电力系统的频率特性
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 电力系统的频率特性
2) 电力系统频率一致。
3)任一时刻,发供平衡。
4)负荷增加时,系统出现了功率缺额,机组
的转速下降,整个系统的频率降低。
5) 调频与有功功率调节是不可分开的。
6)调频是一个要有整个系统来统筹调度与协 调的问题,不允许任何电厂有一点“各自 为政”的趋向。 7)调频与运行费用的关系也十分密切。 8)力求使系统负荷在发电机组之间实现经济 分配。
《电力系统自动化》
主讲教师: 胡志坚
武汉大学电气工程学院
第一节 电力系统的频率特性
一、概述 1)并列运行的wenku.baidu.com一台发电机组的转速与系统频 率的关系为:
f= Pn/60
(3-1)
式中: P—— 发电机组转子极对数 n—— 发电机组的转数(r/min) f—— 电力系统频率(Hz) 显然,电力系统的频率控制实际上就是调节 发电机组的转速。
无调速器,频率稳定值下降到f3,取用功率仍然为
原来的PL值 c点:调速器一次调节,增加机组的输入功率PT。 频率稳定在f2 d点:调频器二次调节,增加机组的输入功率PT。
频率稳定在fe
变化的百分数。
5)对于不同的电力系统, KL∗值也不相同。
一般KL∗ =1~3。即使是同一系统的KL∗ ,也随
季度及昼夜交替导致负荷组成的改变而变化。
第一节 电力系统的频率特性
• 例 3-1 。某电力系统中,与频率无关的负荷 占 30 %,与频率一次方成比例的负荷占 40 %,与频率二次方成比例的负荷占 10 %, 与频率三次方成比例的负荷占 20 %。求系 统频率由 50Hz 下降到 47Hz 时,负荷功率变
9)负荷的变动情况可以分成几种不同的分量: 一 是变化周期一般小于10s的随机分量; 二 是变化周期在10s~3min之间的脉动分量; 三是变化周期在3min以上的持续分量,负荷预测预 报这一部分。
10 )第一种负荷变化引起的频率偏移,利 用调速器来调整原动机的输入功率,这称 为频率的一次调整。 11 )第二种负荷变化引起的频率偏移较大, 必须由调频器参与控制和调整,这称为频 率的二次调整。 12 )第三种负荷变化,调度部门的计划内 负荷,这称为频率的三次调整。
水轮发电机组调速器的不灵敏区为 0.1~0.7% 。
• 四、电力系统的频率特性 发电机组的功率 — 频率特性与负荷的功 率 — 频率特性曲线的交点就是电力系统频率 的稳定运行点。
(a)电力系统功率—频率关系;
第一节 电力系统的频率特性
a点:fe,PL b点:负荷增加ΔPL,负荷静态频率特性变为PL1,
荷为P2,于是有
P1+P2=∑PL
第一节 电力系统的频率特性
(四)调节特性的失灵区 由于测量元件的不灵敏性,对微小的转速变化不 能反应,调速器具有一定的失灵区,因而调节特性 实际上是一条具有一定宽度的带子。不灵敏区的宽 度可以用失灵度ε来描述,即
式中 :ΔfW—调速器的最大频率呆滞。 由失灵区产生的分配功率误差为(用标幺值表 示):
第一节 电力系统的频率特性
E 、 F 各点也随之不断改变;这个过程要到 C 点升到某一位置时,比如 C" ,即汽门开大到
2 )转速上升时 —— 重锤开度增加 ——A 、 B 、
某一位置时,机组的转速通过重锤的开度使
杠杆 DEF 重新回复到使Ⅱ的活门完全关闭的
位置时才会结束,这时B点就回到原来的位置。
K L*
dpl 2 a1 2a2 f* 3a3 f* df = 0.4+2*0.1*0.94+3*0.2*0.94 2 1.11816
例3-2 某电力系统总有功负荷为3200MW(包括 电网的有功损耗),求负荷频率调节效应系数 KL值。系统的频率为50Hz。若KL*=1.5,负荷增 长到3650MW时,KL又是多少? 解: KL=KL*×PLN/fN=1.5×3200/50=96 (MW/Hz) 系统的KL*值不变,负荷增长到3650MW时,则 KL=1.5×3650/50=109.5 (MW/Hz) 即频率降低 1Hz ,系统负荷减少 l09.5MW ,由 此可知,KL的数值与系统的负荷大小有关。
ΔPw*=ε/R*
•
1)ΔPW*与失灵度ε成正比, 而与调差系数R*成
反比。过小的调差系数将会引起较大的功率
分配误差,所以R*不能太小。
2 )如果不灵敏区太小或完全没有,那么当系
统频率发生微小波动时,调速器也要调节,
这样会使阀门的调节过分频繁。
3) 汽轮发电机组调速器的不灵敏区为0.1~0.5%,
化的百分数及其相应的KL∗值。
解:由(3-3)式可求出频率下降到47Hz时系统的负荷为
Pl* = a0+a1f*+a2f*2+ ......anf*n =0.3+0.4×0.94+0.1×0.942+0.2×0.943 =0.3+0.376+0.088+0.166 =0.930 则 ΔPL% =(1-0.930)×100=7 于是 KL*=ΔPL%/Δf%=7/6=1.17
Pl —系统频率为f时,整个系统的有功负荷
Ple—系统频率为额定值fe时整个系统的有功负荷 a0 , a1 , an,,……— 为上述各类负荷占 Ple 的比例系 数
将上式除以Ple,则得标么值形式,即
Pl*=a0+a1f*+a2f*2+ ......anf*n
通常与频率变化三次方以上成正比的负荷很少,如忽略 其影响,并将上式对频率微分,得
或写成 : Δf*+R*ΔPG*=0 上式又称为发电机组的静态调节方程。
在计算功率与频率的关系时,常常采用调差
系数的倒数,
KG* =1/R=-ΔPG*/Δf*
KG*——发电机的功率-频率特性系数,或原
动机的单位调节功率。一般发电机的调差系数
或单位调节功率,可采用下列数值:
对汽轮发电机组 :R*=(4~6)%或 KG*=16.6~25;
3)由于C" 上升了,所以A" 必定低于A。这
说明调速过程结束时,出力增加,转速稍
有降低。
4) 调速器是一种有差调节器。
5) 通过伺服马达改变D点的位置,就可以
达到将调速器特性上下平移的目的。
(二)发电机的调差系数
同步发电机的频率调差系数R
R=−Δf /ΔPG
负号表示发电机输出功率的变化和频率的变化符号 相反。调差系数R的标幺值表示为
3)与频率的二次方成比例的负荷,如变压器
中的涡流损耗,但这种损耗在电网有功损耗
中所占比重较小;
4)与频率的三次方成比例的负荷,如通风
机、静水头阻力不大的循环水泵等; 5)与频率的更高次方成比例的负荷,如静 水头阻力很大的给水泵等。
第一节 电力系统的频率特性
负荷的功率—频率特性一般可表示为 (3-2) 式中: fe —额定频率
对水轮发电机组: R*=(2~4)%或 KG*=25~50。
KL*称为负荷的调节效应系数。
对于不同的电力系统, KL∗值也 不相同。一般KL∗ =1~3。
(三)调差特性与机组间有功功率分配的关系
曲线①代表1号发电机组的调节特性。 曲线②代表2号发电机组的调节特性。
系统频率为 fe: 线段CB的长度所示系统总负荷ΣPL。 1 号机承担的负荷为 P1 , 2 号机承担的负
或写成:
KL*称为负荷的调节效应系数。
第一节 电力系统的频率特性
说明:
1)负荷的频率效应起到减轻系统能量不平衡
的作用。
2)称KL∗为负荷的频率调节效应系数。
3 )电力系统允许频率变化的范围很小,为
此负荷功率与频率的关系曲线可近似地视为具
有不变斜率的直线。这斜率即为KL∗ 。
4)KL∗表明系统频率变化1%时,负荷功率
第一节 电力系统的频率特性
三、发电机组的功率—频率特性 a)发电机组转速的调整是由原动机的调速系统 来实现的。 b)通常把由于频率变化而引起发电机组输出功 率变化的关系称为发电机组的功率—频率特性 或调节特性。 c)发电机组的功率—频率特性取决于调速系统 的特性。
第一节 电力系统的频率特性
第一节 电力系统的频率特性
二、电力系统负荷的调节效应 1)当系统频率变化时,整个系统的有功负荷 也要随着改变, 即: PL = F(f) 这种有功负荷随频率而改变的特性叫做负 荷的功率 — 频率特性,是负荷的静态频率特 性,也称作负荷的调节效应。
2)电力系统中各种有功负荷与频率的关系: (1)与频率变化无关的负荷,如照明、电 弧炉、电阻炉、整流负荷等; (2)与频率成正比的负荷,如切削机床、 球磨机、往复式水泵、压缩机、卷扬机等;