高一数学必修一知识点总结
高一数学必修一知识点总结全
高一数学必修一知识点总结全1. 直线与坐标1.1 直线的斜率直线的斜率是指直线上一点到另一点的纵坐标之差与横坐标之差的比值。
1.2 直线的截距直线在坐标系上与y轴的交点称为直线的截距。
1.3 直线的方程直线的方程可以用斜截式、两点式或点斜式来表示。
2. 二次函数与函数的图像2.1 二次函数的定义二次函数是形如y=ax^2+bx+c的函数,其中a、b、c为常数。
2.2 二次函数的图像特征二次函数的图像是一条抛物线,其开口方向由二次项系数a的正负决定,开口向上为正,开口向下为负。
2.3 二次函数的平移与伸缩二次函数可以通过平移和伸缩变换图像的位置和形状。
3. 平面向量与坐标3.1 平面向量的定义平面向量是具有大小和方向的量,在坐标系中可以表示为有序数对。
3.2 平面向量的运算平面向量可以进行加法、减法、数乘和向量乘法运算。
3.3 平面向量的坐标表示平面向量的坐标表示可以用分量表示法或单位向量表示法。
4. 三角函数4.1 三角函数的定义三角函数是角的函数,包括正弦、余弦和正切等。
4.2 三角函数的基本关系式三角函数之间存在一些基本关系式,如正弦定理和余弦定理等。
4.3 三角函数的图像特征三角函数的图像具有周期性和对称性,可以通过坐标系表示。
5. 函数与方程5.1 函数的定义与性质函数是一种特殊的关系,具有输入与输出的对应关系。
5.2 方程的解与解集方程是含有未知数的等式,解是使方程成立的未知数的值。
5.3 一次函数与一次方程一次函数是函数的一种特殊形式,一次方程是一次函数的等式形式。
以上是高一数学必修一的一些重要知识点总结,这些知识点对于建立高中数学基础知识非常重要。
希望这份总结对你有所帮助!。
高一数学必修一知识点归纳
高一数学必修一知识点归纳第一章二次函数1.1 一元二次方程及其解法一元二次方程的标准形式为ax^2 + bx + c = 0,可以通过公式法、配方法和因式分解等方式求解。
1.2 二次函数的图像及性质二次函数y=ax^2+bx+c的图像为抛物线,开口向上或向下,顶点坐标为(-b/2a,c-b^2/4a)。
1.3 二次函数与一元二次方程的关系一元二次方程可以通过二次函数的图像特征求解,二次函数的各项系数与一元二次方程的特征之间有一一对应的关系。
第二章直线与圆2.1 直线的方程及性质直线的一般方程为Ax+By+C=0,斜率为-k/A,其中k为直线的垂直距离。
2.2 圆的方程及性质圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。
第三章度量衡3.1 长度、面积和体积的计算长度、面积和体积的计算包括常见图形的计算公式和应用场景,如长方形、正方形、圆形等。
3.2 单位换算长度、面积和体积的不同单位之间的换算,包括长度单位、面积单位、体积单位等。
第四章三角函数4.1 弧度制下的角度角度的度量单位有度、分、秒和弧度制,弧度制下一周的角度为2π。
4.2 三角函数的概念三角函数包括正弦函数、余弦函数、正切函数等,它们与直角三角形的边和角之间有一一对应的关系。
4.3 三角函数的图像及性质三角函数的图像具有周期性、对称性,通过振幅和周期来描述函数的性质。
第五章概率5.1 随机事件及基本概率随机事件的基本概率计算方法包括等可能概率、加法原理和乘法原理等。
5.2 条件概率及事件的独立性条件概率描述了随机事件在已知其他事件发生的情况下自身发生的概率,事件的独立性指两个事件发生与否互不影响。
第六章初等数论6.1 整除、最大公因数、最小公倍数整除、最大公因数和最小公倍数概念及计算方法,涉及质数、合数、素数分解等内容。
6.2 同余式同余式描述了整数之间的某种特殊的相等关系,同余式的性质包括传递性、对称性和相容性等。
高中高一数学必修1各章知识点总结
高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
高一数学必修一知识点总结归纳(6篇)
高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
高中高一数学必修1各章知识点总结
高中高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a ∈A ,相反,a不属于集合A 记作aÏA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
(完整版)高一数学必修1知识点归纳
1、集合的概念:某些研究对象的全体叫集合,用大写字母表示;集合中的每个对象叫做这个集合的元素,用小写字母表示;2、集合的表示方法有:(1)列举法(把集合的所有元素一一列举并写在大括号内);(2)描述法(把集合中元素的公共属性描述出来写在大括号内);3、集合中元素的特征有无序性、互异性、确定性;4、元素与集合的关系有:属于()和不属于();∈∉5、集合分类:(1)把不含任何元素的集合叫做空集(); (2)含有有限个元素的集合叫做有限集;∅(3)含有无穷个元素的集合叫做无限集;6、常用数集及其记法:(1)自然数集:记作;(2)正整数集:记作;{}0,1,2,3, N {}1,2,3, N N *+或(3)整数集:记作;(4)有理数(包括整数和分数)集:记作;{}3,2,1,0,1,2,3,--- Z Q (5)实数(包括有理数和无理数)集:记作;R 7、集合与集合的关系有:子集(包含于,)、真子集(真包含于,)、相等(=);⊆Ø8、子集的概念:如果集合A 中的每一个元素都是集合B 中的元素,那么集合A 叫做集合B 的子集,记作;A B ⊆9、真子集的概念:若集合A 是集合B 的子集,且B 中至少有一个元素不属于A,那么集合A 叫做集合B 的真子集,记作;(真子集是除本身以外的子集)A B ⊂10、子集、真子集的性质:(1)传递性:若,,则;B A ⊆C B ⊆A C ⊆(2)空集是任意集合的子集,是任意非空集合的真子集;(3)任何一个集合是它本身的子集;(在写子集时首先注意两个特殊的子集----空集和它本身)11、集合相等:(1)若集合A 中的元素与集合B 中的元素完全相同,则称集合A 等于集合B,记作;A B =(2)(即互为子集)。
B A A B B A =⇔⊆⊆,12、n 个元素的集合其子集个数共有个;真子集有个(比子集少了它本身);)(N n ∈2n21n-非空子集有个;非空的真子集有个;21n-22n -13、集合的运算:(1)交集(公共元素) :A ∩B ={x|x ∈A 且x ∈B};(2)并集(所有元素) :A ∪B ={x|x ∈A 或x ∈B};(3)补集(剩余元素) :={x| 且x ∈U},U 为全集。
高一必修一数学全册知识点
高一必修一数学全册知识点一、集合1. 集合的基本概念1.1 集合的定义和表示方法1.2 集合的元素与集合的关系二、数字与代数1. 实数与数轴2.1 实数的概念及表示2.2 数轴的绘制与实数的表示2.3 实数的比较与加减法运算2.4 实数的乘除法运算及其性质2. 同底数幂与科学计数法2.1 指数与幂的概念2.2 同底数幂的乘除法运算2.3 科学计数法的表示与运算3. 整式的基本概念3.1 代数式与整式的定义3.2 项、次数及系数的概念3.3 同类项与合并同类项3.4 整式的加减法运算4. 一元一次方程及其应用4.1 一元一次方程的定义及基本性质4.2 解一元一次方程的基本方法4.3 应用题中的一元一次方程5. 分式及其运算5.1 分式的定义及分式运算的基本性质5.2 分式的化简5.3 分式方程的解法及应用三、函数与图像1. 函数的概念与表示6.1 函数的定义及函数的表示方法6.2 函数的自变量、因变量与定义域、值域的关系2. 幂函数与分段函数6.2.1 幂函数的概念及其性质6.2.2 分段函数的定义及分段函数的画法3. 一次函数与斜率6.3.1 一次函数的定义及一次函数的性质6.3.2 斜率的概念及其计算方法4. 二次函数及其图像6.4.1 二次函数的定义及二次函数的图像特点6.4.2 二次函数的变换与最值四、三角函数1. 三角函数及其基本性质7.1.1 弧度制与角度制的转换7.1.2 正弦、余弦、正切函数的定义及其基本性质2. 三角函数图像的性质与变换7.2.1 三角函数图像的对称性与奇偶性7.2.2 三角函数图像的平移与伸缩7.2.3 三角函数图像的组合与分解3. 三角函数的简单应用7.3.1 三角函数在实际问题中的应用7.3.2 直角三角形的解题方法五、平面几何1. 直线与圆的性质8.1.1 直线的定义及其性质8.1.2 圆的定义及其性质2. 三角形的基本性质8.2.1 三角形分类及其特性8.2.2 三角形的成立条件3. 三角形的相似8.3.1 相似三角形的定义及判定条件 8.3.2 相似三角形的性质及应用4. 圆的切线与割线8.4.1 切线的定义及性质8.4.2 相交弦的性质及切割定理六、统计与概率1. 统计图与数据的分析9.1.1 统计图的绘制及其分析9.1.2 数据的分析与统计规律2. 事件的概率9.2.1 随机事件与概率的定义 9.2.2 事件的计算与概率的性质3. 排列与组合9.3.1 排列的定义及排列的计算 9.3.2 组合的定义及组合的计算。
高一数学必修一知识点归纳总结
高一数学必修一知识点归纳总结
一、平面解析几何
1. 平面直角坐标系
- 坐标轴及坐标点的表示方法
- 点的坐标与距离公式的应用
2. 直线的方程
- 斜率的概念和计算方法
- 截距的概念和计算方法
- 一般式和标准式的相互转换
- 平行、垂直直线的关系及判定方法
3. 圆的方程
- 圆的定义及相关概念
- 圆的标准方程及一般方程
- 圆与直线的位置关系
- 相交弦和切线的性质
4. 配对法
- 二次曲线的配对法及示意图
- 配对法解题步骤与技巧
二、函数及立体几何
1. 函数的概念与性质
- 定义域和值域的计算方法- 函数的奇偶性判断
- 函数的单调性判断
- 函数图象与函数值的关系2. 一次函数和二次函数
- 一次函数的表示和性质
- 一次函数的图象和变换
- 二次函数的表示和性质
- 二次函数的图象和变换
3. 立体几何基础知识
- 空间几何体的定义及性质- 线段的长度和空间角的计算- 平行线与平面的关系
三、概率与统计
1. 随机事件与概率
- 随机事件的概念和表示方法- 概率的定义和性质
- 事件的联合、互斥与对立关系
2. 组合与样本空间
- 组合的概念和计算方法
- 样本空间的定义和计算方法
- 事件的排列组合与计数方法
3. 统计与抽样
- 总体、样本和样本均值的概念
- 随机抽样的方法和步骤
- 样本统计量的计算及应用
以上为高一数学必修一的知识点归纳总结,对于复复数学知识有一定的帮助。
需要注意理解概念和掌握计算方法,搞清楚基本原理,灵活运用到实际问题的解题中。
高一必修一数学知识点考点
高一必修一数学知识点考点第一章:集合与常用逻辑1. 集合及其表示方法- 集合的定义和基本概念- 集合的表示方法:列举法、描述法和定语从句法- 包含关系与相等关系2. 集合的运算- 交集、并集和差集的含义与计算- 互斥事件与对立事件的关系- 集合的运算律:交换律、结合律、分配律3. 常用逻辑符号与命题- 命题的概念与性质- 非、与、或、异或等逻辑运算符号的意义与运算规则 - 命题的合取范式与析取范式第二章:函数与方程1. 函数的概念与性质- 函数的定义及其基本性质- 定义域、值域和象集的概念- 函数的分类:一次函数、二次函数、指数函数、对数函数等2. 初等函数的图像与性质- 一次函数、二次函数、指数函数、对数函数等常用函数的图像特征- 函数的单调性、奇偶性和周期性等性质- 函数与方程的关系:函数方程、隐函数、显函数等3. 方程与不等式- 方程与等式的概念及其解的求解方法和性质- 一元一次方程和一元二次方程的解法- 不等式的概念和性质,不等式的解集表示方法第三章:平面几何1. 平面内的基本图形与性质- 点、线、线段、射线和角的概念与基本性质- 直线的分类:平行线、垂直线、相交线等- 三角形的分类:等边三角形、等腰三角形、直角三角形等2. 三角形的面积和周长- 三角形的面积公式及其推导- 三角形的周长计算方法- 与三角形相关的重要定理:海伦公式、正弦定理、余弦定理等3. 圆的性质与圆的应用- 圆的定义及其基本性质- 弧的概念与弧长、弦长的计算方法- 圆的切线与切点的概念及其性质第四章:立体几何1. 空间几何体的基本概念- 简单体与复合体的概念与区别- 空间直线、平面、立体角等的定义和性质- 空间几何体的分类与性质:球体、柱体、锥体等2. 直线与平面的位置关系- 平行关系、垂直关系和斜率关系的概念- 平面与平面的位置关系:相交、平行、垂直等- 平面与直线的交点的分类:内交点、外交点等3. 空间几何体的表面积和体积- 立体几何体的表面积计算方法- 立体几何体的体积计算方法- 相似立体几何体的表面积和体积的比较第五章:数据统计与概率1. 数据的收集与整理- 数据的概念与数据的收集方法- 数据的整理与分析方法:频数分布表、频率分布直方图等- 分类数据与数值数据的概念和处理方法2. 数据的图表表示与分析- 数据的图表表示方法及其选择技巧- 直方图、折线图、饼图等常用图表的绘制和分析- 统计指标(平均数、中位数、众数、四分位数等)的计算和比较3. 概率与统计- 随机事件与样本空间的概念- 概率的定义和性质- 古典概型、几何概型和统计概型的应用以上是高一必修一数学知识点的考点概述,希望能对你有所帮助。
(完整版)高一数学必修一知识点汇总
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
高一数学必修1知识点大全
高一数学必修1知识点大全一、集合。
1. 集合的概念。
- 集合是由一些确定的、不同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成一个集合,每个自然数就是这个集合的元素。
- 集合通常用大写字母表示,如A、B、C等,元素用小写字母表示,如a、b、c等。
- 元素与集合的关系:如果a是集合A的元素,就说a∈ A(读作“a属于A”);如果a不是集合A的元素,就说a∉ A(读作“a不属于A”)。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如,集合A = {1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
一般形式为{xp(x)},其中x是集合中的代表元素,p(x)是元素x所满足的条件。
例如,{xx是大于2的整数}。
- 区间表示法:对于数集,还可以用区间表示。
- 开区间(a,b)={xa < x < b};- 闭区间[a,b]={xa≤slant x≤slant b};- 半开半闭区间(a,b]= {xa < x≤slant b},[a,b)={xa≤slant x < b};- 无穷区间(-∞,+∞)=R,(a,+∞)={xx > a},[a,+∞)={xx≥slant a},(-∞,b)={xx < b},(-∞,b]={xx≤slant b}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(读作“A包含于B”)或B⊇ A(读作“B包含A”)。
如果A⊆ B且B⊆ A,那么A = B。
- 真子集:如果A⊆ B,且存在元素x∈ B,x∉ A,那么集合A是集合B的真子集,记作A⊂neqq B。
- 空集:不含任何元素的集合叫做空集,记作varnothing。
空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A 与B的交集,记作A∩ B={xx∈ A且x∈ B}。
高一数学必修一知识点
高一数学必修第一册知识点第一章集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母 ,,,c b a 表示,元素三大性质:互异性,确定性,无序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母 ,,,C B A 表示.3集合相等:两个集合B A ,的元素一样,记作B A .4元素与集合的关系:①属于:A a ;②不属于:A a .5常用的数集及其记法:自然数集N ;正整数集 N N 或*;整数集Z ;有理数集Q ;实数集R .6集合的表示方法:①列举法:把集合中的所有元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中所有具有共同特征)(x P 的元素x 所组成的集合表示为})(|{x P A x 的方法;③图示法(Ve nn 图):用平面上封闭曲线的内部代表集合的方法.7集合间的基本关系:子集:对于两个集合B A ,,如果集合A 中任意一个元素都是集合B 中的元素,就称集合A 为集合A 的子集,记作,读作A 包含于B ;真子集:如果B A ,但存在元素B x ,且A x ,就称集合A 是集合B 的真子集,记作A B ,读作A 真包含于B .8空集:不含任何元素的集合,用 表示,空集的性质,空集是任何集合的子集,是任何集合的真子集.9集合的基本运算:并集},|{B x A x x B A 或 ;交集},|{B x A x x B A 且 ;补集},|{A x U x x A C U且(U 为全集,全集是含有所研究问题中涉及的所有元素).运算性质:B A B B A ;B A A B A ;A A ; A ;U C U C A A C C U U U U ,,)(,)()()(),()()(B A C B C A C B A C B C A C UU U U U U .10充分条件与必要条件:一般地,“若p ,则q ”为真命题,p 可以推出q ,记作q p ,称p 是q 的充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:若q q p , p ,则p 是q 的充分不必要条件;若p p q , q ,则p 是q 的必要充分不条件;若q p ,则p 是q 的充要条件;若p q ,q p ,则p 是q 的既不充分也不必要条件.11全称量词及全称量词命题:短语“所有的”,“任意一个”在逻辑中叫做全称量词,并用符号 表示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个”,“至少有一个”在逻辑中叫做存在量词,并用符号 表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否定:全称量词命题的否定是存在量词命题;存在量词命题的否定是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质:①对称性a b b a ;②传递性,a b b c a c ;③可加性a b a c b c ;④可乘性,0a b c ac bc ,,0a b c ac bc ;⑤同向可加性,a b c d a c b d ;⑥同向可乘性0,0a b c d ac bd ;⑦可乘方性 0,1nna b a b n n ;⑧可开方性 0,1nna b ab n n.⑨可倒数性bab a 11.2重要不等式:若R b a ,,则ab b a 222,当且仅当b a 时等号成立.3基本不等式:若0a ,0b ,则2a b ab,即2abab,当且仅当b a 时等号成立.4不等式链:若0a ,0b ,则baabbab a1122222,当且仅当b a 时等号成立;一正二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.6一元二次不等式的解法:二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24b ac0 0 0 二次函数2y a x b x c0a的图象一元二次方程2a xb x 0c0a的根有两个相异实数根1,22b x a12x x 有两个相等实数根122bx x a没有实数根一元二次不等式的解集20a x b x c 0a 12x xx x x 或2bx xaR2a xb x c0a12x x x x第三章函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 与它对应,那么就称B A f :为从集合A 到集合B 的一个函数,记作A x x f y ),(,其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合}|)({A x x f 叫做函数的值域,值域是集合B 的子集.2函数的三要素:定义域、对应关系、值域.求函数定义域的原则:(1)若 f x 为整式,则其定义域是R ;(2)若 f x 为分式,则其定义域是使分母不为0的实数集合;(3)若 f x 是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合;(4)若 0f x x ,则其定义域是 0x x ;(5)若 0,1xf x aaa ,则其定义域是R ;(6)若 lo g 0,1af x x aa ,则其定义域是 0xx;(7)若x x f t a n )( ,则其定义域是},2|{Z k k x x;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意D x x 21,(I D ,I 是 f x 的定义域),当12x x 时,有12()()f x f x.特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y 的定义域为I ,如果存在实数M 满足:I x ,都有))(()(M x f M x f ;I x 0使得M x f )(0,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做偶函数;偶函数的图象关于y 轴对称;偶函数)(x f y 满足|)(|)()(x f x f x f ;奇函数:一般地,设函数)(x f y 的定义域为I ,如果I x ,都有I x ,且)()(x f x f ,那么函数叫做奇函数;奇函数的图象关于原点对称;若奇函数)(x f y 的定义域中有零,则其函数图象必过原点,即(0)0f .11幂函数:一般地,函数 x y 叫做幂函数,其中x 是自变量, 是常数.12幂函数 f x x 的性质:①所有的幂函数在 0, 都有定义,并且图象都通过点 1,1;②如果0 ,则幂函数的图象过原点,并且在区间 0, 上是增函数;③如果0 ,则幂函数的图象在区间 0, 上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 趋向于 时,图象在x 轴上方无限地逼近x 轴;④在直线1 x 的右侧,幂函数图象“指大图高”;⑤幂函数图象不出现于第四象限.第四章指数函数与对数函数1、n 次方根与分数指数幂、指数幂运算性质(1)若nx a ,则 n na n xa n为奇数为偶数;(2)n n a n a n a为奇数为偶数;(3)()nna a ;(4)*(0,,,1)mnmn a a am n N n 且;(5)*1(0,,1)m nnmaam n N n a,且;(6)0的正分数指数幂为0,0的负分数指数幂没有意义.(7) 0,,r s r s a a a a r s R ;(8) ()0,,r s r s a a a r s R ;(9) ()0,0,,r r r ab a b a b r s R .2、对数、对数运算性质(1) lo g 0,1x a a N x N a a ;(2) lo g 100,1aa a ;(3) lo g 10,1aaa a ;(4); lo g 0,1a NaNaa ;(5) lo g 0,1maam a a ;(6) lo g ()lo g lo g 0,1,0,0aaaM N MN aa ;(7) lo g lo g lo g 0,1,0,0aaaM MN aa N;(8) lo glo g 0,1,0naaMn M aa ;(9)换底公式 lo g lo g 0,1,0,0,1lo g c a c b b aa b c c a;(10)l o g l o g 0,1,,*mna a n bb aa n m Nm;(11) 1lo g lo g 0,1,0,naa MM aa M n R n;(12) lo g lo g lo g 10,1,0,1,0,1a b c b c a a a b b c c .3、指数函数)1,0( a a a y x且及其性质:①定义域为 , ;②值域为 0, ;③过定点 0,1;④单调性:当1a 时,函数 f x 在R 上是增函数;当01a 时,函数 f x 在R 上是减函数;⑤在y 轴右侧,指数函数的图象“底大图高”.4、对数函数)1,0(lo ga ax y a且及其性质:①定义域为 0, ;②值域为 , ;③过定点 1,0;④单调性:当1a 时,函数f x 在 0, 上是增函数;当01a 时,函数 f x 在 0, 上是减函数;⑤在直线1 x 的右侧,对数函数的图象“底大图低”.5指数函数xa y 与对数函数)1,0(lo g a a x y a且互为反函数,它们的图象关于直线x y 对称.6不同函数增长的差异:线性函数模型)0( k b kx y 的增长特点是直线上升,其增长速度不变;指数函数模型)1( a a y x的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸”状态;对数函数模型)1(lo g a x y a的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长速度平缓;幂函数模型)0( n x y n的增长速度介于指数函数和对数函数之间.7函数的零点:在函数)(x f y 的定义域内,使得0)( x f 的实数x 叫做函数的零点.8零点存在性定理:如果函数 f x 在区间 ,a b 上的图象是连续不断的一条曲线,且有0f a f b ,那么函数y f x在区间 ,a b 内至少有一个零点,即存在 ,c a b ,使得0f c ,这个c 也就是方程 0f x 的根.9二分法:对于区间],[b a 上图象连续不断且 0f a f b 的函数)(x f y,通过不断把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到零点近似值的方法.10给定精确度 ,用二分法求函数)(x f y 零点0x 近似值的步骤:⑴确定零点0x 的初始区间 ,a b ,验证 0f a f b ;⑵求区间 ,a b 的中点c ;⑶计算)(c f ,并进一步确定零点所在的区间;①若0)( c f ,则c 就是函数的零点;②若0)()( c f a f (此时),(0c a x ),则令c b ;③若0)()( b f c f (此时),(0b c x ),则令c a ;⑷判断是否达到精确度 :若a b ,则得到零点的近似值a (或b );否则重复上面的⑵至⑷.第五章三角函数1任意角的分类:按终边的旋转方向分:正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角 的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的集合为 36036090,k k k ;第二象限角的集合为 36090360180,k k k ;第三象限角的集合为 360180360270,k k k ;第四象限角的集合为360270360360,k k k 角 的终边不在任何一个象限,就称这个角不属于任何一个象限终边在x 轴非负半轴的角的集合},2|{Z k k ;终边在x 轴非正半轴的角的集合},2|{Z k k ;终边在y 轴非负半轴的角的集合},22|{Z k k;终边在y 轴非正半轴的角的集合},22|{Z k k;终边在x 轴的角的集合},|{Z k k ;终边在y 轴的角的集合},2|{Z k k;终边在坐标轴的角的集合},2|{Z kk;2终边相同的角:与角 终边相同的角的集合为 360,k k .3弧度制:长度等于半径长的弧所对的圆心角叫做1弧度.4角度与弧度互化公式:2360 ,1180 ,180157.3.5扇形公式:半径为r 的圆的圆心角 所对弧的长为l ,则角 的弧度数的绝对值是lr .若扇形的圆心角为 为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r ,2Cr l ,21122S l rr.6三角函数的概念:设 是一个任意大小的角, 的终边上任意一点P 的坐标是 ,x y ,它与原点的距离是 220r r xy,则si n y r,c os x r, t a n 0y xx.7三角函数的符号:一全正二正弦三正切四余弦.8记忆特殊角的三角函数值:15 30 45 60759012013515018027036012643125 232 43 65232 sin 426212223426123222101c os4262322214260212223101t a n 321332不存在3133不存在9同角三角函数的基本关系:221si n c os 1 , 2222si n 1c os ,c os 1si n ;si n 2t a n c ossi n sinta n c os ,c os t a n.10诱导公式口诀:奇变偶不变,符号看象限.1si n 2si n k , c os 2c os k , t a n 2t a n k k .2si n si n, c os c os , t a n t a n . 3si n si n , c os c os , t a n t a n . 4si n si n, c os c os , t a n t a n .5si n c os 2,c os si n 2 . 6si n c os 2 ,c os si n 2.11三角函数的图象与性质:si n yxc os yxt a n yx图象定义域RR,2x xk k值域1,11,1 R函数性质12两角和差的正弦、余弦、正切公式:(1) c os c os c os si n si n ;(2) c os c os c os si n si n ;(3) si n si n c os c os si n ;(4) si n si n c os c os si n ;(5) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n );(6) t a n t a n t a n 1t a n t a n( t a n t a n t a n 1t a n t a n ).13二倍角公式:(1)si n 22si n c os ;(2)2222c os 2c os si n 2c os 112si n ;(2c os 21c os 2 ,21c os 2si n 2);(3)22t a n t a n 21t a n ;14半角公式:(1)2c os 12sin ;(2)2c os12c os;(3)c os 1c os12t a n;(4)c os 1sin sin c os 12t a n15辅助角公式:的终边上在角点其中 ),(,t a n ),sin (c ossin 22b a ab xb axb xa.最值当22x kk时,m a x1y ;当22x kk时,m i n 1y .当 2x k k 时,m a x1y ;当2x kk时,m i n 1y .既无最大值也无最小值周期性22奇偶性奇函数偶函数奇函数单调性在2,222k kk上是增函数;在32,222k kk上是减函数.在2,2k k k上是增函数;在2,2k k k上是减函数.在,22k kk上是增函数.对称性对称中心 ,0k k 对称轴2x k k对称中心 ,02k k对称轴x k k 对称中心 ,02k k无对称轴16函数b x A y )sin ( 的图象与性质:图象变换:(1)先平移后伸缩:函数si n y x 的图象上所有点向左(右)平移 个单位长度,得到函数 si n yx 的图象;再将函数 si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.(2)先伸缩后平移:函数si n y x 的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数si n y x 的图象;再将函数si n y x 的图象上所有点向左(右)平移个单位长度,得到函数 si n y x 的图象;再将函数 si n y x 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 si n y x 的图象.五点法画图函数 si n 0,0y x 的性质:①定义域为R ;②值域为],[A A ;③单调性:根据函数x y sin 的单调区间求函数的单调区间;④奇偶性:当Z k k , 时,函数 si n y x 是奇函数;当Z k k ,2时,函数si n yx 是偶函数;⑤周期:2T ;⑥对称性:根据函数x y sin 的对称性研究函数的对称性1217函数B x A y )sin ( 的应用①振幅:A ;②周期:2 ;③频率:12f;④相位:x ;⑤初相: .⑥最值:函数B x A y )sin ( ,当1x x 时,取得最小值为m i n y ;当2x x 时,取得最大值为m a xy,则 m a xm i n 12y y, m a xm i n 12y y,21122x x x x.。
高一必修一数学全章知识点
高一必修一数学全章知识点一、集合与函数1. 集合的概念和表示方法2. 集合的基本运算3. 集合的关系和判定方法4. 函数的概念和表示方法5. 函数的性质和基本类型二、数与式1. 实数的概念和性质2. 整式与分式的概念和性质3. 代数式的运算规则和性质4. 同类项与合并同类项5. 因式分解的方法和应用6. 分式的运算和应用三、方程与不等式1. 方程的概念和解的概念2. 一元一次方程的解法和应用3. 一元二次方程的解法和应用4. 一元一次不等式的解法和应用5. 一元二次不等式的解法和应用6. 绝对值方程与不等式的解法和应用四、平面几何与立体几何1. 点、线、面的基本概念与性质2. 直线与线段的性质3. 角的概念与性质4. 三角形的分类与性质5. 四边形的分类与性质6. 圆的性质与定理7. 三维图形的基本概念与性质五、函数与图像1. 二次函数的图像与性质2. 一次函数的图像与性质3. 反比例函数的图像与性质4. 幂函数的图像与性质5. 指数函数的图像与性质6. 对数函数的图像与性质六、实数与三角函数1. 整式的值域与最值问题2. 三角函数的概念与性质3. 三角函数的图像与变化规律4. 三角函数的同角关系5. 三角函数的基本公式与应用七、数列与数学归纳法1. 数列的概念与表示2. 等差数列与等差数列的性质3. 等比数列与等比数列的性质4. 递推数列与递推数列的性质5. 数学归纳法的原理与应用八、概率与统计1. 随机事件与概率的概念2. 概率的运算与应用3. 组合与排列的概念与性质4. 统计图表的制作与分析5. 平均数与波动范围的计算以上是高一必修一数学全章的知识点,希望对你的学习有所帮助。
高一数学必修一知识点整理大全
高一数学必修一知识点整理大全
一、数集与复数
1、数集:实数集、整数集、有理数集、自然数集、负数集和无理数集等
2、复数:复数由实数部分和虚数部分组成,表示形式为a+bi,其中a 为实数部分,b为虚数部分;以及其实部和虚部计算方法,共轭数,复数的乘法和除法等
二、方程与不等式
1、一元一次方程的解法:唯一解法、无解法,以及利用求根公式求解等
2、不等式:不等式的解法、绝对值不等式、二次不等式和向量不等式
三、集合与函数
1、集合:一个集合由若干元素组成,可用于天空符号来表示,以及运算符号的应用;
2、函数:体景函数的定义、反函数的概念、一元函数的性质、复合函数和函数的变换
四、直线与圆
1、直线:斜率的概念,相交点的求解、两条直线的垂直关系、直线的标准方程和点斜式;
2、圆:圆的性质,圆的中点、半径和圆心的关系,同心圆的特点,圆的标准方程,圆上一点到圆心的弧长。
五、三角函数
1、三角函数的定义:余弦函数、正切函数,以及三角函数的四象性理论;
2、三角函数的应用:三角形的基本概念、余弦定理、正弦定理,以及用于解三角形的其他定理。
六、分数与比例
1、分数:基本分数的概念,真分数、假分数,特殊分数及其转换,带分数的基本运算等;
2、比例:比例具有多重性,比例的初始情况和分级表,比例的连续变化、列比较法求不确定比例等。
高一数学必修一复习知识点总结6篇
高一数学必修一复习知识点总结6篇求学的三个条件是:多观察、多吃苦、多研究。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。
以下是作者给大家分享的6篇高一数学必修一复习知识点总结,希望能够让您对于高中数学必修一复习的写作有一定的思路。
高一数学必修一主要知识点篇一1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高一数学必修一知识点梳理
高一数学必修一知识点梳理1. 集合与函数- 集合的基本概念:元素、集合、子集、真子集、并集、交集、补集。
- 集合的表示方法:列举法和描述法。
- 集合的基本运算:并集、交集、补集、差集。
- 函数的定义:函数的概念、定义域、值域、函数的表示方法。
- 函数的性质:单调性、奇偶性、周期性。
- 函数的图像:函数图像的绘制方法、图像的基本特征。
2. 指数与对数- 指数幂的定义:a^n(a>0,n为整数)。
- 指数幂的运算法则:指数的乘法法则、指数的除法法则、指数的幂的乘方。
- 对数的定义:对数的概念、对数的运算法则。
- 对数的换底公式:换底公式的应用。
- 对数函数的性质:对数函数的单调性、值域。
3. 三角函数- 三角函数的定义:正弦、余弦、正切的定义。
- 三角函数的基本关系:三角函数的基本恒等式。
- 三角函数的图像与性质:正弦函数、余弦函数的图像和性质。
- 三角恒等变换:和差公式、倍角公式、半角公式。
4. 平面向量- 向量的基本概念:向量的定义、向量的表示方法。
- 向量的运算:向量的加法、减法、数乘。
- 向量的坐标表示:向量的坐标运算。
- 向量的数量积:数量积的定义、运算法则、几何意义。
- 向量的向量积:向量积的定义、运算法则、几何意义。
5. 不等式- 不等式的基本性质:不等式的性质、不等式的传递性、不等式的可加性。
- 不等式的解法:一元一次不等式、一元二次不等式的解法。
- 绝对值不等式:绝对值不等式的定义、解法。
- 基本不等式:算术平均数-几何平均数不等式、柯西不等式。
6. 复数- 复数的概念:复数的定义、复数的表示方法。
- 复数的运算:复数的加法、减法、乘法、除法。
- 复数的模和辐角:复数的模、辐角的定义、运算。
- 复数的代数形式:复数的代数表示、复数的乘除运算。
7. 空间几何- 空间直线与平面:直线与平面的位置关系、直线与平面的方程。
- 空间向量:空间向量的定义、运算、坐标表示。
- 空间向量的应用:空间向量在几何问题中的应用、空间向量在立体几何中的应用。
高中数学必修一最全知识点汇总
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
高一数学必修1的所有知识点
高一数学必修1的所有知识点高一数学必修1是中学数学课程中的一部分,主要内容包括代数与函数、三角函数、数列与立体几何。
以下是本学期所要学习的知识点。
一、代数与函数1. 方程与不等式- 一元二次方程及其根的性质- 一元一次不等式及其解集的表示和性质- 一元一次不等式组及其解集的表示和性质2. 函数- 函数的概念与性质- 一次函数及其图像特征- 二次函数及其图像特征- 函数的相反数、倒数与复合函数- 函数的图像与性质的应用解题3. 幂函数与指数函数- 幂函数的概念与性质- 指数函数的概念与性质- 指数函数与对数函数互为反函数- 指数函数与对数函数在实际问题中的应用二、三角函数1. 任意角与弧度制- 角的概念与坐标表示- 同角三角函数的定义与性质- 弧度的概念与弧度制的转换2. 三角函数的图像与性质- 正弦函数、余弦函数、正切函数的图像- 三角函数的周期性与奇偶性- 三角函数的相互关系与特殊角的值3. 三角函数的运算与应用- 三角函数的加法公式与减法公式- 三角函数的倍角公式与半角公式- 三角函数在实际问题中的应用三、数列与立体几何1. 数列与数列的基本性质- 数列的概念与常见数列的表示- 数列的递推公式与通项公式- 等差数列与等差数列的求和公式- 等比数列与等比数列的求和公式2. 立体几何的基本概念与性质- 空间点、线、面的概念与表示- 空间图形的投影与展开- 空间图形的计算方法与综合应用除了上述的知识点外,高一数学必修1课程还会涉及一些数学思想方法的培养,如证明与推理能力、问题解决能力等。
在学习过程中,需要通过大量的练习题和实际问题的应用来巩固所学的知识。
通过掌握高一数学必修1的所有知识点,学生将能够建立起数学思维的基础,为接下来的学习打下坚实的基础。
这些知识点不仅在数学领域有广泛的应用,还能培养学生的逻辑思维和解决问题的能力,在未来的学习和工作中发挥重要作用。
总之,高一数学必修1的知识点涵盖了代数与函数、三角函数、数列与立体几何等多个方面,通过系统地学习这些知识,学生将能够在数学领域取得良好的成绩,并培养出扎实的数学思维能力。
高一数学必修一知识点汇总
高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。
⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修一知识点总结高一数学必修一知识点总结(精选9篇)在学习的时候,我们要不断的总结和归纳,这样才有利于知识的掌握。
下面是店铺为大家收集的高一数学必修一知识点总结,希望能够帮助到大家。
高一数学必修一知识点总结篇1一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或N+ 整数集Z 有理数集Q 实数集R关于属于的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 aA ,相反,a不属于集合A 记作 a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B 或B A2.相等关系(55,且55,则5=5)实例:设 A={x|x2-1=0} B={-1,1} 元素相同结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集.AA②真子集:如果AB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)③如果 AB, BC ,那么 AC④ 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。
记作AB(读作A交B),即AB={x|xA,且xB}。
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记作:AB(读作A并B),即AB={x|xA,或xB}。
3、交集与并集的性质:AA = A, A=, AB = BA,AA = A,A= A ,AB = BA。
4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
(3)性质:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U高一数学必修一知识点总结篇2集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来{a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x?R|x—3>2},{x|x—3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a?A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R高一数学必修一知识点总结篇3集合及其表示1、集合的含义:“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。
数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。
比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
2、集合的表示通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。
a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
有一些特殊的集合需要记忆:非负整数集(即自然数集)N正整数集N_或N+整数集Z有理数集Q实数集R集合的表示方法:列举法与描述法。
①列举法:{a,b,c……}②描述法:将集合中的元素的公共属性描述出来。
如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}③语言描述法:例:{不是直角三角形的三角形}例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}强调:描述法表示集合应注意集合的代表元素A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。
集合A中是数组元素(x,y),集合B中只有元素y。
3、集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。
例题:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B注意:该题有两组解。
(2)互异性指集合中的元素不能重复,A={2,2}只能表示为{2}(3)确定性集合的确定性是指组成集合的元素的`性质必须明确,不允许有模棱两可、含混不清的情况。
高一数学必修一知识点总结篇4棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的的性质:(1)侧棱交于一点。
侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。
且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。
各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形esp:a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。
且顶点在底面的射影为底面三角形的垂心。
高一数学必修一知识点总结篇5知识点1I、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II、二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x—h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x—x?)(x—x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2aIII、二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV、抛物线的性质1、抛物线是轴对称图形。
对称轴为直线x=—b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2、抛物线有一个顶点P,坐标为P(—b/2a,(4ac—b^2)/4a)当—b/2a=0时,P在y轴上;当Δ=b^2—4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
知识点21、抛物线是轴对称图形。
对称轴为直线x=—b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2、抛物线有一个顶点P,坐标为P(—b/2a,(4ac—b’2)/4a)当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。
3、二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4、一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5、常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6、抛物线与x轴交点个数Δ=b’2—4ac>0时,抛物线与x轴有2个交点。
Δ=b’2—4ac=0时,抛物线与x轴有1个交点。
Δ=b’2—4ac<0时,抛物线与x轴没有交点。
X的取值是虚数(x=—b±√b’2—4ac的值的相反数,乘上虚数i,整个式子除以2a)知识点3对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。