自动控制原理第3章 习题及解析
自动控制原理第三章习题解答
tp =
1−ξ 2
= e −π 0.6 /
1−0.62
= e −π 0.6 /
1−0.62
= 9 .5 %
π
1 − ξ ωn
2
=
π
1.6
= 1.96( s )
ts =
3-5
3.5
ξω n
=
3.5 = 2.92( s ) 1.2
设单位反馈系统的开环传递函数为
G ( s) =
0.4 s + 1 s ( s + 0.6)
s5 s4 s3 s2 s1 s0
1 12 35 3 20 25 16 80 3 3 5 25 10 25
有一对虚根,系统不稳定 3-13 已知单位反馈系统的开环传递函数
G ( s) =
K (0.5s + 1) s ( s + 1)(0.5s 2 + s + 1)
试确定系统稳定时的 K 值范围。 解:系统特征方程为
ε 0 ,试问 k1 应满足什么条件?
见习题 3-20 解答 3-2 设系统的微分方程式如下: (1)
&(t ) = 2r (t ) 0.2c
&&(t ) + 0.24c &(t ) + c(t ) = r (t ) (2) 0.04c
试求系统的单位脉冲响应 k(t)和单位阶跃响应 h(t)。已知全部初始条件为零。 解: (1) 因为 0.2 sC ( s ) = 2 R ( s ) 单位脉冲响应: C ( s ) = 10 / s 单位阶跃响应 h(t)
试求系统的超调量σ%、峰值时间tp 和调节时间ts。 解: h(t ) = 1 −
《自动控制原理》习题及解答03
t1
T[ln(
T
T
)
ln
0.9]
则
tr
t2
t1
T
ln
0.9 0.1
2.2T
3) 求 ts
h(ts )
0.95
1
T T
e ts
/T
ts
T[ln
T T
ln 0.05]
T[ln
T T
ln 20]
T[3
ln
T T
]
3-3 一阶系统结构图如题 3-3 图所示。要求系统闭环增益 K 2 ,调节时间 ts 0.4 (s),试确定参数 K1, K 2 的值。
3-15 虚根。
h() lim s (s) 1 2.5
s0
s
已知系统的特征方程,试判别系统的稳定性,并确定在右半 s 平面根的个数及纯
4 1 )(s
1)
T1
T2
T1
T2
1 0.25
C(s) (s)R(s)
4
= C0 C1 C2
s(s 1)(s 4) s s 1 s 4
C0
lim s (s) R(s)
s0
lim
4
s0 (s 1)(s
4)
1
C1
lim (s
s1
1) (s)
R(s)
lim
s0
4 s(s
4)
4 3
考虑初始条件,对微分方程进行拉氏变换
s 2C(s) s c(0) c(0) 5 s C(s) c(0) 62.5C(s) 0 整理得 s 2 5s 62.5 C(s) s 5c(0) c(0)
对单位反馈系统有 e(t) r(t) c(t) , 所以
自动控制原理黄坚 第二版 第三章习题答案
第三章习题课 (3-13)
3-13 已知系统结构如图,试确定系统稳 定时τ值范围。 R(s) 10 C(s) 1 解: 10(1+ 1 ) s G(s)=s2+s+10 s τ 10(s+1) =s(s2+s+10 s) τ 10(s+1) Φ(s)= s3 +s2+10 s2+10s+10 τ 10(1+10 )-10 τ b31= 1+10 >0 τ
e
-1.8
第三章习题课 (3-6)
3-6 已知系统的单位阶跃响应: -60t -10t c(t)=1+0.2e -1.2e (1) 求系统的闭环传递函数。 (2) 求系统的阻尼比和无阻尼振荡频率。 1 + 0.2 - 1.2 = 600 解: C(s)= s s+60 s+10 s(s+60)(s+10) 1 C(s)= 600 R(s)= s R(s) s2+70s+600 ω n=24.5 ζ 2 ω n=70 ω n2 =600 ζ=1.43
第三章习题课 (3-17)
1 r(t)=I(t), t , 2 t2 (2) 求系统的稳态误差: 1 K1 τ = 1 G(s)= 2 解: s +Kτ s s( 1 Kτ s+1)
1
1 R(s)= s υ=1
Kp=∞ K =K υ
ess1=0 τ ess2= =0.24 ess3=∞
R(s)= s1 2 R(s)= s1 3
(3) 求d1(t)作用下的稳态误差. 1 K F(s)= Js G(s)=Kp + s -F(s) 1 essd= lim s1+G(s)F(s) s s→0 - 1 1 =0 Js = lim s K) 1 s s→0 1+(Kp+ s Js
自动控制原理第三章习题参考答案
Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12
自动控制原理习题及其解答第三章
第三章例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
自动控制原理 孟华第3章习题解答
3.1.已知系统的单位阶跃响应为)0(2.1.0)(16≥-+=--t e e t c tt 0021试求:(1)系统的闭环传递函数Φ(s)=?(2) 阻尼比ζ=?无自然振荡频率ωn =? 解:(1)由c (t )得系统的单位脉冲响应为t te et g 10601212)(--+-=600706006011210112)]([)(2++=+-+==Φs s s s t g L s (2)与标准2222)(nn ns s ωζωω++=Φ对比得: 5.24600==n ω,429.1600270=⨯=ζ3.2.设图3.36 (a )所示系统的单位阶跃响应如图3.36 (b )所示。
试确定系统参数,1K 2K 和a 。
(a) (b)图3.36 习题3.2图解:系统的传递函数为22212212112)(1)()(nn n s K K as s K K K a s s K a s s K s W ωζωω++=++=+++= 又由图可知:超调量 43133p M -== 峰值时间 ()0.1p t s =代入得⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==-==--221121.01312K K eK n n ζωπωζζπ 解得:213ln ζζπ-=;33.0≈ζ,3.331102≈-=ζπωn ,89.110821≈=nK ω, 98.213.3333.022≈⨯⨯≈=n a ζω,32==K K 。
3.3. 给定典型二阶系统的设计性能指标:超调量p σ5≤%,调节时间 s t 3<s ,峰值时间1<p t s ,试确定系统极点配置的区域,以获得预期的响应特性。
解:设该二阶系统的开环传递函数为()()22nn G s s s ωξω=+ 则满足上述设计性能指标:⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=<=≤=--113305.0212ζωπζωσζζπn p ns p t t e得:69.0≥ζ,1>n ζωπζω>-21n由上述各不等式得系统极点配置的区域如下图阴影部分所示:3.4.设一系统如图3.37所示。
自动控制原理第3章 习题及解析
自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。
考察一阶系统未知参数对系统动态响应的影响。
解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。
3-2 设用11Ts +描述温度计特性。
现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。
如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。
考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。
由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。
解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。
自动控制原理第3章习题解答
−
−
ω n (ξ − ξ 2 − 1)
1 10
2
T2 = 1 60
1
ω n (ξ + ξ 2 − 1)
显然: T1 =
T2 =
ξ2 T1 ξ + ξ − 1 = =6= T2 ξ − ξ 2 − 1 1 1− 1− 2 ξ
由 T1 =
1+ 1−
1
解方程得 ξ =
7 2 6
1
ω n (ξ − ξ − 1)
试求系统在单位阶跃输入下的动态性能。 解:闭环传递函数
0.4 s + 1 G( s) 0.4 s + 1 s ( s + 0.6) GB ( s) = = = 2 s + s +1 1 + G ( s ) 1 + 0.4 s + 1 s( s + 0.6) C ( s ) = GB ( s ) R( s ) = 1 0.4 s + 1 0.4 1 = 2 + 2 2 s s + s + 1 s + s + 1 s( s + s + 1) s +1 s + 0.6 0.4 1 1 = 2 + − 2 = − 2 s + s +1 s s + s +1 s s + s +1
3.5 = 7s 0.5
3-6 已知控制系统的单位阶跃响应为
h(t ) = 1 + 0.2e −60t − 1.2e −10t
试确定系统的阻尼比ζ和自然频率ωn。 解: 求拉氏变换得
H (s) =
1 0.2 1.2 ( s + 60)( s + 10) 0.2s ( s + 10) 1.2s ( s + 60) + − = + − s s + 60 s + 10 s ( s + 60)( s + 10) s ( s + 60)( s + 10) s ( s + 60)( s + 10)
自动控制理论第三章习题答案
解:系统开环传递函数
图 3-42
飞行控制系统
25K1
G0 (s)
=
1+
s(s + 0.8)
25K1 s(s + 0.8)
Kt
s
=
s(s
+
25K1 0.8) + 25K1Kt s
=
25K1
=
ω
2 n
s(s + 0.8 + 25K1Kt ) s(s + 2ξωn )
ω
2 n
=
36
=
25K1
K1
=
36 25
1
s(s + 1) + 10τ 2s
= 10(1 + τ1s) = 10 =
ω
2 n
s(s + 1) + 10τ 2s s(s + 2) s(s + 2ξωn )
s(s + 1)
ω
2 n
= 10
ωn = 10
2ξωn = 2
ξ= 1 10
σ % = e−ξπ / 1−ξ 2 = 35.1%
5
胡寿松自动控制原理习题解答第三章
单位脉冲响应: C(s) = 10 / s k(t) = 10 t ≥ 0
单位阶跃响应 h(t) C(s) = 10 / s2 h(t) = 10t t ≥ 0
(2) (0.04s2 + 0.24s + 1)C(s) = R(s)
单位脉冲响应: C(s)
=
0.04 s 2
1 + 0.24s
+1
C (s)
(1) s5 + 3s 4 + 12s3 + 24s 2 + 32s + 48 = 0 (2) s 6 + 4s5 − 4s 4 + 4s3 - 7s 2 - 8s + 10 = 0
自动控制原理第三章课后习题 答案(最新)
3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c =&(2) )()()(24.0)(04.0t r t c t c t c =++&&&试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC = 闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
自动控制原理 第3章习题解答
1−ζ 2 = π
ζ
3
2π
tr
=
π −β ωd
=
3 3
=
23 9
π
;t p
=π ωd
=
π 3
=
3π 3
−ζ π
M p = e 1−ζ 2 ×100% = 16.3% ;
t
5% s
=3 ζω n
=
3s,
t
2% s
=4 ζω n
= 4s
3-6 系统结构图如题 3-6 图所示,试求当τ = 0 时,
系统的ζ 和ωn 之值,如要求ζ =0.7,试确定参数τ 。
s2
0.8
1+ K
s1 0.8(2 + K ) − (1 + K ) 0
0.8
s0 1+ K
Q 系统临界稳定
∴ 0.8(2 + K ) − (1 + K ) = 0
即K = 3 即系统的临界增益K = 3
由s 2行构成辅助多项式:0.8s 2 + (1 + K ) = 0
即0.8s 2 + 4 = 0 ∴ s1,2 = ± j 5 = ± j2.24 ∴系统的振荡频率为ωn = 2.24rad / s
= 150.5°
h(t) = 1 − 0.06e−5.76t + 1.07e−0.37t cos(1.27t + 150.5°)
3-4
已知根据主导极点 s1,2 确定的调整时间为 10.82s,考察这一时刻系统单位阶跃响应中
的指数项值 − 0.06e−5.76t |t=10.82 = −5.15 ×10−29 ,可见指数项值在 ts = 10.82 时已经衰减到 微不足道的程度。事实上,在峰值时间 t p = 2.48s ,指数项的值为 − 3.7 ×10−8 ,可见对
自动控制原理(孟华)第3章习题解答
3.1.已知系统的单位阶跃响应为)0(2.1.0)(16≥-+=--t e e t c tt 0021试求:(1)系统的闭环传递函数Φ(s)=?(2) 阻尼比ζ=?无自然振荡频率ωn =? 解:(1)由c (t )得系统的单位脉冲响应为t te et g 10601212)(--+-=600706006011210112)]([)(2++=+-+==Φs s s s t g L s (2)与标准2222)(nn ns s ωζωω++=Φ对比得: 5.24600==n ω,429.1600270=⨯=ζ3.2.设图3.36 (a )所示系统的单位阶跃响应如图3.36 (b )所示。
试确定系统参数,1K 2K 和a 。
(a) (b)图3.36 习题3.2图解:系统的传递函数为22212212112)(1)()(nn n s K K as s K K K a s s K a s s K s W ωζωω++=++=+++= 又由图可知:超调量 43133p M -== 峰值时间 ()0.1p t s =代入得⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==-==--221121.01312K K eK n n ζωπωζζπ 解得:213ln ζζπ-=;33.0≈ζ,3.331102≈-=ζπωn ,89.110821≈=nK ω, 98.213.3333.022≈⨯⨯≈=n a ζω,32==K K 。
3.3. 给定典型二阶系统的设计性能指标:超调量p σ5≤%,调节时间 s t 3<s ,峰值时间1<p t s ,试确定系统极点配置的区域,以获得预期的响应特性。
解:设该二阶系统的开环传递函数为()()22nn G s s s ωξω=+ 则满足上述设计性能指标:⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=<=≤=--113305.0212ζωπζωσζζπn p ns p t t e得:69.0≥ζ,1>n ζωπζω>-21n由上述各不等式得系统极点配置的区域如下图阴影部分所示:3.4.设一系统如图3.37所示。
自动控制原理第三章课后习题答案(免费)
自动控制原理第三章课后习题答案(免费)3-1 判别下列系统的能控性与能观性。
系统中a,b,c,d 的取值对能控性与能观性是否有关,若有关其取值条件如何?(1)系统如图所示。
题3-1(1)图 系统模拟结构图解: 状态变量:11223123434x ax u x bx x x x cx x x dx =+=-=+-=+输出变量: 3y x =由此写出状态空间:0001000011000010(0010)a b x x u c d Y x⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭= 223333[1,0,0,0],[,0,1,0],[,0,,1],[,0,,]T T T B AB a A B a a c A B a a ac c a c d ==-=--=-++---判断能控型:()2323221000001001c a a a U BABA BA B a c a ac c a c d ⎛⎫-- ⎪⎪== ⎪--++ ⎪ ⎪---⎝⎭4c rankU ≠,所以系统不完全能控,讨论系统能控性:判断能观性:022322222001011000C CA c U CA a c b c c CA a ac c b bc c c ⎛⎫⎛⎫ ⎪ ⎪-⎪ ⎪== ⎪ ⎪---- ⎪ ⎪++++-⎝⎭⎝⎭04rankU ≠,所以系统不能观.(2)系统如图所示。
题3-1(2)图 系统模拟结构图解: 状态变量:()1211101[,]1c x a b x ux c d y xa b U B AB c d -⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭=-+⎛⎫== ⎪--⎝⎭若0,a b c d b ----≠则2c rankU =,系统能控.010C U CA a b ⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭若0b ≠,则02rankU =,系统能观.(3)系统如下式:1122331122311021010000200000x x x a ux x b x x y c d x y x ∙∙∙⎛⎫-⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪=-+⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ ⎪⎝⎭⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭解:系统如下:1231122311021010000200000x x x a u x b x y c d x y x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-+ ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭若0,0a b ≠≠,系统能控.若0,0c d ≠≠,系统能观.3-2 时不变系统:311113111111x x u y x ∙-⎛⎫⎛⎫=+ ⎪ ⎪-⎝⎭⎝⎭⎛⎫= ⎪-⎝⎭试用两种方法判别其能控性与能观性。
自动控制原理第三章课后习题答案解析(最新)
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。
考察一阶系统未知参数对系统动态响应的影响。
解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。
3-2 设用11Ts +描述温度计特性。
现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。
如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。
考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。
由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。
解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。
解1.51.5()1012sin(1.6+53.1=10[1 1.2sin(1.6+53.1]t t y t e t e t --=--))该二阶系统的放大系数为10。
且注意到放大系数并不改变系统参数及动态性能指标。
根据二阶系统的单位阶跃响应为)n t ζωωβ-+有1/ 1.21.5n ζωω⎧=⎪⎪=⎨⎪⎪⎩解得=0.6=2.5n ζω⎧⎨⎩因0=0.61ζ<<,故系统为欠阻尼二阶系统。
根据动态性能指标公式有超调量%100%9.48%eπζσ-==峰值时间 1.57s p t ==上升时间 1.11s r t ==调节时间 3.52.33(5%s nt ζω==∆=)3-5 设单位反馈系统的开环传递函数为()(0.21)KG s s s =+试求开环增益K 分别为10和20时系统的阻尼比ζ、无阻尼自振频率n ω、单位阶跃响应的超调量%σ 和峰值时间p t ,并讨论K 的大小对系统的动态性能的影响。
解 系统的闭环传递函数为2()0.2Ks s s KΦ=++根据典型的二阶系统有ζ,n ω=故当10K =时,0.35,7.07rad/s n ζω==,由欠阻尼单位阶跃响应的性能指标计算公式有%100%30.9%e πζσ-=⨯=0.47s p t ==当20K =时,0.25,10rad/s n ζω==,由欠阻尼单位阶跃响应的性能指标计算公式有%100%44.4%e πζσ-=⨯=0.32s p t ==可以看出,随着开环增益K 的增大,系统的阻尼比减小,无阻尼自然频率增大,而对应的超调量增大,到达峰值的峰值时间减小。
3-6 系统的结构图和单位阶跃响应曲线如图3-53所示,试确定12K K 、和a 的值。
解 由图可知()2,0.8s,() 2.18,%9%p p y t y t σ∞==== 又系统的闭环传递函数为2122221()2n n nK K K s s as K s s ωζωωΦ==++++ 由终值定理有1222011()lim ()()lim 2s s K K y s s R s s K ss as K →→∞=Φ=⋅⋅==++根据欠阻尼单位阶跃响应性能指标计算公式有%100%9%e πζσ-==可反解0.6083ζ==0.8s p t ==反解 4.95rad/s n ω==则22124.5(rad/s),2 6.02rad/s n n K a ωζω====。
3-7 设系统的闭环传递函数为222()()2n n nY s R s s s ωζωω=++ 1)试求0.1,1rad/s;n ζω==0.1,4rad/s;n ζω==0.1,12rad/s n ζω==时对应的单位阶跃响应的超调量%σ和调节时间s t (取误差带5%∆=)。
2)试求0.5,4rad/s n ζω==时单位阶跃响应的超调量%σ和调节时间s t 。
3)讨论ζ和n ω与过渡过程性能指标的关系。
解 1)由系统的闭环传递函数可知,该系统为典型的二阶系统, 那么根据欠阻尼单位阶跃性能指标公式有%100%e πζσ-=, 3.53.5(5%s nt ζωσ==∆=)故当0.1,1rad/s n ζω==时,%100%=72.92%e πζσ-=, 3.535s(5%s nt ζω==∆=)当0.1,4rad/s n ζω==时,%100%=72.92%eπζσ-=, 3.58.75s(5%s n t ζω==∆=) 当0.1,12rad/s n ζω==时,%100%=72.92%eπζσ-=, 3.52.92s(5%s nt ζω==∆=) 2)当0.5,4rad/s n ζω==时,%100%=16.30%eπζσ-=, 3.51.75s(5%s nt ζω==∆=)3)通过上面的计算可以看出,系统单位阶跃响应的超调量只与阻尼比有关,并且,随着阻尼比的增加而减小,而调节时间与阻尼比和自然频率都有关,当阻尼比固定时,调节时间随自然频率的增加而减小,当自然频率固定时,调节时间随着阻尼比的增加而减小。
3-8 典型二阶系统单位阶跃响应超调量%30%σ=,峰值时间0.1s p t =,试求系统的开环传递函数。
解 根据欠阻尼单位阶跃性能指标公式有%100%30%e πζσ-==可反解0.3575ζ==,0.1s p t ==可反解33.64rad/s n ω==那么系统的开环传递函数为2221132(=2241132n n G s s s s s ωζω=+++)3-9 设二阶系统如图3-54所示,欲加负反馈使系统阻尼比由原来的ζ提高到ζ,且放大系数K 和自然频率n ω保持不变,试确定()H s 。
解 由图可得系统的闭环传递函数为2222()2()nn n nK s s s KH s ωζωωωΦ=+++ 根据题意可取1()H s K s = 此时,112n KK ζζω=+可解得12()/n K K ζζω=- 故2()()nsH s K ζζω-=3-10 设系统结构如图3-55所示。
如果要求系统阶跃响应的超调量等于20%,峰值时间等于1s ,试确定1K和t K 的值,并计算此时调节时间s t 。
图 3-56 题3-11图解 由图可得系统的闭环传递函数为1211()(1)t K s s K K s K Φ=+++则2111,2tn nK K K ωζω+==根据已知条件有%100%20%e σ-==可反解0.456ζ==,1s p t ==可反解 3.538rad/s n ω==故112112.52,0.178n t K K K ωζ-=== 进而调节时间 3.52.169(5%s nt ζω==∆=)3-11 已知某控制系统如图3-56所示,要求该系统的单位阶跃响应()y t 具有超调量%15%σ=、峰值时间0.8s p t =,试确定前置放大器的增益K 及内反馈系数t K 之值。
解 由图可得系统的闭环传递函数为225()(125)25t Ks s K s KΦ=+++则2125/25,2tn nK K ωζω+==根据已知条件有%100%15%e σ-==可反解0.517ζ==,0.8s p t ==可反解 4.588rad/s n ω==故210.842,0.1525n t K K ωζ-=== 进而调节时间 3.51.476(5%s nt ζω==∆=)3-12 设单位反馈系统开环传递函数为(1)()(1)d K T s G s s s +=+式中K 为开环增益。
已知系统在单位斜坡输入时的稳态误差()0.1rad,0.6ss d e ζ∞==,确定K 与d T 值,并估算系统在单位阶跃输入下的各项性能指标。
解 系统在单位斜坡输入时的稳态误差()1/ss e K ∞=,故10K =。
当0d T =时,系统的闭环传递函数为2()Ks s s KΦ=++则可得13.16rad /s,0.1582n nωζω====当0d T ≠时,由于0.6d ζ=,故2()0.28s d d nT ζζω-==那么系统在单位阶跃输入下的各项性能指标分别为超调量%100%9.48%eπζσ-==峰值时间1.24s p t ==上升时间0.88s r t =调节时间 3.51.85s(5%s nt ζω==∆=)3-13 试用劳斯稳定判据确定具有下列闭环特征方程式的系统的稳定性。
1)(1)(21)(41)200s s s ++++= 2)4328181650s s s s ++++=3)543263210s s s s s +++++= 4)54322244825500s s s s s +++--= 解1)系统闭环特征方程为328147210s s s +++=,列出劳斯表,劳斯表第一列系数符号改变两次,系统有两个正实部根,系统不稳定;2)列出劳斯表,劳斯表第一列系数全为正,系统稳定;3)列出劳斯表,劳斯表第一列系数符号改变两次,系统有两个正实部根,系统不稳定; 4)方程存在共轭虚根,系统不稳定。
3-14 设单位反馈系统开环传递函数分别为1) ()/(1)(2)G s K s s s =++ 2) 11()/(1)(1)36G s K s s s =++3) 2()(1)/(24)G s K s s s =++ 试确定使系统稳定的K 值范围。