小学奥数-分数裂项
小学奥数裂项公式汇总
裂项运算常用公式 一、分数“裂差”型运算 (1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
小学奥数专题--分数裂项
答案
变式训练2计算:
解析:原式= + +…+ + +…+
= ( - )+ ( - )
= + = +
=
答案
变式训练3
解析:原式
答案
变式训练4
解析: = = - = -
= = - = -
= = - = - ……
= = -
= -
原式
答案
例9
解析:原式
答案
变式训练1
解析:原式
答案
例10计算: .
解析:如果式子中每一项的分子都相同,那么就是一道很常见的分数裂项的题目.但是本题中分子不相同,而是成等差数列,且等差数列的公差为2.相比较于2,4,6,……这一公差为2的等差数列(该数列的第 个数恰好为 的2倍),原式中分子所成的等差数列每一项都比其大3,所以可以先把原式中每一项的分子都分成3与另一个的和再进行计算.
观察可知 , ,……即每一项的分子都等于分母中前两个乘数的和,所以
所以原式 .
(法二)
上面的方法是最直观的转化方法,但不是唯一的转化方法.由于分子成等差数列,而等差数列的通项公式为 ,其中 为公差.如果能把分子变成这样的形式,再将 与 分开,每一项都变成两个分数,接下来就可以裂项了.
,
所以原式 .
(法三)
解析:原式
答案
例19 计算:
解析:
所以原式
答案
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
2、“裂和”型运算:
常见的裂和型运算主要有以下两种形式:
(1) (2)
裂和型运算与裂差型运算的对比:
小学奥数裂项公式汇总
小学奥数裂项公式汇总 It was last revised on January 2, 2021裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)ab b a b a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾” 分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n (2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n 证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n 证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n 3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
小学奥数裂项公式汇总
裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫ ⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫ ⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1)ab b a b b a a b a b a 11+=⨯+⨯=⨯+(2)ab b a b a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式)()(2b2+=a--baba完全平方和(/差)公式2222±=a+±(b)baba本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
小学 奥数裂项法(含答案)
奥数裂项法同学们知道:在计算分数加减法时,两个分母不同的分数相加减,要先通分化成同分母分数后再计算。
(一)阅读思考例如,这里分母3、4是相邻的两个自然数,公分母正好是它们的乘积,把这个例题推广到一般情况,就有一个很有用的等式:即或下面利用这个等式,巧妙地计算一些分数求和的问题。
【典型例题】例1. 计算:分析与解答:上面12个式子的右面相加时,很容易看出有许多项一加一减正好相互抵消变为0,这一来问题解起来就十分方便了。
像这样在计算分数的加、减时,先将其中的一些分数做适当的拆分,使得其中一部分分数可以相互抵消,从而使计算简化的方法,我们称为裂项法。
例2. 计算:公式的变式当分别取1,2,3,……,100时,就有例3. 设符号()、< >代表不同的自然数,问算式中这两个符号所代表的数的数的积是多少?分析与解:减法是加法的逆运算,就变成,与前面提到的等式相联系,便可找到一组解,即另外一种方法设都是自然数,且,当时,利用上面的变加为减的想法,得算式。
这里是个单位分数,所以一定大于零,假定,则,代入上式得,即。
又因为是自然数,所以一定能整除,即是的约数,有个就有个,这一来我们便得到一个比更广泛的等式,即当,,是的约数时,一定有,即上面指出当,,是的约数时,一定有,这里,36共有1,2,3,4,6,9,12,18,36九个约数。
当时,,当时,,当时,,当时,,当时,,当时,,当时,,当时,,当时,,故()和< >所代表的两数和分别为49,32,27,25。
【模拟试题】二.尝试体验:1. 计算:2. 计算:3. 已知是互不相等的自然数,当时,求。
【试题答案】1. 计算:2. 计算:3. 已知是互不相等的自然数,当时,求。
的值为:75,81,96,121,147,200,361。
因为18的约数有1,2,3,6,9,18,共6个,所以有还有别的解法。
裂项法(二)前一节我们已经讲过,利用等式,采用“裂项法”能很快求出这类问题的结果来,把这一等式略加推广便得到另一等式:,现利用这一等式来解一些分数的计算问题。
小学五年级奥数 分数裂项初步(寒假课程)
分数计算技巧(裂项)(寒假课程)2、分数裂和:⑴目的:抵消.本讲主线⑵特点:分子为分母之和.1.分数计算裂差.2.分数计算裂和.⑶公式:ab11⑷口诀:分数裂项两肩挑.【课前小练习】(★)计算:1、分数裂差:⑴目的:抵消.⑵特点:分子相同、分母为连续的等差数列.⑶公式:111 1()a b a b差值⑷口诀:分数裂项两肩挑.,之后乘以差值分之一111 111⑴⑵⑶233457版块一∶分数计算-裂差【例1】(★★)计算:111 1122334910 【例2】(★★★)1111 1133********【巩固】(★★)计算:11 1......101111125960 【拓展】(★★★☆)444 414477104952_____1【拓展】(★★★)⑵计算:1111 124466881098100444 4......1559939797101版块二∶分数计算-裂和【例3】(★★★)4812162024计算:133557799111113【例4】(★★★★)【例5】(★★★)计算:11111111 1 2612203042567290 3112339759839 26122038042015791113151719 ⑵126122030425672902【例6】(★★★★)2 3 5 6 8 9 11 12 98 991 4 47 710 1013 97100 【超常大挑战】(★★★★)1 1 1 11 2 3 2 3 4 3 4 5 98 99 100知识大总结【今日讲题】例2, 例3, 例5, 超常大挑战1、分数裂差:⑴特点:分子相同、分母为连续的等差数列.⑵公式: 1 1 1 1( )a b a b差值2、分数裂和:⑴特点:分母为连续等差数列,分子为分母之和.⑵公式:a b 1 1a b a b 【讲题心得】_______________________________________________ ______________________________________.【家长评价】_______________________________________________ __________________________________.抵消3。
奥赛小学数学竞赛:分数裂项.教师版解题技巧培优易错难
18 2
90
1
3
7
3
4
3
5
5
7
9
13
3
7
1
1
1
1
1
1
1
4
6
1
1
2
3
3
5
7
9
12
13
3
46
3
1
8=23
24
4
2
9
36
【答案】23
36
【例7】计算:
1
2
1
1
4
1
L
20
1
1
6
3
20
2
12
420
【考点】分数裂项
【难度】3星
【题型】计算
【要点词】小数报,初赛
【分析】原式
123L 20
1
1
1
1
L
1
2
6
12
20
提拿出来即可转变为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,而且知足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:
常有的裂和型运算主要有以下两种形式:
(1)a
b
ab1
1
(2)a2
b2
a2
b2
a
b
a
b
a b a b b
a
a b
a b a b b
的计算, 一般都是中间部分消去的过程,
这样的话, 找到相邻两项的相像部分,
让它们消去才是最根本的。
(1)关于分母能够写作两个因数乘积的分数,
小学奥数裂项公式汇总
裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即ba ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有:(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a bb a ab a ba 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式 (1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n (4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1 (541)431321211+=+++⨯+⨯+⨯+⨯=n nn n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n nn n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n nn n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n nn n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n 证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n 5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , 特殊数列求和公式平方差公式 ))((22b a b a b a -+=- 完全平方和(/差)公式 2222)(b ab a b a +±=±。
六年级奥数第二讲:分数计算技巧--分数裂项(一)
六年级奥数第二讲: 分数计算技巧---分数裂项(一)【专题精析】 在计算一列分数之和时,根据)(a n n a +=n 1a n +1-把一个分数拆分成两个分数相减的形式,使中间的分数相互抵消,大大化简了运算,这种分数的运算技巧,称作裂项法。
裂项有两种方法:裂和:b a b a a b 11+=⨯+ 比如:3121232365+=⨯+= 裂差:b a b a a b 11-=⨯- 比如:3121322361-=⨯-=练习:1、将下列各数裂项: 例如:4131121-= =201 =209 =152 2、计算:211⨯+321⨯+431⨯+……+8007991⨯当分子并不是分母之差(或和),而是成倍数关系时,裂项之后再乘以倍数1(或倍数)。
)11(1)(1k n n k k n n +-⨯=+⨯ 比如:)(71314173441731-⨯=⨯⨯=⨯ )11()(k n n N k n n Nk +-⨯=+⨯ 比如:)(413151215125-⨯=⨯= 练习:1、将下列各数裂项:例如:)(51413203-⨯= =212 =994 =563 =551=5612、计算:13112002752002532002312002⨯+⋯⋯+⨯+⨯+⨯【基础练习】 1、计算:21+61+121+201+301+421+561+721+9012、计算:311⨯+531⨯+751⨯+ (1031011)3、计算:21+65+1211+2019+30294、计算:49472752532312⨯+⋯⋯+⨯+⨯+⨯【拓展提高】1、计算:(1)421+615+1216+2017+3018+4219(2)221-65-127+209-+30114213-2、计算:(1)161-+421+561721+(2)199919981998⨯+200019991998⨯+200120001998⨯+ (205020491998)3、计算:513⨯+953⨯+1393⨯+ (200119973)4、计算:30×(151+351+631+991+1431+1951)5、计算:(1)613⨯+1163⨯+16113⨯+……+76713⨯+81763⨯(2)、2521⨯+4851⨯+61181⨯+……+1001521491⨯+1021551521⨯6、计算:(1)561542133011209411+-+-(2)56154213301120912732-+-+-(3)7271565542413029201912116521+++++++。
小学奥数裂项公式汇总
裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n Λ2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n Λ证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n Λ3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n Λ证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n Λ 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n Λ 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n Λ )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n Λ 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n Λ特殊数列求和公式2)1(321+=++n n n Λ 212311321n n n n =++++-++-++++ΛΛ)()(2127531n n =-++++)(Λ6)12)(1(21222++=+++n n n n Λ 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )(Λ ()()412121222333+=++=+++n n n n ΛΛ平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±(范文素材和资料部分来自网络,供参考。
小学奥数裂项公式汇总
裂项运算常用公式
一、分数“裂差”型运算
(1) 对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即 a<
b,那么有:
(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:
二、分数“裂和”型运算
常见的裂和型运算主要有以下两种形式:
(1)
(2)
裂和型运算与裂差型运算的对比:
裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”
分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或凑整
三、整数裂项基本公式
(1)
(2)
(3)
(4)
(5)
裂项求和部分基本公式1.求和:
证:
2.求和:
证:
3.求和:
证:
4.求和:
证:
5.求和:
证:因为,特殊数列求和公式
平方差公式
完全平方和(/差)公式。
小学奥数裂项公式汇总资料
裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
小学奥数裂项公式汇总知识分享
⼩学奥数裂项公式汇总知识分享裂项运算常⽤公式⼀、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ?1形式的,这⾥我们把较⼩的数写在前⾯,即 a <b ,那么有: )11(11b a ab b a --=?(2) 对于分母上为 3 个或 4 个连续⾃然数乘积形式的分数,即有:+?+-+?=+?+?)2()1(1)1(121)2()1(1n n n n n n n+?+?+-+?+?=+?+?+?)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n⼆、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=?+?=?+(2)a bb ab a b b a a b a b a +=?+?=?+2222裂和型运算与裂差型运算的对⽐:裂差型运算的核⼼环节是“两两抵消达到简化的⽬的”,“先裂再碎,掐头去尾”分数裂和型运算的题⽬不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化⽬的。
裂和:抵消,或凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=?-++?+?+?n n n n n(2) )1()1)(2(41)1()2(......543432321+--=?-?-++??+??+??n n n n n n n(3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n nn n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n (5) !)!1(!n n n n -+=?裂项求和部分基本公式1.求和: 1)1(1(541)431321211+=+++?+?+?+?=n nn n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n nn n n S n Λ2.求和:12)12)(12(1971751531311+=+-++?+?+?+?=n nn n S n Λ证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n Λ3.求和:13)13)(23(1 1071741411+=+-++?+?+?=n nn n S n Λ证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n Λ13)1311(31+=+-=n nn。
分数裂项裂和公式讲解
分数裂项裂和公式讲解一、分数裂项裂和的概念。
1. 分数裂项。
- 分数裂项是把一个分数拆分成两个或多个分数相减或相加的形式,目的是为了便于计算,特别是在一些数列求和的问题中。
- 例如:(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
这是最基本的分数裂项形式,我们可以通过通分来验证:(1)/(n)-(1)/(n + 1)=(n+1 - n)/(n(n + 1))=(1)/(n(n + 1))。
2. 分数裂和。
- 分数裂和是把一个分数拆分成两个或多个分数相加的形式。
- 例如:(2n + 1)/(n(n + 1))=(n+(n + 1))/(n(n + 1))=(1)/(n)+(1)/(n + 1)。
同样可以通过通分来验证:(1)/(n)+(1)/(n + 1)=(n + 1+n)/(n(n + 1))=(2n + 1)/(n(n + 1))。
二、常见的分数裂项公式。
1. 分母为两个连续自然数相乘的形式。
- 公式:(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)- 应用示例:计算∑_n = 1^100(1)/(n(n + 1))- 根据上述公式,∑_n = 1^100(1)/(n(n + 1))=∑_n = 1^100((1)/(n)-(1)/(n + 1))- 展开这个和式:(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(100)-(1)/(101))- 可以发现中间的项都可以消去,最后得到1-(1)/(101)=(100)/(101)。
2. 分母为两个相差为d(d为常数)的自然数相乘的形式。
- 公式:(1)/(n(n + d))=(1)/(d)((1)/(n)-(1)/(n + d))- 例如:(1)/(3×5)=(1)/(2)((1)/(3)-(1)/(5))- 应用示例:计算∑_n = 1^50(1)/(n(n + 2))- 根据公式(1)/(n(n + 2))=(1)/(2)((1)/(n)-(1)/(n + 2))- 则∑_n = 1^50(1)/(n(n + 2))=(1)/(2)∑_n = 1^50((1)/(n)-(1)/(n + 2))- 展开和式:(1)/(2)[(1-(1)/(3))+((1)/(2)-(1)/(4))+((1)/(3)-(1)/(5))+·s+((1)/(50)-(1)/(52))]- 经过化简和抵消中间项后得到(1)/(2)(1+(1)/(2)-(1)/(51)-(1)/(52))。
六年级奥数-分数裂项
本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
二、“裂和”型运算:知识点拨教学目标分数裂项计算常见的裂和型运算主要有以下两种形式:(1)11a b a ba b a b a b b a+=+=+⨯⨯⨯(2)2222a b a b a ba b a b a b b a+=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数裂项
分数裂项知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。
很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。
分数裂项是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。
将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。