最新100高速空气动力学基础
民用机飞行原理——高速空气动力学基础
(一) 弱扰动是怎样传播的?
交替地以弱压缩波和弱膨胀波的形式向外 传播,也可能以单纯的弱压缩波或弱膨胀波的 形式向外传播。总之不论是哪一种弱扰动,都 是以波的形式向远离扰动源的空间传播的。
(二) 弱扰动的传播速度——音速
• 不论是哪一种弱扰动,其传播速度就是音速, 即音波的传播速度。
• 音速在空气中的快慢也取决于空气是否容易压 缩。
第十四章 高速空气动力 学基础
主要分析高速飞行时气流特性,高速飞行空气动力的 变化规律,高速飞机翼型和机翼的空气动力特性以及 高速飞机安定性和操纵性的特点等问题
第一节、高速气流特性
• 高速飞行中气流特性之所以会出现不同于低速 飞行气流特性的现象,其根本原因是空气具有 压缩性的缘故
一、空气的压缩性
•气流M数或局部M数:在高速气流 中,在飞机周围各点气流速度与当 地音速之比。
(四) 弱扰动在气流中的传播
三、空气的压力、密度和温度 随流速的变化
• 高速气流规律: • 流速加快,压力、密度、温度都同时降低;
流速减慢,压力、密度、温度都同时升高。 • 空气压缩性影响的伯努利方程从能量守恒定律的观点
中表述为:在同一流管的各切面上,空气的压力能、 内能和动能之和保持不变,即总能量为一个常数。
•由此可见,空气沿流管从一个切 面流到另切面,如果动能增加,则 压力能与内能之和必然减少;如果 动能减少,则压力能与内能之和必 然增加 。
四、流管切面面积随流速的变化
• 在亚音速气流中,流管切面面积随着流速的增 大而减小;
• 在超音速气流中,流管切面面积随着流速的增 大而增大。 ρVA=常数 式中ρ—流管某一切面处空气密度; V—流管某一切面处的气流速度; A—流管某一切面处的流管切面积。
空气动力学基础知识
对流层的特点: 1)气流温度随高度升高而降低 在对流层中.由于空气受热的直接来源不是太阳,而 是地面,太阳放射出的能量,大部分被地面吸收,空气是 被太阳晒热的地面而烤热的,所以越靠近地面,空气温度 就越高。在中纬度地区,随着高度的增加,空气温度从15 ℃降低到11公里高时的-56.5 ℃。 2)风向、风速经常变化 由于太阳对地面的照射程度不一,加之地球表面地形、 地貌的不同,地面各地区空气气温和密度不相同,气压也 不相等,即使同一地区,气温、气压也常会发生变化,使 大气产生对流现象,形成风,且风向、风速也会经常变化。 3)空气上下对流激烈 地面各处的温度不同,受热多的空气膨胀而上升,受 热少的空气冷却而下降,就形成了空气的上下对流。
工程计算中经常采用“绝对温度”的概念, 用“ T ”表示,单位用开氏度(º K)表示。当空 气分子停止不规则的热运动时,即分子的运动速 度为零时,我们把这时的温度作为绝对温度的零 度。 绝对温度(T)与摄氏温度( t )之间的关 系可以用下列公式进行换算: T=t
+ 273
绝对温度的0 º K等于摄氏温度-273 ℃
一、空气的物理参数
空气的密度、温度和压力是确定空气状态的三个主 要参数,飞机空气动力的大小和飞机飞行性能的好坏,都 与这三个参数有关。 1、空气的密度 空气的密度是指单位体积内空气的质量,取决于空气 分子数的多少。即:ρ=m/V 公式中:ρ为空气的密度,单位是“ 千克/米3 ”;m为 空气的质量,单位是“ 千克 ”;V为空气的体积,单位 是“ 米3 ”。 空气的密度大,说明单位体积内空气的分子数多,我 们称为空气稠密;空气的密度小,说明单位体积内空气的 分子数少,我们称为空气稀薄。大气的密度随高度的
空气动力学基础知识
空气动力学基础知识目录一、空气动力学概述 (2)1. 空气动力学简介 (3)2. 发展历史及现状 (4)3. 应用领域与重要性 (5)二、空气动力学基本原理 (6)1. 空气的力学性质 (7)1.1 气体状态方程 (8)1.2 空气密度与温度压力关系 (8)1.3 空气粘性 (9)2. 牛顿运动定律在空气动力学中的应用 (10)2.1 力的作用与动量变化 (11)2.2 牛顿第二定律在空气动力学中的体现 (13)3. 空气动力学基本定理 (14)3.1 伯努利定理 (15)3.2 柯西牛顿定理 (16)3.3 连续介质假设与流动连续性定理 (17)三、空气动力学基础概念 (18)1. 流体力学基础概念 (19)1.1 流速与流向 (20)1.2 压力与压强 (21)1.3 流管与流量 (22)2. 空气动力学特有概念 (23)2.1 空气动力系数 (25)2.2 升力与阻力 (26)2.3 空气动力效应与稳定性问题 (27)四、空气动力学分类及研究内容 (28)1. 空气动力学分类概述 (30)2. 理论空气动力学研究内容 (31)一、空气动力学概述空气动力学是研究流体(特别是气体)与物体相互作用的力学分支,主要探讨流体流动过程中的能量转换、压力分布和流动特性。
空气动力学在许多领域都有广泛的应用,如航空航天、汽车、建筑、运动器材等。
空气动力学的研究对象主要是不可压缩流体,即流体的密度在运动过程中保持不变。
根据流体运动的特点和流场特性,空气动力学可分为理想流体(无粘、无旋、不可压缩)和实际流体(有粘性、有旋性、可压缩)两类。
在实际应用中,理想流体问题较为简单,但现实生活中的流体大多具有粘性和旋转性,因此实际流体问题更为复杂。
空气动力学的基本原理包括牛顿定律、质量守恒定律、动量守恒定律、能量守恒定律等。
这些原理构成了空气动力学分析的基础框架,通过建立数学模型和求解方程,可以预测和解释流体流动的现象和特性。
空气动力学基本理论(1)
3.
当
du dy
0
时,τ=0,即只要流体静止或无变形,就不存在剪应力,
流体不存在摩擦力。
因此牛顿粘性应力公式可看成流体易流性的数学表达。
基本物理特性
速度梯度 du/dy 物理上也表示流体质点剪切变形速度或角变形率 dθ/dt 。如图所示:
u+du
dy
d
u dudt
∴ d =dudt/dy
如讨论P点处压强,在周围取如图微元4面体ABCO,作用在各表面的压
强如图所示,理想流体无剪切应力,由于dx、dy、dz 的取法任意,故面
ABC的法线方向n 方向也是任意的。
分别沿 x、y、z 三个方向建立力的平衡关系:
x方向合外力=质量×加速度(x方向)
px
1 2
dydz
pnds cos(n,
x)
m2 s
,称为运动粘性系数(读[nju
:])
空气粘性不大,初步近似可忽略其粘性作用,忽略粘性的流体称为理 想流体。
作用在流体微团上力的分类
按照作用力的性质和作用方式,可分为彻体力和表面力两类
彻体力:外力场作用于流体微团质量中心,大小与微团质量成正比 的非接触力。
例如重力,惯性力和磁流体具有的电磁力等都属于彻体力,彻体力 也称为体积力或质量力。
由连续质点组成的质点系称为流体微团。
基本物理特性
一般用努生数即分子平均自由程与物体特征尺寸之比来判断流体是否满足 连续介质假设 :
l / L 1 对于常规尺寸的物体只有到了外层大气中,l /l L 才可能等于甚至大于 1
一旦满足连续介质假设,就可以把流体的一切物理性质如密度、压强、 温度及宏观运动速度等表为空间和时间的连续可微函数,便于用数学分析工 具来解决问题。
(精品)空气动力学课件:高速可压流动基础
动时所作的功;另一项是动能的改变量。
• 用焓表示时,上述能量方程为:
dq dh VdV 在一维定常绝热可压缩流中 ,上能量方程可积分为:
hV2 C 2
27/120
6.3.1 一维定常绝热流的能量方程
2. 一维定常流能量方程的不同形式
根据焓的不同表达
从而:
h
e
p
c pT
RT 1
1
p
a2
1
V22
• 如果描写流场的诸物理参数( V , p ,ρ ,T)发生了变化,
就说流场受到了扰动。
• 使流动参数的数值改变得非常微小的扰动,称为微弱扰动简称 为弱扰动,例如说话(即使是大声说话)时声带给空气的扰动
就是如此。
dp 1, d 1, dT 1
p
T
• 使流动参数改变有限值的扰动,称为有一定强度的扰动简称为 强扰动,例如激波便是一种强扰动。
2
cpT
常数(沿流线)
V22 RT 常数(沿流线) 2 1
条件:沿流线定常、绝 热、绝功、略势能、可 压缩、允许有粘性
V22 p 常数(沿流线) 2 1
V 22
a2
常数(沿流线)
2 1
表明:沿流(线)管 V 增加时,h,T,a下降,但 总能量不变
速度的变化不会引起气体温度即内能的显著变化,因此对于
不可压流体其内能不变或温度不变,不考虑其热力关系。
• 对不可压流体来说,如果温度有变化,那一定是传热引起的 ,但加热只能使温度升高或内能增加,不能使流体膨胀做功 。
对于高速气体来说(M 较大),即使是在绝热情况下,速度
的变化会引起热力关系( p 、ρ 、 T )变化,内能将参与能
在热力学中,常常引入另外一个代表热含量的参数 h(焓) he p
《高速空气动力学》课件
燃烧室内部的材料需要具备出色的耐高温性能和抗烧蚀能 力,以确保发动机的可靠性和寿命。
05
高速空气动力学的发展趋势和展望
高速空气动力学面临的主要挑战
高马赫数流动的复杂性
随着飞行速度的增加,空气流动的特性变得更加复杂,包括湍流、激波、边界层分离等现象,这给数值模拟和实验测 量带来了极大的挑战。
研究高超声速飞行中的热力学效应和化学反应,对 于理解高超声速飞行中的空气动力学问题具有重要 意义。
数值模拟与实验验证
提高数值模拟的精度和稳定性,以及加强实 验验证,是未来研究的重点方向之一。
THANKS
感谢观看
高超声速飞行
随着科技的发展,高超声速飞行 已成为可能,这将对航空航天领 域产生重大影响。研究高超声速 飞行中的空气动力学问题,如热 力学效应、化学反应等,是未来 的重要研究方向。
数值模拟与实验验证 相结合
随着计算能力的提升,数值模拟 已成为研究高速空气动力学的重 要手段。未来将更加注重数值模 拟与实验验证相结合,以提高研 究的准确性和可靠性。
激波
由于流体速度的突然变化,导 致压力和密度急剧增加的现象
。
膨胀波
由于流体速度的减小,导致压 力和密度降低的现象。
形成机制
流体的压缩性和粘性是激波和 膨胀波形成的关键因素。
传播特性
激波和膨胀波在流体中以声速 传播。
高速流动的边界层理论
边界层
流体的一个薄层,其中流体的速度从零变化 到流体的自由流速。
件和目标。
风洞实验方法
风洞实验通常包括模型制作、安 装、气流调整、数据采集与分析 等步骤。这些步骤对于获得准确
可靠的实验结果至关重要。
飞行试验技术
空气动力学基本概念
空气动力学基本概念第一章一、大气的物理参数1、大气的(7个)物理参数的概念2、理想流体的概念3、流体粘性随温度变化的规律4、大气密度随高度变化规律5、大气压力随高度变化规律6、影响音速大小的主要因素二、大气的构造1、大气的构造(根据热状态的特征)2、对流层的位置和特点3、平流层的位置和特点三、国际标准大气(ISA)1、国际标准大气(ISA)的概念和基本内容四、气象对飞行活动的影响1、阵风分类对飞机飞行的影响(垂直阵风和水平阵风*)2、什么是稳定风场?3、低空风切变的概念和对飞行的影响五、大气状况对飞机机体腐蚀的影响1、大气湿度对机体有什么影响?2、临界相对湿度值的概念3、大气的温度和温差对机体的影响第二章1、相对运动原理2、连续性假设3、流场、定常流和非定常流4、流线、流线谱、流管5、体积流量、质量流量的概念和计算公式。
二、流体流动的基本规律1、连续方程的含义和几种表达式(注意适用条件)2、连续方程的结论:对于低速、不可压缩的定常流动,流管变细,流线变密,流速变快;流管变粗,流线变疏,流速变慢。
3、伯努利方程的含义和表达式4、动压、静压和总压5、伯努利方程的结论:对于不可压缩的定常流动,流速小的地方,压力大;而流速大的地方压力小。
(这里的压力是指静压)重点伯努利方程的适用条件:1)定常流动。
2)研究的是在同一条流线上,或同一条流管上的不同截面。
3)流动的空气与外界没有能量交换,即空气是绝热的。
4)空气没有粘性,不可压缩——理想流体。
三、机体几何外形和参数1、什么是机翼翼型;2、翼型的主要几何参数;3、翼型的几个基本特征参数4、表示机翼平面形状的参数(6个)5、机翼相对机身的角度(3个)6、表示机身几何形状的参数四、作用在飞机上的空气动力1、什么是空气动力?2、升力和阻力的概念3、应用连续方程和伯努利方程解释机翼产生升力的原理4、迎角的概念5、低速飞行中飞机上的废阻力的种类、产生的原因和减少的方法;6、诱导阻力的概念和产生的原因和减少的方法;7、附面层的概念、分类和比较;附面层分离的原因8、低速飞行时,不同速度下两类阻力的比较9、升力与阻力的计算和影响因素10、大气密度减小对飞行的影响11、升力系数和升力系数曲线(会画出升力系数曲线、掌握升力随迎角的变化关系,零升力迎角和失速迎角的概念)12、阻力系数和阻力系数曲线13、掌握升阻比的概念14、改变迎角引起的变化(升力、阻力、机翼的压力中心、失速等)15、飞机大迎角失速和大迎角失速时的速度16、机翼的压力中心和焦点概念和区别六、高速飞行的一些特点1、什么是空气的可压缩性?2、飞行马赫数的含义3、流速、空气密度、流管截面积之间关系4、对于“超音速流通过流管扩张来加速”的理解5、小扰动在空气中的传播及其传播速度6、什么是激波?激波的分类7、气流通过激波后参数的变化8、什么是波阻9、什么是膨胀波?气流通过膨胀波后参数的变化10、临界马赫数和临界速度的概念11、激波失速和大迎角失速的区别12、激波分离13、亚音速、跨音速和超音速飞行的划分*14、采用后掠机翼的优缺点比较第三章一、飞机重心、机体坐标和飞机在空中运动的自由度1、机体坐标系的建立2、飞机在空中运动的6个自由度二、飞行时作用在飞机上的外载荷及其平衡方程外载荷组成平衡力系的2个条件*:①、外载荷的合力等于零(外载荷在三个坐标轴投影之和分别等于零)∑x = 0 ∑Y = 0 ∑Z = 0②、外载荷的合力矩等于零(外载荷对三个坐标轴力矩之和分别等于零)∑Mx=0 ∑My= 0 ∑Mz= 01、什么是定常飞行和非定常飞行?2、定常飞行时,作用在飞机上的载荷平衡条件和平衡方程组三、载荷系数(过载)1、载荷系数的概念和表示方法及ny 的特点四、巡航飞行、起飞和着陆1、什么是巡航飞行和巡航速度2、影响平飞所需速度的因素3、最大平飞速度及其影响因素4、最小平飞速度及其影响因素5、什么是飞行包线6、飞机的巡航性能参数五、水平转弯和侧滑1、飞机水平转弯的受力分析和载荷系数2、侧滑和侧滑角的概念六、等速爬升和等速下滑1、等速爬升和爬升角的概念2、等速下滑和下滑角的概念3、影响下滑角的因素七、增升原理和增升装置1、增升装置的作用和原理2、后缘襟翼的种类和各自采取的增升原理3、使用后缘襟翼的缺点4、前缘襟翼的分类和原理5、前缘缝翼的作用6、涡流发生器的作用第四章飞机的稳定性和操纵性一、飞机运动参数1、地面坐标系的建立2、飞机在空间的姿态表示方法二、飞机稳定性和操纵性的基本概念1、稳定性的概念及其分类2、动稳定性和静稳定性的概念和两者之间的关系3、飞机的稳定性问题分为哪3个方面4、什么是飞机的操纵性,飞机的操纵性分为哪3个方面三、飞机的纵向稳定性1、什么是飞机的纵向配平,如何实现?(飞机水平尾翼的一个重要作用就是保证飞机在不同速度下进行定常直线飞行的纵向平衡*。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并较上表面先移至后缘。 4. M数接近1,上下表面激波相继移至后
缘。 5. M数大于1,出现头部激波。
激波的视频
第十章 第 23 页
●激波实例
●激波实例
●激波实例
●激波实例
③ 翼型的跨音速升力特性
I. 升力系数随飞行M数的变化
临界M数, 机翼上表面
截面积变化的
百分比
-0.96% -0.84% -0.64% -0.36% 0 0.44% 0.96% 1.65%
A/A
第十章 第 10 页
●超音速气流的获得
要想获得超音速气流,截面积应该先减后增。
第十章 第 11 页
●The Tailpipe of Space Shuttle
本章主要内容
10.1 高速气流特性 10.2 翼型的亚跨音速气动特性 10.3 后掠翼的高速升阻力特性
在超音速气流 中,流管截面积 随流速的变化
●速度、密度和截面积在不同M数下的变化值
气流M数 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
流速增加的百
分比
1%
1%
1%
1%
1%
1%
1%
1%
V/V
密度变化的百
分比
/
-0.04% -0.16% -0.36% -0.64% -1% -1.44% -1.96% -2.56%
达到音速
1. 考虑空气压缩性,上表面密度
下降更多,产生附加吸力,升力系
数CL增加,且由于出现超音速区, 压力更小,附加吸力更大;
2. 下翼面出现超音速区,且后移 较上翼面快,下翼面产生较大附 加吸力,CL减小;
3. 下翼面扩大到后缘,而上翼面 超音速区还能后缘,上下翼面的 附加压力差增大,CL增加。
马赫数M是真速与音速之比。分为飞行马赫数和局部马赫 数,前者是飞行真速与飞行高度音速之比,后者是局部真速 与局部音速之比(如翼型上表面某点的局部马赫数)。
M数越大,空气被压缩得越厉害。
低速飞行(马赫数M<0.4) 可忽略压缩性的影响
高速飞行(马赫数M>0.4) 必须考虑空气压缩性的影响
③ 气流速度与流管截面积的关系
飞行马赫数大于临界马赫数后,机翼上表面开始出现超音速区。 在超音速区内流管扩张,气流加速,压强进一步降低,与后端的 压强为大气压力的气流相作用,形成一道压力、密度、温度突增 的界面,即激波。
II. 局部激波的发展
II. 局部激波的发展
●局部激波的形成与发展
1. 大于MCRIT后,上表面先产生激波。 2. 随M数增加,上表面超音速区扩展,
第十章 第 13 页
10.2 翼型的亚跨音速气动特性
飞行原理/CAFUC
10.2.1 翼型的亚音速空气动力特性
●亚音速的定义 飞行M数大于0.4,流场内各点的M数都小于1。
① 翼型的亚音速空气动力特性
考虑空气密度随速度的变化,则翼型压力系数基本按同一系 数放大,体现出“吸处更吸,压处更压”的特点。因此,升力 系数增大,逆压梯度增大,压力中心前移,临界迎角减小,阻 力系数基本不变。
下表面达 到音速
上表面激波 移至后缘
下表面激波 移至后缘
II. 最大升力系数和临界迎角随飞行M数的变化
当激波增强到一定程度,阻力系数急剧增大,升力系数迅速减 小,这种现象称为激波失速。随着飞行M数的增加,飞机将在更小 的迎角下开始出现激波失速,导致临界迎角和最大升力系数的继 续降低。
④ 翼型的跨音速阻力特性
由连续性定理,在同一流管内
VAconst
速度增加,空气密度减小。
在亚音速时,密度的减小量小于速度的增加量,故加速时要求 截面积减小。流量一定,流速快则截面积减小;流速慢则截面积 增大。
在亚音速气流 中,流管截面积 随流速的变化
③ 气流速度与流管截面积的关系
由连续性定理,在同一流管内
VAconst
速度增加,空气密度减小。 在超音速时,密度的减小量大于速度的增加量,故加速时要求 截面积增大。 因此,M>1时,流管扩张,流速增加,流管收缩,流速减小。
② 翼型的亚音速升力特性
I. 飞行M数增大,升 力系数和升力系 数斜率增大
II. 飞行M数增大, 最大升力系数和 临界迎角减小
③ 翼型的亚音速阻力特性
翼型的阻力系数基本不随飞行M数变化。
④ 翼型的压力中心位置的变化
翼型的压力中心位置基本保持不变。
10.2.2 翼型的跨音速空气动力特性
跨音速是指飞行速度没达到音速,但机翼表面局部已经出现超 音速气流并伴随有激波的产生。
M增加,下翼面激 波后斜,激波角减小, 下翼面压力比不变而M 增加时增加得少,总的 效果使升力系数减小。
⑥ 翼型的超音速阻力特性
飞行马赫数大于1后,阻力系数会下降,但阻力会随着 M数的增加而增加。
I. 波阻的产生
波阻就是正迎角时,在跨音速阶段翼型产生的附加吸力向后 倾斜从而在速度方向所附加产生的阻力。
II. 翼型阻力系数随M数的变化
超过临界马赫数后,波阻急剧增大导致阻力系数急剧增加的 马赫数,称为阻力发散马赫数。
⑤ 翼型的超音速升力特性
膨胀波 激波
在超音速阶段,M增 加,上翼面膨胀波后斜, 弱扰动边界与波前气流 的夹角减小,膨胀后的 压力比 不变而M增加 时降低得少;
100高速空气动力学基础
10.1 高速气流特性
飞行原理/CAFUC
10.1.1 空气的压缩性
空气的压缩性是空气的压力、温度等条件改变而引 起密度变化的属性。
低速飞行(马赫数M<0.4) 空气密度基本不随速度而变化
高速飞行(马赫数M>0.4) 空气密度随速度增加而减小
① 空气压缩性与音速的关系
① 临界马赫数MCRIT
机翼上表面流速大于飞行速度,因此当飞行M数小于1时,机翼 上表面最低压力点的速度就已达到了该点的局部音速(此点称为等 音速点)。此时的飞行M数称为临界马赫数MCRIT 。
IT是机翼空气动力即将发生显著变化的标志。
●临界马赫数MCRIT
② 局部激波的形成和发展
I. 局部激波的形成
●音速的定义 扰动在空气中的传播速度就是音速。
●空气压缩性与音速a的关系
a dp d
a39 t273 海里/小时
a20.1 t273公里/小时
音速与传输介质的可压缩性相关,在空气 中,音速大小唯一取决于空气的温度,温度 越低,空气越易压缩,音速越小。
●亚音速、等音速和超音速的扰动传播
② 空气压缩性与马赫数M的关系 M TAS a