期完成,甲队独做正好按期完成,乙队独做则要延期3天完成.现两队先合做2天,再由乙队独做,也正好按期完成.如果设规定的期限为x 天,那么根据题意可列出方程:①223x x ++=1;②1122()133x x x x -++=++;③213xx x +=+;④233x x =+.其中正确的个数为( ). A .1 B .2C .3D .4二、填空题9.当x______时,分式22x x -+有意义;当x_______时,分式22x x -+的值为零. 10.若关于x 的分式方程1133ax x -=++在实数范围内无解,则实数a =________.11.已知114a b+=,则3227a ab ba b ab -++-=______.12.某商店销售一种衬衫,四月份的营业额为5 000元,为扩大销售,五月份将每件衬衫按原价的8折销售,销售量比四月份增加了40件,营业额比四月份增加了600元,求四月份每件衬衫的售价.解决这个问题时,若设四月份的每件衬衫的售价为x 元,由题意可列方程为_______.三、解答题13.先化简22144(1)11x x x x -+-÷--,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.14.(1)解方程:23311x x x +---=0;(2)解方程:11322xx x-=---.15.我们把分子为1的分数叫做单位分数,如12,13,14,….任何一个单位分数都可以拆分成两个不同的单位分数的和,如12=13+16,13=14+112,14=15+120,….(1)根据对上述式子的观察,你会发现1115=+□○.请写出□,○所表示的数.(2)进一步思考,单位分数1n(n是不小于2的正整数)=11+△☆,请写出△,☆所表示的代数式,并加以验证.16.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过点P 跑回到起跑线l(如图所示),途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,乙同学说:“我俩所用的全部时间的和为50秒,捡球过程不算在内时,甲的速度是我的1.2倍.”根据图文信息,请问哪位同学获胜?参考答案1.C 【解析】 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】2a b 3,-0.5xy +2y 3,1π的分母中均不含有字母,因此它们是整式,而不是分式,ab a ,b ca c+-,1x 2x ---的分母中含有字母,因此是分式.故选C . 【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式,要注意圆周率π是常数字母. 2.A 【解析】A 原式=222222x yx y x y x y --=++,正确;B 原式=210102a ba b ++,错误;C 原式=1x x y ---,错误;D 显然错误.故选A 3.A111.()()()()x y x x y x x x y x x y x x y x x y x x y ----=-==------故选A 4.B 【解析】 【分析】首先把分式的分子或分母能分解因式的分解因式,再把除法变为乘法,然后约分后相乘即可. 【详解】原式=()m 3m 3+•()()63m 3m -+•m 32m -=-()21m 3+,故选:B . 【点睛】此题主要考查了分式的乘除法,分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分. 5.D 【解析】 【分析】分别按照解分式方程的步骤去分母,解整式方程可判断方程的解的情况. 【详解】A 、方程两边都乘以x 得:x 2+1=0,此整式方程无解,故原分式方程无解;B 、方程两边都乘以2x-3得:1=0,不成立,故方程无解;C 、方程两边都乘以x-1得:2x=x+1,解得x=1,而x=1时分母x-1=0,故原分式方程无解;D 、方程两边都乘以x-1得:x-1=1,解得x=2,当x=2时,分母x-1=1≠0,x=2是原分式方程的解; 故选:D . 【点睛】本题主要考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 6.D 【解析】根据题意列出关于m 的代数式,将a=-2代入计算即可求出值. 【详解】由题可知(a 3-a )÷a 2+1=a-1a +1, 当a=-2时,原式=-2-12-+1=12-. 故选:D . 【点睛】此题考查了代数式求值,根据题意列出正确的关系式是解本题的关键. 7.B 【解析】M -N =1a a ++1b b +-(11a ++11b +) =1a a ++1b b +-11a +-11b + =11a a -++11b b -+ =111111a b b a a b -++-+++()()()()=1111ab a b ab b a a b +--++--++()()=2211ab a b -++()()∵ab =1, ∴M -N =0, ∴M =N . 故选B.点睛:本题主要借助作差法将两个数比较大小问题转化为分式化简求值问题. 8.C 【解析】根据规定日期为x 天,则甲队完成任务需要x 天,乙队完成任务需要(x+3)天. 记该工程总量为“1”,根据题意,得:甲、乙的工作效率分别为1x 、13x +. 根据“甲乙合做的工作量+乙做的工作量=1”,由此可列方程:1122133x x x x -⎛⎫+⨯+= ⎪++⎝⎭.根据“甲的工作量+乙做的工作量=1”,可列方程:213xx x+=+.再根据题意得“乙2天做的工作量=甲3天做的工作量”,可列方程:233 x x=+.综上可知②③④方程均符合题意.故选C.点睛:此题考查了由实际问题抽象出分式方程,关键步骤在于找相等关系.当题中没有一些必须的量时,为了简便,应设其为1.本题要掌握好工作效率,工作总量和工作时间的等量关系.9.≠-2 =2【解析】【分析】分式有意义:分母不为零;分式的值为零时,分子为零,且分母不为零.【详解】当分母x+2≠0,即x≠-2时,分式x2x2-+有意义;当分子x-2=0,即x=2时,分式x2x2-+的值为零.故答案分别是:≠2;=2.【点睛】本题考查了分式有意义的条件和分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.1【解析】【分析】按照一般步骤解方程,用含a的代数式表示x,既然无解,所以x应该是能令最简公分母为0的值,代入即可解答a.【详解】原方程化为整式方程得:1-x-3=a,整理得x=-2-a,因为无解,所以x+3=0,即x=-3,所以a=-2+3=1. 故答案为:1 【点睛】分式方程无解的可能为:整式方程本身无解,但当整式方程的未知数的系数为一常数时,不存在整式方程无解;分式方程产生增根. 11.1 【解析】∵11a b +=4, ∴4b a ab+=,∴a+b=4ab, ∴-322-7a ab b a b ab ++=()32()7a b ab a b ab +-+-=4387ab ab ab ab --=ab ab=1 故答案为:1. 12.5?0006005?00080%x x+-=40 【解析】设四月份的每件衬衫的售价为x 元, 则五月份的每件衬衫的售价为80%x 元, 五月份的营业额为(5000+600)元,依据“销售量比四月份增加了40件”可得5000600500080%x x+-=40.故答案为:5000600500080%x x+-=40点睛: 解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程. 13.12x x +-,当x =0时,原式=12-(或:当x =-2时,原式=14). 【解析】 【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可. 【详解】 解:原式=21x x --×()()2x 1x 1(2)x +--=12x x +-.x满足﹣2≤x≤2且为整数,若使分式有意义,x只能取0,﹣2.当x=0时,原式=﹣12(或:当x=﹣2时,原式=14).【点睛】本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.14.(1)x=0;(2)原方程无解.【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)方程两边都乘(x+1)(x-1),得3(x+1)-(x+3)=0,3x+3-x-3=0,2x=0,x=0,检验:将x=0代入原方程,得左边=0=右边.所以x=0是原方程的解;(2)方程两边同乘(x-2),得1=-(1-x)-3(x-2),解这个方程,得x=2,检验:当x=2时,分母x-2=0,所以x=2是增根,原方程无解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(1) 6,30;(2)n+1,n(n+1)【解析】试题分析:(1)通过观察直接写出口,○所表示的数分别为:6 ,30 ;(2)通过前面几个式子找出规律,再对找出的规律验证即可. 试题解析: (1) 6 ,30 ;(2)n =2时, 111236=+=112123++⨯; n =3时,11133134=++⨯; n =4时,11144145=++⨯; ……1n =11n ++11n n +(). 所以□,△所表示的式子n +1, n (n +1). 验证:()()1111111n n n n n n n++==+++. 点睛:掌握分式的加法运算.16.乙同学获胜. 【解析】 【分析】应算出甲乙两人所用时间.等量关系为:(甲同学跑所用时间+6)+乙同学所用时间=50. 【详解】设乙同学的速度为x 米/秒,则甲同学的速度为1.2x 米/秒, 根据题意,得606061.2x x ⎛⎫++⎪⎝⎭=50,解得x =2.5, 经检验,x =2.5是原方程的解,且符合题意, 所以甲同学所用的时间为601.2x+6=26(秒), 乙同学所用的时间为60x=24(秒), 因为26>24, 所以乙同学获胜. 【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式是:路程=速度×时间.第11 页。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》检测卷(答案解析)(2)
一、选择题1.已知关于x 的分式方程422x k x x -=--的解为正数,则k 的取值范围是( ) A .80k -<<B .8k >-且2k ≠-C .8k >-且2k ≠D .4k <且2k ≠-2.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 3.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 4.关于分式2634m n m n--,下列说法正确的是( ) A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变5.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .26.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯厨余垃圾分出量生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯= B .6608400147660840010x x ⨯=++ C .660840014147660840010x x ⨯=⨯++ D .7840066010146608400x x ++⨯= 7.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,16008.若a =1,则2933a a a -++的值为( ) A .2 B .2- C .12 D .12- 9.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .210.若x 2y 5=,则x y y+的值为( ) A .25 B .72 C .57 D .7511.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a c N b +=,a b P c+=,则M ,N ,P 之间的大小关系是( ) A .M P N <<B .M N P <<C .N P M <<D .P M N << 12.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3D .3- 二、填空题 13.已知44a b b a +=,则代数式2a b b a⎛⎫+ ⎪⎝⎭的值为_________. 14.若式子11x -有意义,则x 的取值范围是______________. 15.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.16.计算22a b a b a b-=-- _________.17.计算:()1211x x x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 18.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.19.计算22111m m m---,的正确结果为_____________. 20.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 三、解答题21.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 22.先化简,再求值:234()22m m m m m m-+⋅-+,其中m =1. 23.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”(1)下列分式中,_____是和谐分式(填写序号即可); ①211x x -+;②222a b a b--;③22x y x y +-;④222()a b a b -+ (2)若分式219x x ax -++为和谐分式,且a 为整数,请写出所有a 的值; (3)在化简22344a ab ab b b -÷-时,小东和小强分别进行了如下三步变形: 小东:原式()()22232223232232444444a b a ab b a a a a ab b b b ab b b ab b b --=-⨯=-=--- 小强:原式22223222444444()()()a a a a a a a b ab b b b b a b b a b b --=-⨯=-=--- 显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:____,请你接着小强的方法完成化简.24.(1)化简:22121a a a a a --+÷; (2)把(1)中化简的结果记作A ,将A 中的分子与分母同时加上1后得到B ,问:当1a >时,B 的值与A 的值相比变大了还是变小了?试说明理由.25.某同学化简分式2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭出现了错误,解答过程如下: 原式=22222121121x x x x x x x x x x++÷-÷-+--+=332222(1)(1)x x x x x x -+--- =22(1)2(1)x x x -+- (1)该同学解答过程从第 步开始错误的.(2)写出此题正确的解答过程,并从-2<x <3的范围内选取一个你喜欢的x 值代入求值.26.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+. 原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】令分母等于0解出增根,去分母后,把增根代入求出k 值;去分母解出x ,因为解为正数,从而求出k 的范围【详解】解:令x-2=0,解得分式方程的增根是2去分母得:()42x x k --=- 代入增根2,解得k=−2去分母解得x=k+83∵分式方程解为正数 ∴k+803> 解得k 8>- 综合所述k 的取值范围是:8k >-且2k ≠-故答案选B【点睛】本题主要考察了分式方程的增根,一元一次不等式等知识点,准确记住增根的解题步骤是解题关键.2.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B .【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 3.A解析:A【分析】根据题意得出xy =1,可以用1x表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.4.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意; D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 5.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2, ∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.6.B解析:B【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可.【详解】5月份厨余垃圾分出率=660660x +,12月份厨余垃圾分出率=84007840010x + , ∴由题意得6608400147660840010x x ⨯=++, 故选:B .【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.7.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 8.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 9.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.10.D解析:D【分析】 根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D .【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.11.A【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答.【详解】解:∵a+b+c=1, ∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c , ∴1110,0,c b b c bc a--=>< ∴111a c b<<, ∴M<P<N ,故选A .【点睛】 本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.12.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.二、填空题13.【分析】解方程得到代入代数式即可得到结论【详解】解:两边同时乘以得:故答案为:【点睛】本题考查了分式的化简求值求得的值是解题的关键 解析:92解方程得到2a b =,代入代数式即可得到结论. 【详解】 解:44a b b a+=, 两边同时乘以a b 得:2()44a a b b +=⨯, ∴2a b=, 2219()222a b b a ∴+=+=. 故答案为:92. 【点睛】 本题考查了分式的化简求值,求得a b的值是解题的关键. 14.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.15.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.【分析】根据分式运算的性质结合平方差公式计算即可得到答案【详解】故答案为:【点睛】本题考查了分式平方差公式的知识;解题的关键是熟练掌握分式加减运算平方差公式的性质从而完成求解解析:+a b【分析】根据分式运算的性质,结合平方差公式计算,即可得到答案.【详解】22a b a b a b ---()()22a b a b a b a b a b a b+--===+-- 故答案为:+a b .【点睛】本题考查了分式、平方差公式的知识;解题的关键是熟练掌握分式加减运算、平方差公式的性质,从而完成求解.17.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +.本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.18.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.【分析】根据分式的加减法运算法则平方差公式因式分解计算即可解答【详解】解:===故答案为:【点睛】本题考查分式的加减运算平方差公式因式分解熟记公式掌握分式的加减运算法则是解答的关键 解析:11m - 【分析】根据分式的加减法运算法则、平方差公式因式分解计算即可解答.【详解】 解:22111m m m --- =22111m m m +-- =1(1)(1)m m m ++- =11m -, 故答案为:11m -. 【点睛】本题考查分式的加减运算、平方差公式因式分解,熟记公式,掌握分式的加减运算法则是解答的关键.20.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 三、解答题21.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】 解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++- =22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.4m +4,8.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.【详解】 解:原式=(2)(2)(2)(2)3(2)(2)m m m m m m m m m +-•+--++ =[3(2)(2)]m m m m++- =3(m +2)+(m ﹣2)=3m +6+m ﹣2=4m +4,当m =1时,原式=4+4=8.【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1)②;(2)10或6或-6;(3)小强通分找的是最简公分母,化简见解析【分析】(1)根据题意可以判断题目中的各个小题哪个是和谐分式,从而可以解答本题; (2)根据和谐分式的定义可以得到a 的值;(3)根据题意和和谐分式的定义可以解答本题.【详解】解:(1)211x x -+不符合和谐分式的定义,故①不是和谐分式, 2222()()a b a b a b a b a b --=-+-,故②是和谐分式, 221()()x y x y x y x y x y x y++==-+--,故③不是和谐分式, 2222()()()()a b a b a b a b a b a b a b-+--==+++,故④不是和谐分式, 故答案为:②;(2)分式219x x ax -++为和谐分式,且a 为整数,10a ∴=,6a =,6a =-;(3)小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:小强通分找的是最简公分母,故答案为:小强通分找的是最简公分母;小强: 原式22344a a ab b b b=-⨯- 22244()a a b a b b=-- 2244()()a a a b a b b --=- 24[()]()a a a b a b b --=- 24()()a a a b a b b -+=- 24()ab a b b =- 4()a a b b=-. 【点睛】本题考查约分,解答本题的关键是明确题意,找出所求问题需要的条件,利用和谐分式的定义解答.24.(1)1a a -;(2)B 的值与A 的值相比变小了,理由见解析 【分析】(1)把除变乘,同时将除式的分子分母因式分解,约分即可; (2)由1a A a =-先求出1a B a+=,作差1(1)B A a a -=--,然后判断1(1)a a --符号即可.【详解】解:(1)原式221(1)a a a a -=⋅-. 1a a =-; (2)B 的值与A 的值相比变小了.理由如下:1,1a a A B a a+==-. ∴21(1)(1)11(1)(1)a a a a a B A a a a a a a ++---=-==----.∵1a >,∴10a ->,∴()11a a >0-, ∴0B A -<.∴B A <.∴B 的值与A 的值相比是变小了.【点睛】本题考查分式的除法,比较分式的大小,掌握分式的除法法则,和比较分式的大小的方法是解题关键.25.(1)一 ;(2)解答过程见解析,当2x =时,原式=4.【分析】(1)根据除法没有分配律,判断即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:(1)该同学解答过程从第一步开始错误的;故答案为:一;(2)2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭ 2(1)2(1)(1)(1)x x x x x x x +--=÷-- 2(1)(1)(1)1x x x x x x +-=⋅-+ 21x x =-, 要使原式有意义,1x ≠,0,1-,则当2x =时,原式22421==-. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.(1);(2)32【分析】(1)变形已知条件得到x +1x 2+2x =1,再利用降次和整体代入的方法把原式化为−x +1,然后把x 的值代入计算即可;(2)变形已知条件,把2x =+x 2−4x =−1或x 2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x=,∴x+1,∴(x+1)2=2,即x2+2x+1=2,∴x2+2x=1,∴原式=2x(x2+2x)−3x+1=2x−3x+1=−x+1=−−1)+1=;(2)∵2x=+∴x−2,∴(x−2)2=3,即x2−4x+4=3,∴x2−4x=−1或x2=4x−1,∴原式=()()()241419415513x x x x x-------++=12(16x2−8x+1−4x2+x−36x+9−5x+5)=12[12(4x−1)−48x+15]=12(48x−12−48x+15)=12×3=32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试(包含答案解析)(2)
一、选择题1.下列运算中,正确的是( )A .211a a a+=+B .21111a a a -⋅=-+C .1b a a b b a +=-- D .0.22100.7710++=--a b a ba b a b2.下列各式中,分式有( )个3x ,1n ,15a +,15a b +,2z x y ,()22ab a b +A .4B .3C .2D .13.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同.再往该盒子中放入5个相同的白球,摇匀后从中随机摸出一个求,若摸到白球的概率为57,则盒子中原有的白球的个数为( ) A .10B .15C .18D .204.在一只不透明的口袋中放入红球5个,黑球1个,黄球n 个,这些球除颜色不同外,其它无任何差别.搅匀后随机从中摸出一个恰好是黄球的概率为13,则放入口袋中的黄球总数n 是( ) A .3B .4C .5D .65.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 6.已知x a =时,分式211x x ++的值为m .若a 取正整数,则m 的取值范围为( )A .112m ≤< B .312m ≤<C .322m ≤< D .522m ≤<7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.若a =1,则2933a a a -++的值为( ) A .2 B .2-C .12D .12-9.若ab ,则下列分式化简中,正确的是( )A .22a ab b+=+ B .22a ab b -=- C .33a a b b = D .22a a b b=10.若0234x y z==≠,则下列等式不成立的是( ) A .::2:3:4x y z = B .27x y z += C .234x y zx y z+++== D .234y x z ==11.对于两个非零的实数a ,b ,定义运算*如下:11a b b a*=-.例如:113443*=-.若2x y *=,则xy x y -的值为( )A .12B .2C .12-D .2-12.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±1二、填空题13.已知方程232a a a -+=,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有3个整数解,那么b 的取值范围是_______. 14.已知2a b=,则a ba b +-=_____.15.关于x 的分式方程211mx =-+无解,则m 的取值是_______. 16.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 17.观察给定的分式,探索规律: (1)1x ,22x,33x ,44x ,…其中第6个分式是__________;(2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________;(3)2b a -,52b a ,83b a -,114b a ,…其中第n 个分式是__________(n 为正整数).18.已知215a a+=,那么2421a a a =++________. 19.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.20.计算:22x x xyx y x -⋅=-____________________. 三、解答题21.甲、乙两公司全体员工踊跃参与“携手并肩,共渡难关”捐款活动,甲公司共捐款10万元,乙公司共捐款14万元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A ,B 两种物资,A 种物资每箱1.5万元,B 种物资每箱1.2万元,若购买B 种物资不少于5箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A ,B 两种物资均需购买,并按整箱配送) 22.解下列分式方程(1)42122x x x x ++=--; (2)()()21112x x x x =+++-. 23.解方程: (1)81877--=--x x x; (2)21124x x x -=--. 24.计算(1)()()2222232322a a a a a -⋅+-+(2)()()()2235x x x ---+(3)用简便方法计算:22202020204020-⨯+(4)解分式方程:52332x x x=-- (5)2124111x x x +=+-- 25.今年11月14日,“行孝仗义,柿柿如意”2020第三届孝义柿子文化节在兑镇镇产树原村隆重开幕.柿子是孝义市地理标志农产品,开发柿子产业是转型跨越发展致富的新路.某食品公司有一批新鲜柿子,公司将一部分新鲜柿子直接销售,这批新鲜柿子的总售价为4000元,剩余的一部分加工成柿饼后进行销售,这批柿饼的总售价为80000元.已知柿饼的销售数量比直接销售的新鲜柿子多2000千克,且每千克的售价是新鲜柿子的10倍.求新鲜柿子和柿饼每千克的售价各多少元?26.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据分式的运算法则及分式的性质逐项进行计算即可. 【详解】A :211a a a a+=+,故不符合题意;B :()()21111111111a a a a a a a a a a-+--⋅=⋅==-++,故不符合题意;C :1b a b a a b b a a b a b+=-=-----,故不符合题意; D :0.22100.7710++=--a b a ba b a b,故不符合题意;【点睛】本题考查分式的性质及运算,熟练掌握分式的性质及运算法则是解题的关键.2.A解析:A 【分析】分母是整式且整式中含有字母,根据这点判断即可. 【详解】 ∵3x中的分母是3,不含字母, ∴3x不是分式; ∵1n中的分母是n ,是整式,且是字母, ∴1n是分式; ∵15a +中的分母是a+5,是多项式,含字母a , ∴15a +是分式; ∵15a b+中的分母是15,不含字母, ∴15a b+不是分式; ∵2z x y 中的分母是2x y ,是整式,含字母x ,y , ∴2z x y是分式;∵()22aba b +中的分母是2()a b +,是整式,含字母a ,b ,∴()22aba b +是分式;共有4个, 故选A . 【点睛】本题考查了分式的定义,熟练掌握分式构成的两个基本能条件是解题的关键.3.D解析:D设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个,根据概率建立方程求解即可. 【详解】设原来有x 个白球,则白球数为(5+x )个,总数为(10+x+5)个, 根据题意,得551057x x +=++,解得x=20,且x=20是所列方程的根, 故选D . 【点睛】本题考查了简单概率的计算,熟练掌握概率的意义,巧妙引入未知数建立方程求解是解题的关键.4.A解析:A 【分析】根据概率公式列出关于n 的分式方程,解方程即可得. 【详解】 解:根据题意可得51n n ++=13,解得:n =3,经检验n =3是分式方程的解, 即放入口袋中的黄球总数n =3, 故选:A . 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.C解析:C 【分析】先把211x x ++化为121x -+,再根据条件和a 的范围,即可得到答案. 【详解】∵211x x ++=22-12(1)-112111x x x x x ++==-+++,又∵x a =时,分式211x x ++的值为m , ∴121m a -=+, ∵a 取正整数,即a≥1, ∴1112a ≤+, ∴13212a -≥+,即m≥32, 又∵101a >+, ∴1221a -<+,即m<2, ∴322m ≤<. 故选C . 【点睛】本题主要考查分式的运算和化简,把原分式的分子化为常数,是解题的关键.7.C解析:C 【分析】利用分式的基本性质变形化简得出答案. 【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B .11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a a b b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C . 【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.8.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.9.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.D解析:D 【分析】 设234x y zk ===,则2x k =、3y k =、4z k =,分别代入计算即可. 【详解】 解:设234x y zk ===,则2x k =、3y k =、4z k =, A .::2:3:42:3:4x y z k k k ==,成立,不符合题意; B .23427k k k +=,成立,不符合题意; C.2233441234k k k k k k k k++++===,成立,不符合题意; D. 233244k k k ⨯=⨯≠⨯,不成立,符合题意; 故选:D . 【点睛】本题考查了等式的性质,解题关键是通过设参数,得到x 、y 、z 的值,代入判断.11.A解析:A 【分析】根据新定义,把2x y *=转化为分式的运算即可. 【详解】解:根据定义运算*,2x y *=,112y x-=, 去分母得,2x y xy -=, 代入xyx y-得, 122xy xy =, 故选:A . 【点睛】本题考查了新定义运算以及分式运算,解题关键是根据新定义运算找到x 、y 之间的关系,再整体代入.12.D解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案.【详解】解:∵分式2121xx-+值为0,∴2x+1≠0,210x-=,解得:x=±1.故选:D.【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.二、填空题13.3≤b<4【分析】首先解分式方程求得a的值然后根据不等式组的解集确定x的范围再根据只有3个整数解确定b的范围【详解】解:解方程两边同时乘以a得:2-a+2a=3解得:a=1∴关于x的不等式组则解集是解析:3≤b<4【分析】首先解分式方程求得a的值,然后根据不等式组的解集确定x的范围,再根据只有3个整数解,确定b的范围.【详解】解:解方程232aa a -+=,两边同时乘以a得:2-a+2a=3,解得:a=1,∴关于x的不等式组x a x b≥⎧⎨≤⎩,则解集是1≤x≤b,∵不等式组只有3个整数解,则整数解是1,2,3,∴3≤b<4.故答案是:3≤b<4.【点睛】此题考查的是一元一次不等式组的解法和解分式方程,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.3【分析】首先由可设a=2kb=k然后将其代入即可求得答案【详解】解:∵∴设a=2kb=k∴==3故答案为:3【点睛】本题考查了分式的化简求值本题的关键是能利用设k法设出未知数解析:3【分析】首先由2a b=,可设a =2k ,b =k ,然后将其代入a b a b +-,即可求得答案. 【详解】 解:∵2a b=, ∴设a =2k ,b =k , ∴a b a b +-=22k k k k+-=3. 故答案为:3.【点睛】 本题考查了分式的化简求值,本题的关键是能利用设k 法,设出未知数.15.【分析】分式方程去分母转化为整式方程由分式方程无解确定出x 的值代入整式方程计算即可求出m 的值【详解】解:去分母得:由分式方程无解得x+1=0即x=-1把x=-1代入得:解得:m=0故答案为:m=0【解析:0m =【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x 的值,代入整式方程计算即可求出m 的值.【详解】解:去分母得:21m x =--,由分式方程无解,得x+1=0,即x=-1,把x=-1代入21m x =--得:2110m =-=,解得:m=0,故答案为:m=0.【点睛】本题主要考查分式方程的解,理解分式方程的增根产生的原因是解题的关键. 16.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷=2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13 故答案为:13【点睛】 本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n nb a -- 【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 20.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.三、解答题21.(1)甲公司有150人,乙公司有180人;(2)有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资【分析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款10万元,公司共捐款14万元,列出方程,求解出4165m n =-,根据整数解,约束出m 、n 的值,即可得出方案.【详解】解:(1)设乙公司有x 人,则甲公司有()30x -人, 由題意,得10714306x x⨯=- 解得180x =. 经检验,180x =是原方程的解,30150x -=,答:甲公司有150人,乙公司有180人.(2)设购买A 种物资n 箱,购买B 种物资n 箱,由题得1.5 1.21014m n +=+, 整理,得4165m n =-又5n ≥,且m ,n 为正整数, 11125m n =⎧∴⎨=⎩ 22810m n =⎧⎨=⎩ 33415m n =⎧⎨=⎩ 答:有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B种物资或购买4箱A 种物资,15箱B 种物资.【点睛】本题考查了分式方程的应用、方案问题、二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.22.(1)3x =;(2)0x =.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)方程左右两边同乘(2x -),得422x x x +-=-,移项合并同类项,得26x -=-,系数化为1,得3x =,经险验,3x =是原方程的根;(2)方程左右两边同乘()()12x x +-,得()()()2212x x x x -=++-,去括号,得22222x x x x -=+--,移项合并同类项,得0x =,经检验:0x =是原方程的根.【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(1)无解;(2)x =﹣32【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:()8187x x -+=-,整理得:749x =解得:x =7,经检验x =7是原方程的增根,∴原方程无解;(2)去分母得:()2214x x x +-=-, 整理得:23x =-解得:x =32-, 经检验x =﹣32是分式方程的解.【点睛】本题考查分式方程的解法,解题的关键是化分式方程为整式方程的方法,同时注意检验方程的根.24.(1)46274a a a ++;(2)1519x +;(3)4000000;(4)x=-5;(5)无解.【分析】(1)原式先分别计算积的乘方与幂的乘方,以及单项式乘以单项式,然后再合并同类项即可得到答案;(2)原式分别根据完全平方公式和多项式乘以多项式运算法则去括号,然后再合并同类项即可得到答案;(3)原式运用差的完全平方公式进行计算即可;(4)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(5)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()2222232322a a a a a -⋅+-+ =4462924a a a a -++=46274a a a ++(2)()()()2235x x x ---+=()22102556x x x x ++--+=22102556x x x x ++-+-=1519x +(3)22202020204020-⨯+=222020*********-⨯⨯+=2(202020)-=22000=4000000; (4)52332x x x=-- 去分母得,x=-5 经检验,x=-5是原方程的解,∴原方程的解为:x=-5;(5)2124111x x x +=+-- 去分母得,(1)2(1)4x x -++= 解得,x=1经检验,x=1是增根,∴原方程无解.【点睛】此题考查了整式的运算和解分式方程,熟练掌握相关运算法则是解答此题的关键.25.新鲜柿子每千克2元,柿饼每千克20元【分析】设每千克新鲜柿子x元,则每千克柿饼10x元,根据题意列出方程求解即可;【详解】解:设每千克新鲜柿子x元,则每千克柿饼10x元.依题意得,400080000200010x x+=,方程两边乘10x,得40000+20000x=80000,解得,x=2,检验:当x=2时,10x≠0.所以,原分式方程的解为x=2,且符合实际意义,当x=2时,10x=20,答:新鲜柿子每千克2元,柿饼每千克20元.【点睛】本题主要考查了分式方程的应用,准确计算是解题的关键.26.(1)每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元;(2)学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意列出方程求解即可;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意列出一元一次不等式组求解即可;再结合m为整数即可得出各种购买方案;【详解】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:12x=200.2x+,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:()()1.5800.3800.534m mm m-⎧⎪⎨-+≤⎪⎩≥,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,正确理解题意是解题的关键;。
北师大版数学八年级下册第五章 分式与分式方程 达标测试卷(含答案)
第五章 分式与分式方程 达标测试卷 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列代数式,是分式的是( ) A.3x 2π B.m +n m C.ab 25 D.52.【2022·天津】计算a +1a +2+1a +2的结果是( ) A .1 B .2a +2 C .a +2 D .a a +23.【2022·佛山禅城区期末】如果分式|m +4|m -4的值为0,那么m 的值为( ) A .不存在 B .±4 C .4 D .-44.运用分式的性质,下列计算正确的是( )A.-x +y 2=-x +y 2B.x -3x 2-9=1x -3C.x 2-2xy +y 2x -y =x -yD.xy x 2-xy =x x -y5.若将分式3m m +n 与4n 2(m -n )通分,则分式3m m +n的分子应变为( ) A .6m 2-6mn B .6m -6n C .2(m -n ) D .2(m -n )(m +n )6.若关于x 的分式方程3x +ax x +1=2-3x +1有增根x =-1,则2a -3的值为( ) A .2 B .3 C .4 D .67.【2022·德阳】关于x 的方程2x +a x -1=1的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-28.已知x 2-4x -3÷是一道分式化简题,其中一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( )A .x -3B .x -2C .x +3D .x +29.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做48个所用的时间与师傅做72个所用的时间相同,则师傅每天做( )A .12个B .18个C .20个D .24个10.若关于x 的不等式组⎩⎪⎨⎪⎧x -3(x -2)>-2,a +x 2<x 有解,关于y 的分式方程ay -14-y +3y -4=-2有整数解,则符合条件的所有整数a 的和为( )A .0B .1C .2D .5二、填空题:本大题共5小题,每小题3分,共15分.11.分式m m 2-n 2和n 3m +3n的最简公分母为__________. 12.用换元法解分式方程x +1x -2x x +1=1时,如果设x x +1=y ,那么原方程可以化为关于y 的整式方程是________.13.【2022·成都】已知2a 2-7=2a ,则代数式⎝⎛⎭⎪⎫a -2a -1a ÷a -1a 2的值为________. 14.【2022·江西】甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为________________.15.对于两个非零的实数a ,b ,规定a *b =3b -2a ,若5*(3x -1)=2,则x 的值为________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.计算:(1)x 2x -3÷34x 2-9·12x +3; (2)⎝ ⎛⎭⎪⎫a -1+2a +1÷(a 2+1).17.解分式方程:(1)1-x x -2=12-x -2; (2)4x 2-9-x 3-x=1.18.已知x (x -1)-(x 2-y )=-6,求x 2+y 22-xy 的值.四、解答题(二):本大题共3小题,每小题9分,共27分.19.先化简,再求值:⎝ ⎛⎭⎪⎫x +2x -2+4x 2-4x +4÷x x -2,其中-1<x ≤2且x 为整数.请你选一个合适的x 值代入求值.20.【原创题】北京首条全封闭马拉松路线是冬奥公园的一大亮点,这条“特色最鲜明、体验最丰富、服务最专业”的42公里滨河马拉松路线,充分融合“永定河”“西山”“首钢工业”“冬奥”元素,构建畅通无阻的慢行绿道,具备“智慧跑”“滨水跑”“公园跑”“堤上跑”等多功能特色。
专题5.36 分式与分式方程(挑战综合(压轴)题分类专题八年级数学下册基础知识专项讲练(北师大版)
专题5.36分式与分式方程(挑战综合(压轴)题分类专题(专项练习)综合类【知识点一】分式及其运算➽➼化简★★纠错1.计算:(1)()120221133-⎛⎫-+-+ ⎪⎝⎭(2)222441x x x x ++⎛⎫+÷ ⎪⎝⎭.2.下面是某分式化简过程,请认真阅读并完成任务.212422xx x x ⎛⎫-÷⎪-+-⎝⎭2222442xx x x x --⎛⎫=-⋅ ⎪--⎝⎭第一步22242x x x x ---=⋅- 第二步()()22222x x x --=⋅+-第三步12x =-+ 第四步任务一:填空①以上化简步骤中,第______步是通分,通分的依据是______.②第______步开始出现错误,错误的原因是______.任务二:直接写出该分式化简后的正确结果.3.(1)先化简再求值:2532223m m m m m -+⎛⎫+-⨯⎪-+⎝⎭,其中m =4.(2)解不等式组1212513x x x +<-⎧⎪-⎨≤⎪⎩并将解集表示在所给的数轴上.【知识点二】分式的化简求值4.先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中2a .5.先化简,再求值:22x x +÷(1﹣211x x --),其中x 是不等式组()211532x x x x ⎧-<+⎨+≥⎩的整数解.6.先化简,再求值:25244111a a a a a a +++⎛⎫+-÷⎪++⎝⎭,其中11|2|2a -⎛⎫=-- ⎪⎝⎭.【知识点三】解分式方程7.解分式方程:(1)()6511x x x x +=++(2)()222111x x x-+=--8.已知分式方程211x x x+=--■有解,其中“■”表示一个数.(1)若“■”表示的数为4,求分式方程的解;(2)小马虎回忆说:由于抄题时等号右边的数值抄错,导致找不到原题目,但可以肯定的是“■”是1-或0,试确定“■”表示的数.9.已知关于x 的分式方程2293111m x x x--=+--.(1)当2m =-时,求这个分式方程的解.(2)小明认为当3m =时,原分式方程无解,你认为小明的结论正确吗?请判断并说明理由.【知识点四】分式方程的增根与无解问题10.已知关于x 的分式方程222242mx x x x +=--+.(1)若方程的增根为2x =,求m 的值;(2)若方程有增根,求m 的值;(3)若方程无解,求m 的值.11.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:1322x x+=--.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?12.已知关于x 的分式方程512x a x x--=-(1)若分式方程的根是5x =,求a 的值(2)若分式方程有增根,求a 的值(3)若分式方程有无解,求a 的值【知识点五】分式方程的正(负)数解、整数解问题13.已知关于x 的分式方程211x m x x-=--.(1)当1m =时,求方程的解;(2)若关于x 的分式方程211x m x x-=--的解为非负数,则m 的取值范围是______.14.关于x 的分式方程:233x mx x=---.(1)当1m =时,求此时方程的根;(2)若这个方程233x m x x=---的解为正数,求m 取值的范围.15.已知关于x 的分式方程225393mx x x x +=--+.(1)若这个方程的解是负数,求m 的取值范围;(2)若这个方程无解,则m =______.(直接写出答案)【知识点六】分式方程的解★★不等式组参数问题16.若整数a 使得关于x 的分式方程162(4)4ax x x x +=--有正整数解,且使得关于y 的不等式组11123132y y y a +-⎧->⎪⎪⎨-⎪≥-⎪⎩有解,那么符合条件的所有整数a 的和是多少?17.若数a 使关于x 的分式方程2311x ax x++=--的解为非负数,且使关于y 的不等式组311343122()0y y y a -+⎧-≥-⎪⎨⎪-⎩<的解集为0y ≤,求符合条件的所有整数a 的积.18.若关于x 的一元一次不等式组3(1)2114x x x a -<+⎧⎪⎨<⎪⎩①②的解集为x <4,且关于y 的分式方程222y a ay y++--=4的解是正数,求a 的取值范围.请认真阅读以下解答过程并补充完整.解:步骤1:由不等式①,解得.由不等式②,解得.又∵该不等式组的解集为x <4,∴a 的取值范围是.步骤2:解这个分式方程222y a ay y++--=4得,y =.请继续写出下面的解答过程.步骤3:.【知识点七】列分式方程解应用题19.为了减少工人在搬运化工原料受到危害,某物流公司引进机器人,一个机器人比一个工人每小时多搬运420kg ,机器人搬运900kg 所用的时间与10个工人搬运600kg 所用的时间相等.(1)求一个机器人与一个工人每小时分别搬运多少化工原料?(2)现在需要搬运化工原料3600kg ,有3个机器人参与搬运,问至少还需要安排多少个工人才能在2个小时内搬运完?20.国庆期间,某商家用3200元购进了一批纪念衫,上市后果然供不应求,商家又用7200元购进了第二批这种纪念衫,所购数量是第一批购进量的2倍,但每件贵了10元.(1)该商家购进的第一批纪念衫单价是多少元?(2)若两批纪念衫按相同的标价销售,最后剩下20件按标价八折优惠卖出,如果两批纪念衫全部售完利润不低于3520元(不考虑其他因素),那么每件纪念衫的标价至少是多少元?21.老友粉入选广西非物质文化遗产名录.为满足消费者需求,某超市购进甲、乙两种品牌老友粉,已知甲品牌老友粉比乙品牌老友粉每袋进价少2元,用2700元购进甲品牌老友粉与用3300元购进乙品牌老友粉的数量相同.(1)求甲、乙两种品牌老友粉每袋的进价;(2)本次购进甲、乙品牌老友粉共800袋,均按13元出售,且购进甲品牌老友粉的数量不超过乙品牌老友粉数量的3倍.若该批老友粉全部售完,则该超市应购进甲、乙两种老友粉各多少袋才能获得最大利润?最大利润是多少?压轴类【知识点一】分式的化简求值22.(1)已知45b a =,求201020091b a a b a ⎛⎫⎛⎫-⋅ ⎪⎪-⎝⎭⎝⎭的值.(2)已知2510x x -+=,求441x x +的值.23.(1)已知其中a =,化简求值2214411a a a a a -+⎛⎫-÷⎪--⎝⎭;(2)已知)1mn +=,探究m 与n 的关系.24.先化简,再求值(1)222212ab a b ab b a ab ab ⎛⎫+⎛⎫-÷+ ⎪ ⎪--⎝⎭⎝⎭,其中1a =-,1b =--(2)()()()2223m n m n m n m ++-+-,其中2m =--,2n .【知识点二】分式化简求值及分式方程综合25.已知513(1)(3)A B x x x x x +-=+-+-(其中A ,B 为常数),求2022()A B -+的值.26.(1)计算:()()202221π--+-(2)先化简,再求值:2443(1)11x x x x x -+÷-+++,请选择一个你喜欢的数值代入求值.(3)解方程:23112x x x x -=-+-27.阅读材料,下列关于x 的方程:11x c x c +=+的解为:1=x c ,21x c =;11x c x c -=-的解为:1=x c ,21x c =-;22x c x c+=+的解为:1=x c ,22x c =;33x c x c+=+的解为:1=x c ,23x c =;根据这些材料解决下列问题:(1)方程1122x x -=-的解是____________;(2)方程111212x x -+=+-的解是____________;(3)解方程:5712x x +=+.【知识点三】分式方程的增极与不等式综合28.已知,关于x 的分式方程1235a b xx x --=+-.(1)当2a =,1b =时,求分式方程的解;(2)当1a =时,求b 为何值时分式方程1235a b xx x --=+-无解;(3)若3a b =,且a 、b 为正整数,当分式方程1235a b xx x --=+-的解为整数时,求b 的值.29.增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.阅读以上材料后,完成下列探究:探究1:m 为何值时,方程3533x mx x +=--有增根.探究2:m 为何值时,方程3533x mx x+=--的根是1-.探究3:任意写出三个m 的值,使对应的方程3533x mx x+=--的三个根中两个根之和等于第三个根;探究4:你发现满足“探究3”条件的123m m m 、、的关系是______.30(00)2a ba b +>>,当且仅当a =b 时,等号成立,其中我们把2a b+叫做正数a ,b a ,b 的几何平均数,它是解决最大(小)值问题的有力工具,例如:在x >0的条件下,当x 为何值时,1x x+有最小值?最小值是多少?解:∵x >0,10x >,∴1x 2x +12x x +≥,当且仅当1x x =时,即x =1时,有1x x+有最小值为2.请根据阅读材料解答下列问题:(1)填空:当x >0时,设4y x x=+,则当且仅当x =____时,y 有最____值为_______;(2)若x >0,函数12y x x=+,当x 为何值时,函数有最值?并求出其最值;(3)在Rt△ABC中,∠C=90°,若△ABC的面积等于8,求△ABC周长的最小值.【知识点四】列分式方程解应用题31.为落实《健康中国行动(20192030)》等文件精神,某学校准备购进一批足球和排球促进校园体育活动.据了解,某体育用品超市每个足球的价格比排球的价格多20元,用500元购买的足球数量和400元购买的排球数量相等.(1)求每个足球和排球的价格;(2)学校决定购买足球和排球共50个,且购买足球的数量不少于排球的数量,求本次购买最少花费多少钱?(3)在(2)方案下,体育用品超市为支持学校体育活动,对足球提供8折优惠,排球提供7.5折优惠.学校决定将节约下的资金全部用于再次购买足球和排球(此时按原价购买,可以只购买一种),求再次购买足球和排球的方案.32.为了防疫,师大一中需购买甲、乙两种品牌的温度枪,已知甲品牌温度枪的单价比乙品牌温度枪的单价低40元,且用4800元购买甲品牌温度枪的数量是用4000元购买乙品牌温度枪的数量的32倍.(1)求甲、乙两种品牌温度枪的单价.(2)若学校计划购买甲、乙两种品牌的温度枪共80个,且乙品牌温度枪的数量不小于甲品牌温度枪数量的2倍,购买两种品牌温度枪的总费用不超过15000元.设购买甲品牌温度枪m个,则该校共有几种购买方案?(3)在(2)条件下,采用哪一种购买方案可使总费用最低?最低费用是多少?33.某电商根据市场需求购进一批A,B两种型号的电脑小音箱进行销售,每台B型音箱的进价比A型音箱的进价多10元,用6000元购进A型音箱与用8000元购进B型音箱的台数相同.(1)求A,B两种型号的电脑小音箱的单价;(2)该电商计划购进A,B两种型号的电脑小音箱共100台进行销售,其中A型音箱台数不小于B型音箱台数的3倍,A型音箱每台售价35元,B型音箱每台售价48元,怎样安排进货才能使售完这100台电脑小音箱所获利润最大?最大利润是多少元?(3)为满足不同顾客的需要,该电商准备新增购进进价为每台20元的C型音箱,A,B 两种型号音箱仍按需购进,进价不变,A型音箱的台数是B型音箱台数的5倍,共花费20000元,则该电商至少可以购进三种型号音箱共多少台?参考答案1.(1)4;(2)2xx +【分析】(1)先用乘方、绝对值、负整数次幂、算术平方根化简,然后再计算即可;(2)按照分式混合运算法则计算即可.(1)解:()120221133-⎛⎫-+-+ ⎪⎝⎭=1333++=4.(2)解:222441x x x x ++⎛⎫+÷ ⎪⎝⎭=()2222x x x x ++÷=()2222x x x x +⨯+=2x x +.【点拨】本题主要考查了实数的混合运算、分式的混合运算、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键.2.任务一:①一,分式的性质;②二,去括号没有变号;任务二:12x +【分析】任务一:①根据分式的基本性质分析即可;②利用去括号法则得出答案;任务二:利用分式的混合运算法则计算得出答案.解:任务一:①以上化简步骤中,第一步是通分,通分的依据是分式的性质.②第二步开始出现错误,错误的原因是去括号没有变号.故答案为:①一,分式的性质;②二,去括号没有变号.任务二:212422x x x x ⎛⎫-÷ ⎪-+-⎝⎭2222442x x x x x --⎛⎫=-⋅ ⎪--⎝⎭22242x x x x -+-=⋅-()()22222x x x -=⋅+-12x =+.【点拨】本题考查了分式的混合运算,解题的关键是掌握分式的基本性质.3.(1)m 2-4m +3,3;(2)2<x ≤4,数轴见分析【分析】(1)直接将括号里面通分运算,再利用分式的混合运算法则化简得出答案;(2)直接解不等式,进而得出不等式组的解集,进而得出答案.解:2532223m m m m m -+⎛⎫+-⨯ ⎪-+⎝⎭()()()()2251223m m m m m m +----=⨯-+()()()()331223m m m m m m -+--=⨯-+=(m -3)(m -1)=m 2-4m +3,当m =4时,原式=42-4×4+3=3;(2)1212513x x x +<-⎧⎪⎨-≤⎪⎩①②,解①得:x >2,解②得:x ≤4,故不等式组的解集是:2<x ≤4,解集在数轴上表示:.【点拨】此题主要考查了分式的化简求值以及解一元一次不等式组,正确掌握相关运算法则是解题关键.4.2a a -,13+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值.解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+--2a a =-.当2a 时,原式6163+==+.【点拨】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.5.22x ,当x =2时,原分式的值为12【分析】由题意先把分式进行化简,求出不等式组的整数解,根据分式有意义的条件选出合适的x 值,进而代入求解即可.解:原式=()()()()()22211211221111x x x x x x x x x x x x+-⎛⎫--+÷=⨯= ⎪+-+-⎝⎭;由()211532x x x x ⎧-<+⎨+≥⎩可得该不等式组的解集为:13x -≤<,∴该不等式组的整数解为:-1、0、1、2,当x =-1,0,1时,分式无意义,∴x =2,∴把x =2代入得:原式=22122=.【点拨】本题主要考查分式的运算及一元一次不等式组的解法,要注意分式的分母不能为0.6.22a a -+,15.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,再利用算术平方根、绝对值、负整数指数幂计算出a 的值,代入计算即可求出值.解:25244111a a a a a a +++⎛⎫+-÷ ⎪++⎝⎭22(1)52(2)11a a a a a +--+=÷++22411(2)a a a a -+=⋅++2(2)(2)11(2)a a a a a +-+=⋅++=22a a -+,当11|2|23223a -⎛⎫=-- =+⎪-⎭=⎝时,原式=3232-+=15.【点拨】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.还考查了算术平方根、绝对值、负整数指数幂.7.(1)1x =;(2)无解【分析】(1)方程两边都乘()1x x +得出65x x =+,求出方程的解,再进行检验即可;(2)方程两边都乘1x -得出()2212x x -+-=-,求出方程的解,再进行检验即可.(1)解:()6511x x x x +=++,方程两边都乘()1x x +,得65x x =+,解得:1x =,检验:当1x =时,()10x x +≠,∴1x =是原分式方程的解,即原分式方程的解是1x =;(2)解:()222111x x x-+=--,方程两边都乘1x -,得()2212x x -+-=-,解得:1x =,检验:当1x =时,10x -=,∴1x =是增根,即原分式方程无解.【点拨】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.8.(1)65x =;(2)0【分析】(1)根据题意列出分式方程,求出解即可;(2)把1-和0分别代入方程,求出解判断即可.(1)解:根据题意得:2411x x x+=--,去分母得:244x x -=-,解得:65x =,检验:把65x =代入得:10x -≠,∴分式方程的解为65x =;(2)解:当“■”是1-时,2111x x x +=---,解得01x =-,此时方程无解;当“■”是0时,2011x x x+=--,解得2x =,经检验:2x =是分式方程的解,符合题意,∴“■”表示的数是0.【点拨】本题考查了解分式方程,以及分式方程的解,熟练掌握分式方程的解法是解本题的关键.9.(1)2x =;(2)小明的结论正确,理由见分析.【分析】(1)按照解分式方程的步骤求解即可;(2)按照解分式方程的步骤求解即可.(1)解:2293111m x x x--=+--去分母,得()()()21931x m x ---=-+,当2m =-时,得510x =,解得2x =,经检验,2x =是原方程的根;(2)解:小明的结论正确,理由如下:去分母,得()()()21931x m x ---=-+,当3m =时,55=x ,解得1x =,经检验,1x =是原方程的增根,原方程无解,∴小明的结论正确.【点拨】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解步骤与方法.10.(1)-4;(2)4m =±;(3)4m =±或0m =.【分析】(1)先去分母,然后根据方程的增根进行求解即可;(2)若原分式方程有增根,则(2)(2)0x x +-=,然后代入求解即可;(3)由(2)及题意可直接进行求解.解:(1)去分母得:2(2)2(2)x mx x ++=-整理,得8mx =-.若增根为2x =,则28m =-.得4m =-;(2)若原分式方程有增根,则(2)(2)0x x +-=.所以2x =-或2x =.当2x =-时,28m -=-得4m =.当2x =时,28m =-得4m =-.所以若原分式方程有增根,则4m =±.(3)由(2)知,当4m =±时,原分式方程有增根,即无解;当0m =时,方程8mx =-无解.综上知,若原分式方程无解,则4m =±或0m =.【点拨】本题主要考查分式方程的增根及无解,熟练掌握分式方程增根及无解的问题是解题的关键.11.(1)0x =;(2)原分式方程中“?”代表的数是-1.【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.解:(1)方程两边同时乘以()2x -得()5321x +-=-解得0x =经检验,0x =是原分式方程的解.(2)设?为m ,方程两边同时乘以()2x -得()321m x +-=-由于2x =是原分式方程的增根,所以把2x =代入上面的等式得()3221m +-=-1m =-所以,原分式方程中“?”代表的数是-1.【点拨】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.12.(1)1a =-;(2)2a =;(3)3a =-或2a =【分析】(1)把方程的解代入方程,解之即可得到答案;(2)原方程整理得()310a x +=,由分式有增根,则()20x x -=,得到0x =或2x =,分两种情况分别求解即可;(3)由(2)可知,()310a x +=,分30a +=和30a +≠两种情况分别求解即可.(1)解:把5x =代入512x a x x--=-得,551525a --=-,解得1a =-;(2)512x a x x--=-,两边都乘以()2x x -得,()()()522x x a x x x ---=-,整理得,()310a x +=,由分式有增根,则()20x x -=,∴0x =或2x =,把0x =代入()310a x +=,a 的值不存在,把2x =代入()2310a +=,解得2a =,综上可知,2a =;(3)由(2)可知,()310a x +=,当30a +=时,方程无解,即3a =-,当30a +≠时,要使方程无解,则分式方程有增根,由(2)知2a =,综上可知,3a =-或2a =.【点拨】此题考查了分式方程,熟练掌握分式方程的解法是解题的关键.13.(1)3x =;(2)2m >-且1m ≠-.【分析】(1)将1m =代入分式方程,解分式方程的即可求解;(2)先解分式方程,然后依据分式方程有解且解为非负数,建立不等式,解不等式即可.(1)解:当1m =时,∴1211x x x -=--,∴1211x x x -=--,∴1211x x x +=--,∴121x x +=-,去分母得:()121x x +=-,解得:3x =,检验:当3x =时10x -≠,故方程的解为:3x =;(2)解:211x m x x -=--,∴211x m x x -=--,∴211x m x x +=--,∴21x m x +=-,去分母得:()21x m x +=-,解得:2x m =+,由分式方程有解且解为非负数,1x ≠且0x >,即:21m +≠且20m +>,即:2m >-且1m ≠-.故答案为:2m >-且1m ≠-.【点拨】此题主要考查了解分式方程及不等式的解法;掌握解分式方程要进行检验及分式方程有解且解为非负数的条件是解题关键.14.(1)5x =;(2)6m <且3m ≠【分析】(1)把1m =代入分式方程,去分母,解x 的值,再进行检验即可;(2)首先解分式方程,解出6x m =-,分式方程解为正数的条件为有解且解为正数,分式方程有解的条件为30x -≠,故60m ->且63m -≠,解出m 的范围即可.(1)解:(1)当1m =时,分式方程为;2313x x x=---,方程两边同乘以()3x -,得()231x x =-+,解得5x =,当5x =时,30x -≠,所以当1m =时,分式方程的解为5x =;(2)233x m x x=---,方程两边同乘以()3x -,得()23x x m =-+,解得6x m =-,这个方程233x m x x=---的解为正数,60m ∴->且63m -≠,解得6m <且3m ≠.【点拨】本题考查了分式方程的解法,解题的关键是掌握分式方程的解法以及分式方程解为正数的条件的理解.15.(1)3m >且10m ≠;(2)3,10,4-.【分析】(1)将分式方程化为整式方程,求得x ,由题意可得0x <,且3x ≠-求解即可;(2)将分式方程化为整式方程,求得x ,由题意可得3x =或3x =-,求解即可.(1)解:225393mx x x x +=--+化为整式方程可得:()()2353x mx x ++=-,即()321m x -=-,由方程的解是负数可得30m -≠,则2103x m -=<-,且2133x m -=≠--解得3m >且10m ≠;(2)解:由(1)可得方程可化为()321m x -=-,当3m =时,30m -=,方程化为021=-,无解,符合题意;当3m ≠时,30m -≠,213x m -=-,由题意可得:这个方程无解,则3x =-或3x =即2133m -=--或2133m -=-,解得10m =或4m =-,综上可得:3m =或10m =或4m =-,故答案为:3,10,4-.【点拨】此题考查了分式方程的求解,涉及了分式方程增根的情况,解题的关键是熟练掌握分式的方程的有关知识.16.符合条件的所有整数a 的和为16【分析】由题意可得82x a =-,然后可得6a =或10,进而根据不等式组可得3a >,最后问题可求解.解:解方程分式方程162(4)4a x x x x +=--,得82x a =-,∵分式方程的解为正整数解,∴21a -=或2或4或8,又4x ≠且0x ≠,∴4a ≠,∴3a =或6或10,由关于y 的不等式组11123132y y y a +-⎧->⎪⎪⎨-⎪≥-⎪⎩有解,解得:125y a <≤-∴251a ->,解得:3a >,综上,符合题意的整数a 的值有6,10,∴符合条件的所有整数a 的和为16.【点拨】本题主要考查一元一次不等式组及分式方程的解法,熟练掌握一元一次不等式组及分式方程的解法是解题的关键.17.40【分析】先用a 表示方程的解,根据解是非负数,且x ≠1,结合不等式组的解集确定a 的范围,求得整数解计算即可.解:∵2311x a x x++=--,去分母,得x +2-a =3x -3,移项、合并同类项,得2x =5-a ,系数化为1,得x =52a -,∵数a 使关于x 的分式方程2311x a x x ++=--的解为非负数,且x -1≠0,∴5522a a --≥0,≠1,∴a a ≤5,≠3,∵311343122()0y y y a -+⎧-≥-⎪⎨⎪-⎩①<②,∴①的解集为0y ≤,②的解集为y a <,∵311343122()0y y y a -+⎧-≥-⎪⎨⎪-⎩<的解集为0y ≤,∴a >0,∴符合条件的所有整数a 为1,2,4,5,∴符合条件的所有整数a 的积为1×2×4×5=40.【点拨】本题考查了分式方程的解法,一元一次不等式组的解集,熟练掌握解分式方程,不等式组的解集是解题的关键.18.x <4;4x a <;1a ≥;83a -;18a ≤<且2a ≠【分析】化简一元一次不等式组,根据解集为x <4得到a 的取值范围;解分式方程,根据解是正数,且不是增根,得到a 的最终范围即可.解:解:步骤1:由不等式①,解得x <4.由不等式②,解得4x a <.又∵该不等式组的解集为x <4,∴a 的取值范围是1a ≥.步骤2:解这个分式方程222y a a y y ++--=4得,y =83a -,∵关于y 的分式方程222y a a y y ++--=4的解是正数,且20y -≠,∴803a ->,且823a -≠,解得:8a <且2a ≠,∴a 的取值范围为18a ≤<且2a ≠.【点拨】本题主要考查了分式方程的解,一元一次不等式组的解集.考虑解分式方程可能产生增根是解题的关键.19.(1)一个工人每小时搬运30kg ,一个机器人每小时搬运450 kg ;(2)还需要安排15个工人才能在2个小时内搬运完【分析】(1)设一个工人每小时搬运x kg ,则一个机器人每小时搬运()420x +kg ,根据题意列出分式方程,解方程即可求解;(2)设还需要安排a 个工人才能在2个小时内搬运完,依题意列出不等式,解不等式即可求解.(1)解:设一个工人每小时搬运x kg ,则一个机器人每小时搬运()420x +kg ,根据题意得,90060042010x x=+解得:30x =经检验30x =是原方程的解,且符合题意,所以420450x += .答:一个工人每小时搬运30kg ,一个机器人每小时搬运450kg ;(2)解:设还需要安排a 个工人才能在2个小时内搬运完,依题意得,()34503023600a ⨯+⨯≥,解得:15a ≥,答:还需要安排15个工人才能在2个小时内搬运完.【点拨】本题考查了分式方程的应用,一元一次不等式的应用,根据题意列出方程与不等式是解题的关键.20.(1)该商家购进的第一批纪念衫单价是80元;(2)每件纪念衫的标价至少是120元;【分析】(1)设第一批纪念衫单价是x 元,则第二批纪念衫单价是(10)x +元,根据两次的数量关系列方程求解即可得到答案;(2)设每件纪念衫的标价是y 元,根据利润不低于3520元列不等式求解即可得到答案;(1)解:设第一批纪念衫单价是x 元,则第二批纪念衫单价是(10)x +元,由题意可得32007200210x x ⨯=+,解得:80x =,答:该商家购进的第一批纪念衫单价是80元;(2)解:根据(1)得:第一批数量为32004080=件,第二批为80件,设每件纪念衫的标价是y 元,由题意可得,403200602080%72003520y y y -++⨯-≥,解得:120y ≥,∴每件纪念衫的标价至少是120元;【点拨】本题考查分式方程解决实际应用问题,不等式解决实际应用问题,解题的关键是根据题意找到等量关系式与不等关系式.21.(1)甲品牌老友粉每袋9元,乙品牌老友粉每袋11元;(2)当购进甲种老友粉600袋,乙种老友粉200袋时获利最大,最大利润为2800元【分析】(1)设甲品牌老友粉每袋x 元,则乙品牌老友粉每袋()2x +元,根据用2700元购进甲品牌老友粉与用3300元购进乙品牌老友粉的数量相同列方程,解方程并检验即可得到答案;(2)设超市获得利润为y 元,购进甲种老友粉m 袋,则购进乙种老友粉()800m -袋.根据购进甲品牌老友粉的数量不超过乙品牌老友粉数量的3倍求出m 的取值范围,再根据一次函数的性质求出答案即可.(1)解:设甲品牌老友粉每袋x 元,则乙品牌老友粉每袋()2x +元,由题意270033002x x =+,解得9x =.检验:当9x =时,()20x x +≠,∴9x =是原分式方程的解∴211x +=,答:甲品牌老友粉每袋9元,乙品牌老友粉每袋11元(2)解:设超市获得利润为y 元,购进甲种老友粉m 袋,则购进乙种老友粉()800m -袋.∵()3800m m ≤-,∴600m ≤,()()()139131180021600y m m m =-+--=+,∵20k =>,∴y 随m 的增大而增大.∴当600m =时,y 的值最大260016002800y =⨯+=最大乙种老友粉的数量800200m -=(袋).答:当购进甲种老友粉600袋,乙种老友粉200袋时获利最大,最大利润为2800元.【点拨】此题考查了分式方程、一次函数、一元一次不等式的应用,读懂题意是解题的关键.22.(1)15-(2)527【分析】(1)先逆用同底数幂的乘法将原式化为2009200911b b a a a b a ⎛⎫⎛⎫⎛⎫-⨯-⋅ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,再逆用积的乘方结合分式的运算即可求解;(2)方程2510x x -+=两边同时除以x 得15x x+=,再利用完全平方公式得到22123x x +=,再次利用完全平方公式即可求解.解:(1)201020091b a a b a ⎛⎫⎛⎫-⋅ ⎪ ⎪-⎝⎭⎝⎭20092009=11b b a a a b a ⎛⎫⎛⎫⎛⎫-⨯-⋅ ⎪ ⎪-⎝⎭⎝⎭⎝⎭20092009=451a b a a b a -⎛⎫⎛⎫⎛⎫-⨯⋅ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭20091=5a b a a b a -⎛⎫⨯⋅ ⎪-⎝⎭()20091=15⨯-()1=15⨯-1=5-;(2)方程2510x x -+=两边同时除以x 得:150x x -+=,即15x x+=,∴2125x x ⎛⎫+= ⎪⎝⎭,即221225x x ++=,∴22123x x +=,∴2221529x x ⎛⎫+= ⎪⎝⎭,即4412529x x ++=,∴441527x x +=.【点拨】本题考查了同底数幂的乘法、积的乘方的逆运算,完全平方公式,分式的计算求值等知识,熟知相关知识,结合已知条件和所求式子灵活变形是解题关键.23.(1)13+;(2)0m n +=【分析】(1)根据分数运算化简,再由二次根式混合运算代入求值即可得到答案;(2)利用平方差公式及完全平方公式恒等变形,最后由配方法求解即可得到答案.解:(1)2214411a a a a a -+⎛⎫-÷ ⎪--⎝⎭()()2111112a a a a a a --⎛⎫=-⨯ ⎪--⎝⎭-()()21212a a a a a --=⨯--2a a =-,2a ==+∴原式32133==+;(2))1m n +=∴))m m n m -+=-,n m =-m n =--,2210,10m n +≥+≥ ,∴()22m n =--,即2220m mn n ++=,0m n ∴+=.【点拨】本题考查分式化简求值及二次根式混合运算,熟练掌握分式运算及二次根式运算是解决问题的关键.24.(1)2a b+,1-;(2)mn ,1【分析】(1)繁琐分式的化简、通分与合并,然后代入a 、b 的值进行计算(2)因式分解与合并同类项,然后代入m 、n 的值进行计算解:(1)原式()()22=22a b a b b a b a a b ab ab ⎡⎤+-÷⎢⎥--⎢⎥+⎣⎦()()()2222=ab a b ab a b a b --+2=a b+当1a =-,1b =--原式1=-(2)原式22222=2223m mn n m mn mn n m ++++---=mn当2m =-,2n 时,原式=43=1-【点拨】本题主要考查因式分解、通分以及合并同类项,关键是要有熟练的计算能力25.20223-【分析】去分母后得到整式方程(3)(1)5A x B x x --+=+,等号左边整理后与等号右边各项对应相等即可求出A 、B ,进而求得2022()A B -+的值.解:51-3(1)(3)B x x A x x x +-=++-去分母得,(3)(1)5A xB x x --+=+整理得,()35A B x A B x ---=+∴135A B A B -=⎧⎨--=⎩解得:12A B =-⎧⎨=-⎩∴202220222022()(1)=23A B ---+--=,故答案为20223-.【点拨】本题考查了解分式方程、二元一次方程组、幂的计算,熟练掌握二元一次方程组的求解方法是解题的关键.26.(1)1;(2)22x x -+,当1x =时,2123x x -=+;(3)方程无解【分析】(1)根据二次根式、绝对值、零指数幂和乘方性质计算,即可得到答案;(2)根据乘法公式、分式混合运算性质化简,从而完成求解;(3)先对左边的分式进行通分计算,对右边的分母进行因式分解,对分式进行化简求值,再将方程的解进行验证,即可完成求解.解:(1()()020222-1π-⨯+-11=+1=;(2)2443111x x x x x -+⎛⎫÷-+ ⎪++⎝⎭()22231111x x x x x -⎛⎫-=÷- ⎪+++⎝⎭()222411x x x x -⎛⎫-=÷ ⎪++⎝⎭()()()221122x x x x x -+=++-22x x-=+,当1x =时,原式=211213-=+;(3)23112x x x x -=-+-∴通分得:()()()31211x x x x x =-+---,∴()()13121x x x =-+-,∴去分母得:23x +=,∴移项合并同类项得:1x =,检验:当1x =时,10x -=,∴原方程无解.【点拨】本题考查二次根式、零指数幂、分式混合运算、分式方程的知识;解题的关键是熟练掌握分式混合运算、分式方程的性质,从而完成求解.27.(1)12x =,212x =-;(2)13x =,232x =;(3)11x =,232x =【分析】(1)根据所给材料的解题方法即可求解;(2)根据材料中方程的解法求解即可;(3)先将方程化为255121x x ++=++,再利用材料中的解法求解即可.(1)解:方程1122x x -=-的解为12x =,212x =-故答案为:12x =,212x =-(2)由方程111212x x -+=+-可得12x -=或112x -=,解得13x =,232x =,故答案为:13x =,232x =(3)将方程5712x x +=+变形为255121x x ++=++,可得12x +=或512x +=,解得11x =,232x =【点拨】此题考查了解分式方程,解题的关键是将方程化为11x c x c+=+的形式求解.28.(1)15x =-;(2)1152或;(3)3、29、55、185【分析】(1)将a 和b 的值代入分式方程,解分式方程即可;(2)把a 的值代入分式方程,分式方程去分母后化为整式方程,分类讨论b 的值,使分式方程无解即可;(3)将a =3b 代入方程,分式方程去分母化为整式方程,表示出整式方程的解,由解为整数和b 为正整数确定b 的取值.(1)解:把a =2,b =1代入原分式方程中,得:211235x x x --=+-,方程两边同时乘以()()235x x +-,得:()()()()()25123235x x x x x ---+=+-,解得:15x =-,检验:把15x =-代入()()2350x x +-≠,∴原分式方程的解为:15x =-.(2)解:把a =1代入原分式方程中,得:11235b x x x --=+-,方程两边同时乘以()()235x x +-,得:()()()()()523235x b x x x x ---+=+-,去括号,得:22523232715x x x bx b x x -++--=--,移项、合并同类项,得:()112310b x b -=-,①当1120b -=时,即112b =,原分式方程无解;②当1120b -≠时,得310112b x b-=-,Ⅰ.32x =-时,原分式方程无解,即31031122b b -=--时,此时b 不存在;Ⅱ.x =5时,原分式方程无解,。
(常考题)北师大版初中数学八年级数学下册第五单元《分式与分式方程》测试卷(答案解析)
一、选择题1.八年级学生去距学校10Km 的春蕾社区参加社会实践活动,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑自行车学生的速度的2倍,求骑自行车学生的速度.若设骑自行车学生的速度为xKm/h ,列方程正确的是( )A .1010302x x -= B .102010602x x += C .1010302x x += D .102010602x x-= 2.若关于x 的不等式组52+11{231x x a >-<()无解,且关于y 的分式方程34122y a y y ++=--有非负整数解,则满足条件的所有整数a 的和为( )A .8B .10C .16D .183.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( )A .93010-⨯米B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米 4.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数 5.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .286.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个B .2个C .3个D .4个 7.当x在实数范围内有意义( ) A .1x > B .1≥x C .1x < D .1x ≤8.若分式293x x -+的值为0,则x 的值为( )A .4B .4-C .3或-3D .39.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a ,三条直线两两相交最多将平面分得的区域数记为2a ,四条直线两两相交最多将平面分得的区域数记为()3,,1a n ⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为n a ,若121111011111n a a a ++⋅⋅⋅+=---,则n =() A .10 B .11 C .20 D .2110.下列各分式中,最简分式是( )A .6()8()x y x y -+ B .22y x x y -- C .2222x y x y xy ++ D .222()x y x y -+ 11.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-4 12.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 二、填空题13.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 14.已知关于x 的分式方程233x k x x -=--的解是非负数,则k 的取值范围为______. 15.化简222x x y -⎛⎫⋅ ⎪⎝⎭的结果为____________.16.如图,若5x =,则表示2211(1)x x x x-+÷-的值的点落在_________(填序号)17.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 18.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133aa -=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可)19.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .20.如果分式126x x --的值为零,那么x =________ . 三、解答题21.一辆汽车开往距离出发地180km 的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后按原来速度的1.5倍匀速行驶,结果比原计划提前40min 到达目的地. (1)求前1小时这辆汽车行驶的速度;(2)汽车出发时油箱有油7.5升油,到达目的地时还剩4.3升油,若汽车提速后每小时耗油量比原来速度每小时耗油量多0.3升,问这辆汽车要回到出发地,是以原来速度省油还是以提速后的速度省油?22.如图,“丰收1号”小麦试验田是边长为m(10)a a >的正方形减去一个边长为1m 的正方形蓄水池后余下的部分,“丰收2号”小麦试验田是边长为(1)m a -的正方形.(1)第一年,两块试验田分别收获400kg 小麦.①这两块试验田中,单位产量高的试验田是_______________;②高的单位产量比低的单位产量多了多少; (2)经过一年的试验后,第二年,两块试验田产量都比前一年有增长,并且“丰收1号”试验田增产更多.已知两块试验田的单位产量相同且“丰收1号”比“丰收2号”多收获100kg ,求“丰收1号”试验田第二年的产量.23.先化简,再求值:()232284422a a a a a a -⎛⎫÷-+⋅- ⎪+⎝⎭,其中12020a =. 24.先化简,再求值:21123369⎛⎫+÷⎪-+-+⎝⎭m m m m m ,其中9m =. 25.计算(1)()()2222232322a a a a a -⋅+-+(2)()()()2235x x x ---+(3)用简便方法计算:22202020204020-⨯+(4)解分式方程:52332x x x=--(5)2124111x x x +=+-- 26.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,根据题意可得等量关系:骑车学生所用时间-乘车学生所用时间=20分钟,根据等量关系列出方程即可.【详解】解:设骑车学生每小时走x 千米,则设乘车学生每小时走2x 千米,由题意得: 102010602x x-=, 故选:D .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.2.C解析:C【分析】先由不等式组无解,求解8,a ≤ 再求解分式方程的解2,2a y +=由方程的解为非负整数,求解2a ≥-且2,a ≠ 再逐一确定a 的值,从而可得答案.【详解】 解:52+11{231x x a >-<()①②由①得:25x +>11, x >3,由②得:3x <1a +, x <1,3a +关于x的不等式组52+11{231xx a>-<()无解,1+3,3a∴≤19,a∴+≤8,a∴≤34122y ay y++=--,()342,y a y∴-+=-2,2ay+∴=20,y-≠22,2a+∴≠2,a∴≠关于y的分式方程34122y ay y++=--有非负整数解,20,2a+∴≥2,a∴≥-22a+为整数,2a∴=-或0a=或4a=或6a=或8.a=2046816.∴-++++=故选:.C【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,掌握以上知识是解题的关键.3.B解析:B【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可.【详解】解:1纳米=0.000 000 001米=10-9米,30纳米=30×10-9米=3×10-8米.故选:B.【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数. 4.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 5.B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.6.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a<5;综合以上两点得出整数a的值,从而得出答案.【详解】解:分式方程122x ax-=-,去分母,得:2(x-a)=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5xx a≥⎧⎨>⎩的解集是x≥5,∴1≤a<5,且a≠2,则整数a的值为1、3、4共3个,故选:C.【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a的取值范围.7.A解析:A【分析】根据分式的分母不等于0的条件及二次根式非负性解答.【详解】由题意得:x-1>0,解得x>1,故选:A.【点睛】此题考查未知数的取值范围的确定,掌握分式的分母不等于0的条件及二次根式非负性是解题的关键.8.D解析:D【分析】先根据分式的值为0可得290x,再利用平方根解方程可得3x=±,然后根据分式的分母不能为0即可得.【详解】 由题意得:2903x x -=+, 则290x ,即29x =,由平方根解方程得:3x =±,分式的分母不能为0,30x ∴+≠,解得3x ≠-,则x 的值为3,故选:D .【点睛】本题考查了分式的值、分式有意义的条件、利用平方根解方程,掌握理解分式的值是解题关键.9.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.【详解】根据题意得,2条直线最多将平面分成4个区域1=4a ,3条直线最多将平面分成7个区域2=7a ,4条直线最多将平面分成11个区域3=11a ,5条直线最多将平面分成16个区域4=16a则11=3=1+2a -, 21=6=1+2+3a -,31=10=1+2+3+4a -,41=15=1+2+3+4+5a - 1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+--- 111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦ 1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦ 11222n ⎡⎤=-⎢⎥+⎣⎦ 2n n =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+ 222n ∴+=20n ∴= 经检验n=20是原方程的根故选:C .【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键. 10.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A 、6()8()x y x y -+=3()4()x y x y -+,故该项不是最简分式; B 、22y x x y--=-x-y ,故该项不是最简分式; C 、2222x y x y xy++分子分母没有公因式,故该项是最简分式; D 、222()x y x y -+=x y x y-+,故该项不是最简分式; 故选:C .【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.11.A解析:A【分析】根据分式的值为0的条件可以求出x的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34xx-+的值为0;故选:A.【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.12.C解析:C【分析】根据a b,可以判断各个选项中的式子是否正确,从而可以解答本题;【详解】∵a bA、22a ab b+≠+,故该选项错误;B、22a ab b-≠-,故该选项错误;C、33a ab b=,故该选项正确;D、22a ab b≠,故该选项错误;故选:C.【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题13.5【分析】根据已知有增根即使分式方程分母为0的根即满足x-2=0;解题中分式方程先通分再去分母化成整式方程后用x表示出未知参数m最后将x的值代入即可求得m 的值【详解】解:分式方程有增根得:x=2通分解析:5【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m ,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.14.且【分析】先解分式方程可得检验可得再由关于的分式方程的解是非负数列不等式解不等式从而可得答案【详解】解:去分母得:检验:关于的分式方程的解是非负数综上:且【点睛】本题考查的是分式方程的解与解分式方程 解析:6k ≤且 3.k ≠【分析】先解分式方程可得6,x k =-检验可得3,k ≠再由关于x 的分式方程233x k x x -=--的解是非负数,列不等式,解不等式,从而可得答案.【详解】 解:233x k x x -=-- 去分母得:()23,x x k --=26,x x k ∴-+=6,x k ∴=-检验:30,x -≠630,k ∴--≠3, k∴≠关于x的分式方程233x kx x-=--的解是非负数,60,k∴-≥6,k∴≤综上:6k≤且 3.k≠【点睛】本题考查的是分式方程的解与解分式方程,解一元一次不等式,掌握解分式方程一定要检验是解题的关键.15.【分析】先根据负指数幂的运算法则计算乘方再算乘法即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的混合运算掌握分式乘方的运算法则及运算顺序是解答本题的关键解析:24y【分析】先根据负指数幂的运算法则计算乘方,再算乘法,即可得出结果.【详解】解:222xxy-⎛⎫⋅ ⎪⎝⎭222yxx⎛=⎫⋅ ⎪⎝⎭2224yxx=⋅24y.故答案为:24y.【点睛】本题考查了分式的混合运算,掌握分式乘方的运算法则及运算顺序是解答本题的关键.16.③【分析】先根据分式的运算法则化简原式再由的取值范围估计结果的范围【详解】解:原式当原式∵∴故答案是:③【点睛】本题考查分式的化简求值无理数取值范围的估计解题的关键是掌握分式的运算法则和无理数的估值解析:③【分析】【详解】解:原式()()2211111x xx xxx x x x---=÷=⋅=--,当x=1=,∵2 2.6<<,∴11 1.6<<.故答案是:③.【点睛】本题考查分式的化简求值,无理数取值范围的估计,解题的关键是掌握分式的运算法则和无理数的估值方法.17.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m值再根据分式方程无解的条件得出一个m值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m值,再根据分式方程无解的条件得出一个m值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键.18.②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】解:3110=0.0011000-=;故①计算错误;()00.00011=;②计算正确; ()()22352()1x x xx x --=-÷=-=-;故③计算错误; 2233a a -=;故④计算错误 ()()333221(1)=(1)m mm m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.19.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.20.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x-=,解方程即可得.【详解】由题意得:10x-=,解得1x=,分式的分母不能为零,260x∴-≠,解得3x≠,1x∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键.三、解答题21.(1)60km/h;(2)以提速后的速度行驶更省油【分析】(1)设前1小时行驶的速度为xkm/h,则1小时后行驶的速度为1.5xkm/h,根据时间=路程÷速度结合提速后比原计划提前23h(40min)到达目的地,解之经检验后即可得出结论;(2)设以原来速度行驶每小时耗油y升,则提速后每小时耗油(y+0.3)升,根据总油耗=每小时油耗×运动时间,即可得出关于y的一元一次方程,解之即可求出y值,再分别求出返程时按两种速度所需总油耗,比较后即可得出结论.【详解】解:(1)设前1小时行驶的速度为/xkm h,则1小时后行驶的速度为1.5xkm/h,依题意,得:18018021.53x xx x---=,解得:60x=,经检验,60x=是原方程的解,且符合题意.答:前1小时行驶的速度为60km/h.(2)设以原来速度行驶每小时耗油y 升,则提速后每小时耗油()0.3y +升, 依题意,得:18060(0.3)7.5 4.3,1.560y y -+⋅+=-⨯ 解得: 1.2y =,∴回来时若以原速度行驶总耗油180 1.2 3.660=⨯=(升), 若以提速后的速度行驶总耗油180(1.20.3)31.560=⨯+=⨯(升). ∵3.63>,∴以提速后的速度行驶更省油.【点睛】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.22.(1)①“丰收2号”;②()()280011kg a a +-;(2) ()5050a kg + 【分析】(1)①先用a 表示出两块试验田的面积,比较出其大小,再根据其产量相同可知面积较小的单位面积产量高即可得出结论;②根据①中两块试验田的面积及其产量,求出其差即可;(2)可设“丰收2号”试验田第二年的产量是kg ,则“丰收1号”试验田第二年的产量是(x +100)kg ,根据两块试验田的单位产量相同列方程求解即可.【详解】解:(1)①∵“丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)米的正方形, ∴“丰收1号”小麦的试验田的面积=21a -,“丰收2号”小麦的试验田的面积=()21a -, ∵()()221121a a a ---=-, 由题意可知,a >1,∴2(a -1)>0,即()2211a a ->-∴这两块试验田中,单位产量高的试验田是“丰收2号”,故答案为:“丰收2号”;②∵“丰收1号”小麦的试验田的面积=21a -,“丰收2号”小麦的试验田的面积=()21a -,两块试验田的小麦都收获了400kg ,∴“丰收2号”小麦的试验田小麦的单位面积产量高,∴()()()()()()()222240014001400400800111111a a kg a a a a a a +---==--+-+-,答:高的单位产量比低的单位产量多了()()280011kg a a +-;(2)设“丰收2号”试验田第二年的产量是xkg ,则“丰收1号”试验田第二年的产量是(x +100)kg , 由题意得:()22x 10011x a a +=--, 解得:x =50a -50,则x +100=50a +50,答:“丰收1号”试验田第二年的产量是(50a +50) kg .【点睛】本题考查一元一次方程的应用、因式分解的应用,熟练掌握运用因式分解解决问题是解题的关键.23.2a,4040. 【分析】 利用分式的性质先化简,在将12020a =代入即可解答. 【详解】 原式()()()()222224422a a a a a a a a+--+=÷⋅-+ ()()()2222222a a a a a a -=⋅⋅-=-. 当12020a =时,原式4040=. 【点睛】 本题考查了分式的化简求值,熟练掌握分式的性质是解题关键.24.33-+m m ,12. 【分析】 原式被除数括号中两项通分并利用同分母分式的加法法则计算,除数分母利用完全平方公式分解因式后,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21123369⎛⎫+÷ ⎪-+-+⎝⎭m m m m m =33(3)(3)m m m m ++-+-•2(3)2m m-=33-+m m , 当m =9时,原式=931=932-+. 【点睛】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.25.(1)46274a a a ++;(2)1519x +;(3)4000000;(4)x=-5;(5)无解.【分析】(1)原式先分别计算积的乘方与幂的乘方,以及单项式乘以单项式,然后再合并同类项即可得到答案;(2)原式分别根据完全平方公式和多项式乘以多项式运算法则去括号,然后再合并同类项即可得到答案;(3)原式运用差的完全平方公式进行计算即可;(4)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(5)先把方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()2222232322a a a a a -⋅+-+ =4462924a a a a -++=46274a a a ++(2)()()()2235x x x ---+=()22102556x x x x ++--+=22102556x x x x ++-+-=1519x +(3)22202020204020-⨯+=222020*********-⨯⨯+=2(202020)-=22000=4000000; (4)52332x x x=-- 去分母得,x=-5 经检验,x=-5是原方程的解,∴原方程的解为:x=-5;(5)2124111x x x +=+-- 去分母得,(1)2(1)4x x -++= 解得,x=1经检验,x=1是增根,∴原方程无解.【点睛】此题考查了整式的运算和解分式方程,熟练掌握相关运算法则是解答此题的关键. 26.原式1x=,1x =时,原式1=;或2x =时原式12=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x <3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭ =2(1)(1)11x x x x x x--++⋅+ =221x x x-+ =1x, ∵x (x+1)≠0,∴x≠0,x≠-1,∵整数x 满足-1≤x <3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.。