材料力学复习题第三章 扭 转
材料力学第3 章 扭 转习题及答案
第 三 章 扭 转一、判断题1.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。
( × ) 2.薄壁圆管和空心圆管的扭转切应力公式完全一样。
( × ) 3.圆杆扭转变形实质上是剪切变形。
( √ ) 4.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。
( √ )5.材料相同的圆杆,它们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。
( × ) 6.切应力互等定理,仅适用于纯剪切情况。
( × ) 7.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。
( √ ) 8.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。
( √ ) 9.受扭圆轴的最大切应力只出现在横截面上。
( × ) 10. 因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭矩达到某一极限值时,圆杆将沿轴线方向出现裂纹。
( √ )二、填空题1.一级减速箱中的齿轮直径大小不等,在满足相同的强度条件下,高速齿轮轴的直径要比低速齿轮轴的直径( 小 )。
2. 当实心圆轴的直径增加1培时,其抗扭强度增加到原来的( 8 )倍,抗扭刚度增加到原来的( 16 )倍。
3. 直径D=50mm 的圆轴,受扭矩T=2.15kn.m ,该圆轴横截面上距离圆心10mm 处的剪应力τ=(35.0 MPa ),最大剪应力τmax=(87.6 MPa )。
4. 一根空心轴的内外径分别为d ,D ,当D=2d 时,其抗扭截面模量为(33256153215D d ππ或)。
5. 直径和长度均相等的两根轴,在相同的扭矩作用下,而材料不同,它们的τmax 是( 相 )同的,扭转角φ是( 不 )同的。
6. 等截面圆轴扭转时的单位长度相对扭转角为θ,若圆轴直径增大一倍,则单位长度扭转角将变为(16θ)。
材料力学第三章 扭转
n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2
材料力学:第三章扭转强度
解:
A
TA
Ip
1000 0.015 0.044 (1 0.54 )
63.66MPa32max来自T Wt1000
0.043 (1 0.54 )
84.88MPa
16
min
max
10 20
42.44 MPa
例:一直径为D1的实心轴,另一内外径之 比α=d2/D2=0.8的空心轴,若两轴横截面上 的扭矩相同,且最大剪应力相等。求两轴外直
NA=50 马力,从动轮B、C、D输出功率分 别为 NB=NC=15马力 ,ND=20马力,轴的 转速为n=300转/分。作轴的扭矩图。
解:
mA
7024
NA n
7024 50 300
1170 N m
mB
mC
7024
NB n
7024 15 300
351 N m
mD
7024 NC n
/m
例:实心圆轴受扭,若将轴的直径减小一半
时,横截面的最大剪应力是原来的 8 倍?
圆轴的扭转角是原来的 16 倍?
max
T Wt
T
d3
16
Tl Tl
GIp
d4
G
32
例:图示铸铁圆轴受扭时,在_45_ 螺_旋_ 面上 发生断裂,其破坏是由 最大拉 应力引起的。 在图上画出破坏的截面。
例:内外径分别为20mm和40mm的空心圆截 面轴,受扭矩T=1kN·m作用,计算横截面上A 点的切应力及横截面上的最大和最小切应力。
7024 20 468 N m 300
N A 50 PS N B N C 15 PS N D 20 PS n = 300 rpm
mA 1170 N m mB mC 351 N m mD 468 N m
材料力学-第三章扭转
3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件
0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析
圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16
强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3
4
3
d 0.886 d
2
Mn
a
2
Mn 0.208 0.886 d
b
6.913
材料力学扭转练习题
材料力学扭转练习题基本概念题一、选择题1. 图示传动轴,主动轮A的输入功率为PA =0 kW,从动轮B,C,D,E的输出功率分别为PB =0 kW,PC = kW,PD = 10 kW,PE = 1kW。
则轴上最大扭矩T。
A.BA段 B.AC段 C.CD段 D.DE段max出现在题1图2. 图示单元体的应力状态中属正确的纯剪切状态的是。
题2图3. 上题图示单元体的应力状态中属正确的是。
4. 下列关于剪应力互等定理的论述中正确的是。
A.剪应力互等定理是由平衡B.剪应力互等定理仅适用于纯剪切的情况C.剪应力互等定理适用于各种受力杆件D.剪应力互等定理仅适用于弹性范围E.剪应力互等定理与材料的性能无关5. 图示受扭圆轴,其横截面上的剪应力分布图正确的是。
-12-题5图6. 实心圆轴,两端受扭转外力偶作用。
直径为D时,设轴内的最大剪应力为?,若轴的直径改为D2,其它条件不变,则轴内的最大剪应力变为。
A.8? B.?C.16? D.?7. 受扭空心圆轴,在横截面积相等的条件下,下列承载能力最大的轴是。
A.??0 B.??0.5C.??0. D.??0.88. 扭转应力公式T?的适用范围是。
IpA.各种等截面直杆 B.实心或空心圆截面直杆C.矩形截面直杆 D.弹性变形 E.弹性非弹性范围 9. 直径为D的实心圆轴,最大的容许扭矩为T,若将轴的横截面积增加一倍,则其最大容许扭矩为。
A.2TB.2T C.22TD.4T10. 材料相同的两根圆轴,一根为实心,直径为D1;另一根为空心,内径为d2,外径为D2d2D??。
若两轴横截面上的扭矩T,和最大剪应力?max均相同,则两轴外径之比1 D2D2为。
A.1??B.1?? C.343D.411. 阶梯圆轴及其受力如图所示,其中AB段的最大剪应力?max1与BC段的最大剪应力?max2的关系是。
A.?max1??max2B.?max1?313?max2C.?max1??max2D.?ma x1??max248-13-题12图题13图12. 在图示的圆轴中,AB段的相对扭转角?1和BC段的相对扭转角?2的关系是。
材料力学第3章扭转
τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx
令
dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy
故
τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理
《材料力学》第3章 扭转 习题解
第三章扭转 习题解[习题3-1] 一传动轴作匀速转动,转速min /200r n =,轴上装有五个轮子,主动轮II 输入的功率为60kW ,从动轮,I ,III ,IV ,V 依次输出18kW ,12kW ,22kW 和8kW 。
试作轴的扭图。
解:(1)计算各轮的力偶矩(外力偶矩) nN T ke 55.9= 外力偶矩计算(kW 换算成kN.m)题目编号 轮子编号轮子作用 功率(kW) 转速r/minTe (kN.m ) 习题3-1I 从动轮 18 200 0.859 II 主动轮 60 200 2.865 III 从动轮 12 200 0.573 IV 从动轮 22 200 1.051 V从动轮82000.382(2) 作扭矩图[习题3-2] 一钻探机的功率为10kW ,转速min /180r n =。
钻杆钻入土层的深度m l 40=。
如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m ,并作钻杆的扭矩图。
解:(1)求分布力偶的集度m)(5305.018010549.9549.9m kN n N M k e ⋅=⨯== 设钻杆轴为x 轴,则:0=∑xMe M ml =)/(0133.0405305.0m kN l M m e ===(2)作钻杆的扭矩图T 图(kN.m)x x lM mx x T e0133.0)(-=-=-=。
]40,0[∈x 0)0(=T ; )(5305.0)40(m kN M T e ⋅-==扭矩图如图所示。
[习题3-3] 圆轴的直径mm d 50=,转速为120r/min 。
若该轴横截面上的最大切应力等于60MPa ,试问所传递的功率为多大? 解:(1)计算圆形截面的抗扭截面模量:)(245445014159.3161161333mm d W p =⨯⨯==π (2)计算扭矩2max /60mm N W Tp==τ )(473.1147264024544/6032m kN mm N mm mm N T ⋅=⋅=⨯=(3)计算所传递的功率 )(473.1549.9m kN nN M T ke ⋅=== )(5.18549.9/120473.1kW N k =⨯=[习题3-4] 空心钢轴的外径mm D 100=,内径mm d 50=。
材料力学笔记(第三章)
材料力学(土)笔记第三章 扭 转1.概 述等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解2.薄壁圆筒的扭转设一薄壁圆筒的壁厚δ远小于其平均半径0r (10r ≤δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。
相对扭转角:圆筒两端截面之间相对转动的角位移,用ϕ来表示圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得⎰=⨯AT r dA τ由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分⎰==Ar A dA δπ02为圆筒横截面面积,引进π200r A =,从而得到δτ02A T=由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角ϕ之间的关系式,式子中r 为薄壁圆筒的外半径γϕγsin /==l r 当外力偶矩在某一范围内时,相对扭转角ϕ与外力偶矩e M (在数值上等于T )之间成正比可得τ和r 间的线性关系为γτG =上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=剪切胡克定律只有在切应力不超过某材料的某极限值时才适用该极限称为材料的剪切比例极限p τ,适用于切应力不超过材料剪切比例极限的线弹性范围3.传动轴的外力偶矩·扭矩及扭矩图 3.1 传动轴的外力偶矩设一传动轴,其转速为n (r/min ),轴传递的功率由主动轮输入,然后通过从动轮分配出去 设通过某一轮所传递的功率为P ,常用单位为kW 1 kW=1000 W ;1 W=1 J/s ; 1 J=1 N ·m当轴在稳定转动时,外力偶在t 秒内所做的功等于其矩e M 与轮在t 秒内的转角α之乘积 因此,外力偶每秒钟所作的功即功率P 为310}{}{}{}{-⋅⨯=sradmN e kW t M P α 3/10}{}{-⋅⨯=s rad m N e M ω3min/1060}{2}{-⋅⨯⨯⨯=r m N e n M π 即得到作用在该轮上的外力偶矩为min/3min /3}{}{1055.9}{26010}{}{r kWr kW mN e n P n P M ⨯=⨯⨯=⋅π 外力偶的转向,主动轮上的外力偶的转向与轴的转动方向相同,从动轮上的外力偶的转向则与轴的转动方向相反3.2 扭矩及扭矩图可用截面法计算轴横截面上的扭矩为使从两段杆所求得的同一横截面上扭矩的正负号一致按杆的变化情况,规定杆因扭转而使其纵向线在某段内有变成右手螺旋线的趋势时 则该段杆横截面上的扭矩为正,反之为负 若将扭矩按右手螺旋法则用力偶矢表示,则当力偶矢的指向离开截面时扭矩为正,反之为负 为了表明沿杆轴线各横截面上扭矩的变化情况,从而确定最大扭矩及其所在横截面的位置 可仿照轴力图的作法绘制扭矩图4.等直圆杆扭转时的应力·强度条件 4.1 横截面上的应力与薄壁圆筒相仿,在小变形下,等直圆杆在扭转时横截面上也只有切应力 ①几何方面为研究横截面上任意一点处切应变随点的位置而变化的规律 在等直圆杆的表面上作出任意两个相邻的圆周线和纵向线 当杆的两端施加一对其矩为e M 的外力偶后,可以发现:两圆周线绕杆轴线相对旋转了一个角度,圆周线的大小和形状均为改变在变形微小的情况下,圆周线的间距也未变化 纵向线则倾斜了一个角度γ假设横截面如同刚性平面般绕杆的轴线转动,即平面假设 上述假设只适用于圆杆为确定横截面上任一点处的切应变随点的位置而变化的规律 假想地截取长为dx 的杆段进行分析由平面假设可知,截面b-b 相对于截面a-a 绕杆轴转动了一个微小的角度ϕd 因此其上的任意半径也转动了同一角度ϕd由于截面转动,杆表面上的纵向线倾斜了一个角度γ纵向线的倾斜角γ就是横截面周边上任一点A 处的切应变同时经过半径上任意一点的纵向线在杆变形后也倾斜了一个角度ργρ为圆心到半径上点的距离即为横截面半径上任意一点处的且应变 由几何关系可得dxd ϕργγρρ=≈tan即dxd ϕργρ=上式表示等直接圆杆横截面上任一点处的切应变随该点在横截面上的位置而变化的规律②物理方面由剪切胡可定律可知,在线弹性范围内,切应力与切应变成正比 令相应点处的切应力为ρτ,即得横截面上切应力变化规律表达式dxd G G ϕργτρρ== 由上式可知,在同一半径ρ的圆周上各点处的切应力ρτ 值均相等,其值与ρ成正比因ργ为垂直于半径平面内的切应变,故ρτ的方向垂直于半径③静力学方面由于在横截面任一直径上距圆心等远的两点处的内力元素dA ρτ等值且反向则整个截面上的内力元素dA ρτ的合力必等于零,并组成一个力偶,即为横截面上的扭矩T 因为ρτ的方向垂直于半径,故内力元素dA ρτ对圆心的力矩为dA ρρτ 由静力学中的合力矩原理可得⎰=AT dA ρρτ经整理后得⎰=A T dA dxd G2ρϕ上式中的积分⎰AdA 2ρ仅与横截面的几何量有关,称为极惯性矩,用p I 表示⎰=Ap dA I 2ρ其单位为4m ,整理得pGI Tdx d =ϕ 可得pI T ρτρ=上式即等直圆杆在扭转时横截面上任一点处切应力的计算公式当ρ等于横截面的半径r 时,即在横截面周边上的各点处,切应力将达到其最大值p I Tr =max τ 在上式中若用p W 代表r I p /,则有pW T =m ax τ 式中,p W 称为扭转截面系数,单位为3m推导切应力计算公式的主要依据为平面假设,且材料符合胡克定律 因此公式仅适用于在线弹性范围内的等直圆杆 为计算极惯性矩和扭转截面系数在圆截面上距圆心为ρ处取厚度为ρd 的环形面积作为面积因素 可得圆截面的极惯性矩为⎰⎰===Ad p d d dA I 32242032πρπρρ圆截面的扭转截面系数为162/3d d I rI W p p p π===由于平面假设同样适用于空心截面杆件,上述切应力公式也适用于空心圆截面杆 设空心圆截面杆的内、外直径分别为d 和D ,其比值Dd =α 则可得空心圆截面的极惯性矩为⎰⎰-===AD d p d D d dA I )(322442232πρπρρ所以)1(3244απ-=D I p扭转截面系数为)1(1616)(2/4344αππ-=-==D Dd D D I W p p4.2 斜截面上的应力在圆杆的表面处用横截面、径向截面及与表面相切的面截取一单元体在其左右两侧(即杆的横截面)上只有切应力τ,其方向与y 轴平行 在其前后两平面(即与杆表面相切的面)上无任何应力 由于单元体处于平衡状态,故由平衡方程0=∑yF可知单元体在左右两侧面上的内力元素dydz τ应是大小相等,指向相反的一对力并组成一个力偶,其矩为dx dydz )(τ 为满足令两个平衡方程,0=∑xF和0=∑z M在单元体上、下两个平面上将有大小相等、指向相反的一对内力元素dxdz 'τ 并组成其矩为dy dxdz )('τ的力偶该力偶与前一力偶矩数值相等而转向相反,从而可得ττ='上式表明,两相互垂直平面上的切应力τ和'τ数值相等,且均指向(或背离)该两平面的交线,称为切应力互等定理 该定理具有普遍意义纯剪切应力状态:单元体在其两对互相垂直的平面上只有切应力而无正应力的状态 等直圆杆和薄壁圆筒在发生扭转时,其中的单元体均处于纯剪切应力状态现分析在单元体内垂直于前、后量平面的任意斜截面上的应力 斜截面外法线n 与x 轴的夹角为α规定从x 轴至截面外法向逆时针转动时α为正,反之为负 应用截面法,研究其左边部分的平衡设斜截面ef 的面积为dA ,则eb 面和bf 面的面积分别为αcos dA 和αsin dA 选择参考轴ξ和η分别于斜截面ef 平行和垂直 由平衡方程∑=0ηF 和∑=0ξF即0cos )sin (sin )cos ('=++ααταατσαdA dA dA0sin )sin (cos )cos ('=+-ααταατταdA dA dA利用切应力互等定理公式,整理后即得任意一斜截面ef 上的正应力和切应力的计算公式ατσα2sin -= αττα2cos =单元体的四个侧面(ο0=α和ο90=α)上的切应力绝对值最大,均等于το45-=α和ο45=α两截面上正应力分别为τσσ+==max 45οτσσ-==min 45ο即该两截面上的正应力分别为ασ中的最大值和最小值,即一为拉应力,另一为压应力 其绝对值均等于τ,且最大、最小正应力的作用面与最大切应力的作用面之间互成45° 这些结论是纯剪切应力状态的特点,不限于等直圆杆在圆杆的扭转试验中,对于剪切强度低于拉伸强度的材料(如低碳钢),破坏是由横截面上的最大切应力引起,并从杆的最外层沿与杆轴线约成45°倾角的螺旋形曲面发生拉断而产生的在最大切应力相等的情况下,空心圆轴的自重较实心圆轴为轻,比较节省材料4.3 强度条件强度条件是最大工作切应力不超过材料的许用切应力,即][max ττ≤等直圆杆的最大工作应力存在于最大扭矩所在横截面即危险截面的周边上任一点,即危险点 上述强度条件可写为][maxτ≤pW T5.等直圆杆扭转时的变形·刚度条件 5.1 扭转时的变形 等直杆的扭转变形是用两横截面绕杆轴相对转动的相对角位移,即相对扭转角ϕ来度量的ϕd 为相距dx 的两横截面间的相对扭转角 因此,长为l 的一段杆两端面间的相对扭转角 长为l 的一段杆两端间的相对扭转角ϕ为⎰⎰==lpldx GI Td 0ϕϕ 当等直圆杆仅在两端受一对外力偶作用时,则所有横截面上的扭矩T 均相同 且等于杆端的外力偶矩e M对于由同一材料制成的等直圆杆,G 及p I 亦为常量,则可得pe GI l M =ϕ或p GI Tl =ϕϕ的单位为rad ,其正负号随扭矩T 而定由上式可见,相对扭转角ϕ与p GI 成反比,p GI 称为等直圆杆的扭转刚度由于杆在扭转时各横截面上的扭矩可能并不相同,且杆的长度也各不相同因此在工程中,对于扭转杆的刚度通常用相对扭转角沿杆长度的变化率dx d /ϕ来度量,称为单位长度扭转角,并用'ϕ表示pGI T dx d ==ϕϕ' 公式只适用于材料在线弹性范围内的等直圆杆例题3-5截面C 相对于截面B 的扭转角,应等于截面A 相对于B 的扭转角与截面C 相对于A 的扭转角之和AC BA BC ϕϕϕ+=5.2 刚度条件等直杆扭转时,除需满足强度条件外,有时还需满足刚度条件刚度要求通常是限制器单位长度扭转角'ϕ中最大值不超过某一规定的允许值]['ϕ,即][''max ϕϕ≤上式即为等直圆杆在扭转时的刚度条件式中,]['ϕ称为许可单位长度扭转角,其常用单位是m /)(ο需要将单位换算,于是可得][180'max ϕπ≤⨯p GI T 许可单位长度扭转角是根据作用在轴上的荷载性质以及轴的工作条件等因素决定的6.等直圆杆扭转时的应变能当圆杆扭转变形时,杆内将积蓄应变能计算杆内应变能,需先计算杆内任一点处的应变能密度,再计算全杆内所积蓄的应变能 受扭圆杆的任一点处于纯剪切应力状态设其左侧面固定,则单元体在变形后右侧面将向下移动dx ⋅γ当材料处于线弹性范围内,切应力与切应变成正比,且切应变值很小 因此在变形过程中,上、下两面上的外力将不作功只有右侧面上的外力dydz ⋅τ对相应的位移dx ⋅γ做功,其值为)(21))((21dxdydz dx dydz dW τγγτ=⋅⋅=单元体内所积蓄的应变能εdV 数值上等于dW 于是可得单位体积内的应变能即应变能密度εv 为τγεε21===dxdydz dW dV dV v 根据剪切胡克定律,上式可改写为Gv 22τε=或22γεG v =求得受扭圆杆任一点处的应变能密度εv 后,全杆的应变能εV 可由积分计算dAdx v dV v V Vl A⎰⎰⎰==εεεV 为杆的体积,A 为杆的横截面积,l 为杆长若等直杆仅在两端受外力偶矩e M 作用,则任一横截面的扭矩T 和极惯性矩p I 均相同可得杆内得应变能为222222222)(22ϕρτεlGI GI l M GI l T dA I T G l dAdx G V p p e A p p l A =====⎰⎰⎰以上应变能表达式也可利用外力功与应变能数值上相等的关系,直接从作用在杆端的外力偶矩e M 在杆发生扭转过程中所做的功W 算得7.等直非圆杆自由扭转时的应力和变形对于非等直圆杆,在杆扭转后横截面不在保持为平面取一矩形截面杆,事先在其表面绘出横截面的周线,则在杆扭转后,这些周线变成了曲线 从而可以推知,其横截面在杆变形后将发生翘曲而不再保持平面 对于此类问题,只能用弹性的理论方法求解 等直非圆杆在扭转时横截面发生翘曲,但当等直杆在两端受外力偶作用,且端面可以自由翘曲时,称为纯扭转或自由扭转这时,杆相邻两横截面的翘曲程度完全相同,横截面上仍然是只有切应力没有正应力若杆的两端受到约束而不能自由翘曲,称为约束扭转,则其相邻两横截面的翘曲程度不同,将在横截面上引起附加的正应力8.开口和闭口薄壁截面杆自由扭转时的应力和变形 8.1 开口薄壁截面杆薄壁截面的壁厚中线是一条不封闭的折线或曲线,责成开口薄壁截面如各种轧制型钢(工字钢、槽钢、角钢等)或工字形、槽形、T 字型截面等8.2 闭口薄壁截面杆薄壁截面的壁厚中线是一条封闭的折线或曲线,这类截面称为闭口薄壁截面 讨论这类杆件在自由扭转时的应力和变形计算设一横截面为任意形状、变厚度的闭口薄壁截面等直杆 在两自由端承受一对扭转外力偶作用杆横截面上的内力为扭矩,因此其横街满上将只有切应力 假设切应力沿壁厚无变化,且其方向与壁厚的中线相切在杆的壁厚远小于其横截面尺寸时,又假设引起的误差在工程计算中是允许的 取dx 的杆段,用两个与壁厚中线正交的纵截面从杆壁中取出小块ABCD 设横截面上C 和D 两点处的切应力分别为1τ和2τ,而壁厚分别为1δ和2δ 根据切应力互等定理,在上、下两纵截面上应分别有切应力2τ和1τ 由平衡方程0=∑xF,dx dx 2211δτδτ=可得2211δτδτ=由于所取的两纵截面是任意的,上式表明横截面沿其周边任一点处的切应力τ与该点处的壁厚δ乘积为一常数常数=τδ沿壁厚中线取出长为ds 的一段,在该段上的内力元素为ds ⋅τδ 其方向与壁厚中线相切,其对横截面内任意一点O 的矩为r ds dT )(⋅=τδr 是从矩心O 到内力元素ds ⋅τδ作用线的垂直距离由力矩合成原理可知,截面上扭矩应为dT 沿壁厚中线全长s 的积分,即得⎰⎰⎰===sssrds rds dT T τδτδrds 为图中阴影三角形面积2倍故其沿壁厚中线全长s 的积分应是该中线所围面积0A 的2倍,于是可得02A T ⨯=τδ或者δτ02A T=上式即为闭口薄壁截面等直杆在自由扭转时横截面上任一点处切应力的计算公式 可得杆截面上最大切应力为min0max 2δτA T =式子中,min δ为薄壁截面的最小壁厚闭口薄壁截面等直杆的单位长度扭转角可按功能原理来求得22022028)2(212δδτεGA T A T G G v === 根据应变能密度计算扭转时杆内应变能的表达式,得单位长度杆内得应变能为⎰⎰==V V dVGA T dV v V 22028δεε 式子中,V 为单位长度杆壁的体积,ds ds dV ⨯=⨯⨯=δδ1,代入上式⎰=s dsGA T V δε2028 计算单位长度杆两端截面上的扭矩对杆段的相对扭转角'ϕ所做的功,杆在线弹性范围内2'ϕT W =因为W V =ε,则可解得⎰=sdsGA T δϕ20'4即所要求得单位长度扭转角式子中的积分取决于杆的壁厚δ沿壁厚中线s 的变化规律,当壁厚δ为常数时,得到δϕ20'4GA Ts=式子中,s 为壁厚中线的全长如有侵权请联系告知删除,感谢你们的配合!。
材料力学第3章扭转总结
5 圆截面的极惯性矩Ip和扭转截面系数Wt
πd 4 实心圆截面: I P 32
πd 3 Wt 16
πD4 空心圆截面: I ( 4) 1 P 32
πd 3 Wt ( 4) 1 16
6. 强度条件
max [ ]
对于等直圆轴亦即
Tmax [ ] Wt
7. 刚度条件 等直圆杆在扭转时的刚度条件:
圆周扭转时切应力分布特点:
T
max
Tr r Ip
max
d
圆周扭转时切应力分布特点:在横截面的同一半径 r 的圆周上各点处的切应力r 均相同,其值 与r 成正比,
其方向垂直于半径。
横截面周边上各点处(r r)切应力最大。
即单元体的两个相互垂直的面上,与该两个面的交线 垂直的切应力 和 数值相等,且均指向(或背离)该两个 面的交线——切应力互等定理。
Tmax
180 [ ] GI p
l
Ti li *若为阶梯扭矩、阶梯截面 GI i 1 pi
总结
1 扭转外力特点:
垂直轴线的平面内受一对大小相等、转向相反 力偶作用
变形特点: 杆件的任意两个横截面围绕其轴线作相对转动
外力矩计算
{M e }Nm
{P}kw 9.55 10 {n} r
3
min
2 扭转时内力:扭矩
扭矩(torque)--其力偶作用面与横截面平行
Me
T(+) T
T(-)
3
材料力学_陈振中_习题第三章扭转
第三章 扭转3.1 作图示各杆的扭矩图。
(a )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m+m=0得T 1= -2m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2 +m=0得T 2= -m , 所以其实际为负。
(b )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1+m =0得T 1= -m , 所以其实际为负。
2)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2+m-3m=0 得T 2= 2m , 所以其实际为正 (c )解:1)求 1-1截面上的扭矩假设T 1为正,方向如上图所示。
由 ∑m=0 T 1-10-15-20+30=0得T 1= 15KN.m , 所以其实际为正。
T 1T 2(a2(b )mTT 12)求 2-2截面上的扭矩假设T 2为正,方向如上图所示。
由 ∑m=0 T 2-15-20+30=0得T 2= 5KN.m , 所以其实际为正。
3)求 3-3截面上的扭矩 假设T 3为正,方向如上图所示。
由 ∑m=0 T 3-20+30=0得T 3= -10KN.m , 所以其实际为负。
4)求 4-4截面上的扭矩假设T 4为正,方向如上图所示。
由 ∑m=0 T 4 +30=0得T 4= -30KN.m , 所以其实际为负。
3.2 T 为圆杆横截面上的扭矩,试画出截面上与T 对应的剪应力分布图。
解:3.5 D=50mm 直径的圆轴,受到扭矩T=2.15KN .m 的作用。
试求在距离轴心10mm 处的剪应力,并求轴横截面上的最大剪应力。
T 230kN.m T 3T 4(题3.2图(a ) (b )解:求距离轴心10mm 处的剪应力, 由 I P =πD 4/32=π×0.054/32=6.13×10-7 m 4 W t = I P /R=6.13×10-7/0.025=2.454×10-5 m 3τρ=Tρ/ I P =2.15×103×10×10-3/(6.13 ×10-7 ) =35MPa求轴横截面上的最大剪应力τmax =T/ W t =2.15×103/(2.454 ×10-5 ) =87.6MPa3.8 阶梯形圆轴直径分别为d 1=40mm ,d 2=70mm ,轴上装有三个皮带轮,如图所示。
材料力学复习题第三章 扭 转
第三章 扭 转一、判断题1.圆杆受扭时,杆内各点均处于纯剪切状态。
( ) 2.非圆截面杆不能应用圆杆扭转切应力公式,是因为非圆截面杆扭转时“平面假设”不能成立。
( ) 3.当剪应力超过材料的剪切比例极限时,剪应力互等定律亦成立。
( ) 4.一点处两个相交面上的剪应力大小相等,方向指向(或背离)该两个面的交线。
( ) 5.直径和长度相同,材料不同的两根轴,受相同的扭转力偶矩作用,它们的最大剪应力和最大扭转角都相同。
6. 杆件受扭时,横截面上最大切应力发生在距截面形心最远处。
( )7. 薄壁圆管和空心圆管的扭转切应力公式完全一样。
( )8. 圆杆扭转变形实质上是剪切变形。
( )9. 横截面的角点处的切应力必为零。
( ) 1.√ 2.√ 3.√ 4.× 5.× 6.×(非圆截面) 7.× 8.√ 9.× 二、单项选择题1. 图示圆轴曲面C 左、右两侧的扭矩MC+和M C-的( )。
A .大小相等,正负号相同;B .大小不等,正负号相同; C .大小不等,正负号不同;D .大小相等,正负号不同。
2. 直径为D 的实心圆轴,两端受扭转力矩作用。
轴内最大剪应力τ,若轴的直径改为D/2,则轴内的最大剪应力变为( )。
A .2τ; B .τ; C . 8τ; D .16τ。
3. 阶梯圆轴的最大切应力发生在( )。
A .扭矩最大的截面;B .直径最小的截面;C .单位长度扭转角最大的截面;D .不能确定。
4.空心圆轴的外径为D ,内径为d,α=d/D 。
其抗扭截面系数为( )。
A .()απ-=1163D W P ;B 。
()23116απ-=D W P ;C 。
()33116απ-=D W PD .()43116απ-=D WP5.扭转的切应力公式ρτρPPI M =适用于( )杆件。
A .任意截面; B .任意实心截面;C .任意材料的圆截面; D .线弹性材料的圆面。
第三章 材料力学-扭转
上计算中对此并未考核。
例题3-2、3-4好好看一下(重要)
第三章 扭转
§3-5 等直圆杆扭转时的变形· 刚度条件
Ⅰ. 扭转时的变形
等直圆杆的扭转变形可用两个横截面的相对扭转角(相对角位移) 来度量。
Me
Me
A D B C
由前已得到的扭转角沿杆长的变化率(亦称单位长度扭 d T 转角)为 可知,杆的相距 l 的两横截面之间的 d x GI p 相对扭转角为 l T d dx l 0 GI p
!把重点放在前两条上面(红色字体)
第三章 扭转
受力特点: 杆件的两端作用两个大小相等、转向相反、且作用面垂直于杆件轴线
的力偶。
Me
Me
变形特点: Ⅰ. 相邻横截面绕杆的轴线相对转动; Ⅱ. 杆表面的纵向线变成螺旋线; Ⅲ. 实际构件在工作时除发生扭转变形外,
还伴随有弯曲或拉、压等变形。
第三章 扭转
D
解:轴的扭矩等于轴传递的转矩
T M 1.98KNm
轴的内,外径之比
M M t
d D 2t 0.934 D D
d
D
D 4 (1 4 ) IP 7.82105 mm4 32 IP Wt 2.06104 mm3 D 2
由强度条件 由刚度条件
max
第三章
扭转
扭转这一章节一般出一道大题,而且这一章题型比较独立,不牵涉其 他章节的知识点,这一章题分值大概15分,而且题型比较简单,把公式记 牢,概念好好理解,应该问题不大。
• 铁大考试大纲: 扭转(5-10%) (1)掌握圆轴扭转时横截面上的扭矩计算和切应力计算方 法,掌握握圆轴扭转的变形计算方法。 (2)熟练运用强度条件和刚度条件对圆轴进行设计。 (3)理解应变能的概念并能够进行杆件的应变能计算。 (4)了解矩形截面杆自由扭转时的应力和变形计算方法。
材料力学第三章扭转复习题
第三章 扭转1.等截面圆轴上装有四个皮带轮,如何安排合理,现有四种答案:(A ) 将C 轮与D 轮对调; (B ) 将B 轮与D 轮对调; (C ) 将B 轮与C 轮对调;(D ) 将B 轮与D 轮对调;然后将B 轮与C 轮对调;正确答案是 a 。
2.薄壁圆管受扭转时的剪应力公式为 ()t R T 22/πτ= ,(R 为圆管的平均半径,t 为壁厚)。
关于下列叙述,(1) 该剪应力公式可根据平衡关系导出;(2) 该剪应力公式可根据平衡、几何、物理三方面条件导出; (3) 该剪应力公式符合“平面假设”;(4) 该剪应力公式仅适用于R t <<的圆管。
现有四种答案: (A ) (1)、(3)对; (B ) (1)、(4)对; (C ) (2)、(3)对; (D ) 全对;正确答案是 b 。
3.建立圆轴的扭转应力公式 p p I T /ρτ=时,“平面假设”起到的作用于有 下列四种答案:(A ) “平面假设”给出了横截面上内力与应力的关系⎰=AdA T τρ;(B ) “平面假设”给出了圆轴扭转时的变形规律;(C ) “平面假设”使物理方程得到简化;(D ) “平面假设”是建立剪应力互等定理的基础。
正确答案是 。
4.满足平衡条件,但剪应力超过比例极限时,有下述四种结论:(A ) (B ) (C ) (D ) 剪应力互等定理: 成立 不成立 不成立 成立 剪切虎克定律 : 成立 不成立 成立 不成立 正确答案是 。
D5.一内、外直径分别为d 、D 的空心圆轴,其抗扭截面系数有四种答案:(A )()()16/16/33d D W t ππ-=;(B )()()32/32/33d DW t ππ-=;(C )()[]()4416/d D D W t-=π; (D )()()32/32/44d D W tππ-=;正确答案是 c 。
6.一内外径之比为D d /=α的空心圆轴, 当两端受扭转力偶矩时,横截面的最大剪应为τ,则内圆周处的剪应力有四种答案: (A )τ; (B )ατ;(C ) ()τα31-; (D )()τα41-正确答案是 b 。
材料力学习题扭转
-12-基本概念题一、选择题(如果题目有5个备选答案,选出 2〜5个正确答案,有 4个备选答案选出 一个正确答案。
)1. 图示传动轴,主动轮 A 的输入功率为 P A = 50 kW ,从动轮B ,C , D ,E 的输出功率 分另为 P B = 20 kW ,P C = 5 kW ,P D = 10 kW ,P E = 15 kW 。
则轴上最大扭矩 T 出现在max)。
A . BA 段B . AC 段C . CD 段D . DE 段题1图2.图示单元体的应力状态中属正确的纯剪切状态的是( )。
题2图3. 上题图示单元体的应力状态中属正确的是(4. 下列关于剪应力互等定理的论述中正确的是( A. 剪应力互等定理是由平衡B. 剪应力互等定理仅适用于纯剪切的情况C. 剪应力互等定理适用于各种受力杆件D. 剪应力互等定理仅适用于弹性范围E. 剪应力互等定理与材料的性能无关5.图示受扭圆轴,其横截面上的剪应力分布图正确的是鼻i题5图6.实心圆轴,两端受扭转外力偶作用。
直径为D时,设轴内的最大剪应力为,若轴的直径改为D 2,其它条件不变,则轴内的最大剪应力变为()。
A. 8 C. 167.受扭空心圆轴(d/D ),在横截面积相等的条件下,下列承载能力最大的轴是( )°A. 0 (实心轴)B.0.5 C. 0.6 0.88. 扭转应力公式+的适用范围是(A.C.9. B .实心或空心圆截面直杆D .弹性变形各种等截面直杆矩形截面直杆直径为D的实心圆轴,最大的容许扭矩为T,若将轴的横截面积增加一倍,则其最大容许扭矩为(E.弹性非弹性范围A. -2TB. 2TC. 2 2TD. 4T10.材料相同的两根圆轴,一根为实心,直径为D1;另一根为空心,内径为d2,外径亠d2为D2 £°若两轴横截面上的扭矩T,和最大剪应力max均相同,则两轴外径之比旦D2A. 1B. 1C. (1 3)13 4.13D . (1 )11.阶梯圆轴及其受力如图所示, 其中AB段的最大剪应力max1 与BC段的最大剪应力max2的关系是()°A Rmax1 max 2 max1 3max22Cmax1 max 2D. max138 max2-13--14-题12图题13图12.在图示的圆轴中,AB 段的相对扭转角1和 BC段的相对扭转角2的关系:()。
材料力学第三章答案
材料力学第三章答案【篇一:材料力学习题册答案-第3章扭转】是非判断题二、选择题0 b 2t?d316?1?? ? b wp??d316?1?? ?2c wp??d316?1?? ? d w3p??d316?1?? ?46.对于受扭的圆轴,关于如下结论:①最大剪应力只出现在横截面上;②在横截面上和包含杆件的纵向截面上均无正应力;③圆轴内最大拉应力的值和最大剪应力的值相等。
现有四种答案,正确的是( a )a ②③对 b①③对 c①②对d 全对 7.扭转切应力公式?mnp?i?适用于( d)杆件。
pa 任意杆件;b 任意实心杆件;c 任意材料的圆截面;d 线弹性材料的圆截面。
9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( d a 2倍; b 4倍; c 8倍; d 16倍。
三、计算题1.试用截面法求出图示圆轴各段内的扭矩t,并作扭矩图2.图示圆轴上作用有四个外力偶矩 me1 =1kn/m, me2 =0.6kn/m,)me3= me4 =0.2kn/m, ⑴试画出该轴的扭矩图;⑵若 me1与me2的作用位置互换,扭矩图有何变化?(1)(2)解: me1与me2的作用位置互换后,最大扭矩变小。
3.如图所示的空心圆轴,外径d=100㎜,内径d=80㎜,m=6kn/m,m=4kn/m.请绘出轴的扭矩图,并求出最大剪应力解:扭矩图如上,则轴面极惯性矩id4?d4)(1004?804)(10?3)4p=?(32??32?5.8?10?6m4㎜,l=500tr4?103?50?103ip5.8?104.图示圆形截面轴的抗扭刚度为g ip,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。
ab+ad=cdab=t1l?90?gipgipad=bc=t2l100gipgipcd=t3l40gipgip?90?100?4050?gipgip【篇二:《材料力学》第3章扭转习题解】[习题3-1] 一传动轴作匀速转动,转速n?200r/min,轴上装有五个轮子,主动轮ii输入的功率为60kw,从动轮,i,iii,iv,v依次输出18kw,12kw,22kw和8kw。
材料力学第3章-扭转
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 扭 转一、判断题1.圆杆受扭时,杆内各点均处于纯剪切状态。
( ) 2.非圆截面杆不能应用圆杆扭转切应力公式,是因为非圆截面杆扭转时“平面假设”不能成立。
( ) 3.当剪应力超过材料的剪切比例极限时,剪应力互等定律亦成立。
( ) 4.一点处两个相交面上的剪应力大小相等,方向指向(或背离)该两个面的交线。
( ) 5.直径和长度相同,材料不同的两根轴,受相同的扭转力偶矩作用,它们的最大剪应力和最大扭转角都相同。
6. 杆件受扭时,横截面上最大切应力发生在距截面形心最远处。
( )7. 薄壁圆管和空心圆管的扭转切应力公式完全一样。
( )8. 圆杆扭转变形实质上是剪切变形。
( )9. 横截面的角点处的切应力必为零。
( ) 1.√ 2.√ 3.√ 4.× 5.× 6.×(非圆截面) 7.× 8.√ 9.× 二、单项选择题1. 图示圆轴曲面C 左、右两侧的扭矩MC+和M C-的( )。
A .大小相等,正负号相同;B .大小不等,正负号相同; C .大小不等,正负号不同;D .大小相等,正负号不同。
2. 直径为D 的实心圆轴,两端受扭转力矩作用。
轴内最大剪应力τ,若轴的直径改为D/2,则轴内的最大剪应力变为( )。
A .2τ; B .τ; C . 8τ; D .16τ。
3. 阶梯圆轴的最大切应力发生在( )。
A .扭矩最大的截面;B .直径最小的截面;C .单位长度扭转角最大的截面;D .不能确定。
4.空心圆轴的外径为D ,内径为d,α=d/D 。
其抗扭截面系数为( )。
A .()απ-=1163D W P ;B 。
()23116απ-=D W P ;C 。
()33116απ-=D W PD .()43116απ-=D WP5.扭转的切应力公式ρτρPPI M =适用于( )杆件。
A .任意截面; B .任意实心截面;C .任意材料的圆截面; D .线弹性材料的圆面。
6.单位长度扭转角'ϕ与( )无关。
A.杆的长度; B.扭矩; C.材料性质; D.截面的几何性质。
7.切应力互等定理与剪切胡克定律的正确适用范围是()。
A.都只在比例极限范围内成立; B.超过比例极限时都成立;C.切应力互等定理在比例极限范围内成立,剪切胡克定律不受比例极限限制;D.剪切胡克定律在比例极限范围内成立,切应力互等定理不受比例极限限制。
8.在图示的四个单元体上τ与'τ为切应力。
它们中错误的是()。
9.图示正方形ABCD,变形后成为AB′C′D′。
该单元体的剪应变γ为()。
A.0 ; B.α; C. 2α; D.90°-α。
10.碳钢制成的圆轴在扭转变形时,单位长度扭转角'ϕ超过了许用值,为使轴的刚度满足安全,以下方案中最有效的是()。
A.改用合金钢; B.改用铸铁;C.减少轴的长度; D.增加轴的直径。
1. D2.C3.D4.D5.D6.D7.D8.D9.A 10.D三、填空题1.圆杆扭转时,根据,其纵截面上也存在切应力。
2.图示正方形单元体ABCD,变形后成为AB′C′D′。
单元体的切应变为。
3.在减速箱中,转速低的轴的直径比转速高的轴的直径。
4.材料和截面相同的四根轴的截面如图所示,从强度观点看,承受扭矩最大的的。
5.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的 倍。
6.空心圆轴,其内外径之比为α,扭转时轴内最大切应力为τ,这时横截面内边缘的切应力为 。
7.实心圆轴扭转,已知不发生屈服的极限扭矩为T0,若将横截面积增加一倍,那么极限扭矩是 。
8.轴线与木纹平行的要质圆杆受扭时,当扭矩达到某一极限时,杆表面将沿 方向出现裂纹,因为 。
1.切应力互等定理2. 2α3. 大(或粗)4. b5. 166. ατ7.022T 8. 轴线 因木材沿纤维方向抗剪能力弱四、作图题1. 作钻杆的扭矩图,假设土壤对钻杆的阻力是沿长度均匀分布的。
2. 绘出如图圆杆扭矩图,已知M 1=14kN.m ,M 2=8 kN.m 。
3.已知M 1=1kN.m ,M 2=0.6kN.m,M 3=0.2kN.m,M 4=0.2kN.m ,作轴的扭矩图。
4. 绘出如图圆轴扭矩图。
5. 绘出如图圆轴扭矩图。
6. 绘出如图圆杆扭矩图。
7. 绘出如图圆杆扭矩图。
8.一传动轴如图,转速;主动轮输入的功率P 1=500 kW ,三个从动轮输出的功率分别为:P 2= 150 kW ,P 3= 150 kW ,P 4= 200 kW 。
试作轴的扭矩图1.解:钻杆的扭矩图如图所示。
2. 解:圆杆的扭矩图如图所示。
6 kN.m8 kN.m3.解:轴的扭矩图如图所示。
4.解:轴的扭矩图如图所示。
T 图(N.m )minr300 n5. 解:绘出如图圆轴扭矩图(a )荷载图(b ) T 图单位: 6. 解:绘出如图圆杆扭矩图(a )荷载图(b ) T 图单位:7.绘出如图圆杆扭矩图 荷载图T 图单位:8.解:(1) M=9.550P/n M 1=15.9kN.m M 2=M3=4.78kN.m M 4=6.37kN.m(2) 绘出如图圆轴扭矩图:五、计算题153010352010mKN ⋅3532mKN ⋅233m KN⋅1.图示圆轴,直径为d ,在AB 段受集度为m 的分布力偶作用,材料的剪切弹性模量为G ,求截面A 的转角。
2.图示圆轴由两种材料制成,设外层空心圆轴的抗扭刚度为G 1I P1,内层实圆轴的抗扭刚度为G 2I P2,两轴紧密地配合在一起,当此组合轴两端受扭转力偶矩T 作用时,它像整体一样发生扭转,求此组合轴的扭转切应力计算式。
已知空心轴直径为D 1,实心轴直径为D 2,轴长为l 。
3. 由45号 钢制成的某空心圆截面轴,内、外直径之比α= 0.5 。
已知材料的许用切应力[τ] = 40 MPa ,切变模量G = 80 GPa 。
轴的横截面上扭矩的最大者为T max = 9.56 kN·m,轴的许可单位长度扭转角[φ']=0.3 (°)/m 。
试选择轴的直径。
4. 图示钢制实心圆截面轴,已知:M 1=1 592 N·m ,M 2 = 955 N·m ,M 3 = 637 N·m ,l AB = 300 mm ,l AC = 500 mm ,d = 70 mm ,钢的切变模量G = 80 GPa 。
试求横截面C 相对于B 的扭转角φCB 。
5.图示阶梯状圆轴,AB 段直径d 1=120 mm ,BC 段直径d 2=100 mm 。
扭转力偶矩M A =22 kN·m ,M B =36 kN·m ,M C =14 kN·m ,材料的许用切应力[τ]=80 MPa 。
试校核该轴的强度。
1.解: (1)轴分两段,扭矩为 AB : T 1=mx BC : T 2=ml/2 扭矩图如下图所示:(2) A 截面的扭转角BC AB A ϕϕϕ+= 其中:42220220201482)(d G ml GI ml GI mx dx GI mx dx GI x T P lP lP lP ABπϕ==⎥⎦⎤⎢⎣⎡=⋅=⋅=⎰⎰ 424228324/d G ml d G ml GI l T P BC BCππϕ=⨯== 4212dG ml A πϕ= 2.解:(1)在扭矩T 作用下,假定同一截面上,各半径转角ϕ相同,即两轴的扭转角相同,这是两轴的变形协调条件。
若空心圆轴承担的扭矩为T 1,实心圆轴承担的扭矩为T 2,则扭转角相等的条件表示为:222111P P I G lT I G l T ==ϕ ① T T T =+21 ② 由①、② 式解得: 2211111P P P I G I G I G T +=2211222P P P I G I G I G T +=(2)两轴切应力如下:空心圆轴: 221111P P I G I G TG +=ρτ实心圆轴: 221122P P I G I G TG +=ρτ3.解:(1)按强度条件求所需外直径D()有由因][ ,161516π116πpmax max 343p ττα≤=⨯=-=W T D D W m10109Pa 10401615πmN 1056.916][1615π16363max33-⨯=⨯⨯⎪⎭⎫⎝⎛⋅⨯⨯=⎪⎭⎫ ⎝⎛≥τT D(2)按刚度条件求所需外直径D(3)空心圆截面轴所需外直径为D ≥125.5 mm(由刚度条件控制),内直径则根据a = d /D = 0.5知:4.(1)各段轴的横截面上的扭矩:(2)各段轴的两个端面间的相对扭转角:(3)横截面C 相对于B 的扭转角:5.解:(1)绘扭矩图(2)求每段轴的横截面上的最大切应力 AB 段内:()有由因][π180 ,161532π132πp max 444p ϕα'≤⨯⨯=-=GI T D D I m 105.125m/)(3.01π1801615πPa 1080m N 1056.932][1π1801615π32393max 44-⨯=⨯⨯⎪⎭⎫ ⎝⎛⨯⨯⋅⨯⨯='⨯⨯⎪⎭⎫ ⎝⎛≥ϕG T D mm75.62≤d mN 637 ,m N 95521⋅-=⋅=T T ()()()()rad1052.1m107032πPa 1080m10300m N 95534393P1---⨯=⨯⨯⨯⋅==GI l T AB ABϕ()()()()rad1069.1m107032πPa 1080m10500m N 63734393P2---⨯-=⨯⨯⨯⋅-==GI l T AC CAϕ()rad1017.0rad 1069.1rad 1052.1333---⨯-=⨯-+⨯=+=CA AB CB ϕϕϕBC 段内:(3)校核强度τ2,max >τ1,max ,但有τ2,max<[τ ] = 80MPa ,故该轴满足强度条件。
()MPa8.64Pa 108.64 m 1012016πm N 102263331p 1max,1=⨯=⨯⋅⨯==-W T τ()MPa3.71Pa 103.71 m 1010016πm N 101463332p 2max,2=⨯=⨯⋅⨯==-W T τ。