碳纳米管的结构_制备及修饰

合集下载

碳纳米管制备及其应用前沿

碳纳米管制备及其应用前沿

碳纳米管制备及其应用前沿碳纳米管是一种由碳原子构成的纳米管状结构,具有优异的物理和化学性质,在许多领域具有广泛的应用前景。

接下来将从制备方法和应用前沿两个方面进行介绍和探讨。

一、碳纳米管的制备方法目前,制备碳纳米管的方法主要包括电弧放电、激光脱附、化学气相沉积、碳原子沉积和碳纳米管模板法等。

其中,化学气相沉积是目前较为常用的制备方法。

化学气相沉积法是在高温下,使含碳气体在催化剂表面上裂解,生成碳纳米管,并通过合适的控制方法,调节管子的直径、壁厚等性质。

此外,在催化剂上引入其他金属元素,如铁、镍等,还可以得到多壁碳纳米管、碳纳米带和碳纳米球等不同形态的碳纳米材料。

二、碳纳米管的应用前沿(一)能源储存碳纳米管具有极高的表面积和优异的电化学性能,已被广泛地应用于电池、超级电容器等领域。

例如,在锂离子电池中,将碳纳米管作为电极,可以大幅提高电极的比表面积、导电性能和循环寿命。

在超级电容器中,由于碳纳米管具有高比表面积和优异的导电性能,被广泛应用于电容的电极材料。

(二)催化剂由于碳纳米管的高比表面积和优异的催化性能,已成为新一代高效的催化剂材料。

例如,在氢能源领域,碳纳米管可以作为催化剂在反应中转化氢气,从而推进氢能源的发展。

同时,碳纳米管还可以用于金属催化剂的支撑材料,以提高催化剂的催化效率和稳定性。

(三)生物传感器碳纳米管还可以用于生物传感器的制备,具有极高的灵敏度和选择性。

例如,在血糖检测中,将碳纳米管复合在臂带上,可以使用手机APP通过检测臂带的信号来进行血糖测量。

(四)纳米电子学由于碳纳米管的导电性能和尺寸效应,在纳米电子学领域也有广泛的应用。

例如,碳纳米管可以用作场效应管的电极材料,制备高性能的纳米电子器件。

总之,碳纳米管作为一种新型的纳米材料,在能源储存、催化剂、生物传感器、纳米电子学等领域都有着广阔的应用前景。

随着技术的不断成熟和进步,相信碳纳米管在更多领域将会有更广泛的应用。

碳纳米管的制备技术与应用

碳纳米管的制备技术与应用

碳纳米管的制备技术与应用碳纳米管(Carbon nanotubes,CNTs)是一种以碳元素为原材料制备的一维纳米材料,由于其具有良好的力学性能、电学特性以及化学稳定性等特点,已经成为当今研究领域中最为热门的材料之一。

本文将介绍碳纳米管的制备技术以及其在各个领域的应用。

一、碳纳米管的制备技术碳纳米管的制备技术可以分为两种类型:单壁碳纳米管(Single-walled carbon nanotubes,SWCNTs)和多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)。

1. SWCNTs的制备技术SWCNTs是由单个碳原子组成的圆柱形分子,其直径只有1纳米左右,是碳纳米管中最小的一种。

目前SWCNTs的制备技术主要有以下几种:(1) 弧放电法:将石墨电极在惰性气体氛围下通电,随着通电时间的延长,在电极表面就会形成一个由碳原子组成的弧,此时就会产生SWCNTs。

(2) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生SWCNTs。

(3) 气味解法:将金属铝、镁等材料和碳合成物物质放入高温的石墨炉中加热,从而产生SWCNTs。

2. MWCNTs的制备技术MWCNTs是由许多个碳单层环形结构套在一起形成的管状结构,由于其具有较高的机械强度和导电性能,因此在材料科学等领域有着广泛的应用。

其制备主要有以下几种方式:(1) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生MWCNTs。

(2) 电磁纺丝法:将金属铜制成细丝,并加热到一定温度,然后向铜丝上喷射石墨或其它碳源,从而产生MWCNTs。

(3) 化学还原法:将单壁和多壁碳纳米管分散在水溶液中,然后将还原剂缓慢加入到溶液中,之后用超离心机或过滤器将沉淀的MWCNTs分离出来。

二、碳纳米管在材料科学中的应用碳纳米管因其高催化性能、热稳定性及导电性能等优异特点,将在材料科学领域中得到广泛的应用。

碳纳米管结构式

碳纳米管结构式

碳纳米管结构式碳纳米管是一种由碳原子组成的管状结构,具有优异的力学、光学、电学和热学性质,因此在材料科学领域被广泛应用。

其结构式表达为(CNT)n,n为碳纳米管中碳原子数目。

碳纳米管的制备步骤分为以下几步:第一步,制备碳纳米管原料。

可以选择以石墨为原料,在高温条件下进行热分解;也可用较低温度的化学沉积法来制备。

这两种方法均可得到单壁和多壁碳纳米管。

第二步,加工碳纳米管。

这一步是将碳纳米管的原料进行加工,制备成所需形状的纳米管。

加工技术包含机械压制、乳胶稳定等方法。

第三步,制备材料。

将碳纳米管与其他物质进行复合,可制备出具备特殊功能和应用的材料,如薄膜、复合材料等。

碳纳米管的结构式中,n表示碳纳米管中碳原子的数目。

其中,单壁碳纳米管的n值为1,多壁碳纳米管的n值大于1。

单壁碳纳米管是由一个单层碳原子的六元环或者五元环组成的,其直径可以在0.4-2.0nm之间变化。

多壁碳纳米管则是由多个单壁碳纳米管相套合而成,直径在2.0-100nm之间变化。

碳纳米管的结构具有独特的电学、光学、力学和热学特性,在多个技术领域中得到了应用。

例如,碳纳米管可以用于超级电容器的制备、晶体管和场发射器的制备、电子和光学器件的制备等。

此外,碳纳米管还可以作为药物递送系统、生物传感器等方面中发挥作用。

总之,碳纳米管作为一种优异的材料,在科研领域中有着广泛的应用,其结构式的表达为(CNT)n,n为碳纳米管中碳原子数目。

其制备步骤包括原料制备、加工以及材料制备。

我们相信,随着技术的不断进步,碳纳米管的应用会越来越广泛,为我们带来更多的实用价值和创新思路。

碳纳米管的制备方法和应用

碳纳米管的制备方法和应用

碳纳米管的制备方法和应用碳纳米管是由纳米级的碳原子构成的一种纳米材料,具有独特的物理和化学性质,被广泛应用于各个领域。

本文将探讨碳纳米管的制备方法以及其在材料科学、电子学和生物医学中的应用。

一、碳纳米管的制备方法目前,常见的碳纳米管制备方法主要有化学气相沉积法、电化学沉积法、电弧放电法和碳热还原法等。

化学气相沉积法是制备碳纳米管最常用的方法之一。

该方法利用金属催化剂(如铁、铜等)和含碳的气体(如一氧化碳、甲烷等)在高温下反应,生成碳纳米管。

这种方法可以控制碳纳米管的尺寸和结构,制备出高质量的碳纳米管。

电化学沉积法是一种较为简单和经济的制备方法。

通过在电极表面施加电压,使金属离子在电极上还原并沉积成碳纳米管。

这种方法可以在常温下进行,对环境友好,但产出的碳纳米管质量较低。

电弧放电法是一种高温高压条件下制备碳纳米管的方法。

通过在金属电极之间施加高电压,形成电弧放电,使电极表面的碳物质蒸发并在高温高压下形成碳纳米管。

这种方法制备出的碳纳米管尺寸较大,结构较不规则。

碳热还原法是使用碳源将金属氧化物还原成金属,并在高温下生成碳纳米管。

这种方法能够制备出高纯度的碳纳米管,但操作条件较为复杂。

二、碳纳米管在材料科学中的应用由于碳纳米管具有优异的力学性能、导电性和热导性,因此在材料科学中有广泛的应用。

碳纳米管可以添加到复合材料中,提高材料的力学性能和导电性。

此外,碳纳米管还可以用于制备超级电容器和锂离子电池,因为其具有较大比表面积和良好的电化学性能。

另外,由于碳纳米管具有较高的比表面积和孔隙结构,可以用作吸附剂来去除水和气体中的有害物质。

碳纳米管的应用还延伸到柔性电子学和传感器领域,用于制备柔性显示器件和高灵敏度的传感器,如压力传感器和化学传感器等。

三、碳纳米管在电子学中的应用碳纳米管由于其独特的电子性质,被广泛应用于电子学领域。

碳纳米管可以用作场发射源,用于制备高亮度和高分辨率的显示器件。

此外,碳纳米管也可以用于制备柔性电子器件,如柔性电池和柔性晶体管等,具有重要的应用价值。

碳纳米管

碳纳米管
特点:产量很低,仅局限在实验室中应用, 不适于大批量连续生产。
(B)热解法:这种方法也很简单,将一块基板放 进加热炉里加热至600℃,然后慢慢充入甲烷 一类的含碳气体。气体分解时产生自由的碳原 子,碳原子重新结合可能形成碳纳米管。
优点:最容易实现产业化,也可能制备很长的 碳纳米管。
缺点:制得的碳纳米管是多壁的,常常有许多 缺陷。与电弧放点法制备的碳纳米管相比,这 种碳纳米管抗张强度只有前者的十分之一。
初步估算,碳纳米管的强度大概是钢的100倍。 Lieber运用STM技术测试了碳纳米管的弯曲强度, 证明碳纳米管具有理想的弹性和很高的硬度。因此 用碳纳米管作为金属表面上的复合镀层,可以获得 超强的耐磨性和自润滑性,其耐磨性要比轴承钢高 100倍,摩擦系数为0.06~0.1,且还发现该复合镀层 还具有高的热稳定性和耐腐蚀性等性能。
(C)浓硝酸氧化法
将碳纳米管加入到浓硝酸中搅拌,超声波分散 后加热回流处理。自然冷却后用蒸馏水稀释、 洗涤至中性,经真空干燥、研磨后既得到纯化 处理的碳纳米管[14]。
优点:经过适当浓度硝酸氧化处理一定时间的 CNTs,其基本结构未发生本质变化,而表面 活性基团显著增加,在乙醇中分散浓度、均匀 性、稳定性得到提高,在复合材料中的分散均 匀性及与树脂的结合性能也得到相应提高。硝 酸氧化处理是CNTs表面活化的有效方法。
中美科学家在研究中对合成碳纳米管常用的化 学气相淀积方法进行了改进。改进结果显示,在化 学气相淀积过程中加入氢和另外一种含硫化合物后, 不仅能制造出更长的碳纳米管束,而且这些碳纳米 管束可由单层碳纳米管通过自我组装而有规律地排 列组成。
研究人员认为,他们的新方法作为一种更为简便 的替代工艺,也许还可以用来生产高纯度的单层碳 纳米管材料。

碳纳米管的制备和表征研究

碳纳米管的制备和表征研究

碳纳米管的制备和表征研究碳纳米管是一种非常重要的纳米材料,由于其具有优异的物理和化学性质,能够广泛应用于电子、化学、生物和医学等领域,成为了当今最热门的研究课题之一。

本文将介绍碳纳米管的制备和表征研究,旨在尽可能全面深入地介绍它的相关研究进展。

一、碳纳米管的制备方法碳纳米管的制备方法主要有以下几种:1. 等离子体增强化学气相沉积法该方法先用金属作为催化剂,在氧化镁或氧化铝的载体上制备成催化剂阵列,通过引入碳源和氢气,使用等离子体的方式来生成碳纳米管。

2. 化学气相沉积法该方法将催化剂和碳源同时放置在反应器内,不用外加能量,通过化学反应来制备碳纳米管。

3. 化学还原-热解法该方法先用催化剂将氧化石墨烯还原为石墨烯,然后利用热解技术进行碳化反应,制备碳纳米管。

以上三种方法是主流的制备碳纳米管的方法,但随着研究的深入,其它方法,如水热合成法、溶液-液相界面法等也逐渐被应用于制备碳纳米管。

二、碳纳米管表征技术为了对制备的碳纳米管进行表征和刻画,研究人员开发出了各种表征技术来研究其结构和性质,下面我们来介绍一些常用的表征技术:1. 透射电子显微镜(TEM)透射电子显微镜是最常用的碳纳米管表征技术之一,通过它可以直观的获得碳纳米管的观察图像。

2. 扫描电子显微镜(SEM)与TEM不同,扫描电子显微镜可以观察到碳纳米管的表面形貌,并能够获得表面形貌的三维结构图像。

3. 拉曼光谱(Raman)拉曼光谱具有非常高的灵敏性和分辨率,能够通过对碳纳米管的拉曼光谱图像进行功率谱分析,可以获得碳纳米管的结构、相互作用和物理特性等信息。

4. X射线粉末衍射(XRD)利用X射线的衍射实验,可以得到碳纳米管的晶格结构,晶格常数以及结晶度等信息。

5. 热重分析(TGA)热重分析可以帮助我们展现出材料在温度变化下的失重信息,从而推断出碳纳米管的热稳定性和热分解温度等相关信息。

以上技术对于制备和表征碳纳米管都有非常大的帮助,不同的表征方法可以从不同角度来对碳纳米管进行综合分析,有助于我们更好地了解碳纳米管的结构和性质。

碳纳米管材料的制备与应用

碳纳米管材料的制备与应用

碳纳米管材料的制备与应用随着科技的不断发展,人类需要的材料也越来越多样化。

其中,碳纳米管材料已经逐渐成为各个领域的研究热点。

碳纳米管是由碳原子组成的管状结构,具有优异的电学、热学和机械性能,因此在材料科学、能源、电子学、生物医学等领域都有广泛的应用。

本文将着重讨论碳纳米管的制备与应用。

一、碳纳米管的制备方法碳纳米管的制备方法分为两类:化学气相沉积(CVD)和物理气相沉积(PVD)。

其中,化学气相沉积是目前主流的制备方法。

1. CVD法CVD法是一种将碳源物质通过高温反应在衬底上形成碳纳米管的方法。

该方法在过去几十年间被广泛应用。

其原理是将在高温下分解的碳源物质(MgO、Fe、Co、Ni等金属薄膜)与甲烷(CH4)等碳源反应,生成碳纳米管。

产生的碳纳米管在金属薄膜上进行生长,成品碳纳米管可以被用于许多领域,如生物医学、电子学和机械工程。

2. PVD法PVD法是物理气相沉积法,是将高温高真空条件下的碳到金属薄膜表面,使其发生化学反应产生的碳纳米管。

PVD法和CVD法相比,能够控制制备的材料的形态,所以在某些行业中得到了广泛应用。

二、碳纳米管的应用碳纳米管可应用于生物医学、电子,机械工程等诸多领域中。

下面我们将简述几个典型应用案例。

1.生物医学碳纳米管是最有前途的纳米生物材料之一,具有良好的潜在应用前景。

例如,在体内使用碳纳米管作为药物载体能够提高药物在体内的分布,从而改善治疗效果。

同时还可以在生物医学领域中应用到组织修复等方面。

虽然在生物医学应用领域,碳纳米管还有各种缺陷需要克服,但其无疑是一个相当有前景的材料。

2. 电子碳纳米管在电子领域中的应用被认为是随着大小更小的范围的涌现而产生的。

碳纳米管的应用在电学方面主要有两个方面:体积很小时还能保持完美的电性;因其结构的高度均匀性而成本效益较高。

3. 机械工程由于碳纳米管的力学性质优异,具有较高的韧性和高强度,可以有效解决一些结构耐磨、化学稳定度和热稳定度较差、承载能力不足,同时仍具有大量不仅仅是机架化的性能的问题,也具有广泛的应用和前景。

碳纳米管的制备与纯化ppt课件

碳纳米管的制备与纯化ppt课件
天、军事等方面都有广泛. 应用。
碳纳米管是一种具有特殊结构的一维量 子材料,径向尺寸为2~20nm,轴向尺寸 为微米量级、管子两端基本上都封口主要 由呈六边形排列的碳原子构成数层到数十 层的同轴圆管。
.
碳纳米管也可以看成是由石墨层卷曲而成 的圆柱形管状物。 碳纳米管可以分为多壁碳纳米管和单壁碳 纳米管两类。 多壁碳纳米管:由多层石墨卷曲而成的一 组同轴圆柱形管。 单壁碳纳米管:由一层石墨卷曲而成的一 个圆柱形管。
.
.
碳纳米管的主要性质
.
二、制备方法
➲ 电弧放电法。(已用于工业化生产) ➲ 激光蒸发法。 ➲ 化学气相沉淀法。 ➲ 太阳能法。 ➲ 火焰法。 ➲ 增强等离子体热流体化学化学蒸气分解沉法。 ➲ 等离子体法。 ➲ 水热法。 ➲ 超临界流体技术。 ➲ 固相复分解反应制备法。…………
.
➲ 碳源 石墨是最早也是最容易获得的碳源。激光法、电弧 法中常以石墨靶为碳源,后来随着碳纳米管制备技 术的发展,纳米管的碳源也可从各种含碳物质的热 解或转化来制得。含碳和氢,以及混杂有氧、氮、 硫等其它杂质的有机化合物,低沸点的有机金属化 合物(如各种金属茂、金属酞脊等),在加热时,特 别是催化加热时通过歧化或炭化转化为高碳或纯碳 材料,然后在合适的条件下部分或完全转化成碳纳 米管。根据碳源的物理形态可以设计相应的实验。 如石墨可用作电弧法和激光蒸发法。co,烃类气体适 用于各类CVD法、低沸点的金属茂、金属酞菁等也 可通过加热升华后用于CVD法;苯、金属茂、金属酞 菁等经有机溶剂溶解,利用溶胶-凝胶技术和载体均
➲ 激光蒸发法
.
Smalley 等制备C60时,在电极中加入一 定量的催化剂,得到了单壁碳纳米管。Thess 等改进实验条件,采用该方法首次得到相对较 大数量的单壁碳纳米管。实验在1 473 K条件 下,采用50 ns的双脉冲激光照射含Ni/Co催 化剂颗粒的石墨靶,获得高质量的单壁碳纳米 管管束。这种方法易于连续生产,但制备出的 碳纳米管的纯度低,易缠结,且需要昂贵的激 光器,耗费大。

碳纳米管的制备

碳纳米管的制备

碳纳米管的制备碳纳米管是一种具有独特结构和优异性能的纳米材料,广泛应用于电子器件、储能材料、传感器等领域。

本文将介绍碳纳米管的制备方法及其原理。

一、碳纳米管的制备方法碳纳米管的制备方法主要包括化学气相沉积法、电弧放电法、激光烧蚀法和碳化合物热解法等。

下面将对其中的几种常用方法进行详细介绍。

1.化学气相沉积法化学气相沉积法是目前最常用的制备碳纳米管的方法之一。

其原理是在适当的温度下,将含有碳源和催化剂的气体通过反应管,使之在催化剂表面发生化学反应,生成碳纳米管。

该方法具有制备工艺简单、成本较低等优点。

2.电弧放电法电弧放电法是一种较早被发现的碳纳米管制备方法。

其原理是在高温下,通过电弧放电使碳源蒸发,生成碳烟,进而形成碳纳米管。

该方法制备的碳纳米管质量较高,但成本较高,且产量较低。

3.激光烧蚀法激光烧蚀法是利用激光脉冲对含有碳源的固体进行瞬时加热,使之发生爆炸和蒸发,生成碳纳米管。

该方法制备的碳纳米管结构较好,但对设备要求较高,且产量较低。

4.碳化合物热解法碳化合物热解法是一种将碳源与金属催化剂一起加热至高温,使碳源在催化剂表面发生热解反应生成碳纳米管的方法。

该方法制备的碳纳米管质量较高,但对设备要求较高,且成本较高。

二、碳纳米管的制备原理无论是哪种制备方法,碳纳米管的制备都基于碳原子的重新排列和堆积。

以化学气相沉积法为例,其制备原理如下:在适当的温度下,将含有碳源和催化剂的气体通过反应管。

在催化剂表面,碳源分解生成碳原子,并在催化剂的作用下重新排列和堆积,形成碳纳米管的结构。

催化剂在碳纳米管的形成过程中起到了关键的作用。

一方面,催化剂可以提供活性位点,促使碳原子的重新排列和堆积;另一方面,催化剂还可以调控碳纳米管的直径和结构。

制备碳纳米管的温度也是一个重要的参数。

温度过高会导致碳纳米管的生长速度过快,从而影响其结构和质量;温度过低则会降低碳纳米管的生长速度。

除了制备方法和制备温度,碳源的选择也会对碳纳米管的结构和性能产生影响。

新型碳材料—碳纳米管及石墨烯的制备、修饰与初步应用研究

新型碳材料—碳纳米管及石墨烯的制备、修饰与初步应用研究

四、展望与建议
3、强化知识产权保护:鼓励创新和知识产权保护,为研究者提供良好的创新 环境。加强知识产权保护意识和措施,推动科技成果转化和应用。
四、展望与建议
4、政策引导和支持:政府可以通过制定相关政策、提供资金支持等方式引导 和支持碳材料产业的发展。
参考内容
引言
引言
随着科技的不断进步,新型材料的研发和应用越来越受到人们的。其中,表 面修饰炭黑、碳纳米管和石墨烯作为三种典型的纳米材料,具有独特性质和广泛 的应用前景。本次演示将详细介绍这三种材料的制备方法、性能特点以及目前的 研究进展。
2、石墨烯的制备
2、石墨烯的制备
石墨烯的制备方法主要包括剥离法、还原氧化石墨烯法、有机合成法等。其 中,剥离法是最常用的制备方法,通过将天然石墨逐层剥离得到单层或多层石墨 烯。还原氧化石墨烯法则通过将氧化石墨烯还原为石墨烯来制备。有机合成法可 以合成特定结构和功能化石墨烯,但成本较高。
3、碳纳米管和石墨烯的修饰
新型碳材料—碳纳米管及石墨 烯的制备、修饰与初步应用研

目录
01 一、碳纳米管和石墨 烯的定义与特点
02 二、碳纳米管和石墨 烯的制备与修饰方法
03
三、碳纳米管和石墨 烯的应用领域
04 四、展望与建议
05 参考内容
内容摘要
随着科技的快速发展,新型碳材料碳纳米管和石墨烯因其独特的结构和性能 在材料科学、能源、生物医学等领域引起了广泛。本次演示将详细探讨这两种碳 材料的制备、修饰方法及其在各个领域的应用。
四、展望与建议
2、纯度和稳定性:提高碳材料的纯度和稳定性是拓展其应用领域的重要前提。 需要加强质量控制和技术创新,以满足不同领域对材料性能的需求。
四、展望与建议

碳纳米管实验报告

碳纳米管实验报告

碳纳米管实验报告碳纳米管实验报告引言碳纳米管是一种由碳原子构成的纳米材料,具有独特的结构和优异的性能,因此在材料科学和纳米技术领域引起了广泛的关注。

本实验旨在通过制备碳纳米管并研究其性质,探索其在材料科学和纳米技术中的应用潜力。

实验方法1. 碳纳米管制备我们采用化学气相沉积法(CVD)来制备碳纳米管。

首先,将铁为催化剂的硅片放入石英管中,然后将预先制备的碳源溶液滴在铁催化剂上。

接下来,将石英管放入炉中,在高温下进行热解反应。

最后,用氮气冷却石英管,取出硅片。

2. 碳纳米管表征我们使用扫描电子显微镜(SEM)和透射电子显微镜(TEM)来观察和表征制备的碳纳米管。

通过SEM,我们可以获得碳纳米管的形貌和尺寸信息;而TEM则可以提供更高分辨率的图像,以便更详细地研究碳纳米管的结构。

实验结果1. 碳纳米管制备通过CVD方法制备的碳纳米管在铁催化剂上形成了森林状的结构。

碳源溶液在高温下分解,碳原子沉积在铁催化剂表面,形成了纳米尺寸的碳纳米管。

通过调节反应条件,我们可以控制碳纳米管的直径和长度。

2. 碳纳米管表征SEM观察结果显示,制备的碳纳米管呈现出均匀分布、整齐排列的特点。

通过测量SEM图像中的碳纳米管直径,我们发现其平均直径约为20纳米。

TEM图像进一步证实了碳纳米管的结构,显示出典型的中空管状形貌。

讨论1. 碳纳米管的应用潜力碳纳米管具有优异的力学性能、导电性能和热导性能,因此在材料科学和纳米技术领域有广泛的应用潜力。

例如,碳纳米管可以用作增强材料,提高复合材料的力学性能;它们还可以用于制备导电纳米材料,如柔性电子器件和传感器;此外,碳纳米管还可以作为纳米药物载体,用于靶向治疗等。

2. 碳纳米管的制备和表征本实验采用的CVD方法是一种常见的碳纳米管制备方法,具有较高的产量和可控性。

然而,制备过程中仍存在一些挑战,如催化剂的选择和反应条件的优化。

此外,碳纳米管的表征也需要借助先进的显微镜技术,以获得更准确的结构信息。

碳纳米管的制备及在催化领域的应用研究

碳纳米管的制备及在催化领域的应用研究

碳纳米管的制备及在催化领域的应用研究碳纳米管是一种由碳原子构成的管状结构,具有极高的韧性和导电性能,因此在催化领域有着广泛的应用。

本文将探讨碳纳米管的制备方法及其在催化领域的应用研究。

一、碳纳米管的制备方法碳纳米管的制备方法主要有化学气相沉积法、电化学沉积法、毛细管拉伸法等。

其中,化学气相沉积法是较为常用的一种制备方法。

1.化学气相沉积法化学气相沉积法是利用化学反应在高温下使含有碳源和催化剂的气体形成碳纳米管的方法。

这种方法制备的碳纳米管,具有高纯度、尺寸均一等优点,因此在催化领域中有着广泛的应用。

该方法具体步骤如下:首先,在高温下将含有碳源和催化剂的气体通入反应室中,使其在反应室中反应。

通常所用的反应气体为乙烯、甲烷等含碳气体,而催化剂一般采用镍、钴等金属。

在反应过程中,碳源和催化剂发生反应生成碳纳米管。

2.电化学沉积法电化学沉积法是利用电化学反应在导电表面沉积碳纳米管的方法。

该方法操作简便,但是所得到的碳纳米管质量较差,难以控制其尺寸和分布。

3.毛细管拉伸法毛细管拉伸法是利用毛细管将含有碳源和催化剂的毛细管拉长,从而形成碳纳米管的方法。

该方法制备的碳纳米管,尺寸较小,但是产量较低,故不在工业上应用。

二、碳纳米管在催化领域的应用研究碳纳米管在催化领域的应用主要分为两类:一类是作为催化剂载体,另一类是作为催化剂的组成部分。

下面将对这两种应用分别进行讨论。

1.碳纳米管作为催化剂载体碳纳米管具有极高的表面积、导电性能和化学稳定性,因此可被用作载体,将催化剂负载在其表面上,从而改善催化剂的稳定性和活性。

最常用的载体是氧化铝和二氧化硅等氧化物,但是这些载体具有一定的缺点,如活性不稳定、易磨损等。

近年来,研究者们利用碳纳米管的优异特性,将其作为载体,载入一些金属离子或氧化物,如镍、钴、氧化钨等,制备出不同的催化剂。

这些催化剂具有高催化活性、优异的选择性和较长的寿命,因此在化工及环保等领域具有重要应用。

2.碳纳米管作为催化剂的组成部分碳纳米管具有极高的导电性能和化学稳定性,在催化反应中具有广泛的应用价值。

碳纳米管的结构、制备及修饰

碳纳米管的结构、制备及修饰
碳纳米管是由类似于石墨的六边形网络所组成的管状物,具有中空的内部结构、封闭的拓扑构型及不同的螺旋结构,这些特殊结构赋予了碳纳米管许多优异的性能,如良好的导电性、高热稳定性、高机械强度、耐腐蚀、自润滑性和生物相容性等。碳纳米管的制备方法多种多样,包括电弧放电法、激光烧蚀法等,每种方法都有其特点和适用场景。此外,碳纳米管还可以通过共价修饰和有机化学修饰进行功能化改性,ห้องสมุดไป่ตู้进一步拓展其应用范围。共价修饰主要包括自由基加成法、化学氧化法等途径,通过这些方法可以将不同的官能团引入到碳纳米管表面,从而改变其表面性质。碳纳米管因其独特的结构和优异的性能,在复合材料、储氢材料、催化剂载体等领域具有巨大的应用潜力,成为众多科研工作者研究的热点之一。

碳纳米管的制备、性质和应用进展

碳纳米管的制备、性质和应用进展

在化学传感器和生物传感器领域,碳纳米管的敏感度高、响应速度快,可检测 多种化学物质和生物分子。例如,多壁碳纳米管可检测空气中的有害气体分子, 单壁碳纳米管可检测生物体内的病毒和细菌。这些应用为化学和生物分析提供 了新的检测手段。
在硬材料制备领域,碳纳米管因其卓越的力学性能和热导率而被用于制备高性 能复合材料和耐磨材料。例如,将碳纳米管添加到塑料或橡胶中可显著提高材 料的强度、韧性和热稳定性。此外,碳纳米管还被用于制造刀具和轴承等耐磨 器件,其高硬度和高耐磨性使得这些器件的性能得以显著提升。
谢谢观看
碳纳米管的电子结构研究表明,它们具有金属性和半导体性两种类型,具体取 决于碳纳米管的层数和手性。碳纳米管的导电性能与金属导线相似,具有高电 导率。同时,碳纳米管还具有优异的热导率,可高达6000 W/m·K,远高于铜。
碳纳米管的应用:
由于其独特的结构和性能,碳纳米管在电子、化学传感器、生物传感器和硬材 料制备等领域具有广泛的应用前景。
3、生物医学领域
在生物医学领域,碳纳米管膜也展现出广阔的应用前景。由于其生物相容性和 良好的电性能,碳纳米管膜可以作为药物载体和细胞培养基底。研究表明,将 药物包裹在碳纳米管膜内,可以实现对药物的精确控制和靶向输送。同时,碳 纳米管膜还可以作为细胞生长支架,促进细胞的黏附和增殖。
4、电子器件领域
然而,尽管碳纳米管的研究已经取得了许多成果,但仍存在一些问题需要进一 步探讨。例如,碳纳米管的制备过程中,如何实现规模化生产并降低成本;在 性质方面,如何控制碳纳米管的形貌和性能;在应用方面,如何将碳纳米管更 好地应用到实际生产和科学研究中。
同时,随着科技的不断进步和创新,碳纳米管的研究和应用前景也日益广阔。 未来,可以进一步探索碳纳米管在其他领域的应用,如能源、环保、生物医学 等。此外,随着人工智能和大数据等技术的快速发展,可以预见碳纳米管的研 究和应用将越来越受到智能化和数字化的影响,这将会为碳纳米管的研究和应 用带来更多的机遇和挑战。

碳纳米管介绍

碳纳米管介绍
化学气相沉积法又名催化裂解法, 其原理是通过烃类(如甲烷、乙烯、丙烯和苯等) 或含碳氧化物(如CO) 在催化剂的催化下裂解为碳原子,碳原子在催化剂作用下,附着在催化剂微粒表面上形成碳纳米管。
此法特点:操作简单, 工艺参数更易控制,生长温度相对较低,成本低,产量大,可规模化生产。但由于其制备的碳纳米管含有许多杂质,且碳纳米管缠绕成微米级大团,需要进一步纯化和分散处理。
二.碳纳米管材料的性能
热学性能
碳纳米管具有良好的传热性能,由于是一维材料,其在径向上的导热性能优越,我们甚至可以在复合材料中掺杂微量的碳纳米管 ,使得复合材料的热导率得到很大的改善。
碳纳米管材料的性能
储氢性能
碳纳米管具有比较大的表面积,且具有大量的微孔,其储氢量远远大于传统材料的储氢量,因此被认为是良好的存储材料。
激光蒸发法是一种简单有效的制备碳纳米管的新方法。与电弧法相比,前者用电弧放电的方式产生高温,后者则用激光蒸发产生高温。得到的碳纳米管的形态与电弧法得到的相似,但碳纳米管质量更高,并无无定形碳出现。这种方法易于连续生产,但制备出的碳纳米管的纯度低,易缠结,且需要昂贵的激光器,耗费大。
3.化学气相沉积法(CVD)
碳纳米管对红外和电磁波有隐身作用:一方面由于纳米微粒尺寸远小于红外及雷达波波长,因此纳米微粒材料对这种波的透过率比常规材料要强得多,大大减少波的反射率;另一方面,纳米微粒材料的比表面积比常规粗粉大3-4 个数量级,对红外光和电磁波的吸收率也比常规材料大得多,也使得红外探测器及雷达得到的反射信号强度大大降低,起到了隐身作用。可用于隐形材料、电磁屏蔽材料或暗室吸波材料。
在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体充入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成碳纳米管。

碳纳米管的制备及应用

碳纳米管的制备及应用

碳纳米管的制备及应用碳纳米管是一种结构特殊的纳米材料,由于其独特的结构和性质,被广泛应用于各个领域。

本文将从碳纳米管的制备和应用两个方面进行介绍。

一、碳纳米管的制备碳纳米管的制备方法主要有化学气相沉积法、电弧放电法、激光热解法、物理气相沉积法、化学液相法等。

其中,化学气相沉积法是目前制备碳纳米管的主要方法。

该方法是通过对一种碳源或碳和气体的反应,生成碳纳米管。

具体步骤为:1、将金属催化剂(如铁、镍、钴等)置于石英玻璃管中,加热至较高温度。

2、在金属催化剂的表面构筑碳源分子,如甲醛、乙烯等。

3、在高温下实施气相反应,生成碳纳米管。

此外,还可以利用物理气相沉积法制备碳纳米管。

该方法是利用低压下的等离子体或离子束在金属催化剂表面生成碳原子,通过控制反应温度和时间等参数,实现碳纳米管的控制生长。

化学液相法则是采用溶胶胶凝法和液相氧化法等方法在溶液中合成碳纳米管,这种方法制备的碳纳米管纯度高,可控性较好。

二、碳纳米管的应用1、电子领域由于碳纳米管具有高导电性、热稳定性和机械强度等特点,因此广泛应用于电子领域。

碳纳米管可以被用来制作场发射器、晶体管、发光二极管等电子元件,具有重要的应用价值。

2、生物医学领域由于碳纳米管具有高表面积、强光吸收、低毒性等特点,因此在生物医学领域也有广泛应用。

碳纳米管可以被用来制作药物载体、生物传感器和基因传递系统等,可以在癌症治疗、生物成像、疾病诊断等方面发挥作用。

3、制备材料领域碳纳米管可以与其他材料组合使用,制备出具有特殊性能的材料。

如与金属组合,可以制备出具有高强度、高硬度和高导电性的复合材料;与聚合物组合,可以制备出具有较高导电率和较好机械强度的聚合物复合材料。

4、油气开采领域在油气开采领域,碳纳米管可以被用作催化剂载体、油管涂层等,具有高度的应用前景。

碳纳米管可以被用来制备分离材料或改性涂料,用于地下油藏的渗透调节、油品分离、纯化和催化转化等领域。

总之,碳纳米管以其独特的结构和性质,在各个领域有着广泛的应用。

碳纳米管的制备工艺与表征

碳纳米管的制备工艺与表征

碳纳米管的制备工艺与表征碳纳米管 (Carbon nanotube, CNT) 是一种由碳原子构成的纳米结构物,被誉为"物质世界中最优美的结构之一",因其具有极高的力学强度、热电性和化学稳定性,被广泛应用于电子、能源、生物等领域。

本文将会讨论碳纳米管的制备工艺与表征。

一、碳纳米管的制备工艺1. 碳原子沉积法碳原子沉积法是将一定数量的碳原子通过气态输送进入低压的反应室,在金属触媒(如Ni、Fe等)的作用下,形成一维碳原子链,最终形成碳纳米管。

这种方法可以实现单壁碳纳米管的制备。

2. 化学气相沉积法化学气相沉积法是将气态碳源和气态催化剂一起进入高温反应室,碳源在催化剂表面上析出,形成碳纳米管。

这种方法可以制备多壁碳纳米管,并且可以通过控制反应条件来调节碳纳米管的尺寸和结构。

3. 电弧放电法电弧放电法是在惰性气体气氛下,将两个金属电极通电使其放电而形成的高温等离子体反应区内进行碳纳米管的生长。

这种方法可以制备多种形态的碳纳米管,如无花边、有花边、螺旋状、直管状等。

二、碳纳米管的表征方法1. 透射电子显微镜 (Transmission electron microscopy, TEM)透射电子显微镜是一种高分辨率的显微镜,可以通过向物质传输电子进行成像,并且可以观察到原子级别的细节。

使用 TEM 可以观察到单壁和多壁碳纳米管的形貌和结构,如管径、层数等。

2. 扫描电子显微镜 (Scanning electron microscopy, SEM)扫描电子显微镜是一种能够对物质表面进行高分辨率成像的显微镜。

使用SEM 可以观察到碳纳米管的形貌和表面结构,如螺旋状、直管状等。

3. 原子力显微镜 (Atomic force microscopy, AFM)原子力显微镜是一种高分辨率的表面形貌和力学性质的表征技术。

使用 AFM可以观察到碳纳米管的形状、长度、直径等,还可以得到其力学性质,如弹性模量、硬度等信息。

碳纳米管的合成及工作原理探究

碳纳米管的合成及工作原理探究

碳纳米管的合成及工作原理探究碳纳米管(Carbon Nanotubes,简称CNTs)是由碳原子以特定形式排列而成的纳米材料,具有极高的强度、导电性和导热性等优异性能,因而在材料科学、纳米技术和电子领域引起了广泛的关注。

本文将探究碳纳米管的合成方法和工作原理。

一、碳纳米管的合成方法当前主要的碳纳米管合成方法有化学气相沉积法(Chemical Vapor Deposition,简称CVD)、电化学沉积法、溶胶凝胶法等。

这些方法具有各自的特点和适用范围。

1. 化学气相沉积法化学气相沉积法是最常用的合成碳纳米管的方法之一。

该方法通过在高温下将碳原子气体在金属催化剂的作用下进行化学反应,使碳原子在催化剂表面形成管状结构,从而合成出碳纳米管。

2. 电化学沉积法电化学沉积法利用电解质中的电流进行沉积,通过调节电流密度和电压等参数,可以控制碳纳米管的直径、长度和构型。

这种方法操作简单、成本较低,但对于合成高质量的碳纳米管还存在一定的挑战。

3. 溶胶凝胶法溶胶凝胶法是一种将某些有机物溶解处理后得到胶体,再通过热解等处理形成纳米结构的方法。

通过控制溶胶的成分、溶胶浓度、热处理条件等因素,可以制备出具有不同形貌和结构的碳纳米管。

二、碳纳米管的工作原理碳纳米管的工作原理主要涉及其独特的晶体结构和电子性质。

1. 晶体结构碳纳米管可以分为单壁碳纳米管和多壁碳纳米管两种结构。

单壁碳纳米管由一个个碳原子以六角形排列而成的六元环构成,可以卷成管状结构。

多壁碳纳米管由多个单壁碳纳米管套在一起形成,呈层状结构。

碳纳米管的晶体结构决定了它具有特殊的电子能带结构和导电性。

2. 电子性质碳纳米管的电子性质与其晶体结构密切相关。

由于碳原子的sp2杂化,使得碳纳米管的能带结构呈现出导电性。

根据不同的晶体结构和排列方式,碳纳米管可以是导电性或者半导体性。

在导电性碳纳米管中,电子可以自由传导,呈现出金属的导电特性。

而在半导体性碳纳米管中,电子的运动受到限制,可以通过调节外界电场或引入掺杂等手段来改变其导电性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

●自Iijima [1]首次用高分辨透射电镜发现碳纳米管(CNTs)后,碳纳米管及其相关材料以其独特的性质、新颖的结构及许多潜在的应用前景引起了人们极大的兴趣和关注,而用纳米材料来修饰和填充碳纳米管成为人们研究的热点之一[2-4]。

探索碳纳米管的物理、化学性能及其在各个领域中的应用也成为众多科研工作者研究的目标。

碳纳米管的结构比较特殊是由类似于石墨的六边形网络所组成的管状物,独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构等使其具有大量特殊的优异性能,如导电性好,耐热,机械强度比较高,耐腐蚀,有自润滑性和生物相容性等。

这些优异特性使得碳纳米管在复合材料、储氢材料、催化剂材料等方面有着巨大的应用潜力。

纳米中空结构使得它有可能作为一种纳米反应器[5]。

作为碳家族的新成员,它有合适的孔径分布,便于金属组分更好地分散[6]。

它独特而又稳定的结构及形貌,尤其是表面性质,能依据人们的需要进行不同方法的修饰,使其适合作为新型催化剂载体[7-8]。

1碳纳米管的性质1.1碳纳米管的结构碳纳米管可分为单壁碳纳米管(SWNTs )和多璧碳纳米管(MWNTs )。

碳纳米管可看作是由石墨烯层片卷成、直径为纳米尺度的圆桶,其两端由富勒烯半球封帽而成。

多壁碳纳米管则是由若干个单层管同心套迭而成的,石墨碳原子中的4个价电子只有3个成键,形成六边形的平面网状结构。

这种排列使石墨中的每个碳原子有一个未成对电子,这个未成对电子围绕着这个碳环平面高速运转,因而使石墨具有较好的导电性,碳纳米管中存在大量的六边形结构,当六边形往外逐渐延伸成为五边形时,会造成碳纳米管突出;而形成七边形时碳纳米管则凹进。

这样就形成了碳纳米管独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构。

而碳纳米管也由于如此的特殊结构具有了一系列卓越的性质。

1.2碳纳米管的制备电弧法制备碳管的基本原理是在两个相距很近的石墨电极间加上高电压以至放电,放电电弧产生的高温使得阳极石墨棒上的碳物质迅速蒸发,随后蒸发物质中的碳原子以团簇为单元组成多种碳物质形态,沉积于阴极和反应腔壁上,碳纳米管是其中的沉积产物之一。

电弧法多用来制备多璧碳纳米管(MWNTs )但制备的碳纳米管缺陷多,且与其他的副产物如无定形碳、纳米微粒等杂质烧结于一体,对以后的分离和提纯会有不利的影响。

催化裂解法(CVD 法)是目前应用最广泛的方法之一,该方法所用的关键设备就是可加热反应腔。

反应腔可以分为立式固定床和卧式磁舟两种。

其基本原理是:在中等温度下(800-1200K 左右),含碳化合物如烃、金属有机化合物、CO 等在金属催化剂的作用下分解为碳原子,沉积在金属颗粒的表面,然后溶解、扩散进入金属体相,最后析出生长成为碳纳米管。

可以认为实现可控制技术的一个可能的途径是通过控制催化剂颗粒的大小和分布间接控制碳管的生长,因此有关CVD 技术的催化剂问题受到广泛关注。

可以用于合成碳管的催化剂一般为过渡金属元素:Fe 、Co 、Ni 、Cr 、Mo 、Mg 和Si 等。

同电弧法相比,催化裂解法制得的CNTs 缺陷较多,但是此法制得的碳纳米管产量大且易提纯,还可通过催化剂颗粒的大小控制碳纳米管的粗细。

激光蒸发法是制备碳纳米管的重要方法之一。

它是利用激光对石墨进行蒸发并利用专门设计的收集器来收集合成的碳管。

其基本原理是:在惰性气体流中用激光蒸发含有金属催化剂的石墨靶表面,在石墨上生长碳纳米管,随后收集于铜水冷器。

激光束的宽度为6至7个毫米,经过计算机的精确引导,激光束持续而定量地蒸发含有金属催化剂的石墨靶,再由流动的Ar 气将碳物质送到蒸发炉外的水冷铜收集器处,在那里就能找到碳管,该方法首次得到相对较大数量的单壁碳纳米管。

激光蒸发(烧蚀)法的主要缺点是单壁碳纳米管的纯度较低、易缠结。

1.3碳纳米管的修饰碳纳米管的修饰共分为两类,分别为共价修饰和有机化学修饰。

其中碳纳米管的共价修饰共有三种途径:自由基加成法、电化学氧化法、化学试剂氧化法这三种。

自由基加成法是一种碳纳米管共价修饰的方法,CNTs 管壁上存在很大的自由基加成的可能性。

在碳纳米管璧原位上的重氮化可以是碳纳米管有效地溶解在水中,增大碳纳米管的溶解度。

Sinnott [15]采用经典分子动力学模拟方法构建了碳自由基与碳纳米管的加成模型,通过模型的建立发现带羧基的烷基自由基可以有效地加成到碳纳米管管壁上,得到功能化的碳纳米管。

通过电化学氧化法可以制得大量的碳纳米管修饰电极,将CNTs 固定于电极材料上,加压条件下用NaOH 溶液处理。

万谦等[16]碳纳米管经过纯化、浓酸回流处理后与DMF 分散物质形成悬浮液,然后通过微量滴管等直接滴涂或溅射等方法修饰到各种基质电极上,即可制成碳纳米管修饰电极。

化学试剂氧化法是一种较为普遍的方法,以浓硝酸或者硝酸和硫酸的混酸作为强氧化剂,经过处理后使得碳纳米管表面具有大量的羧基和羟基基团,这种方法简单易行,很多文献对碳纳米管修饰都是采用此方法,但是表面羧基化后的CNTs 其表面羧基之间存在氢键作用,碳纳米管分散性和溶解性还是仍然较差,还需要进一步对CNTs 表面的COOH 进行反应,破坏羧基之间的氢键作用。

CNTs 的化学修饰共分为三类,包括酸碱中和反应、酰化反应、胺化反应,其中酸碱中和反应是认为羧基化后的CNTs 可以与带碱性基团的聚合物发生类似于酸碱中和反应的反应,在上个世纪90年代,Chen 等以羧基化后的碳纳米管与带碱性基团的聚合物十八胺发生中和反应,第一次得到了可溶性CNTs 为SWNTs 在各种生物及超分子领域的应用提供了依据。

Banerjee 等用Wilkinson 催化剂[RhCl(PPh 3)3]与羧基化SWNTs 反应,发现修饰后的SWNTs 溶解度显著增大在二甲基甲酰胺(DMF)、四氢呋喃(THF)、二甲基亚砜(DMSO)等有机溶剂中,从而证明金属离子可通过离子作用与羧基化CNTs 反应。

酰化反应如酰胺化反应和酰氯化反应等,酰氯化反应是碳纳米管在加热条件下在硝酸中回流后,以亚硫酰二氯(SOCl 2)作酰化剂,得到含有酰基氯的碳纳米管。

由于含有酰基氯的碳纳米管具有更高的活性,可以与苯胺发生酰胺化反应进一步得到含有酰基苯胺的碳纳米管。

2结论多壁碳纳米管是一类新奇碳素纳米材料。

典型的CNTs 具有纳米级管状结构。

鉴于这类新奇管状纳米碳材料具有独特的结构和物化性质,作为一种新型碳素催化剂载体或促进剂,较之一些常规载体材料更具特色,近年来引起国际催化学界的日益注意,所涉及用CNTs 作为新型催化剂载体或促进剂的研究领域包括:选择加氢、氢甲酞化、选择脱氢、氨合成、FT 合成、甲醇/低碳醇合成等。

【参考文献】[1]Iijima S.Helical microtubules of graphitic carbon .Nature ,1991,354:56-58.[2]Kogak,Gao G T ,Tanaka H ,et al.Formation of ordered ice nanotubes insidecarbon nanotubes[J].Nature ,2001,412:802-805.(下转第38页)碳纳米管的结构、制备及修饰赵健勇(山东师范大学化学化工与材料科学学院山东济南250014)【摘要】本文详细介绍了碳纳米管的特殊结构,各种不同的制备方法,以及在共价修饰和化学修饰的各种方法,对碳纳米管应用作出展望。

【关键词】碳纳米管;结构;制备;修饰(上接第44页)[3]Ebbesen T W.Wetting,filling and decorating carbon nanotubes[J].J Phys Chem Solids,1996,57:951-955.[4]Han W Q,Fan S S,L I Q Q,et al.Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction[J].Science,1997,277:l287-1289.[5]Monthioux M.Filling single-wall carbon nanotubes[J].Carbon2002,40: 1809-1823.[6]Ma R.Study on the properties and engineering app lications of block-type carbon nanotubes.Beijing,China:Tsinghua University,Phd thesis[M],2000.[7]Zhang Y,Zhang HB,L in GD,et a1.Preparation,characterization and catalytic hydroformylation p roperties of carbon nanotubes-supported Rh-phosphine catalyst[J].Appl Catal A general,1999,187:2l3-214.[8]Luo J Z,Gao L Z,Leng Y L,et al.The decomposition of NO on CNTs and1 wt%Rh/CNT s[J].Catal Lett,2000,66:91-97.[责任编辑:张慧]●1962年O'Malley等首先发现用灵杆菌脂多糖注射小鼠后,小鼠血清能使S180肉瘤组织发生出血性坏死。

1975年Carswell[1]被细菌感染后的小鼠血清中有一种蛋白类物质能够导致肿瘤出血,并能抑制、杀伤体外培养的肿瘤细胞,之后,Old首次将此因子命名为肿瘤坏死因子(tumor necrosis factor,TNF),又称为恶病质因子(cachectin)。

从此对它的研究进入了一个新的时期,至今方兴未艾,近年来取得巨大的发展。

1肿瘤坏死因子的来源及定位TNFα的来源及其广泛,体内的多种细胞,如单核∕巨噬细胞,淋巴细胞,平滑肌细胞,成纤维细胞,成骨细胞,角质细胞,星形胶质细胞,肝细胞,肾小管上皮细胞,脾细胞,以及子宫和胎盘的细胞均具有产生和释放TNFα的能力。

TNFα也在许多物种如兔,人,小鼠和大鼠的卵巢中表达。

在人的卵巢当中,TNFα定位于卵母细胞、颗粒细胞和黄体中。

研究表明,在小鼠和大鼠的卵巢中TNFα定位的一个最主要的位置之一是卵母细胞质中。

在成熟的大鼠中,TNFα定位于从原始卵泡发育到排卵前卵泡的各个阶段的卵母细胞质中,在排出的卵子中也存在。

TNFα也存在于出生后两天的新生大鼠的卵巢的卵母细胞中。

但是,在出生前一天的胎鼠的卵巢的卵母细胞中TNFα却并没有表达[2]。

相关文档
最新文档