智能控制考试题及答案
智能控制答案(最终版3题全做)
智能控制作业1.已知某一炉温控制系统,要求温度保持着600℃恒定。
针对该控制系统有以下控制经验。
(1)若炉温低于600℃,则升压;低得越多升压越高。
(2)若炉温高于600℃,则降压;高得越多降压越低。
(3)若炉温等于600℃,则保持电压不变。
设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。
输入、输出变量的量化等级为7级,取5个模糊集。
试设计隶属度函数误差变化划分表,控制电压变化划分表和模糊控制规则表。
解:(1) 确定变量定义理想温度为600℃,实际炉温为T,则温度差为:e=600-T将温度差e作为输入变量。
(2)输入量和输出量的模糊化将偏差e分成5个模糊集:负大(NB),负小(NS),零(ZO),正小(PS),正大(PB)。
将偏差e的变化分成7个等级:-3,-2,-1,0,+1,+2,+3,从而得到温度变化模糊表如表1所示:控制电压u也分成5个模糊集:负大(NB),负小(NS),零(ZO),正小(PS),正大(PB)。
将偏差u的变化分成7个等级:-3,-2,-1,0,+1,+2,+3,而得到电压变化模糊表如表2示:MATLAB仿真程序如下:%Fuzzy Control for water tankclear all;close all;a=newfis('fuzz_tank');a=addvar(a,'input','e',[-3,3]); %Parameter ea=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','trimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'output','u',[-4,4]); %Parameter ua=addmf(a,'output',1,'NB','zmf',[-4,-1]);a=addmf(a,'output',1,'NS','trimf',[-4,-2,1]);a=addmf(a,'output',1,'Z','trimf',[-2,0,2]);a=addmf(a,'output',1,'PS','trimf',[-1,2,4]);a=addmf(a,'output',1,'PB','smf',[1,4]);rulelist=[1 1 1 1; %Edit rule base2 2 1 1;3 3 1 1;4 4 1 1;5 5 1 1];a=addrule(a,rulelist);a1=setfis(a,'DefuzzMethod','mom'); %Defuzzywritefis(a1,'tank'); %Save to fuzzy file "tank.fis" a2=readfis('tank');figure(1);plotfis(a2);figure(2);plotmf(a,'input',1);figure(3);plotmf(a,'output',1);flag=1;if flag==1showrule(a) %Show fuzzy rule baseruleview('tank'); %Dynamic Simulationenddisp('-------------------------------------------------------');disp(' fuzzy controller table:e=[-3,+3],u=[-4,+4] ');disp('-------------------------------------------------------');for i=1:1:7 e(i)=i-4;Ulist(i)=evalfis([e(i)],a2); endUlist=round(Ulist)e=-3; % Erroru=evalfis([e],a2) %Using fuzzy inference2.用高级语言(C 、VC++、MATLAB 等)编程实现用BP 神经网络实现下列函数的非线性映射:101()log ,110f x x x x=≤≤ 分析误差曲线及网络的泛化能力。
智能控制试卷及答案
智能控制试卷及答案一、试卷一、选择题(每题2分,共20分)1. 下列哪项不是智能控制的主要类型?A. 人工智能控制B. 模糊控制C. 神经网络控制D. 逻辑控制2. 以下哪种控制方法适用于处理具有不确定性、非线性和时变性等特点的复杂系统?A. PID控制B. 模糊控制C. 串级控制D. 比例控制3. 神经网络控制的核心思想是利用神经网络实现控制规律的映射,以下哪种神经网络模型适用于动态系统的控制?A. BP神经网络B. RBF神经网络C. 感知器D. Hopfield神经网络4. 模糊控制中,模糊逻辑推理的核心部分是?A. 模糊集合B. 模糊规则C. 模糊推理D. 解模糊5. 以下哪种方法不属于智能控制系统的建模方法?A. 基于模型的建模B. 基于数据的建模C. 基于知识的建模D. 基于经验的建模二、填空题(每题2分,共20分)6. 智能控制的理论基础包括________、________和________。
7. 模糊控制的基本环节包括________、________、________和________。
8. 神经网络控制的主要特点有________、________、________和________。
9. 智能控制系统的主要性能指标包括________、________、________和________。
10. 智能控制技术在工业生产、________、________和________等领域有广泛应用。
三、判断题(每题2分,共10分)11. 模糊控制适用于处理具有确定性、线性和时不变性等特点的复杂系统。
()12. 神经网络控制具有较强的自学习和自适应能力。
()13. 智能控制系统不需要考虑系统的稳定性和鲁棒性。
()14. 智能控制技术在无人驾驶、智能家居等领域具有广泛应用前景。
()15. 模糊控制的核心思想是利用模糊逻辑进行推理和决策。
()四、简答题(每题10分,共30分)16. 简述模糊控制的基本原理。
智能控制技术复习考试题课后答案
一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和。
1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和。
2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和。
3 、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和。
4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。
5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和。
6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。
7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。
知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。
知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和。
16、直接型专家控制器、间接型专家控制器17.普通集合可用 函数表示,模糊集合可用 函数表示。
智能控制习题答案
第一章绪论1. 什么是智能、智能系统、智能控制答:“智能”在美国Heritage词典定义为“获取和应用知识的能力”;“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统;“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理; 2.智能控制系统有哪几种类型,各自的特点是什么答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等;各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统;该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散;人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型;这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的;专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题;可以说是一种模拟人类专家解决领域问题的计算机程序系统;多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统;这种结构的特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作;2.信息在上下级间垂直方向传递,向下的信息有优先权;同级控制器并行工作,也可以有信息交换,但不是命令;3.上级控制决策的功能水平高于下级,解决的问题涉及面更广,影响更大,时间更长,作用更重要;级别越往上,其决策周期越长,更关心系统的长期目标;4.级别越往上,涉及的问题不确定性越多,越难作出确切的定量描述和决策;学习控制系统:靠自身的学习功能来认识控制对象和外界环境的特性,并相应地改变自身特性以改善控制性能的系统;这种系统具有一定的识别、判断、记忆和自行调整的能力;3.比较智能控制与传统控制的特点;答:智能控制与传统控制的比较:它们有密切的关系,而不是相互排斥;常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题;1.传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,这些问题对基于模型的传统自动控制来说很难解决;2.传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息. 另外,通常的自动装置不能接受、分析和感知各种看得见、听得着的形象、声音的组合以及外界其它的情况. 为扩大信息通道,就必须给自动装置安上能够以机械方式模拟各种感觉的精确的送音器,即文字、声音、物体识别装置;3.传统的自动控制系统对控制任务的要求要么使输出量为定值调节系统,要么使输出量跟随期望的运动轨迹跟随系统,因此具有控制任务单一性的特点,而智能控制系统的控制任务可比较复杂;4. 传统的控制理论对线性问题有较成熟的理论,而对高度非线性的控制对象虽然有一些非线性方法可以利用,但不尽人意. 而智能控制为解决这类复杂的非线性问题找到了一个出路,成为解决这类问题行之有效的途径;5.与传统自动控制系统相比,智能控制系统具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知识的能力;6.与传统自动控制系统相比,智能控制系统能以知识表示的非数学广义模型和以数学表示的混合控制过程,采用开闭环控制和定性及定量控制结合的多模态控制方式;7.与传统自动控制系统相比,智能控制系统具有变结构特点,能总体自寻优,具有自适应、自组织、自学习和自协调能力;8.与传统自动控制系统相比,智能控制系统有补偿及自修复能力和判断决策能力;4.把智能控制看作是AI人工智能、OR运筹学、AC自动控制和IT信息论的交集,其根据和内涵是什么答:智能控制具有明显的跨学科特点,在最早傅金孙提出的二元论中,智能控制系统被认为是自动控制与人工智能的交互作用,随着认识的深入,萨瑞迪斯提出运筹学融入智能控制而提出三元结构,蔡自兴教授提出将信息论引入智能控制,其依据在于:信息论是解释知识和智能的一种手段;控制论、信息论和系统论是紧密相连的;信息论已经成为控制智能机器的工具;信息论参与智能控制的全过程并对执行级起到核心作用,因此最终确定了智能控制的四元结构;5.智能控制有哪些应用领域试举出一个应用实例,并说明其工作原理和控制性能;答:智能控制应用于机器人、汽车、制造业、水下和陆地自助式车辆、家用电器、过程控制、电子商务、医疗诊断、飞行器、印刷、城市铁路、电力系统等领域;例如焊接机器人其基本工作原理是示教再现,即由用户导引机器人,一步步按实际任务操作一遍,机器人在导引过程中自动记忆示教的每个动作的位置、姿态、运动参数、焊接参数等,并自动生成一个连续执行全部操作的程序;完成示教后,只需给机器人一个起动命令,机器人将精确地按示教动作,一步步完成全部操作,实际示教与再现;控制性能为:弧焊机器人通常有五个自由度以上,具有六个自由度的弧焊机器人可以保证焊枪的任意空间轨迹和姿态;点至点方式移动速度可达60m/min以上,其轨迹重复精度可达到±0.2mm;这种弧焊机器人应具有直线的及环形内插法摆动的功能,共六种摆动方式,以满足焊接工艺要求,机器人的负荷为5kg;第二章模糊控制的理论基础1.举例说明模糊性的客观性和主观性;答:模糊性起源于事物的发展变化性,变化性就是不确定定性;模糊性是客观世界的普遍现象,世界上许多的事物都具有模糊非电量的特点;例如:年龄分段的问题;如果一个人的年龄大于60岁算老年,45-59岁之间的岁中年,小于44岁的就算青年;如果一个人的年龄是59岁零11个月零28天,那么他是属于中年还是老年呢理论上从客观的角度说他是中年人,但是与60岁只有两天区别,这区别我们是分辨不出来的;从主观上我们认为他又是老年人;这就是模糊性的主观性和客观性的体现;2.模糊性与随机性有哪些异同答:模糊性处于过渡阶段的事物的基本特征,是性态的不确定性,类属的不清晰性,是一种内在的不确定性;而随机性是在事件是否发生的不确定性中表现出来的不确定性,而事件本身的性态和类属是确定的,是一种外在的不确定性;相同点是:模糊性是由于事物类属划分的不分明而引起的判断上的不确定性;而随机性是由于天剑不充分而导致的结果的不确定性;但是他们都共同表现出不确定性;异同点是:模糊性反映的是排中的破缺,而随机性反映的是因果律的破缺;模糊性现象则需要运用模糊数学,随机性现象可用概率论的数学方法加以处理;3.比较模糊集合与普通集合的异同;答:模糊集合用隶属函数作定量描述,普通集合用特征函数来刻划; 两者相同点:都属于集合,同时具有集合的基本性质;两者异同点:模糊集合就是指具有某个模糊还年所描述的属性的对象的全体,由于概念本身不是很清晰,界限分明的,因而对象对集合的隶属关系也不是明确的;普通集合是指具有某种属性的对象的全体,这种属性所表达的概念应该是清晰的,界限分明的,因而每个对象对于集合的隶属关系也就是明确的;;4.考虑语言变量:“Old ”,如果变量定义为:确定“NOT So Old ”,“Very Old ”,“MORE Or LESS Old ”的隶属函数;解:1 o old 220 050()1(50/5) 50100NOT S x x x x μ--≤<⎧⎪=⎨⎡⎤+-≤<⎪⎣⎦⎩ 5.已知存在模糊向量A 和模糊矩阵R 如下:()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==3.06.03.001.004.06.02.01.08.05.04.01.07.0R A 计算R A B =; 6.令论域{}4321=U ,给定语言变量“Small ”=1/1+2+3+4和模糊关系R=“Almost 相等”定义如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=16.01.006.016.01.01.06.016.001.06.01R 利用max-min 复合运算,试计算:相等)是Almost Small X y R ()()( =;解:10.60.100.610.60.1y (10.70.30.1)0.10.610.600.10.61R⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦() 7.已知模糊关系矩阵:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=15.05.01009.002.01.00014.009.004.018.02.01.008.01R 计算R 的二至四次幂;解:210.800.10.210.800.10.20.810.400.90.810.400.900.410000.41000.10010.50.10010.50.20.900.510.20.900.51R R R ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=•=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦10.80.40.20.80.810.40.50.90.40.4100.40.20.5010.50.80.90.40.51⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦8.设有论域},{ },,,{ },,,{21321321z z Z y y y Y x x x X ===,二维模糊条件语句为“若A且B 则C ”,其中)(C , 14.0)( , 6.011.0)( , 1.015.021321321Z F z z C Y F B y y y B X F A x x x A ∈+=∈++=∈++=已知 )(B , 15.01.0)( , 1.05.01*321**321*Y F y y y B X F A x x x A ∈++=∈++=由关系合成推理法,求得推理结论*C ; 解:令R 表示模糊关系,则R A B C =⨯⨯. 将1TR 按行展开写成列向量为[]0.10.50.50.110.60.10.10.1T所以,[]10.10.10.40.110.50.50.40.510.50.50.40.510.10.10.40.110.41110.4110.60.60.40.610.10.10.40.110.10.10.40.110.10.10.40.11TR R C ∧∧⎡⎤⎡⎤⎢⎥⎢⎥∧∧⎢⎥⎢⎥⎢⎥⎢⎥∧∧⎢⎥⎢⎥∧∧⎢⎥⎢⎥⎢⎥⎢⎥=⨯=⨯==∧∧⎢⎥⎢⎥∧∧⎢⎥⎢⎥⎢⎥⎢⎥∧∧⎢⎥⎢⎥∧∧⎢⎥⎢⎥⎢⎥⎢⎥∧∧⎣⎦⎣⎦0.10.10.40.50.40.50.10.10.410.40.60.10.10.10.10.10.1⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.又因为()C A B R ***=⨯⨯,[]10.10.510.50.10.510.10.50.50.10.10.10.1A B **⎡⎤⎡⎤⎢⎥⎢⎥⨯==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,将A B **⨯按行展开写成行向量,为[]0.10.510.10.50.50.10.10.1,则 ()()0.40.5C A B R ***=⨯⨯=即120.40.5C z z *=+ 9. 已知语言变量x,y,z;X 的论域为{1,2,3},定义有两个语言值: “大”={0, , 1};“小”={1, , 0}; Y 的论域为{10,20,30,40,50},语言值为:“高”={0, 0, 0, , 1};“中”={0, , 1, , 0}; “低”={1, , 0, 0, 0};Z的论域为{,,},语言值为:“长”={0, , 1};“短”={1, , 0}则:1试求规则:如果x 是“大”并且y 是“高”那么z是“长”;否则,如果x 是“小”并且y 是“中”那么z是“短”;所蕴涵的x,y,z之间的模糊关系R;2假设在某时刻,x是“略小”={, , 0},y是“略高”={0, 0, , , 1}试根据R分别通过Zadeh法和Mamdani法模糊推理求出此时输出z的语言取值;第三章模糊控制1.模糊控制器有哪几部分组成各完成什么功能1:答:模糊控制器由四个部分组成,这四个功能模块是模糊化、知识库、模糊推理和去模糊化;1模糊化:为实现模糊控制而将精确的输入量进行模糊化处理,是将精确量转化为模糊量的过程;模糊化模块在不同的阶段有不同的作用:a、确定符合模糊控制器要求的输入量和输出量;b、对输入输出变量进行尺度变换,使之落于各自的论域范围内;c、对已经论域变换的输入量进行模糊化处理,包括模糊分割和隶属函数的确定;2知识库:知识库通常由数据库和规则库组成,包含了具体应用领域的知识和要求;其中,数据库主要包含输入输出变量的初度变换因子、输入输出空间的模糊分割以及模糊变量的模糊取值及相应的隶属度函数选择和形状等方面的内容;规则库包含了用模糊语言描述专家的经验知识,来表示一系列控制规则;它们反映了控制专家的经验和知识;3模糊推理:是一种近似推理,根据模糊控制规则库和当前系统状态推断出应施加的控制量的过程,由推理机完成;4去模糊化:由于控制器输出到具体地执行机构的信号必须是清晰的精确量;因此,需要一个与输入模糊化相反的过程,即把模糊推理结果转变成清晰量,它实现从输出论域上输出模糊空间到输出精确空间的映射;2.模糊控制器设计的步骤怎样2:答:模糊控制器设计的步骤如下:1:输入变量和输出变量的确定;2:输入输出变量的论域和模糊分割,以及包括量化因子和比例因子在内的控制参数的选择;3:输入变量的模糊化和输出变量的清晰化;4:模糊控制规则的设计以及模糊推理模型的选择;5:模糊控制程序的编制;3.清晰化的方法有哪些3:答:清晰化的方法一般有四种:1:最大隶属度法:这种方法将模糊推理得到的结论中最大隶属度值最对应的元素作为控制器输出的精确值,如果有多个最大点,则取其平均值;2:加权平均法:这种方法是指以各条规则的前件和输入的模糊集按一定法则确定的值为权值,并对后件代表值加权平均计算输出的清晰值的方法;3:面积等分法:把输出的模糊集合所对应的隶属函数与横坐标之间围成的面子分成两部分,那么该方法得到的精确值应满足使该两部分的面积相等;4:由于Tsukamoto模型和Takagi-Sugeno模型输出本身就是清晰量,则不需要去模糊化;4.已知某一炉温控制系统,要求温度保持在600度恒定;针对该控制系统有一下控制经验:1若炉温低于600度,则升压;低得越多升压就越高;2若炉温高于600度,则降压;高得越多降压就越低; 2若炉温等于600度,则保持不变;设计模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压;输入、输出变量的量化等级为7级,取5个模糊集;设计隶属度函数误差变化划分表、控制电压变化划分表和模糊控制规则表; 解: 定义理想温度点的温度为T ,实际测量温度为T ,温度差为0e T T T=∆=-;以为输入、输出变量的量化等级均为7级, 5个模糊集,则e控制电压u 变化划分表为:根据一上两表设计一下模糊规则:若e 负大,则u 正大;若e 负小,则u 正小;若e 为0,则u 为0; 若e 正小,则u 负小;若e 正大,则u 负大; 模糊控制规则表为: 试分别设计:1常规的PID 控制器; 2常规的模糊控制器; 3模糊PID 控制器;分别对上述3种控制器进行Matlab 仿真,并比较控制效果; 解:1常规的PID 控制器的设计: a) 常规的PID 控制器的设计原理图: b 在matlab 中simulink 仿真图如下:第四章神经网络基础1、生物神经元模型的结构功能是什么答:生物神经元结构:1、细胞体:由细胞核、细胞质和细胞膜等组成;2、树突:胞体上短而多分枝的突起;相当于神经元的输入端,接受传入的神经冲动;3、轴突:胞体上最长枝的突起,也称神经纤维;端部有很多神经末稍传出神经冲动;4、突触:神经元间的连接接口,每个神经元约有1万~10万个突触;神经元通过其轴突的神经末稍,经突触与另一神经元的树突联接,实现信息的传递;由于突触的信息传递特性是可变的,形成了神经元间联接的柔性,称为结构的可塑性;5、细胞膜电位:神经细胞在受到电的、化学的、机械的刺激后,能产生兴奋,此时,细胞内外有电位差,称膜电位;电位膜内为正,膜外为负;生物神经元功能:1、兴奋与抑制当传入神经元的冲动,经整合,使细胞膜电位升高,超过动作电位的阈值时,为兴奋状态,产生神经冲动,由轴突经神经末稍传出;当传入神经元的冲动,经整合,使细胞膜电位降低,低于阈值时,为抑制状态,不产生神经冲动;2、学习与遗忘由于神经元结构的可塑性,突触的传递作用可增强与减弱,因此,神经元有学习与遗忘的功能;2、人工神经元模型的特点是什么答:人工神经元模型的特点:1、神经元及其联接;2、神经元间的联接强度决定信号传递的强弱;3、神经元间的联接强度是可以随训练改变的;4、信号是可以起刺激作用的,也可以起抑制作用;5、一个神经元接受的信号的累积效果决定该神经元的状态;6、每个神经元可以有一个“阈值”;3、人工神经网络的特点是什么如何分类答:人工神经网络的特点:1、非线性2、分布处理3、学习并行和自适应4、数据融合5、适用于多变量系统6、便于硬件实现人工神经网络的分类:根据神经网络的连接方式,神经网络可分为三种形式:1、前向网络:神经元分层排列,组成输入层、隐含层和输出层;每一层的神经元只接受前一层神经元的输入;输入模式经过各层顺次的变换后,由输出层输出;在各神经元间不存在反馈;感知器和误差反向传播网络采用前向网络形式;2、反馈网络:该网络结构在输出层到输入层存在反馈,即每一个输入节点都有可能接受来自外部的输入和来自输出神经元的反馈;这种神经网络是一种反馈动力学系统,它需要工作一段时间才能达到稳定;3、自组织网络:当神经网络在接受外界输入时,网络将会分成不同的区域,不同区域具有不同的响应特征,即不同的神经元以最佳方式响应不同性质的信号激励,从而形成一种拓扑意义上的特征图,该图实际上是一种非线性映射;这种映射是通过无监督的自适应过程完成的,所以也称为自组织特征图;4、有哪几种常用的神经网络学习算法常用的神经网络学习算法:1、有教师学习:在学习过程中,网络根据实际输出与期望输出的比较,进行联接权系的调整,将期望输出称导师信号是评价学习的标准;2、无教师学习:无导师信号提供给网络,网络能根据其特有的结构和学习规则,进行联接权系的调整,此时网络学习评价的标准隐含于其内部;3、再励学习:把学习看为试探评价过程,学习及选择一动作作用于环境,环境的状态改变,并产生再励信号反馈至学习机,学习机依据再励信号与环境当前的状态,再选择下一动作作用于环境,选择的原则是使受到奖励的可能性增大;4、Hebb学习规则5、Delta学习规则第五章典型神经网络1、BP算法的特点是什么增大权值是否能够使BP学习变慢答:误差反向传播的BP算法简称BP算法,是有导师的学习,其基本思想是梯度下降法;它采用梯度搜索技术,以使网络的实际输出值与期望输出值的误差均方值为最小;学习的过程由正向传播和反向传播组成,在正向过程中,输入信息由输入层经隐层逐层处理,并传向输出层,每层神经元的状态只影响下一层神经元的状态,如果在输出层不能得到期望的输出,则转至反向传播,将误差信号按连接通路反向计算,由梯度下降法来调整各层神经元的权值,使误差信号减小;主要优点:1非线性映射能力:无需事先了解描述这种映射关系的数学方程,只要提供足够多的样本模式对BP网络进行详细训练,它便能完成由n维输入空间到m输出空间的非线性映射;2泛化能力:当向网络输入训练时未曾见过的非样本数据时,网络也能完成由输入空间向输出空间的正确映射,这种能力称为多层前馈网络的泛化能力;3容错能力:输入样本中带有较大的误差,甚至个别错误对网络的输入输出规律影响很小;标准的BP算法内在的缺陷:1易形成局部极小而得不到全局最优;2训练次数多使得学习效率低,收敛速度慢;3隐节点的选取缺乏理论指导;4训练时学习新样本有遗忘旧样本的趋势;增大权值不一定能够使BP学习变慢,由BP权值修正的原理可知,权值调整公式可汇总如下:2、为什么说BP网络是全局逼近的,而RBF网络是局部逼近的它们各有突出的特点是什么BP网络的活化函数为S函数,其值在输入空间中无限大的范围内为非零值,因而是全局逼近的神经网络;其突出特点如下:1、是一种多层网络化,包括输入层、隐含层和输出层;2、层与层之间采用全互联方式,同一层神经元不连接;3、权值通过delta 学习算法进行调节;4、神经元活化激发函数为S函数;5、学习算法由正向算法和反向算法组成;6、层与层之间的连接时单向的,信息的传播史双向的;RBF网络的活化函数为高斯基函数,其值在输入空间中有限范围内为非零值,并且RBF神经网络的神经元具有局部逼近的神经网络;其输出特点如下:1、RBF径向基函数是局部的,学习速度快;2、已证明RBF网络具有唯一最佳逼近的特性,且无局部最小;3、在函数创建过程中可以自动增加隐含层的神经元个数,直到满足均方差要求为止无需单独的代码来训练函数,网络的创建过程就是训练过程;4、RBF 网络用于非线性系统辨识与控制中,虽具有唯一最佳逼近特性,且无局部最小的优点,避免去确定隐层和隐层点数,网络可以根据具体问题自适应的调整,因此适应性更好; 3、何为神经网络的泛化能力影响泛化能力的因素有哪些答:泛化能力综合能力、概括能力:用较少的样本进行训练,是网络能在给定的区域内达到要求的精度;所以没有泛化能力的网络没有使用价值;影响泛化能力的因素:1、样本;2、结构;3、初始权值4、训练样本集;5、需测试集; 4. 已知一个非线性函数2121()sin(2)2y x x ππ=,试用三层BP 网络逼近输出y,画出网络的结构,写出网络各层节点的表达式以及各层节点输出值的范围; 解:非线性函数2121()sin(2)2y x x ππ=画出三层BP 网络的结构图 由输入得到两个隐节点、一个输出层节点的输出,输入层不考虑阈值 两个隐节点、一个输出层节点输出为 活化函数选择S 型函数1()1xly f xl e -==+如教材例,取第一个输入、输出神经元与各隐含神经元的连接权均为1,第二个输入、输出神经元与各隐含层单元的连接权为2.则 由上式可得第六章 高级神经网络控制器的一般形式为0()()()[()(1)]kp idj u k k e k k e j k e k e k ==++--∑,也可写成等价形式112233()()()()u k k u k k u k k u k =++,其中1203()(),()(),()()()(1)kj u k e k u k e k u k e k e k e k ====∆=--∑,123,,k k k 为PID 控制器,,p i d k k k 三个参数的线性表示;这一形式可以看成以123(),(),()u k u k u k 为输入,123,,k k k 为权系数的神经网络结构,试推导出自适应神经网络PID 控制器参数调整的学习算法; 解:自适应神经网络PID 控制器结构如下图所示: 由图可知:控制器由两部分组成,分别为常规PID 控制和神经网络;其中,常规PID 直接对被控对象进行闭环控制,并且其控制参数kp 、ki 、kd 为在线调整方式;神经网络根据系统的运动状态,调节PID 控制器的参数,使输出层神经元的输出对应于PID 控制器的三个可调参数;学习算法如下:首先确定神经网络的结构,即确定输入节点数和隐含层节点数,并给出各层加权系数的初值w1和w2,并选定学习速率和惯性系数,令k=1;采样得到rk 和yk,计算当前时刻误差rk-yk ;计算各神经网络的输入和输出,其输出层的输出即为PID 控制器的三个控制参数kp 、ki 、kd 并计算PID 控制器的输出进行神经网络学习,在线调整加权系数,实现PID 控制参数的自适应调整;令k=k1,进行上述步骤;网络各层输入输出算法:。
智能控制复习题-参考答案
(书本 P 13)上海第二工业大学《智能控制系统》练习卷一、填空题1、机器智能是把信息进行组织 、并 把它转换成知识 的过程。
2、智能控制方法比传统的控制方法更能适应对象的 时变性 、 非线性 和 不确定性 。
3、智能控制中的三元论指的是: 人工智能 、 自动控制 和 运筹学 。
4、从 工程控制角度看,智能控制三个基本要素是: 归纳 、 集注 、 组合操作 。
(这道题有点疑问,大家找找资料)5、生物神经元经抽象化后,得到的人工神经元模型,它有三个基本要素 连接权值 、 求和函数 和 激发函数 。
6、神 经网络的结构按照神经元连接方式可分成 层状 和 网状 。
7、定义一个语言变量需要定义 4 个方面的内容: 定义变量名称 、 定义变量的论域 、 定义变量的语言 、 定义每个模糊集合的隶属函数 。
8、� = 0.2 + 0.3 + 0.4 + 0.9,则 A0.2={x1, x2, x3, x4},A0.4={ x3, x4} ,A0.9={ x4 }�1�2�3 �49、假设论域为 5 个人的体重分别为 110kg 、95kg 、85kg 、78kg 、65kg ,他们 的体重对于“肥胖”的模糊概念的隶属度分别为 0.95、0.88、0.8、0.72、0. 5。
试用:(1) Zadeh 表示法表示模糊集“肥胖” 答:肥胖=0. 95 +0. 88 +0. 8 +0. 72 +0. 5 11095857865(2)序偶表示法表示模糊集“ 肥胖”答:肥胖={(110,0.95), (95,0.88)(85,0.8)(78,0.72)(65,0.5)} (或 肥胖={0.95, ,0.88,0.8,0.72,0.5})10、专家系统的核心部分是: 知识库子系统 、 推理子系统 。
11、在专家系统中,解释器是专家系统与用户间的人-机接口。
12、人工神经网络常见的激发函数或作用函数有:阈值型函数、饱和型函数、和双曲函数(此外还有S 型函数,高斯函数等)。
12-13学年第1学期_智能控制试题A答案
JP 海x 殺;隹未乂学(勤奋、求是、创新、奉献)2012〜2013学年第1学期考试试卷 A《智能控制系统》课程试卷(本钟)一. 概念题(18分,每小题3分)1. 写出模糊控制器的 4个主要组成部分名称。
模糊化接口、知识库、模糊推理决策、解模糊接口2. 递阶智能系统的智能程度分布一般要遵循什么原则。
随着智能程度的提高,精度下降3. 简述局部最佳优先搜索的基本思想?当某一个节点扩展之后,对它的每一个后继节点计算估价函数 f (x )的值,并在这些后继节点的范围内,选择一个f (x )的值最小的节点,作为下一个要考察的节点。
4. 何谓神经网络的泛化能力?经训练后的网络对未在训练集出现的(来自同一分布的)样本做出正确反应的能力5. 写出5种专家系统的知识表示方法。
逻辑表示法、产生式表示法、框架表示法、语义网络表示法6. 写出基本遗传算法中适应度函数的作用。
度量群体中各个个体在优化计算中有可能达到或有助于找到最佳解的寻优过程。
的概率就较大,而适应度较低的个体遗传到下一代的概率就相对小一些。
学院 机械工程学院班级 — — 姓名 学号 ______________适应度较高的个体遗传到下一代二、简答题(共18分,每题6 分)1、为什么模糊输出向量要进行解模糊计算,并写出 3 种常用的解模糊方法。
通过模糊推理得到的结果是一个模糊集合。
但实际使用中,特别是模糊控制中,必须要有一个确定的值才能去控制或驱动执行机构。
在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程称为精确化过程。
重心法、最大隶属度法、取中位数判决法2、简述隶属度函数建立的一般准则?表示隶属度函数的模糊集合必须是凸模糊集合变量所取隶属度函数通常是对称和平衡的隶属度函数要符合人们的语义顺序,避免不恰当的重叠3、简述径向基函数神经网络的基本思想及特点基本思想是:用径向基函数(RBF作为隐单元的“基”,构成隐含层空间,隐含层对输入矢量进行变换,将低维的模式输入数据变换到高维空间内,使得在低维空间内的线性不可分问题在高维空间内线性可分。
智能控制考试题及答案
智能控制技术考试题及答案《智能控制技术》考试试题 A《智能控制》课程考试试题 A 参考答案(1) OPEN (2) 最有希翼(3) 置换(4) 互补文字(5) 知识库(6) 推理机(7) 硬件(8) 软件(9) 智能(10) 傅京孙(11) 萨里迪斯(12) 蔡自兴(13) 组织级(14) 协调级(15) 执行级(16) 递阶控制系统(17) 专家控制系统(18) 含糊控制系统(19) 神经控制系统(20) 学习控制系统1 、D2 、A3 、C4 、B5 、D6、B7、A8、D9、A 10、D1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不彻底性等,普通无法获得精确的数学模型。
(2) 研究这种系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。
(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。
(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。
传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开辟与应用计算机科学与工程的最新成果。
人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。
人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平——智能控制发展。
智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不彻底性、含糊性或者不确定性以及不存在已知算法的过程,并以知识进行推理, 以启示式策略和智能算法来引导求解过程。
(2) 智能控制的核心在高层控制, 即组织级。
高层控制的任务在于对实际环境或者过程进行组织, 即决策和规划,实现广义问题求解。
智能控制系统考核试卷
B.控制器
C.执行器
D.能源系统
2.下列哪种不属于智能控制系统的基本功能?()
A.监测
B.判断
C.控制
D.传输数据
3.在智能控制系统中,PID控制属于以下哪一类控制?()
A.线性控制
B.非线性控制
C.离散控制
D.模糊控制
4.关于智能控制系统,以下哪项描述是正确的?()
A.智能控制系统是完全自动化的系统
A.数据清洗
B.数据融合
C.数据分析
D.数据可视化
20.以下哪些是智能控制系统在教育、医疗等领域的应用?()
A.自动化教学系统
B.机器人辅助手术
C.智能医疗诊断
D.以上都是
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1.在智能控制系统中,PID控制器由_______、_______和_______三个部分组成。
1.智能控制系统通常包含以下哪些基本组成部分?()
A.传感器
B.控制器
C.执行器
D.数据库
2.智能控制系统的功能特点包括以下哪些?()
A.自适应性
B.自学习性
C.自组织性
D.完全自动化
3.以下哪些属于智能控制系统的常见控制策略?()
A.反馈控制
B.前馈控制
C.模糊控制
D.遗传算法
4.智能控制系统在设计时需要考虑以下哪些因素?()
B.智能控制系统不需要人工干预
C.智能控制系统可以完全替代人工
D.智能控制系统适用于所有领域
5.以下哪种传感器通常用于智能控制系统中的温度监测?()
A.光电传感器
B.压力传感器
C.温度传感器
《智能控制》题集
《智能控制》题集一、选择题(共10小题,每小题3分)1.智能控制是基于哪种理论发展起来的一种新型控制方法?()A. 经典控制理论B. 现代控制理论C. 人工智能与自动控制理论相结合D. 模糊数学理论答案:C解析:智能控制是人工智能与自动控制理论相结合的产物,它利用人工智能的方法和技术,对复杂的非线性系统进行控制,具有自学习、自组织和自适应的能力。
2.下列哪项不属于智能控制的主要特点?()A. 能够处理复杂的非线性系统B. 依赖于精确的数学模型C. 具有自学习和自适应能力D. 能够实现多目标优化控制答案:B解析:智能控制的一个显著特点是能够处理复杂的非线性系统,并且不依赖于精确的数学模型,而是通过学习和适应来实现控制目标。
3.模糊控制是智能控制的一个重要分支,其核心思想是什么?()A. 利用模糊逻辑进行推理和控制B. 精确计算控制量C. 依赖于系统的精确数学模型D. 仅适用于线性系统答案:A解析:模糊控制的核心思想是利用模糊逻辑进行推理和控制,它允许使用模糊的语言变量和模糊规则来描述系统的行为和控制策略,从而实现对复杂系统的有效控制。
4.神经网络控制在智能控制中扮演什么角色?()A. 仅仅是一种数据处理方法B. 能够模拟人脑的学习和记忆功能C. 仅适用于静态系统D. 无法处理非线性问题答案:B解析:神经网络控制在智能控制中扮演着重要角色,它能够模拟人脑的学习和记忆功能,通过训练和学习来适应系统的变化,实现对非线性系统的有效控制。
5.专家系统在智能控制中的主要作用是什么?()A. 提供精确的数学模型B. 模拟人类专家的决策过程C. 仅用于故障诊断D. 无法处理不确定性问题答案:B解析:专家系统在智能控制中的主要作用是模拟人类专家的决策过程,通过知识库和推理机制解决复杂控制问题,提供精确的控制策略和调整建议。
6.遗传算法在智能控制中常用于哪方面的优化?()A. 控制参数优化B. 系统模型建立C. 数据处理D. 故障诊断答案:A解析:遗传算法在智能控制中常用于控制参数的优化,通过模拟自然选择和遗传机制,对控制参数进行编码、选择、交叉和变异等操作,不断迭代优化,直到找到最优解或近似最优解。
(完整版)智能控制-考试题(附答案)
《智能控制》考试试题试题1:针对某工业过程被控对象:0.520()(101)(21)s G s e s s -=++,试分别设计常规PID 算法控制器、模糊控制器、模糊自适应PID 控制器,计算模糊控制的决策表,并进行如下仿真研究及分析:1. 比较当被控对象参数变化、结构变化时,四者的性能;2. 研究改善Fuzzy 控制器动、静态性能的方法。
解:常规PID 、模糊控制、Fuzzy 自适应PID 控制、混合型FuzzyPID 控制器设计 错误!未找到引用源。
. 常规PID 调节器PID 控制器也就是比例、积分、微分控制器,是一种最基本的控制方式。
它是根据给定值()r t 与实际输出值()y t 构成控制偏差()e t ,从而针对控制偏差进行比例、积分、微分调节的一种方法,其连续形式为:01()()[()()]t p d i de t u t K e t e t dt T T dt=++⎰ (1.1) 式中,p K 为比例系数,i T 为积分时间常数,d T 为微分时间常数。
PID 控制器三个校正环节中p K ,i T 和d T 这三个参数直接影响控制效果的好坏,所以要取得较好的控制效果,就必须合理地选择控制器的参数。
Ziegler 和Nichols 提出的临界比例度法是一种非常著名的工程整定方法。
通过实验由经验公式得到控制器的近似最优整定参数,用来确定被控对象的动态特性的两个参数:临界增益u K 和临界振荡周期u T 。
用临界比例度法整定PID 参数如下:表1.1 临界比例度法参数整定公式51015202530354000.20.40.60.811.21.41.61.8Time(s)y (t )051015202530354000.511.5Time(s)y (t )PID 0.6u K 0.5u T 0.125u T据以上分析,通过多次整定,当 1.168p K =时系统出现等幅振荡,从而临界增益 1.168u K =,再从等幅振荡曲线中近似的测量出临界振荡周期 5.384u T =,最后再根据表1.1中的PID 参数整定公式求出:0.701, 2.692,0.673p i d K T T ===,从而求得:比例系数0.701p K =,积分系数/0.260i p i K K T ==,微分系数0.472d p d K K T ==。
网络教育考试智能控制基础
一、判断题(判断下列所述是否正确,正确填入“√”:错误则填“x”。
每题2分,共20分)1.反馈型神经网络中,每个神经元都能接收所有神经元输出的反馈信息。
(x )2.一般情况下,神经网络系统模型的并联结构可以保证系统辨识收敛。
( x ) 4.在遗传算法中,初始种群的生成不能用随机的方法产生。
( x )5.语气算子有集中化算千、散漫化算子和模糊化算子三种。
( x )6.从模糊控制查询表中得到控制量的相应元素后,乘以量化因子即为控制量的变化值。
( √ )8.神经网络用于系统正模型辨识的结构只有串联结构一种。
(x )9.知识库和数据库是专家系统的核心部分。
( x )10.直接式专家控制系统可以采用单片机来实现。
( x )1.分层递阶智能控制结构中,执行级的任务是对数值的操作运算,它具有较高的控制精度。
( √ )3.模糊控制只是在一止程度上模仿人的模糊决策和推理,用它解决较复杂问题叫,还需要建立数学模型。
( x)4.在模糊集合的向量表示法中,隶属度为0的项必须用0代替而不能舍弃。
( √ )5.与传统控制相比,智能模糊控制所建立的数学模型因具有灵活性和应变性,因而能胜任处理复杂任务及不确定性问题的要求。
( x )6.智能控制的不确定性的模型包括两类,一类是模型未知或知之甚少:另一类是模型的结构和参数可能在很大范围内变化。
( √ )8.可以充分逼近任意复杂的非线性函数关系是神经网络的特点之一。
( √ )10.直接式专家控制系统可以采用单片机来实现。
( x )1.从模糊控制查询表中得到控制量的相应元素后,乘以量化因子即为控制量的变化值。
( x ) 2.模糊控制在一定程度上模仿人的模糊决策和推理,用它解决较复杂问题时,不需要建立数学模型。
( √)3.智能模糊控制系统的数学模型虽然不够精确,但具有更高的灵活性和应变性,能够胜任对复杂系统的控制。
(√ )4.模糊控制规则是将人工经验或操作策略总结而成的一组模糊条件语句。
(完整版)智能控制习题参考答案
1.递阶智能控制系统的主要结构特点有哪些。
答:递阶智能控制是在研究早期学习控制系统的基础上,从工程控制论角度总结人工智能与自适应控制、自学习控制和自组织控制的关系后逐渐形成的。
递阶智能控制系统是由三个基本控制级(组织级、协调级、执行级)构成的。
如下所示:1. 组织级组织级代表控制系统的主导思想,并由人工智能起控制作用。
根据贮存在长期存储交换单元内的本原数据集合,组织器能够组织绝对动作、一般任务和规则的序列。
其结构如下:2.协调级协调级是组织级和执行级间的接口,承上启下,并由人工智能和运筹学共同作用。
协调级借助于产生一个适当的子任务序列来执行原指令,处理实时信息。
它是由不同的协调器组成,每个协调器由计算机来实现。
下图是一个协调级结构的候选框图。
该结构在横向上能够通过分配器实现各协调器之间的数据共享。
3. 执行级执行级是递阶智能控制的最底层,要求具有较高的精度但较低的智能;它按控制论进行控制,对相关过程执行适当的控制作用。
其结构模型如下:2.信息特征,获取方式,分层方式有哪些?答:一、信息的特征1,空间性:空间星系的主要特征是确定和不确定的(模糊)、全空间和子空间、同步和非同步、同类型和不同类型、数字的和非数字的信息,比传统系统更为复杂的多源多维信息。
2,复杂性:复杂生产制造过程的信息往往是一类具有大滞后、多模态、时变性、强干扰性等特性的复杂被控对象,要求系统具有下层的实时性和上层的多因素综合判断决策能力,以保证现场设备局部的稳定运行和在复杂多变的各种不确定因素存在的动态环境下,获得整个系统的综合指标最优。
3,污染性:复杂生产制造过程的信息都会受到污染,但在不同层次的信息受干扰程度不同,层次较低的信号受污染程度较大。
二、获取方式信息主要是通过传感器获得,但经过传感器后要经过一定的处理来得到有效的信息,具体处理方法如下:1,选取特征变量可分为选择特征变量和抽取特征变量。
选择特征变量直接从采集样本的全体原始工艺参数中选择一部分作为特征变量。
《智能控制基础》题集
《智能控制基础》题集第一大题:选择题(每题2分,共20分)1.智能控制理论是在哪个世纪开始发展的?A. 18世纪B. 19世纪C. 20世纪D. 21世纪2.下列哪项不属于智能控制的主要特点?A. 自适应性B. 鲁棒性C. 精确性D. 学习功能3.模糊控制系统的核心是什么?A. 模糊规则库B. 模糊推理机C. 模糊化接口D. 反模糊化接口4.神经网络在智能控制中的主要作用是?A. 数据存储B. 模式识别C. 系统建模D. 逻辑判断5.遗传算法是一种什么类型的算法?A. 搜索算法B. 排序算法C. 加密算法D. 压缩算法6.专家系统主要由哪几部分组成?A. 知识库、推理机、用户界面B. 数据库、模型库、方法库C. 规则库、事实库、解释器D. 学习库、知识库、优化器7.下列哪项是智能控制系统中常用的传感器?A. 温度传感器B. 压力传感器C. 光电传感器D. 所有以上都是8.在自适应控制中,什么是自适应律的主要作用?A. 调整控制器参数B. 保持系统稳定C. 减小系统误差D. 提高系统响应速度9.下列哪项不是智能控制应用的主要领域?A. 机器人控制B. 工业过程控制C. 航空航天控制D. 文字处理10.智能控制系统的设计通常包括哪几个步骤?A. 问题定义、系统建模、控制器设计、实现与测试B. 需求分析、系统设计、编程实现、系统测试C. 系统分析、硬件选择、软件编程、系统集成D. 理论研究、实验验证、应用开发、市场推广第二大题:填空题(每空2分,共20分)1.智能控制的主要研究对象是具有__________________、__________________和不确定性的系统。
2.模糊控制器的设计主要包括__________________、__________________、模糊推理和反模糊化四个步骤。
3.神经网络的学习算法主要包括有教师学习、无教师学习和__________________三种类型。
智能控制题目及解答
智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点。
4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能。
1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人-机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务。
3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。
(完整版)智能控制-考试题(附答案)
《智能控制》考试试题试题1:针对某工业过程被控对象:0.520()(101)(21)s G s e s s -=++,试分别设计常规PID 算法控制器、模糊控制器、模糊自适应PID 控制器,计算模糊控制的决策表,并进行如下仿真研究及分析:1. 比较当被控对象参数变化、结构变化时,四者的性能;2. 研究改善Fuzzy 控制器动、静态性能的方法。
解:常规PID 、模糊控制、Fuzzy 自适应PID 控制、混合型FuzzyPID 控制器设计 错误!未找到引用源。
. 常规PID 调节器PID 控制器也就是比例、积分、微分控制器,是一种最基本的控制方式。
它是根据给定值()r t 与实际输出值()y t 构成控制偏差()e t ,从而针对控制偏差进行比例、积分、微分调节的一种方法,其连续形式为:01()()[()()]t p d i de t u t K e t e t dt T T dt=++⎰ (1.1) 式中,p K 为比例系数,i T 为积分时间常数,d T 为微分时间常数。
PID 控制器三个校正环节中p K ,i T 和d T 这三个参数直接影响控制效果的好坏,所以要取得较好的控制效果,就必须合理地选择控制器的参数。
Ziegler 和Nichols 提出的临界比例度法是一种非常著名的工程整定方法。
通过实验由经验公式得到控制器的近似最优整定参数,用来确定被控对象的动态特性的两个参数:临界增益u K 和临界振荡周期u T 。
用临界比例度法整定PID 参数如下:表1.1 临界比例度法参数整定公式51015202530354000.20.40.60.811.21.41.61.8Time(s)y (t )051015202530354000.511.5Time(s)y (t )PID 0.6u K 0.5u T 0.125u T据以上分析,通过多次整定,当 1.168p K =时系统出现等幅振荡,从而临界增益 1.168u K =,再从等幅振荡曲线中近似的测量出临界振荡周期 5.384u T =,最后再根据表1.1中的PID 参数整定公式求出:0.701, 2.692,0.673p i d K T T ===,从而求得:比例系数0.701p K =,积分系数/0.260i p i K K T ==,微分系数0.472d p d K K T ==。
智能控制考试试题
智能控制考试试题在当今科技飞速发展的时代,智能控制已经成为了一门至关重要的学科。
为了考察学生对这一领域的掌握程度,以下是一套精心设计的智能控制考试试题。
一、选择题(每题 3 分,共 30 分)1、以下哪项不是智能控制的特点?()A 自适应性B 学习能力C 确定性D 鲁棒性2、智能控制中常用的模型有()A 数学模型B 物理模型C 模糊模型D 以上都是3、以下哪种算法属于智能控制算法?()A PID 算法B 遗传算法C 比例算法D 积分算法4、智能控制在以下哪个领域应用广泛?()A 工业生产B 医疗保健C 交通运输D 以上都是5、模糊控制的核心思想是()A 利用模糊集合和模糊逻辑进行推理B 精确计算和控制C 建立复杂的数学模型6、神经网络控制的优势在于()A 强大的学习和自适应能力B 计算简单C 不需要大量数据D 以上都不是7、以下哪项不是智能控制系统的组成部分?()A 传感器B 执行器C 控制器D 显示器8、专家系统在智能控制中的作用是()A 提供决策支持B 进行精确计算C 控制执行器动作D 以上都不是9、智能控制与传统控制的最大区别在于()A 控制精度更高B 能够处理不确定性和复杂性C 成本更低10、在智能控制中,优化算法的目的是()A 找到最优解B 提高计算速度C 降低成本D 以上都是二、填空题(每题 3 分,共 30 分)1、智能控制是指在无人干预的情况下能自主地驱动________,以实现控制目标。
2、常见的智能控制方法包括________、________、________等。
3、模糊控制中,模糊集合的隶属度函数通常有________、________、________等类型。
4、神经网络是由大量的________相互连接而成。
5、遗传算法的基本操作包括________、________、________。
6、智能控制的应用领域包括________、________、________等。
(完整版)智能控制考试题库
填空题(每空1 分,共20分)控制论的三要素是:信息、反馈和控制。
传统控制是经典控制和现代控制理论的统称。
智能控制系统的核心是去控制复杂性和不确定性。
神经元(即神经细胞)是由细胞体、树突、轴突和突触四部分构成。
按网络结构分,人工神经元细胞可分为层状结构和网状结构按照学习方式分可分为:有教师学习和无教师学习。
前馈型网络可分为可见层和隐含层,节点有输入节点、输出节点、计算单元。
神经网络工作过程主要由工作期和学习期两个阶段组成。
1、智能控制是一门控制理论课程,研究如何运用人工智能的方法来构造控制系统和设计控制器;与自动控制原理和现代控制原理一起构成了自动控制课程体系的理论基础。
2、智能控制系统的主要类型有:分级递阶控制系统,专家控制系统,学习控制系统,模糊控制系统,神经控制系统,遗传算法控制系统和混合控制系统等等。
3、模糊集合的表示法有扎德表示法、序偶表示法和隶属函数描述法。
4、遗传算法是以达尔文的自然选择学说为基础发展起来的。
自然选择学说包括以下三个方面:遗传、变异、适者生存。
5、神经网络在智能控制中的应用主要有神经网络辨识技术和神经网络控制技术。
6、在一个神经网络中,常常根据处理单元的不同处理功能,将处理单元分成输入单元、输出单元和隐层单元三类。
7、分级递阶控制系统:主要有三个控制级组成,按智能控制的高低分为组织级、协调级、执行级,并且这三级遵循“ 伴随智能递降精度递增”原则。
传统控制方法包括经典控制和现代控制,是基于被控对象精确模型的控制方式,缺乏灵活性和应变能力,适于解决线性、时不变性等相对简单的控制。
智能控制的研究对象具备以下的一些特点:不确定性的模型、高度的非线性复杂的任务要求。
IC(智能控制)=AC(自动控制)∩AI(人工智能)∩OR(运筹学)AC:描述系统的动力学特征,是一种动态反馈。
AI :是一个用来模拟人思维的知识处理系统,具有记忆、学习、信息处理、形式语言、启发推理等功能。
OR:是一种定量优化方法,如线性规划、网络规划、调度、管理、优化决策和多目标优化方法等。
[精选]智能控制试卷及答案4套资料
精品文档智能控制 课程试题A合分人:复查人:一、填空题(每空 1 分,共 20分)1.智能控制系统的基本类型有 、 、 、 、 和 。
2.智能控制具有2个不同于常规控制的本质特点: 和 。
3.一个理想的智能控制系统应具备的性能是 、 、 、 、 等。
4. 人工神经网络常见的输出变换函数有: 和 。
5. 人工神经网络的学习规则有: 、 和 。
6. 在人工智能领域里知识表示可以分为 和 两类。
二、简答题:(每题 5 分,共 30 分)1. 智能控制系统应具有的特点是什么?2. 智能控制系统的结构一般有哪几部分组成,它们之间存在什么关系?4.神经元计算与人工智能传统计算有什么不同?5.人工神经元网络的拓扑结构主要有哪几种?6.简述专家系统与传统程序的区别。
三、作图题:(每图 4 分,共 20 分)1. 画出以下应用场合下适当的隶属函数: (a )我们绝对相信4π附近的e(t)是“正小”,只有当e(t)足够远离4π时,我们才失去e(t)是“正小”的信心; (b )我们相信2π附近的e(t)是“正大”,而对于远离2π的e(t)我们很快失去信心; (c )随着e(t)从4π向左移动,我们很快失去信心,而随着e(t)从4π向右移动,我们较慢失去信心。
2. 画出以下两种情况的隶属函数:(a )精确集合 {}82A x x ππ=≤≤的隶属函数;(b )写出单一模糊(singleton fuzzification )隶属函数的数学表达形式,并画出隶属函数图。
四、计算题:(每题 10 分,共 20 分)1. 一个模糊系统的输入和输出的隶属函数如图1所示。
试计算以下条件和规则的隶属函数: (a )规则1:If error is zero and chang-in-error is zero Then force is zero 。
均使用最小化操作表示蕴含(using minimum opertor);(b )规则2:If error is zero and chang-in-error is possmall Then force is negsmall 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智能控制技术考试题及答案《智能控制技术》考试试题A《智能控制》课程考试试题A参考答案一、填空题(1) OPEN (2) 最有希望 (3) 置换 (4) 互补文字 (5) 知识库(6) 推理机 (7) 硬件 (8) 软件 (9) 智能 (10) 傅京孙(11) 萨里迪斯 (12) 蔡自兴 (13) 组织级 (14) 协调级(15) 执行级 (16) 递阶控制系统 (17) 专家控制系统(18) 模糊控制系统 (19) 神经控制系统 (20) 学习控制系统二、选择题1、D2、A3、C4、B5、D6、B7、A8、D9、A 10、D三、问答题1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。
(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。
(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。
(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。
传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。
人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。
人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平──智能控制发展。
智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的过程,并以知识进行推理,以启发式策略和智能算法来引导求解过程。
(2) 智能控制的核心在高层控制,即组织级。
高层控制的任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。
(3) 智能控制是一门边缘交叉学科。
实际上,智能控制涉及更多的相关学科。
智能控制的发展需要各相关学科的配合与支援,同时也要求智能控制工程师是个知识工程师。
(4) 智能控制是一个新兴的研究领域。
无论在理论上或实践上它都还很不成熟、很不完善,需要进一步探索与开发。
2、(本题鼓励自由发挥和创新思维,下列答案仅供参考,千万注意保护考生的创新精神)答:长期以来,自动控制科学已对整个科学技术的理论和实践做出重要贡献,并为人类的生产、经济、社会、工作和生活带来巨大利益。
然而,现代科学技术的迅速发展和重大进步,已对控制和系统科学提出新的更高的要求,自动控制理论和工程正面临新的发展机遇和严峻挑战。
传统控制理论,包括经典反馈控制、近代控制和大系统理论等,在应用中遇到不少难题。
多年来,自动控制一直在寻找新的出路。
现在看来,出路之一就是实现控制系统的智能化,以期解决面临的难题。
智能控制采用各种智能化技术实现复杂系统和其它系统的控制目标,是一种具有强大生命力的新型自动控制技术。
智能控制是人工智能和自动控制的重要部分和研究领域,并被认为是通向自主机器递阶道路上自动控制的顶层。
下图表示自动控制的发展过程和通向智能控制路径上控制复杂性增加的过程。
从图中可以看出,这条路径的最远点是智能控制,至少在当前是如此。
智能控制涉及高级决策并与人工智能密切相关。
智能控制是一门新建立的学科,无论在理论上或应用上,仍然不够完善,有待继续研究与发展。
展望智能控制的发展,我们应该:(1) 寻求更新的理论框架与智能控制的目标和定义相比,智能控制研究尚存在一些需要解决的问题。
人脑的结构和功能要比人们想象的复杂得多,人工智能和智能控制研究面临的困难要比我们估计的重大得多,智能科学工作者的研究任务要比我们讨论过的艰巨得多。
同时,要从根本上了解人脑的结构与功能,解决面临的困难,完成人工智能和智能控制的研究任务,需要寻找和建立更新的智能控制框架和理论体系,为智能控制的进一步发展打下稳固的理论基础。
(2) 进行更好的技术集成与人工智能相似的是,智能控制技术是人工智能技术与其它信息处理技术,尤其是信息论、系统论、控制论和认识工程学等的集成。
从学科结构的观点来看,提出了不同的思想,其中,智能控制的四元交集结构是最有代表性的一种集成思想。
在智能控制领域内已集成了许多不同的控制方案,如模糊自学习神经控制就集成了模糊控制、学习控制和神经控制等技术。
此外,还包括其它一些相关学科。
智能控制将向更高的技术水平发展,智能控制系统将包含多层级、多变量、非线性、大时滞、快速响应、分布参数和大规模系统等。
(3) 开发更成熟的应用方法为了实现智能控制,必须开发新的硬件和软件。
实现智能控制固然需要硬件的保障,不过,软件应是智能控制的核心;因为控制器的智能化是整个智能控制的核心,而这一智能化基本上要靠软件技术来实现。
3、答:递阶控制理论可被假定为寻求某个系统正确的决策与控制序列的数学问题,该系统在结构上遵循精度随智能降低而提高(IPDI)的原理,而所求得的序列能够使系统的总熵为最小。
三个控制层级的功能和结构如下:(1) 组织级组织级代表控制系统的主导思想,并由人工智能起控制作用。
组织器作为推理机的规则发生器,处理高层信息,用于机器推理、规划、决策、学习(反馈)和记忆操作,如图1所示。
图1 组织级的结构框图(2) 协调级协调级是上(组织)级和下(执行)级之间的接口,承上启下,并由人工智能和运筹学共同作用。
协调级由一定数量的具有固定结构的协调器组成,每个协调器执行某些指定的作用。
各协调器间的通讯由分配器来完成,而分配器的可变结构是由组织器控制的。
(3) 执行级执行级是递阶智能控制的底层,要求具有较高的精度但较低的智能;它按控制论进行控制,对相关过程执行适当的控制作用。
执行级的性能可由熵来表示,因而统一了智能机器的功用。
4、答:根据系统的复杂性,可把专家控制系统分为两类:即专家控制器和专家控制系统;按照系统的控制机理,又可把专家控制系统分为直接专家控制系统和间接专家控制系统。
专家控制器(EC)的组成:(1) 知识库(KB):KB存放工业过程控制的领域知识,由经验数据库(DB)和学习与适应装置(LA)组成。
经验数据库主要存储经验和事实。
学习与适应装置的功能就是根据在线获取的信息,补充或修改知识库内容,改进系统性能,以便提高问题求解能力。
(2) 控制规则集(CRS):对受控过程的各种控制模式和经验的归纳和总结。
(3) 推理机构(IE):其复杂由于规则条数决定,如果搜索空间很小,推理机构(IE)就十分简单,采用向前推理方法逐次判别各种规则的条件,满足则执行,否则继续搜索。
(4) 特征识别与信息处理(FR&IP):其作用是实现对信息的提取与加工,为控制决策和学习适应提供依据。
它主要包括抽取动态过程的特征信息,识别系统的特征状态,并对这些特征信息进行必要的加工。
5、答:在设计模糊控制器时,必须考虑下列各项内容:(1) 选择模糊控制器的结构;(2) 选取模糊控制规则;模糊控制规则是模糊控制器的核心,必须精心选取这些规则,并考虑下列问题:(a) 选定描述控制器输入和输出变量的语义词汇;(b) 规定模糊集;(c) 确定模糊控制状态表。
(3) 确定模糊化的解模糊策略,制定控制表;(4) 确定模糊控制器的参数。
下图为自组织模糊控制器的结构:它由基本层和自组织层两级构成;前者为一常规模糊语义控制器,后者对每一输入/输出响应的采样进行评价,并对控制器产生一个修正。
该结构能够自动获得模糊控制器的规则库。
当用FLC控制对象(装置)至期望响应时,新条件一旦出现,规则就被产生和修正。
该控制器的主要部分有性能评价、对象建模、规则库更新和FLC保持等。
性能评价单元用于分析精确装置有关性能目标的状态矢量(位置误差PE,误差变化CE),并对已辨识过的规则进行修正,以补偿任何恶劣性能的影响。
修正是通过标量来调整规则结论的。
采用可接受和不可接受两种阶跃响应相平面轨迹作为性能目标。
装置(对象)模型用于考虑装置规则修正时的输入-输出极性、规则库更新单元用于检查哪条或哪几条规则可对当前的恶劣性能产生响应,并进行修正。
自组织模糊控制器在学习试验过程中的连续采样时间内,不断(迭代)地改善规则库。
6、答:人工神经网络的下列特性对控制是至关重要的:(1) 并行分布处理。
神经网络具有高度的并行结构和并行实现能力,因而能够有较好的耐故障能力和较快的总体处理能力。
这特别适于实时控制和动态控制。
(2) 非线性映射。
神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。
这一特性给非线性控制问题带来新的希望。
(3) 通过训练进行学习。
神经网络是通过所研究系统过去的数据记录进行训练的。
一个经过适当训练的神经网络具有归纳全部数据的能力。
因此,神经网络能够解决那些由数学模型或描述规则难以处理的控制过程问题。
(4) 适应与集成。
神经网络能够适应在线运行,并能同时进行定量和定性操作。
神经网络的强适应和信息熔合能力使得网络过程可以同时输入大量不同的控制信号,解决输入信息间的互补和冗余问题,并实现信息集成和熔合处理。
这些特性特别适于复杂、大规模和多变量系统的控制。
(5) 硬件实现。
神经网络不仅能够通过软件而且可借助软件实现并行处理。
近年来,一些超大规模集成电路实现硬件已经问世,而且可从市场上购到。
这使得神经网络具有快速和大规模处理能力的实现网络。
十分显然,神经网络由于其学习和适应、自组织、函数逼近和大规模并行处理等能力,因而具有用于智能控制系统的潜力。
7、答:《智能控制》课程考试试题B《智能控制》课程考试试题B参考答案一、填空题(1) 高级机器人 (2) 智能规划与调度 (3) 自动制造系统 (4) 故障检测与诊断 (5) 小深(Deep Junior)(6) 卡斯帕洛夫(Kasparov) (7) 硬件 (8) 软件 (9) 智能 (10) 智能化(11) 选择模糊控制器的结构 (12) 选取模糊控制规则 (13) 确定模糊化的解模糊策略,制定控制表 (14) 确定模糊控制器的参数(15) 傅京孙 (16) 萨里迪斯 (17) 蔡自兴(18) 生物的进化机制 (19) 进化计算 (20) 反馈机制二、选择题1、C2、A3、A4、C5、D6、D7、B8、C9、A 10、C三、问答题1、答:在研究了智能控制的二元、三元结构理论、知识、信息和智能的定义以及各相关学科的关系之后。
蔡自兴教授提出了四元智能控制结构,把智能控制看作是自动控制、人工智能、信息论和运筹学四个学科的交集,如图1所示,其关系可用下式来描述。
IC = AI ∩ CT ∩ IT ∩ OR图1 智能控制的四元结构把信息论作为智能控制结构的一个子集是基于下列理由的:(1) 信息论是解释知识和智能的一种手段;(2) 控制论、系统论和信息论是紧密相互作用的;(3) 信息论已成为控制智能机器的工具;(4) 信息熵成为智能控制的测度;(5) 信息论参与智能控制的全过程,并对执行级起到核心作用。